Loading...
1/*
2 * Copyright © 2010 Daniel Vetter
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 */
24
25#include "drmP.h"
26#include "drm.h"
27#include "i915_drm.h"
28#include "i915_drv.h"
29#include "i915_trace.h"
30#include "intel_drv.h"
31
32/* XXX kill agp_type! */
33static unsigned int cache_level_to_agp_type(struct drm_device *dev,
34 enum i915_cache_level cache_level)
35{
36 switch (cache_level) {
37 case I915_CACHE_LLC_MLC:
38 if (INTEL_INFO(dev)->gen >= 6)
39 return AGP_USER_CACHED_MEMORY_LLC_MLC;
40 /* Older chipsets do not have this extra level of CPU
41 * cacheing, so fallthrough and request the PTE simply
42 * as cached.
43 */
44 case I915_CACHE_LLC:
45 return AGP_USER_CACHED_MEMORY;
46 default:
47 case I915_CACHE_NONE:
48 return AGP_USER_MEMORY;
49 }
50}
51
52void i915_gem_restore_gtt_mappings(struct drm_device *dev)
53{
54 struct drm_i915_private *dev_priv = dev->dev_private;
55 struct drm_i915_gem_object *obj;
56
57 /* First fill our portion of the GTT with scratch pages */
58 intel_gtt_clear_range(dev_priv->mm.gtt_start / PAGE_SIZE,
59 (dev_priv->mm.gtt_end - dev_priv->mm.gtt_start) / PAGE_SIZE);
60
61 list_for_each_entry(obj, &dev_priv->mm.gtt_list, gtt_list) {
62 i915_gem_clflush_object(obj);
63 i915_gem_gtt_rebind_object(obj, obj->cache_level);
64 }
65
66 intel_gtt_chipset_flush();
67}
68
69int i915_gem_gtt_bind_object(struct drm_i915_gem_object *obj)
70{
71 struct drm_device *dev = obj->base.dev;
72 struct drm_i915_private *dev_priv = dev->dev_private;
73 unsigned int agp_type = cache_level_to_agp_type(dev, obj->cache_level);
74 int ret;
75
76 if (dev_priv->mm.gtt->needs_dmar) {
77 ret = intel_gtt_map_memory(obj->pages,
78 obj->base.size >> PAGE_SHIFT,
79 &obj->sg_list,
80 &obj->num_sg);
81 if (ret != 0)
82 return ret;
83
84 intel_gtt_insert_sg_entries(obj->sg_list,
85 obj->num_sg,
86 obj->gtt_space->start >> PAGE_SHIFT,
87 agp_type);
88 } else
89 intel_gtt_insert_pages(obj->gtt_space->start >> PAGE_SHIFT,
90 obj->base.size >> PAGE_SHIFT,
91 obj->pages,
92 agp_type);
93
94 return 0;
95}
96
97void i915_gem_gtt_rebind_object(struct drm_i915_gem_object *obj,
98 enum i915_cache_level cache_level)
99{
100 struct drm_device *dev = obj->base.dev;
101 struct drm_i915_private *dev_priv = dev->dev_private;
102 unsigned int agp_type = cache_level_to_agp_type(dev, cache_level);
103
104 if (dev_priv->mm.gtt->needs_dmar) {
105 BUG_ON(!obj->sg_list);
106
107 intel_gtt_insert_sg_entries(obj->sg_list,
108 obj->num_sg,
109 obj->gtt_space->start >> PAGE_SHIFT,
110 agp_type);
111 } else
112 intel_gtt_insert_pages(obj->gtt_space->start >> PAGE_SHIFT,
113 obj->base.size >> PAGE_SHIFT,
114 obj->pages,
115 agp_type);
116}
117
118void i915_gem_gtt_unbind_object(struct drm_i915_gem_object *obj)
119{
120 intel_gtt_clear_range(obj->gtt_space->start >> PAGE_SHIFT,
121 obj->base.size >> PAGE_SHIFT);
122
123 if (obj->sg_list) {
124 intel_gtt_unmap_memory(obj->sg_list, obj->num_sg);
125 obj->sg_list = NULL;
126 }
127}
1/*
2 * Copyright © 2010 Daniel Vetter
3 * Copyright © 2011-2014 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22 * IN THE SOFTWARE.
23 *
24 */
25
26#include <linux/slab.h> /* fault-inject.h is not standalone! */
27
28#include <linux/fault-inject.h>
29#include <linux/log2.h>
30#include <linux/random.h>
31#include <linux/seq_file.h>
32#include <linux/stop_machine.h>
33
34#include <asm/set_memory.h>
35
36#include <drm/drmP.h>
37#include <drm/i915_drm.h>
38
39#include "i915_drv.h"
40#include "i915_vgpu.h"
41#include "i915_trace.h"
42#include "intel_drv.h"
43#include "intel_frontbuffer.h"
44
45#define I915_GFP_DMA (GFP_KERNEL | __GFP_HIGHMEM)
46
47/**
48 * DOC: Global GTT views
49 *
50 * Background and previous state
51 *
52 * Historically objects could exists (be bound) in global GTT space only as
53 * singular instances with a view representing all of the object's backing pages
54 * in a linear fashion. This view will be called a normal view.
55 *
56 * To support multiple views of the same object, where the number of mapped
57 * pages is not equal to the backing store, or where the layout of the pages
58 * is not linear, concept of a GGTT view was added.
59 *
60 * One example of an alternative view is a stereo display driven by a single
61 * image. In this case we would have a framebuffer looking like this
62 * (2x2 pages):
63 *
64 * 12
65 * 34
66 *
67 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
68 * rendering. In contrast, fed to the display engine would be an alternative
69 * view which could look something like this:
70 *
71 * 1212
72 * 3434
73 *
74 * In this example both the size and layout of pages in the alternative view is
75 * different from the normal view.
76 *
77 * Implementation and usage
78 *
79 * GGTT views are implemented using VMAs and are distinguished via enum
80 * i915_ggtt_view_type and struct i915_ggtt_view.
81 *
82 * A new flavour of core GEM functions which work with GGTT bound objects were
83 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
84 * renaming in large amounts of code. They take the struct i915_ggtt_view
85 * parameter encapsulating all metadata required to implement a view.
86 *
87 * As a helper for callers which are only interested in the normal view,
88 * globally const i915_ggtt_view_normal singleton instance exists. All old core
89 * GEM API functions, the ones not taking the view parameter, are operating on,
90 * or with the normal GGTT view.
91 *
92 * Code wanting to add or use a new GGTT view needs to:
93 *
94 * 1. Add a new enum with a suitable name.
95 * 2. Extend the metadata in the i915_ggtt_view structure if required.
96 * 3. Add support to i915_get_vma_pages().
97 *
98 * New views are required to build a scatter-gather table from within the
99 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
100 * exists for the lifetime of an VMA.
101 *
102 * Core API is designed to have copy semantics which means that passed in
103 * struct i915_ggtt_view does not need to be persistent (left around after
104 * calling the core API functions).
105 *
106 */
107
108static int
109i915_get_ggtt_vma_pages(struct i915_vma *vma);
110
111static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
112{
113 /* Note that as an uncached mmio write, this should flush the
114 * WCB of the writes into the GGTT before it triggers the invalidate.
115 */
116 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
117}
118
119static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
120{
121 gen6_ggtt_invalidate(dev_priv);
122 I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
123}
124
125static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
126{
127 intel_gtt_chipset_flush();
128}
129
130static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
131{
132 i915->ggtt.invalidate(i915);
133}
134
135int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
136 int enable_ppgtt)
137{
138 bool has_full_ppgtt;
139 bool has_full_48bit_ppgtt;
140
141 if (!dev_priv->info.has_aliasing_ppgtt)
142 return 0;
143
144 has_full_ppgtt = dev_priv->info.has_full_ppgtt;
145 has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt;
146
147 if (intel_vgpu_active(dev_priv)) {
148 /* GVT-g has no support for 32bit ppgtt */
149 has_full_ppgtt = false;
150 has_full_48bit_ppgtt = intel_vgpu_has_full_48bit_ppgtt(dev_priv);
151 }
152
153 /*
154 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
155 * execlists, the sole mechanism available to submit work.
156 */
157 if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
158 return 0;
159
160 if (enable_ppgtt == 1)
161 return 1;
162
163 if (enable_ppgtt == 2 && has_full_ppgtt)
164 return 2;
165
166 if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
167 return 3;
168
169 /* Disable ppgtt on SNB if VT-d is on. */
170 if (IS_GEN6(dev_priv) && intel_vtd_active()) {
171 DRM_INFO("Disabling PPGTT because VT-d is on\n");
172 return 0;
173 }
174
175 /* Early VLV doesn't have this */
176 if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
177 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
178 return 0;
179 }
180
181 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
182 if (has_full_48bit_ppgtt)
183 return 3;
184
185 if (has_full_ppgtt)
186 return 2;
187 }
188
189 return 1;
190}
191
192static int ppgtt_bind_vma(struct i915_vma *vma,
193 enum i915_cache_level cache_level,
194 u32 unused)
195{
196 u32 pte_flags;
197 int ret;
198
199 if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
200 ret = vma->vm->allocate_va_range(vma->vm, vma->node.start,
201 vma->size);
202 if (ret)
203 return ret;
204 }
205
206 /* Currently applicable only to VLV */
207 pte_flags = 0;
208 if (vma->obj->gt_ro)
209 pte_flags |= PTE_READ_ONLY;
210
211 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
212
213 return 0;
214}
215
216static void ppgtt_unbind_vma(struct i915_vma *vma)
217{
218 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
219}
220
221static int ppgtt_set_pages(struct i915_vma *vma)
222{
223 GEM_BUG_ON(vma->pages);
224
225 vma->pages = vma->obj->mm.pages;
226
227 vma->page_sizes = vma->obj->mm.page_sizes;
228
229 return 0;
230}
231
232static void clear_pages(struct i915_vma *vma)
233{
234 GEM_BUG_ON(!vma->pages);
235
236 if (vma->pages != vma->obj->mm.pages) {
237 sg_free_table(vma->pages);
238 kfree(vma->pages);
239 }
240 vma->pages = NULL;
241
242 memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
243}
244
245static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
246 enum i915_cache_level level)
247{
248 gen8_pte_t pte = _PAGE_PRESENT | _PAGE_RW;
249 pte |= addr;
250
251 switch (level) {
252 case I915_CACHE_NONE:
253 pte |= PPAT_UNCACHED;
254 break;
255 case I915_CACHE_WT:
256 pte |= PPAT_DISPLAY_ELLC;
257 break;
258 default:
259 pte |= PPAT_CACHED;
260 break;
261 }
262
263 return pte;
264}
265
266static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
267 const enum i915_cache_level level)
268{
269 gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
270 pde |= addr;
271 if (level != I915_CACHE_NONE)
272 pde |= PPAT_CACHED_PDE;
273 else
274 pde |= PPAT_UNCACHED;
275 return pde;
276}
277
278#define gen8_pdpe_encode gen8_pde_encode
279#define gen8_pml4e_encode gen8_pde_encode
280
281static gen6_pte_t snb_pte_encode(dma_addr_t addr,
282 enum i915_cache_level level,
283 u32 unused)
284{
285 gen6_pte_t pte = GEN6_PTE_VALID;
286 pte |= GEN6_PTE_ADDR_ENCODE(addr);
287
288 switch (level) {
289 case I915_CACHE_L3_LLC:
290 case I915_CACHE_LLC:
291 pte |= GEN6_PTE_CACHE_LLC;
292 break;
293 case I915_CACHE_NONE:
294 pte |= GEN6_PTE_UNCACHED;
295 break;
296 default:
297 MISSING_CASE(level);
298 }
299
300 return pte;
301}
302
303static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
304 enum i915_cache_level level,
305 u32 unused)
306{
307 gen6_pte_t pte = GEN6_PTE_VALID;
308 pte |= GEN6_PTE_ADDR_ENCODE(addr);
309
310 switch (level) {
311 case I915_CACHE_L3_LLC:
312 pte |= GEN7_PTE_CACHE_L3_LLC;
313 break;
314 case I915_CACHE_LLC:
315 pte |= GEN6_PTE_CACHE_LLC;
316 break;
317 case I915_CACHE_NONE:
318 pte |= GEN6_PTE_UNCACHED;
319 break;
320 default:
321 MISSING_CASE(level);
322 }
323
324 return pte;
325}
326
327static gen6_pte_t byt_pte_encode(dma_addr_t addr,
328 enum i915_cache_level level,
329 u32 flags)
330{
331 gen6_pte_t pte = GEN6_PTE_VALID;
332 pte |= GEN6_PTE_ADDR_ENCODE(addr);
333
334 if (!(flags & PTE_READ_ONLY))
335 pte |= BYT_PTE_WRITEABLE;
336
337 if (level != I915_CACHE_NONE)
338 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
339
340 return pte;
341}
342
343static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
344 enum i915_cache_level level,
345 u32 unused)
346{
347 gen6_pte_t pte = GEN6_PTE_VALID;
348 pte |= HSW_PTE_ADDR_ENCODE(addr);
349
350 if (level != I915_CACHE_NONE)
351 pte |= HSW_WB_LLC_AGE3;
352
353 return pte;
354}
355
356static gen6_pte_t iris_pte_encode(dma_addr_t addr,
357 enum i915_cache_level level,
358 u32 unused)
359{
360 gen6_pte_t pte = GEN6_PTE_VALID;
361 pte |= HSW_PTE_ADDR_ENCODE(addr);
362
363 switch (level) {
364 case I915_CACHE_NONE:
365 break;
366 case I915_CACHE_WT:
367 pte |= HSW_WT_ELLC_LLC_AGE3;
368 break;
369 default:
370 pte |= HSW_WB_ELLC_LLC_AGE3;
371 break;
372 }
373
374 return pte;
375}
376
377static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
378{
379 struct pagevec *pvec = &vm->free_pages;
380 struct pagevec stash;
381
382 if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
383 i915_gem_shrink_all(vm->i915);
384
385 if (likely(pvec->nr))
386 return pvec->pages[--pvec->nr];
387
388 if (!vm->pt_kmap_wc)
389 return alloc_page(gfp);
390
391 /* A placeholder for a specific mutex to guard the WC stash */
392 lockdep_assert_held(&vm->i915->drm.struct_mutex);
393
394 /* Look in our global stash of WC pages... */
395 pvec = &vm->i915->mm.wc_stash;
396 if (likely(pvec->nr))
397 return pvec->pages[--pvec->nr];
398
399 /*
400 * Otherwise batch allocate pages to amoritize cost of set_pages_wc.
401 *
402 * We have to be careful as page allocation may trigger the shrinker
403 * (via direct reclaim) which will fill up the WC stash underneath us.
404 * So we add our WB pages into a temporary pvec on the stack and merge
405 * them into the WC stash after all the allocations are complete.
406 */
407 pagevec_init(&stash);
408 do {
409 struct page *page;
410
411 page = alloc_page(gfp);
412 if (unlikely(!page))
413 break;
414
415 stash.pages[stash.nr++] = page;
416 } while (stash.nr < pagevec_space(pvec));
417
418 if (stash.nr) {
419 int nr = min_t(int, stash.nr, pagevec_space(pvec));
420 struct page **pages = stash.pages + stash.nr - nr;
421
422 if (nr && !set_pages_array_wc(pages, nr)) {
423 memcpy(pvec->pages + pvec->nr,
424 pages, sizeof(pages[0]) * nr);
425 pvec->nr += nr;
426 stash.nr -= nr;
427 }
428
429 pagevec_release(&stash);
430 }
431
432 return likely(pvec->nr) ? pvec->pages[--pvec->nr] : NULL;
433}
434
435static void vm_free_pages_release(struct i915_address_space *vm,
436 bool immediate)
437{
438 struct pagevec *pvec = &vm->free_pages;
439
440 GEM_BUG_ON(!pagevec_count(pvec));
441
442 if (vm->pt_kmap_wc) {
443 struct pagevec *stash = &vm->i915->mm.wc_stash;
444
445 /* When we use WC, first fill up the global stash and then
446 * only if full immediately free the overflow.
447 */
448
449 lockdep_assert_held(&vm->i915->drm.struct_mutex);
450 if (pagevec_space(stash)) {
451 do {
452 stash->pages[stash->nr++] =
453 pvec->pages[--pvec->nr];
454 if (!pvec->nr)
455 return;
456 } while (pagevec_space(stash));
457
458 /* As we have made some room in the VM's free_pages,
459 * we can wait for it to fill again. Unless we are
460 * inside i915_address_space_fini() and must
461 * immediately release the pages!
462 */
463 if (!immediate)
464 return;
465 }
466
467 set_pages_array_wb(pvec->pages, pvec->nr);
468 }
469
470 __pagevec_release(pvec);
471}
472
473static void vm_free_page(struct i915_address_space *vm, struct page *page)
474{
475 /*
476 * On !llc, we need to change the pages back to WB. We only do so
477 * in bulk, so we rarely need to change the page attributes here,
478 * but doing so requires a stop_machine() from deep inside arch/x86/mm.
479 * To make detection of the possible sleep more likely, use an
480 * unconditional might_sleep() for everybody.
481 */
482 might_sleep();
483 if (!pagevec_add(&vm->free_pages, page))
484 vm_free_pages_release(vm, false);
485}
486
487static int __setup_page_dma(struct i915_address_space *vm,
488 struct i915_page_dma *p,
489 gfp_t gfp)
490{
491 p->page = vm_alloc_page(vm, gfp | __GFP_NOWARN | __GFP_NORETRY);
492 if (unlikely(!p->page))
493 return -ENOMEM;
494
495 p->daddr = dma_map_page(vm->dma, p->page, 0, PAGE_SIZE,
496 PCI_DMA_BIDIRECTIONAL);
497 if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
498 vm_free_page(vm, p->page);
499 return -ENOMEM;
500 }
501
502 return 0;
503}
504
505static int setup_page_dma(struct i915_address_space *vm,
506 struct i915_page_dma *p)
507{
508 return __setup_page_dma(vm, p, I915_GFP_DMA);
509}
510
511static void cleanup_page_dma(struct i915_address_space *vm,
512 struct i915_page_dma *p)
513{
514 dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
515 vm_free_page(vm, p->page);
516}
517
518#define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
519
520#define setup_px(vm, px) setup_page_dma((vm), px_base(px))
521#define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
522#define fill_px(ppgtt, px, v) fill_page_dma((vm), px_base(px), (v))
523#define fill32_px(ppgtt, px, v) fill_page_dma_32((vm), px_base(px), (v))
524
525static void fill_page_dma(struct i915_address_space *vm,
526 struct i915_page_dma *p,
527 const u64 val)
528{
529 u64 * const vaddr = kmap_atomic(p->page);
530
531 memset64(vaddr, val, PAGE_SIZE / sizeof(val));
532
533 kunmap_atomic(vaddr);
534}
535
536static void fill_page_dma_32(struct i915_address_space *vm,
537 struct i915_page_dma *p,
538 const u32 v)
539{
540 fill_page_dma(vm, p, (u64)v << 32 | v);
541}
542
543static int
544setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
545{
546 unsigned long size;
547
548 /*
549 * In order to utilize 64K pages for an object with a size < 2M, we will
550 * need to support a 64K scratch page, given that every 16th entry for a
551 * page-table operating in 64K mode must point to a properly aligned 64K
552 * region, including any PTEs which happen to point to scratch.
553 *
554 * This is only relevant for the 48b PPGTT where we support
555 * huge-gtt-pages, see also i915_vma_insert().
556 *
557 * TODO: we should really consider write-protecting the scratch-page and
558 * sharing between ppgtt
559 */
560 size = I915_GTT_PAGE_SIZE_4K;
561 if (i915_vm_is_48bit(vm) &&
562 HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
563 size = I915_GTT_PAGE_SIZE_64K;
564 gfp |= __GFP_NOWARN;
565 }
566 gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;
567
568 do {
569 int order = get_order(size);
570 struct page *page;
571 dma_addr_t addr;
572
573 page = alloc_pages(gfp, order);
574 if (unlikely(!page))
575 goto skip;
576
577 addr = dma_map_page(vm->dma, page, 0, size,
578 PCI_DMA_BIDIRECTIONAL);
579 if (unlikely(dma_mapping_error(vm->dma, addr)))
580 goto free_page;
581
582 if (unlikely(!IS_ALIGNED(addr, size)))
583 goto unmap_page;
584
585 vm->scratch_page.page = page;
586 vm->scratch_page.daddr = addr;
587 vm->scratch_page.order = order;
588 return 0;
589
590unmap_page:
591 dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
592free_page:
593 __free_pages(page, order);
594skip:
595 if (size == I915_GTT_PAGE_SIZE_4K)
596 return -ENOMEM;
597
598 size = I915_GTT_PAGE_SIZE_4K;
599 gfp &= ~__GFP_NOWARN;
600 } while (1);
601}
602
603static void cleanup_scratch_page(struct i915_address_space *vm)
604{
605 struct i915_page_dma *p = &vm->scratch_page;
606
607 dma_unmap_page(vm->dma, p->daddr, BIT(p->order) << PAGE_SHIFT,
608 PCI_DMA_BIDIRECTIONAL);
609 __free_pages(p->page, p->order);
610}
611
612static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
613{
614 struct i915_page_table *pt;
615
616 pt = kmalloc(sizeof(*pt), GFP_KERNEL | __GFP_NOWARN);
617 if (unlikely(!pt))
618 return ERR_PTR(-ENOMEM);
619
620 if (unlikely(setup_px(vm, pt))) {
621 kfree(pt);
622 return ERR_PTR(-ENOMEM);
623 }
624
625 pt->used_ptes = 0;
626 return pt;
627}
628
629static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
630{
631 cleanup_px(vm, pt);
632 kfree(pt);
633}
634
635static void gen8_initialize_pt(struct i915_address_space *vm,
636 struct i915_page_table *pt)
637{
638 fill_px(vm, pt,
639 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC));
640}
641
642static void gen6_initialize_pt(struct i915_address_space *vm,
643 struct i915_page_table *pt)
644{
645 fill32_px(vm, pt,
646 vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0));
647}
648
649static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
650{
651 struct i915_page_directory *pd;
652
653 pd = kzalloc(sizeof(*pd), GFP_KERNEL | __GFP_NOWARN);
654 if (unlikely(!pd))
655 return ERR_PTR(-ENOMEM);
656
657 if (unlikely(setup_px(vm, pd))) {
658 kfree(pd);
659 return ERR_PTR(-ENOMEM);
660 }
661
662 pd->used_pdes = 0;
663 return pd;
664}
665
666static void free_pd(struct i915_address_space *vm,
667 struct i915_page_directory *pd)
668{
669 cleanup_px(vm, pd);
670 kfree(pd);
671}
672
673static void gen8_initialize_pd(struct i915_address_space *vm,
674 struct i915_page_directory *pd)
675{
676 fill_px(vm, pd,
677 gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
678 memset_p((void **)pd->page_table, vm->scratch_pt, I915_PDES);
679}
680
681static int __pdp_init(struct i915_address_space *vm,
682 struct i915_page_directory_pointer *pdp)
683{
684 const unsigned int pdpes = i915_pdpes_per_pdp(vm);
685
686 pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
687 GFP_KERNEL | __GFP_NOWARN);
688 if (unlikely(!pdp->page_directory))
689 return -ENOMEM;
690
691 memset_p((void **)pdp->page_directory, vm->scratch_pd, pdpes);
692
693 return 0;
694}
695
696static void __pdp_fini(struct i915_page_directory_pointer *pdp)
697{
698 kfree(pdp->page_directory);
699 pdp->page_directory = NULL;
700}
701
702static inline bool use_4lvl(const struct i915_address_space *vm)
703{
704 return i915_vm_is_48bit(vm);
705}
706
707static struct i915_page_directory_pointer *
708alloc_pdp(struct i915_address_space *vm)
709{
710 struct i915_page_directory_pointer *pdp;
711 int ret = -ENOMEM;
712
713 GEM_BUG_ON(!use_4lvl(vm));
714
715 pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
716 if (!pdp)
717 return ERR_PTR(-ENOMEM);
718
719 ret = __pdp_init(vm, pdp);
720 if (ret)
721 goto fail_bitmap;
722
723 ret = setup_px(vm, pdp);
724 if (ret)
725 goto fail_page_m;
726
727 return pdp;
728
729fail_page_m:
730 __pdp_fini(pdp);
731fail_bitmap:
732 kfree(pdp);
733
734 return ERR_PTR(ret);
735}
736
737static void free_pdp(struct i915_address_space *vm,
738 struct i915_page_directory_pointer *pdp)
739{
740 __pdp_fini(pdp);
741
742 if (!use_4lvl(vm))
743 return;
744
745 cleanup_px(vm, pdp);
746 kfree(pdp);
747}
748
749static void gen8_initialize_pdp(struct i915_address_space *vm,
750 struct i915_page_directory_pointer *pdp)
751{
752 gen8_ppgtt_pdpe_t scratch_pdpe;
753
754 scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
755
756 fill_px(vm, pdp, scratch_pdpe);
757}
758
759static void gen8_initialize_pml4(struct i915_address_space *vm,
760 struct i915_pml4 *pml4)
761{
762 fill_px(vm, pml4,
763 gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
764 memset_p((void **)pml4->pdps, vm->scratch_pdp, GEN8_PML4ES_PER_PML4);
765}
766
767/* Broadwell Page Directory Pointer Descriptors */
768static int gen8_write_pdp(struct i915_request *rq,
769 unsigned entry,
770 dma_addr_t addr)
771{
772 struct intel_engine_cs *engine = rq->engine;
773 u32 *cs;
774
775 BUG_ON(entry >= 4);
776
777 cs = intel_ring_begin(rq, 6);
778 if (IS_ERR(cs))
779 return PTR_ERR(cs);
780
781 *cs++ = MI_LOAD_REGISTER_IMM(1);
782 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, entry));
783 *cs++ = upper_32_bits(addr);
784 *cs++ = MI_LOAD_REGISTER_IMM(1);
785 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, entry));
786 *cs++ = lower_32_bits(addr);
787 intel_ring_advance(rq, cs);
788
789 return 0;
790}
791
792static int gen8_mm_switch_3lvl(struct i915_hw_ppgtt *ppgtt,
793 struct i915_request *rq)
794{
795 int i, ret;
796
797 for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
798 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
799
800 ret = gen8_write_pdp(rq, i, pd_daddr);
801 if (ret)
802 return ret;
803 }
804
805 return 0;
806}
807
808static int gen8_mm_switch_4lvl(struct i915_hw_ppgtt *ppgtt,
809 struct i915_request *rq)
810{
811 return gen8_write_pdp(rq, 0, px_dma(&ppgtt->pml4));
812}
813
814/* PDE TLBs are a pain to invalidate on GEN8+. When we modify
815 * the page table structures, we mark them dirty so that
816 * context switching/execlist queuing code takes extra steps
817 * to ensure that tlbs are flushed.
818 */
819static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
820{
821 ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.i915)->ring_mask;
822}
823
824/* Removes entries from a single page table, releasing it if it's empty.
825 * Caller can use the return value to update higher-level entries.
826 */
827static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm,
828 struct i915_page_table *pt,
829 u64 start, u64 length)
830{
831 unsigned int num_entries = gen8_pte_count(start, length);
832 unsigned int pte = gen8_pte_index(start);
833 unsigned int pte_end = pte + num_entries;
834 const gen8_pte_t scratch_pte =
835 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
836 gen8_pte_t *vaddr;
837
838 GEM_BUG_ON(num_entries > pt->used_ptes);
839
840 pt->used_ptes -= num_entries;
841 if (!pt->used_ptes)
842 return true;
843
844 vaddr = kmap_atomic_px(pt);
845 while (pte < pte_end)
846 vaddr[pte++] = scratch_pte;
847 kunmap_atomic(vaddr);
848
849 return false;
850}
851
852static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
853 struct i915_page_directory *pd,
854 struct i915_page_table *pt,
855 unsigned int pde)
856{
857 gen8_pde_t *vaddr;
858
859 pd->page_table[pde] = pt;
860
861 vaddr = kmap_atomic_px(pd);
862 vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
863 kunmap_atomic(vaddr);
864}
865
866static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
867 struct i915_page_directory *pd,
868 u64 start, u64 length)
869{
870 struct i915_page_table *pt;
871 u32 pde;
872
873 gen8_for_each_pde(pt, pd, start, length, pde) {
874 GEM_BUG_ON(pt == vm->scratch_pt);
875
876 if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
877 continue;
878
879 gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
880 GEM_BUG_ON(!pd->used_pdes);
881 pd->used_pdes--;
882
883 free_pt(vm, pt);
884 }
885
886 return !pd->used_pdes;
887}
888
889static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
890 struct i915_page_directory_pointer *pdp,
891 struct i915_page_directory *pd,
892 unsigned int pdpe)
893{
894 gen8_ppgtt_pdpe_t *vaddr;
895
896 pdp->page_directory[pdpe] = pd;
897 if (!use_4lvl(vm))
898 return;
899
900 vaddr = kmap_atomic_px(pdp);
901 vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
902 kunmap_atomic(vaddr);
903}
904
905/* Removes entries from a single page dir pointer, releasing it if it's empty.
906 * Caller can use the return value to update higher-level entries
907 */
908static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
909 struct i915_page_directory_pointer *pdp,
910 u64 start, u64 length)
911{
912 struct i915_page_directory *pd;
913 unsigned int pdpe;
914
915 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
916 GEM_BUG_ON(pd == vm->scratch_pd);
917
918 if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
919 continue;
920
921 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
922 GEM_BUG_ON(!pdp->used_pdpes);
923 pdp->used_pdpes--;
924
925 free_pd(vm, pd);
926 }
927
928 return !pdp->used_pdpes;
929}
930
931static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
932 u64 start, u64 length)
933{
934 gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
935}
936
937static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
938 struct i915_page_directory_pointer *pdp,
939 unsigned int pml4e)
940{
941 gen8_ppgtt_pml4e_t *vaddr;
942
943 pml4->pdps[pml4e] = pdp;
944
945 vaddr = kmap_atomic_px(pml4);
946 vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
947 kunmap_atomic(vaddr);
948}
949
950/* Removes entries from a single pml4.
951 * This is the top-level structure in 4-level page tables used on gen8+.
952 * Empty entries are always scratch pml4e.
953 */
954static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
955 u64 start, u64 length)
956{
957 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
958 struct i915_pml4 *pml4 = &ppgtt->pml4;
959 struct i915_page_directory_pointer *pdp;
960 unsigned int pml4e;
961
962 GEM_BUG_ON(!use_4lvl(vm));
963
964 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
965 GEM_BUG_ON(pdp == vm->scratch_pdp);
966
967 if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
968 continue;
969
970 gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
971
972 free_pdp(vm, pdp);
973 }
974}
975
976static inline struct sgt_dma {
977 struct scatterlist *sg;
978 dma_addr_t dma, max;
979} sgt_dma(struct i915_vma *vma) {
980 struct scatterlist *sg = vma->pages->sgl;
981 dma_addr_t addr = sg_dma_address(sg);
982 return (struct sgt_dma) { sg, addr, addr + sg->length };
983}
984
985struct gen8_insert_pte {
986 u16 pml4e;
987 u16 pdpe;
988 u16 pde;
989 u16 pte;
990};
991
992static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
993{
994 return (struct gen8_insert_pte) {
995 gen8_pml4e_index(start),
996 gen8_pdpe_index(start),
997 gen8_pde_index(start),
998 gen8_pte_index(start),
999 };
1000}
1001
1002static __always_inline bool
1003gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
1004 struct i915_page_directory_pointer *pdp,
1005 struct sgt_dma *iter,
1006 struct gen8_insert_pte *idx,
1007 enum i915_cache_level cache_level)
1008{
1009 struct i915_page_directory *pd;
1010 const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level);
1011 gen8_pte_t *vaddr;
1012 bool ret;
1013
1014 GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base));
1015 pd = pdp->page_directory[idx->pdpe];
1016 vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1017 do {
1018 vaddr[idx->pte] = pte_encode | iter->dma;
1019
1020 iter->dma += PAGE_SIZE;
1021 if (iter->dma >= iter->max) {
1022 iter->sg = __sg_next(iter->sg);
1023 if (!iter->sg) {
1024 ret = false;
1025 break;
1026 }
1027
1028 iter->dma = sg_dma_address(iter->sg);
1029 iter->max = iter->dma + iter->sg->length;
1030 }
1031
1032 if (++idx->pte == GEN8_PTES) {
1033 idx->pte = 0;
1034
1035 if (++idx->pde == I915_PDES) {
1036 idx->pde = 0;
1037
1038 /* Limited by sg length for 3lvl */
1039 if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
1040 idx->pdpe = 0;
1041 ret = true;
1042 break;
1043 }
1044
1045 GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base));
1046 pd = pdp->page_directory[idx->pdpe];
1047 }
1048
1049 kunmap_atomic(vaddr);
1050 vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
1051 }
1052 } while (1);
1053 kunmap_atomic(vaddr);
1054
1055 return ret;
1056}
1057
1058static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
1059 struct i915_vma *vma,
1060 enum i915_cache_level cache_level,
1061 u32 unused)
1062{
1063 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1064 struct sgt_dma iter = sgt_dma(vma);
1065 struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1066
1067 gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
1068 cache_level);
1069
1070 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1071}
1072
1073static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
1074 struct i915_page_directory_pointer **pdps,
1075 struct sgt_dma *iter,
1076 enum i915_cache_level cache_level)
1077{
1078 const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level);
1079 u64 start = vma->node.start;
1080 dma_addr_t rem = iter->sg->length;
1081
1082 do {
1083 struct gen8_insert_pte idx = gen8_insert_pte(start);
1084 struct i915_page_directory_pointer *pdp = pdps[idx.pml4e];
1085 struct i915_page_directory *pd = pdp->page_directory[idx.pdpe];
1086 unsigned int page_size;
1087 bool maybe_64K = false;
1088 gen8_pte_t encode = pte_encode;
1089 gen8_pte_t *vaddr;
1090 u16 index, max;
1091
1092 if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
1093 IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
1094 rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
1095 index = idx.pde;
1096 max = I915_PDES;
1097 page_size = I915_GTT_PAGE_SIZE_2M;
1098
1099 encode |= GEN8_PDE_PS_2M;
1100
1101 vaddr = kmap_atomic_px(pd);
1102 } else {
1103 struct i915_page_table *pt = pd->page_table[idx.pde];
1104
1105 index = idx.pte;
1106 max = GEN8_PTES;
1107 page_size = I915_GTT_PAGE_SIZE;
1108
1109 if (!index &&
1110 vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
1111 IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1112 (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1113 rem >= (max - index) << PAGE_SHIFT))
1114 maybe_64K = true;
1115
1116 vaddr = kmap_atomic_px(pt);
1117 }
1118
1119 do {
1120 GEM_BUG_ON(iter->sg->length < page_size);
1121 vaddr[index++] = encode | iter->dma;
1122
1123 start += page_size;
1124 iter->dma += page_size;
1125 rem -= page_size;
1126 if (iter->dma >= iter->max) {
1127 iter->sg = __sg_next(iter->sg);
1128 if (!iter->sg)
1129 break;
1130
1131 rem = iter->sg->length;
1132 iter->dma = sg_dma_address(iter->sg);
1133 iter->max = iter->dma + rem;
1134
1135 if (maybe_64K && index < max &&
1136 !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
1137 (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
1138 rem >= (max - index) << PAGE_SHIFT)))
1139 maybe_64K = false;
1140
1141 if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
1142 break;
1143 }
1144 } while (rem >= page_size && index < max);
1145
1146 kunmap_atomic(vaddr);
1147
1148 /*
1149 * Is it safe to mark the 2M block as 64K? -- Either we have
1150 * filled whole page-table with 64K entries, or filled part of
1151 * it and have reached the end of the sg table and we have
1152 * enough padding.
1153 */
1154 if (maybe_64K &&
1155 (index == max ||
1156 (i915_vm_has_scratch_64K(vma->vm) &&
1157 !iter->sg && IS_ALIGNED(vma->node.start +
1158 vma->node.size,
1159 I915_GTT_PAGE_SIZE_2M)))) {
1160 vaddr = kmap_atomic_px(pd);
1161 vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
1162 kunmap_atomic(vaddr);
1163 page_size = I915_GTT_PAGE_SIZE_64K;
1164 }
1165
1166 vma->page_sizes.gtt |= page_size;
1167 } while (iter->sg);
1168}
1169
1170static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
1171 struct i915_vma *vma,
1172 enum i915_cache_level cache_level,
1173 u32 unused)
1174{
1175 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1176 struct sgt_dma iter = sgt_dma(vma);
1177 struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
1178
1179 if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
1180 gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level);
1181 } else {
1182 struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
1183
1184 while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++],
1185 &iter, &idx, cache_level))
1186 GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
1187
1188 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1189 }
1190}
1191
1192static void gen8_free_page_tables(struct i915_address_space *vm,
1193 struct i915_page_directory *pd)
1194{
1195 int i;
1196
1197 if (!px_page(pd))
1198 return;
1199
1200 for (i = 0; i < I915_PDES; i++) {
1201 if (pd->page_table[i] != vm->scratch_pt)
1202 free_pt(vm, pd->page_table[i]);
1203 }
1204}
1205
1206static int gen8_init_scratch(struct i915_address_space *vm)
1207{
1208 int ret;
1209
1210 ret = setup_scratch_page(vm, I915_GFP_DMA);
1211 if (ret)
1212 return ret;
1213
1214 vm->scratch_pt = alloc_pt(vm);
1215 if (IS_ERR(vm->scratch_pt)) {
1216 ret = PTR_ERR(vm->scratch_pt);
1217 goto free_scratch_page;
1218 }
1219
1220 vm->scratch_pd = alloc_pd(vm);
1221 if (IS_ERR(vm->scratch_pd)) {
1222 ret = PTR_ERR(vm->scratch_pd);
1223 goto free_pt;
1224 }
1225
1226 if (use_4lvl(vm)) {
1227 vm->scratch_pdp = alloc_pdp(vm);
1228 if (IS_ERR(vm->scratch_pdp)) {
1229 ret = PTR_ERR(vm->scratch_pdp);
1230 goto free_pd;
1231 }
1232 }
1233
1234 gen8_initialize_pt(vm, vm->scratch_pt);
1235 gen8_initialize_pd(vm, vm->scratch_pd);
1236 if (use_4lvl(vm))
1237 gen8_initialize_pdp(vm, vm->scratch_pdp);
1238
1239 return 0;
1240
1241free_pd:
1242 free_pd(vm, vm->scratch_pd);
1243free_pt:
1244 free_pt(vm, vm->scratch_pt);
1245free_scratch_page:
1246 cleanup_scratch_page(vm);
1247
1248 return ret;
1249}
1250
1251static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
1252{
1253 struct i915_address_space *vm = &ppgtt->base;
1254 struct drm_i915_private *dev_priv = vm->i915;
1255 enum vgt_g2v_type msg;
1256 int i;
1257
1258 if (use_4lvl(vm)) {
1259 const u64 daddr = px_dma(&ppgtt->pml4);
1260
1261 I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
1262 I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1263
1264 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
1265 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
1266 } else {
1267 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1268 const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1269
1270 I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
1271 I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1272 }
1273
1274 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
1275 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
1276 }
1277
1278 I915_WRITE(vgtif_reg(g2v_notify), msg);
1279
1280 return 0;
1281}
1282
1283static void gen8_free_scratch(struct i915_address_space *vm)
1284{
1285 if (use_4lvl(vm))
1286 free_pdp(vm, vm->scratch_pdp);
1287 free_pd(vm, vm->scratch_pd);
1288 free_pt(vm, vm->scratch_pt);
1289 cleanup_scratch_page(vm);
1290}
1291
1292static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1293 struct i915_page_directory_pointer *pdp)
1294{
1295 const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1296 int i;
1297
1298 for (i = 0; i < pdpes; i++) {
1299 if (pdp->page_directory[i] == vm->scratch_pd)
1300 continue;
1301
1302 gen8_free_page_tables(vm, pdp->page_directory[i]);
1303 free_pd(vm, pdp->page_directory[i]);
1304 }
1305
1306 free_pdp(vm, pdp);
1307}
1308
1309static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
1310{
1311 int i;
1312
1313 for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1314 if (ppgtt->pml4.pdps[i] == ppgtt->base.scratch_pdp)
1315 continue;
1316
1317 gen8_ppgtt_cleanup_3lvl(&ppgtt->base, ppgtt->pml4.pdps[i]);
1318 }
1319
1320 cleanup_px(&ppgtt->base, &ppgtt->pml4);
1321}
1322
1323static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
1324{
1325 struct drm_i915_private *dev_priv = vm->i915;
1326 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1327
1328 if (intel_vgpu_active(dev_priv))
1329 gen8_ppgtt_notify_vgt(ppgtt, false);
1330
1331 if (use_4lvl(vm))
1332 gen8_ppgtt_cleanup_4lvl(ppgtt);
1333 else
1334 gen8_ppgtt_cleanup_3lvl(&ppgtt->base, &ppgtt->pdp);
1335
1336 gen8_free_scratch(vm);
1337}
1338
1339static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
1340 struct i915_page_directory *pd,
1341 u64 start, u64 length)
1342{
1343 struct i915_page_table *pt;
1344 u64 from = start;
1345 unsigned int pde;
1346
1347 gen8_for_each_pde(pt, pd, start, length, pde) {
1348 int count = gen8_pte_count(start, length);
1349
1350 if (pt == vm->scratch_pt) {
1351 pd->used_pdes++;
1352
1353 pt = alloc_pt(vm);
1354 if (IS_ERR(pt)) {
1355 pd->used_pdes--;
1356 goto unwind;
1357 }
1358
1359 if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
1360 gen8_initialize_pt(vm, pt);
1361
1362 gen8_ppgtt_set_pde(vm, pd, pt, pde);
1363 GEM_BUG_ON(pd->used_pdes > I915_PDES);
1364 }
1365
1366 pt->used_ptes += count;
1367 }
1368 return 0;
1369
1370unwind:
1371 gen8_ppgtt_clear_pd(vm, pd, from, start - from);
1372 return -ENOMEM;
1373}
1374
1375static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
1376 struct i915_page_directory_pointer *pdp,
1377 u64 start, u64 length)
1378{
1379 struct i915_page_directory *pd;
1380 u64 from = start;
1381 unsigned int pdpe;
1382 int ret;
1383
1384 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1385 if (pd == vm->scratch_pd) {
1386 pdp->used_pdpes++;
1387
1388 pd = alloc_pd(vm);
1389 if (IS_ERR(pd)) {
1390 pdp->used_pdpes--;
1391 goto unwind;
1392 }
1393
1394 gen8_initialize_pd(vm, pd);
1395 gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1396 GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1397
1398 mark_tlbs_dirty(i915_vm_to_ppgtt(vm));
1399 }
1400
1401 ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1402 if (unlikely(ret))
1403 goto unwind_pd;
1404 }
1405
1406 return 0;
1407
1408unwind_pd:
1409 if (!pd->used_pdes) {
1410 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1411 GEM_BUG_ON(!pdp->used_pdpes);
1412 pdp->used_pdpes--;
1413 free_pd(vm, pd);
1414 }
1415unwind:
1416 gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
1417 return -ENOMEM;
1418}
1419
1420static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
1421 u64 start, u64 length)
1422{
1423 return gen8_ppgtt_alloc_pdp(vm,
1424 &i915_vm_to_ppgtt(vm)->pdp, start, length);
1425}
1426
1427static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
1428 u64 start, u64 length)
1429{
1430 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1431 struct i915_pml4 *pml4 = &ppgtt->pml4;
1432 struct i915_page_directory_pointer *pdp;
1433 u64 from = start;
1434 u32 pml4e;
1435 int ret;
1436
1437 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1438 if (pml4->pdps[pml4e] == vm->scratch_pdp) {
1439 pdp = alloc_pdp(vm);
1440 if (IS_ERR(pdp))
1441 goto unwind;
1442
1443 gen8_initialize_pdp(vm, pdp);
1444 gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
1445 }
1446
1447 ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1448 if (unlikely(ret))
1449 goto unwind_pdp;
1450 }
1451
1452 return 0;
1453
1454unwind_pdp:
1455 if (!pdp->used_pdpes) {
1456 gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
1457 free_pdp(vm, pdp);
1458 }
1459unwind:
1460 gen8_ppgtt_clear_4lvl(vm, from, start - from);
1461 return -ENOMEM;
1462}
1463
1464static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt,
1465 struct i915_page_directory_pointer *pdp,
1466 u64 start, u64 length,
1467 gen8_pte_t scratch_pte,
1468 struct seq_file *m)
1469{
1470 struct i915_address_space *vm = &ppgtt->base;
1471 struct i915_page_directory *pd;
1472 u32 pdpe;
1473
1474 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1475 struct i915_page_table *pt;
1476 u64 pd_len = length;
1477 u64 pd_start = start;
1478 u32 pde;
1479
1480 if (pdp->page_directory[pdpe] == ppgtt->base.scratch_pd)
1481 continue;
1482
1483 seq_printf(m, "\tPDPE #%d\n", pdpe);
1484 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1485 u32 pte;
1486 gen8_pte_t *pt_vaddr;
1487
1488 if (pd->page_table[pde] == ppgtt->base.scratch_pt)
1489 continue;
1490
1491 pt_vaddr = kmap_atomic_px(pt);
1492 for (pte = 0; pte < GEN8_PTES; pte += 4) {
1493 u64 va = (pdpe << GEN8_PDPE_SHIFT |
1494 pde << GEN8_PDE_SHIFT |
1495 pte << GEN8_PTE_SHIFT);
1496 int i;
1497 bool found = false;
1498
1499 for (i = 0; i < 4; i++)
1500 if (pt_vaddr[pte + i] != scratch_pte)
1501 found = true;
1502 if (!found)
1503 continue;
1504
1505 seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1506 for (i = 0; i < 4; i++) {
1507 if (pt_vaddr[pte + i] != scratch_pte)
1508 seq_printf(m, " %llx", pt_vaddr[pte + i]);
1509 else
1510 seq_puts(m, " SCRATCH ");
1511 }
1512 seq_puts(m, "\n");
1513 }
1514 kunmap_atomic(pt_vaddr);
1515 }
1516 }
1517}
1518
1519static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1520{
1521 struct i915_address_space *vm = &ppgtt->base;
1522 const gen8_pte_t scratch_pte =
1523 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
1524 u64 start = 0, length = ppgtt->base.total;
1525
1526 if (use_4lvl(vm)) {
1527 u64 pml4e;
1528 struct i915_pml4 *pml4 = &ppgtt->pml4;
1529 struct i915_page_directory_pointer *pdp;
1530
1531 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1532 if (pml4->pdps[pml4e] == ppgtt->base.scratch_pdp)
1533 continue;
1534
1535 seq_printf(m, " PML4E #%llu\n", pml4e);
1536 gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m);
1537 }
1538 } else {
1539 gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m);
1540 }
1541}
1542
1543static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1544{
1545 struct i915_address_space *vm = &ppgtt->base;
1546 struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
1547 struct i915_page_directory *pd;
1548 u64 start = 0, length = ppgtt->base.total;
1549 u64 from = start;
1550 unsigned int pdpe;
1551
1552 gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1553 pd = alloc_pd(vm);
1554 if (IS_ERR(pd))
1555 goto unwind;
1556
1557 gen8_initialize_pd(vm, pd);
1558 gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1559 pdp->used_pdpes++;
1560 }
1561
1562 pdp->used_pdpes++; /* never remove */
1563 return 0;
1564
1565unwind:
1566 start -= from;
1567 gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
1568 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1569 free_pd(vm, pd);
1570 }
1571 pdp->used_pdpes = 0;
1572 return -ENOMEM;
1573}
1574
1575/*
1576 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1577 * with a net effect resembling a 2-level page table in normal x86 terms. Each
1578 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1579 * space.
1580 *
1581 */
1582static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1583{
1584 struct i915_address_space *vm = &ppgtt->base;
1585 struct drm_i915_private *dev_priv = vm->i915;
1586 int ret;
1587
1588 ppgtt->base.total = USES_FULL_48BIT_PPGTT(dev_priv) ?
1589 1ULL << 48 :
1590 1ULL << 32;
1591
1592 /* There are only few exceptions for gen >=6. chv and bxt.
1593 * And we are not sure about the latter so play safe for now.
1594 */
1595 if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv))
1596 ppgtt->base.pt_kmap_wc = true;
1597
1598 ret = gen8_init_scratch(&ppgtt->base);
1599 if (ret) {
1600 ppgtt->base.total = 0;
1601 return ret;
1602 }
1603
1604 if (use_4lvl(vm)) {
1605 ret = setup_px(&ppgtt->base, &ppgtt->pml4);
1606 if (ret)
1607 goto free_scratch;
1608
1609 gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1610
1611 ppgtt->switch_mm = gen8_mm_switch_4lvl;
1612 ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_4lvl;
1613 ppgtt->base.insert_entries = gen8_ppgtt_insert_4lvl;
1614 ppgtt->base.clear_range = gen8_ppgtt_clear_4lvl;
1615 } else {
1616 ret = __pdp_init(&ppgtt->base, &ppgtt->pdp);
1617 if (ret)
1618 goto free_scratch;
1619
1620 if (intel_vgpu_active(dev_priv)) {
1621 ret = gen8_preallocate_top_level_pdp(ppgtt);
1622 if (ret) {
1623 __pdp_fini(&ppgtt->pdp);
1624 goto free_scratch;
1625 }
1626 }
1627
1628 ppgtt->switch_mm = gen8_mm_switch_3lvl;
1629 ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_3lvl;
1630 ppgtt->base.insert_entries = gen8_ppgtt_insert_3lvl;
1631 ppgtt->base.clear_range = gen8_ppgtt_clear_3lvl;
1632 }
1633
1634 if (intel_vgpu_active(dev_priv))
1635 gen8_ppgtt_notify_vgt(ppgtt, true);
1636
1637 ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1638 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1639 ppgtt->base.bind_vma = ppgtt_bind_vma;
1640 ppgtt->base.set_pages = ppgtt_set_pages;
1641 ppgtt->base.clear_pages = clear_pages;
1642 ppgtt->debug_dump = gen8_dump_ppgtt;
1643
1644 return 0;
1645
1646free_scratch:
1647 gen8_free_scratch(&ppgtt->base);
1648 return ret;
1649}
1650
1651static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1652{
1653 struct i915_address_space *vm = &ppgtt->base;
1654 struct i915_page_table *unused;
1655 gen6_pte_t scratch_pte;
1656 u32 pd_entry, pte, pde;
1657 u32 start = 0, length = ppgtt->base.total;
1658
1659 scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1660 I915_CACHE_LLC, 0);
1661
1662 gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) {
1663 u32 expected;
1664 gen6_pte_t *pt_vaddr;
1665 const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1666 pd_entry = readl(ppgtt->pd_addr + pde);
1667 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1668
1669 if (pd_entry != expected)
1670 seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1671 pde,
1672 pd_entry,
1673 expected);
1674 seq_printf(m, "\tPDE: %x\n", pd_entry);
1675
1676 pt_vaddr = kmap_atomic_px(ppgtt->pd.page_table[pde]);
1677
1678 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1679 unsigned long va =
1680 (pde * PAGE_SIZE * GEN6_PTES) +
1681 (pte * PAGE_SIZE);
1682 int i;
1683 bool found = false;
1684 for (i = 0; i < 4; i++)
1685 if (pt_vaddr[pte + i] != scratch_pte)
1686 found = true;
1687 if (!found)
1688 continue;
1689
1690 seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1691 for (i = 0; i < 4; i++) {
1692 if (pt_vaddr[pte + i] != scratch_pte)
1693 seq_printf(m, " %08x", pt_vaddr[pte + i]);
1694 else
1695 seq_puts(m, " SCRATCH ");
1696 }
1697 seq_puts(m, "\n");
1698 }
1699 kunmap_atomic(pt_vaddr);
1700 }
1701}
1702
1703/* Write pde (index) from the page directory @pd to the page table @pt */
1704static inline void gen6_write_pde(const struct i915_hw_ppgtt *ppgtt,
1705 const unsigned int pde,
1706 const struct i915_page_table *pt)
1707{
1708 /* Caller needs to make sure the write completes if necessary */
1709 writel_relaxed(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
1710 ppgtt->pd_addr + pde);
1711}
1712
1713/* Write all the page tables found in the ppgtt structure to incrementing page
1714 * directories. */
1715static void gen6_write_page_range(struct i915_hw_ppgtt *ppgtt,
1716 u32 start, u32 length)
1717{
1718 struct i915_page_table *pt;
1719 unsigned int pde;
1720
1721 gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde)
1722 gen6_write_pde(ppgtt, pde, pt);
1723
1724 mark_tlbs_dirty(ppgtt);
1725 wmb();
1726}
1727
1728static inline u32 get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1729{
1730 GEM_BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1731 return ppgtt->pd.base.ggtt_offset << 10;
1732}
1733
1734static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1735 struct i915_request *rq)
1736{
1737 struct intel_engine_cs *engine = rq->engine;
1738 u32 *cs;
1739
1740 /* NB: TLBs must be flushed and invalidated before a switch */
1741 cs = intel_ring_begin(rq, 6);
1742 if (IS_ERR(cs))
1743 return PTR_ERR(cs);
1744
1745 *cs++ = MI_LOAD_REGISTER_IMM(2);
1746 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1747 *cs++ = PP_DIR_DCLV_2G;
1748 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1749 *cs++ = get_pd_offset(ppgtt);
1750 *cs++ = MI_NOOP;
1751 intel_ring_advance(rq, cs);
1752
1753 return 0;
1754}
1755
1756static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1757 struct i915_request *rq)
1758{
1759 struct intel_engine_cs *engine = rq->engine;
1760 u32 *cs;
1761
1762 /* NB: TLBs must be flushed and invalidated before a switch */
1763 cs = intel_ring_begin(rq, 6);
1764 if (IS_ERR(cs))
1765 return PTR_ERR(cs);
1766
1767 *cs++ = MI_LOAD_REGISTER_IMM(2);
1768 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1769 *cs++ = PP_DIR_DCLV_2G;
1770 *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1771 *cs++ = get_pd_offset(ppgtt);
1772 *cs++ = MI_NOOP;
1773 intel_ring_advance(rq, cs);
1774
1775 return 0;
1776}
1777
1778static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1779 struct i915_request *rq)
1780{
1781 struct intel_engine_cs *engine = rq->engine;
1782 struct drm_i915_private *dev_priv = rq->i915;
1783
1784 I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1785 I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1786 return 0;
1787}
1788
1789static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv)
1790{
1791 struct intel_engine_cs *engine;
1792 enum intel_engine_id id;
1793
1794 for_each_engine(engine, dev_priv, id) {
1795 u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ?
1796 GEN8_GFX_PPGTT_48B : 0;
1797 I915_WRITE(RING_MODE_GEN7(engine),
1798 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1799 }
1800}
1801
1802static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
1803{
1804 struct intel_engine_cs *engine;
1805 u32 ecochk, ecobits;
1806 enum intel_engine_id id;
1807
1808 ecobits = I915_READ(GAC_ECO_BITS);
1809 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1810
1811 ecochk = I915_READ(GAM_ECOCHK);
1812 if (IS_HASWELL(dev_priv)) {
1813 ecochk |= ECOCHK_PPGTT_WB_HSW;
1814 } else {
1815 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1816 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1817 }
1818 I915_WRITE(GAM_ECOCHK, ecochk);
1819
1820 for_each_engine(engine, dev_priv, id) {
1821 /* GFX_MODE is per-ring on gen7+ */
1822 I915_WRITE(RING_MODE_GEN7(engine),
1823 _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1824 }
1825}
1826
1827static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1828{
1829 u32 ecochk, gab_ctl, ecobits;
1830
1831 ecobits = I915_READ(GAC_ECO_BITS);
1832 I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1833 ECOBITS_PPGTT_CACHE64B);
1834
1835 gab_ctl = I915_READ(GAB_CTL);
1836 I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1837
1838 ecochk = I915_READ(GAM_ECOCHK);
1839 I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1840
1841 I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1842}
1843
1844/* PPGTT support for Sandybdrige/Gen6 and later */
1845static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1846 u64 start, u64 length)
1847{
1848 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1849 unsigned int first_entry = start >> PAGE_SHIFT;
1850 unsigned int pde = first_entry / GEN6_PTES;
1851 unsigned int pte = first_entry % GEN6_PTES;
1852 unsigned int num_entries = length >> PAGE_SHIFT;
1853 gen6_pte_t scratch_pte =
1854 vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
1855
1856 while (num_entries) {
1857 struct i915_page_table *pt = ppgtt->pd.page_table[pde++];
1858 unsigned int end = min(pte + num_entries, GEN6_PTES);
1859 gen6_pte_t *vaddr;
1860
1861 num_entries -= end - pte;
1862
1863 /* Note that the hw doesn't support removing PDE on the fly
1864 * (they are cached inside the context with no means to
1865 * invalidate the cache), so we can only reset the PTE
1866 * entries back to scratch.
1867 */
1868
1869 vaddr = kmap_atomic_px(pt);
1870 do {
1871 vaddr[pte++] = scratch_pte;
1872 } while (pte < end);
1873 kunmap_atomic(vaddr);
1874
1875 pte = 0;
1876 }
1877}
1878
1879static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1880 struct i915_vma *vma,
1881 enum i915_cache_level cache_level,
1882 u32 flags)
1883{
1884 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1885 unsigned first_entry = vma->node.start >> PAGE_SHIFT;
1886 unsigned act_pt = first_entry / GEN6_PTES;
1887 unsigned act_pte = first_entry % GEN6_PTES;
1888 const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1889 struct sgt_dma iter = sgt_dma(vma);
1890 gen6_pte_t *vaddr;
1891
1892 vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1893 do {
1894 vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1895
1896 iter.dma += PAGE_SIZE;
1897 if (iter.dma == iter.max) {
1898 iter.sg = __sg_next(iter.sg);
1899 if (!iter.sg)
1900 break;
1901
1902 iter.dma = sg_dma_address(iter.sg);
1903 iter.max = iter.dma + iter.sg->length;
1904 }
1905
1906 if (++act_pte == GEN6_PTES) {
1907 kunmap_atomic(vaddr);
1908 vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1909 act_pte = 0;
1910 }
1911 } while (1);
1912 kunmap_atomic(vaddr);
1913
1914 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
1915}
1916
1917static int gen6_alloc_va_range(struct i915_address_space *vm,
1918 u64 start, u64 length)
1919{
1920 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1921 struct i915_page_table *pt;
1922 u64 from = start;
1923 unsigned int pde;
1924 bool flush = false;
1925
1926 gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1927 if (pt == vm->scratch_pt) {
1928 pt = alloc_pt(vm);
1929 if (IS_ERR(pt))
1930 goto unwind_out;
1931
1932 gen6_initialize_pt(vm, pt);
1933 ppgtt->pd.page_table[pde] = pt;
1934 gen6_write_pde(ppgtt, pde, pt);
1935 flush = true;
1936 }
1937 }
1938
1939 if (flush) {
1940 mark_tlbs_dirty(ppgtt);
1941 wmb();
1942 }
1943
1944 return 0;
1945
1946unwind_out:
1947 gen6_ppgtt_clear_range(vm, from, start);
1948 return -ENOMEM;
1949}
1950
1951static int gen6_init_scratch(struct i915_address_space *vm)
1952{
1953 int ret;
1954
1955 ret = setup_scratch_page(vm, I915_GFP_DMA);
1956 if (ret)
1957 return ret;
1958
1959 vm->scratch_pt = alloc_pt(vm);
1960 if (IS_ERR(vm->scratch_pt)) {
1961 cleanup_scratch_page(vm);
1962 return PTR_ERR(vm->scratch_pt);
1963 }
1964
1965 gen6_initialize_pt(vm, vm->scratch_pt);
1966
1967 return 0;
1968}
1969
1970static void gen6_free_scratch(struct i915_address_space *vm)
1971{
1972 free_pt(vm, vm->scratch_pt);
1973 cleanup_scratch_page(vm);
1974}
1975
1976static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1977{
1978 struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1979 struct i915_page_directory *pd = &ppgtt->pd;
1980 struct i915_page_table *pt;
1981 u32 pde;
1982
1983 drm_mm_remove_node(&ppgtt->node);
1984
1985 gen6_for_all_pdes(pt, pd, pde)
1986 if (pt != vm->scratch_pt)
1987 free_pt(vm, pt);
1988
1989 gen6_free_scratch(vm);
1990}
1991
1992static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1993{
1994 struct i915_address_space *vm = &ppgtt->base;
1995 struct drm_i915_private *dev_priv = ppgtt->base.i915;
1996 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1997 int ret;
1998
1999 /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
2000 * allocator works in address space sizes, so it's multiplied by page
2001 * size. We allocate at the top of the GTT to avoid fragmentation.
2002 */
2003 BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
2004
2005 ret = gen6_init_scratch(vm);
2006 if (ret)
2007 return ret;
2008
2009 ret = i915_gem_gtt_insert(&ggtt->base, &ppgtt->node,
2010 GEN6_PD_SIZE, GEN6_PD_ALIGN,
2011 I915_COLOR_UNEVICTABLE,
2012 0, ggtt->base.total,
2013 PIN_HIGH);
2014 if (ret)
2015 goto err_out;
2016
2017 if (ppgtt->node.start < ggtt->mappable_end)
2018 DRM_DEBUG("Forced to use aperture for PDEs\n");
2019
2020 ppgtt->pd.base.ggtt_offset =
2021 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2022
2023 ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
2024 ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2025
2026 return 0;
2027
2028err_out:
2029 gen6_free_scratch(vm);
2030 return ret;
2031}
2032
2033static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2034{
2035 return gen6_ppgtt_allocate_page_directories(ppgtt);
2036}
2037
2038static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2039 u64 start, u64 length)
2040{
2041 struct i915_page_table *unused;
2042 u32 pde;
2043
2044 gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde)
2045 ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2046}
2047
2048static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2049{
2050 struct drm_i915_private *dev_priv = ppgtt->base.i915;
2051 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2052 int ret;
2053
2054 ppgtt->base.pte_encode = ggtt->base.pte_encode;
2055 if (intel_vgpu_active(dev_priv) || IS_GEN6(dev_priv))
2056 ppgtt->switch_mm = gen6_mm_switch;
2057 else if (IS_HASWELL(dev_priv))
2058 ppgtt->switch_mm = hsw_mm_switch;
2059 else if (IS_GEN7(dev_priv))
2060 ppgtt->switch_mm = gen7_mm_switch;
2061 else
2062 BUG();
2063
2064 ret = gen6_ppgtt_alloc(ppgtt);
2065 if (ret)
2066 return ret;
2067
2068 ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2069
2070 gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2071 gen6_write_page_range(ppgtt, 0, ppgtt->base.total);
2072
2073 ret = gen6_alloc_va_range(&ppgtt->base, 0, ppgtt->base.total);
2074 if (ret) {
2075 gen6_ppgtt_cleanup(&ppgtt->base);
2076 return ret;
2077 }
2078
2079 ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2080 ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2081 ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2082 ppgtt->base.bind_vma = ppgtt_bind_vma;
2083 ppgtt->base.set_pages = ppgtt_set_pages;
2084 ppgtt->base.clear_pages = clear_pages;
2085 ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2086 ppgtt->debug_dump = gen6_dump_ppgtt;
2087
2088 DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2089 ppgtt->node.size >> 20,
2090 ppgtt->node.start / PAGE_SIZE);
2091
2092 DRM_DEBUG_DRIVER("Adding PPGTT at offset %x\n",
2093 ppgtt->pd.base.ggtt_offset << 10);
2094
2095 return 0;
2096}
2097
2098static int __hw_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
2099 struct drm_i915_private *dev_priv)
2100{
2101 ppgtt->base.i915 = dev_priv;
2102 ppgtt->base.dma = &dev_priv->drm.pdev->dev;
2103
2104 if (INTEL_GEN(dev_priv) < 8)
2105 return gen6_ppgtt_init(ppgtt);
2106 else
2107 return gen8_ppgtt_init(ppgtt);
2108}
2109
2110static void i915_address_space_init(struct i915_address_space *vm,
2111 struct drm_i915_private *dev_priv,
2112 const char *name)
2113{
2114 i915_gem_timeline_init(dev_priv, &vm->timeline, name);
2115
2116 drm_mm_init(&vm->mm, 0, vm->total);
2117 vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
2118
2119 INIT_LIST_HEAD(&vm->active_list);
2120 INIT_LIST_HEAD(&vm->inactive_list);
2121 INIT_LIST_HEAD(&vm->unbound_list);
2122
2123 list_add_tail(&vm->global_link, &dev_priv->vm_list);
2124 pagevec_init(&vm->free_pages);
2125}
2126
2127static void i915_address_space_fini(struct i915_address_space *vm)
2128{
2129 if (pagevec_count(&vm->free_pages))
2130 vm_free_pages_release(vm, true);
2131
2132 i915_gem_timeline_fini(&vm->timeline);
2133 drm_mm_takedown(&vm->mm);
2134 list_del(&vm->global_link);
2135}
2136
2137static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
2138{
2139 /* This function is for gtt related workarounds. This function is
2140 * called on driver load and after a GPU reset, so you can place
2141 * workarounds here even if they get overwritten by GPU reset.
2142 */
2143 /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl */
2144 if (IS_BROADWELL(dev_priv))
2145 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2146 else if (IS_CHERRYVIEW(dev_priv))
2147 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2148 else if (IS_GEN9_BC(dev_priv) || IS_GEN10(dev_priv))
2149 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2150 else if (IS_GEN9_LP(dev_priv))
2151 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2152
2153 /*
2154 * To support 64K PTEs we need to first enable the use of the
2155 * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
2156 * mmio, otherwise the page-walker will simply ignore the IPS bit. This
2157 * shouldn't be needed after GEN10.
2158 *
2159 * 64K pages were first introduced from BDW+, although technically they
2160 * only *work* from gen9+. For pre-BDW we instead have the option for
2161 * 32K pages, but we don't currently have any support for it in our
2162 * driver.
2163 */
2164 if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
2165 INTEL_GEN(dev_priv) <= 10)
2166 I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
2167 I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
2168 GAMW_ECO_ENABLE_64K_IPS_FIELD);
2169}
2170
2171int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
2172{
2173 gtt_write_workarounds(dev_priv);
2174
2175 /* In the case of execlists, PPGTT is enabled by the context descriptor
2176 * and the PDPs are contained within the context itself. We don't
2177 * need to do anything here. */
2178 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv))
2179 return 0;
2180
2181 if (!USES_PPGTT(dev_priv))
2182 return 0;
2183
2184 if (IS_GEN6(dev_priv))
2185 gen6_ppgtt_enable(dev_priv);
2186 else if (IS_GEN7(dev_priv))
2187 gen7_ppgtt_enable(dev_priv);
2188 else if (INTEL_GEN(dev_priv) >= 8)
2189 gen8_ppgtt_enable(dev_priv);
2190 else
2191 MISSING_CASE(INTEL_GEN(dev_priv));
2192
2193 return 0;
2194}
2195
2196struct i915_hw_ppgtt *
2197i915_ppgtt_create(struct drm_i915_private *dev_priv,
2198 struct drm_i915_file_private *fpriv,
2199 const char *name)
2200{
2201 struct i915_hw_ppgtt *ppgtt;
2202 int ret;
2203
2204 ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2205 if (!ppgtt)
2206 return ERR_PTR(-ENOMEM);
2207
2208 ret = __hw_ppgtt_init(ppgtt, dev_priv);
2209 if (ret) {
2210 kfree(ppgtt);
2211 return ERR_PTR(ret);
2212 }
2213
2214 kref_init(&ppgtt->ref);
2215 i915_address_space_init(&ppgtt->base, dev_priv, name);
2216 ppgtt->base.file = fpriv;
2217
2218 trace_i915_ppgtt_create(&ppgtt->base);
2219
2220 return ppgtt;
2221}
2222
2223void i915_ppgtt_close(struct i915_address_space *vm)
2224{
2225 struct list_head *phases[] = {
2226 &vm->active_list,
2227 &vm->inactive_list,
2228 &vm->unbound_list,
2229 NULL,
2230 }, **phase;
2231
2232 GEM_BUG_ON(vm->closed);
2233 vm->closed = true;
2234
2235 for (phase = phases; *phase; phase++) {
2236 struct i915_vma *vma, *vn;
2237
2238 list_for_each_entry_safe(vma, vn, *phase, vm_link)
2239 if (!i915_vma_is_closed(vma))
2240 i915_vma_close(vma);
2241 }
2242}
2243
2244void i915_ppgtt_release(struct kref *kref)
2245{
2246 struct i915_hw_ppgtt *ppgtt =
2247 container_of(kref, struct i915_hw_ppgtt, ref);
2248
2249 trace_i915_ppgtt_release(&ppgtt->base);
2250
2251 /* vmas should already be unbound and destroyed */
2252 GEM_BUG_ON(!list_empty(&ppgtt->base.active_list));
2253 GEM_BUG_ON(!list_empty(&ppgtt->base.inactive_list));
2254 GEM_BUG_ON(!list_empty(&ppgtt->base.unbound_list));
2255
2256 ppgtt->base.cleanup(&ppgtt->base);
2257 i915_address_space_fini(&ppgtt->base);
2258 kfree(ppgtt);
2259}
2260
2261/* Certain Gen5 chipsets require require idling the GPU before
2262 * unmapping anything from the GTT when VT-d is enabled.
2263 */
2264static bool needs_idle_maps(struct drm_i915_private *dev_priv)
2265{
2266 /* Query intel_iommu to see if we need the workaround. Presumably that
2267 * was loaded first.
2268 */
2269 return IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_vtd_active();
2270}
2271
2272static void gen6_check_and_clear_faults(struct drm_i915_private *dev_priv)
2273{
2274 struct intel_engine_cs *engine;
2275 enum intel_engine_id id;
2276 u32 fault;
2277
2278 for_each_engine(engine, dev_priv, id) {
2279 fault = I915_READ(RING_FAULT_REG(engine));
2280 if (fault & RING_FAULT_VALID) {
2281 DRM_DEBUG_DRIVER("Unexpected fault\n"
2282 "\tAddr: 0x%08lx\n"
2283 "\tAddress space: %s\n"
2284 "\tSource ID: %d\n"
2285 "\tType: %d\n",
2286 fault & PAGE_MASK,
2287 fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2288 RING_FAULT_SRCID(fault),
2289 RING_FAULT_FAULT_TYPE(fault));
2290 I915_WRITE(RING_FAULT_REG(engine),
2291 fault & ~RING_FAULT_VALID);
2292 }
2293 }
2294
2295 POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
2296}
2297
2298static void gen8_check_and_clear_faults(struct drm_i915_private *dev_priv)
2299{
2300 u32 fault = I915_READ(GEN8_RING_FAULT_REG);
2301
2302 if (fault & RING_FAULT_VALID) {
2303 u32 fault_data0, fault_data1;
2304 u64 fault_addr;
2305
2306 fault_data0 = I915_READ(GEN8_FAULT_TLB_DATA0);
2307 fault_data1 = I915_READ(GEN8_FAULT_TLB_DATA1);
2308 fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
2309 ((u64)fault_data0 << 12);
2310
2311 DRM_DEBUG_DRIVER("Unexpected fault\n"
2312 "\tAddr: 0x%08x_%08x\n"
2313 "\tAddress space: %s\n"
2314 "\tEngine ID: %d\n"
2315 "\tSource ID: %d\n"
2316 "\tType: %d\n",
2317 upper_32_bits(fault_addr),
2318 lower_32_bits(fault_addr),
2319 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
2320 GEN8_RING_FAULT_ENGINE_ID(fault),
2321 RING_FAULT_SRCID(fault),
2322 RING_FAULT_FAULT_TYPE(fault));
2323 I915_WRITE(GEN8_RING_FAULT_REG,
2324 fault & ~RING_FAULT_VALID);
2325 }
2326
2327 POSTING_READ(GEN8_RING_FAULT_REG);
2328}
2329
2330void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2331{
2332 /* From GEN8 onwards we only have one 'All Engine Fault Register' */
2333 if (INTEL_GEN(dev_priv) >= 8)
2334 gen8_check_and_clear_faults(dev_priv);
2335 else if (INTEL_GEN(dev_priv) >= 6)
2336 gen6_check_and_clear_faults(dev_priv);
2337 else
2338 return;
2339}
2340
2341void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2342{
2343 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2344
2345 /* Don't bother messing with faults pre GEN6 as we have little
2346 * documentation supporting that it's a good idea.
2347 */
2348 if (INTEL_GEN(dev_priv) < 6)
2349 return;
2350
2351 i915_check_and_clear_faults(dev_priv);
2352
2353 ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total);
2354
2355 i915_ggtt_invalidate(dev_priv);
2356}
2357
2358int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2359 struct sg_table *pages)
2360{
2361 do {
2362 if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
2363 pages->sgl, pages->nents,
2364 PCI_DMA_BIDIRECTIONAL,
2365 DMA_ATTR_NO_WARN))
2366 return 0;
2367
2368 /* If the DMA remap fails, one cause can be that we have
2369 * too many objects pinned in a small remapping table,
2370 * such as swiotlb. Incrementally purge all other objects and
2371 * try again - if there are no more pages to remove from
2372 * the DMA remapper, i915_gem_shrink will return 0.
2373 */
2374 GEM_BUG_ON(obj->mm.pages == pages);
2375 } while (i915_gem_shrink(to_i915(obj->base.dev),
2376 obj->base.size >> PAGE_SHIFT, NULL,
2377 I915_SHRINK_BOUND |
2378 I915_SHRINK_UNBOUND |
2379 I915_SHRINK_ACTIVE));
2380
2381 return -ENOSPC;
2382}
2383
2384static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2385{
2386 writeq(pte, addr);
2387}
2388
2389static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2390 dma_addr_t addr,
2391 u64 offset,
2392 enum i915_cache_level level,
2393 u32 unused)
2394{
2395 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2396 gen8_pte_t __iomem *pte =
2397 (gen8_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2398
2399 gen8_set_pte(pte, gen8_pte_encode(addr, level));
2400
2401 ggtt->invalidate(vm->i915);
2402}
2403
2404static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2405 struct i915_vma *vma,
2406 enum i915_cache_level level,
2407 u32 unused)
2408{
2409 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2410 struct sgt_iter sgt_iter;
2411 gen8_pte_t __iomem *gtt_entries;
2412 const gen8_pte_t pte_encode = gen8_pte_encode(0, level);
2413 dma_addr_t addr;
2414
2415 gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2416 gtt_entries += vma->node.start >> PAGE_SHIFT;
2417 for_each_sgt_dma(addr, sgt_iter, vma->pages)
2418 gen8_set_pte(gtt_entries++, pte_encode | addr);
2419
2420 wmb();
2421
2422 /* This next bit makes the above posting read even more important. We
2423 * want to flush the TLBs only after we're certain all the PTE updates
2424 * have finished.
2425 */
2426 ggtt->invalidate(vm->i915);
2427}
2428
2429static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2430 dma_addr_t addr,
2431 u64 offset,
2432 enum i915_cache_level level,
2433 u32 flags)
2434{
2435 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2436 gen6_pte_t __iomem *pte =
2437 (gen6_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2438
2439 iowrite32(vm->pte_encode(addr, level, flags), pte);
2440
2441 ggtt->invalidate(vm->i915);
2442}
2443
2444/*
2445 * Binds an object into the global gtt with the specified cache level. The object
2446 * will be accessible to the GPU via commands whose operands reference offsets
2447 * within the global GTT as well as accessible by the GPU through the GMADR
2448 * mapped BAR (dev_priv->mm.gtt->gtt).
2449 */
2450static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2451 struct i915_vma *vma,
2452 enum i915_cache_level level,
2453 u32 flags)
2454{
2455 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2456 gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2457 unsigned int i = vma->node.start >> PAGE_SHIFT;
2458 struct sgt_iter iter;
2459 dma_addr_t addr;
2460 for_each_sgt_dma(addr, iter, vma->pages)
2461 iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2462 wmb();
2463
2464 /* This next bit makes the above posting read even more important. We
2465 * want to flush the TLBs only after we're certain all the PTE updates
2466 * have finished.
2467 */
2468 ggtt->invalidate(vm->i915);
2469}
2470
2471static void nop_clear_range(struct i915_address_space *vm,
2472 u64 start, u64 length)
2473{
2474}
2475
2476static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2477 u64 start, u64 length)
2478{
2479 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2480 unsigned first_entry = start >> PAGE_SHIFT;
2481 unsigned num_entries = length >> PAGE_SHIFT;
2482 const gen8_pte_t scratch_pte =
2483 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
2484 gen8_pte_t __iomem *gtt_base =
2485 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2486 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2487 int i;
2488
2489 if (WARN(num_entries > max_entries,
2490 "First entry = %d; Num entries = %d (max=%d)\n",
2491 first_entry, num_entries, max_entries))
2492 num_entries = max_entries;
2493
2494 for (i = 0; i < num_entries; i++)
2495 gen8_set_pte(>t_base[i], scratch_pte);
2496}
2497
2498static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
2499{
2500 struct drm_i915_private *dev_priv = vm->i915;
2501
2502 /*
2503 * Make sure the internal GAM fifo has been cleared of all GTT
2504 * writes before exiting stop_machine(). This guarantees that
2505 * any aperture accesses waiting to start in another process
2506 * cannot back up behind the GTT writes causing a hang.
2507 * The register can be any arbitrary GAM register.
2508 */
2509 POSTING_READ(GFX_FLSH_CNTL_GEN6);
2510}
2511
2512struct insert_page {
2513 struct i915_address_space *vm;
2514 dma_addr_t addr;
2515 u64 offset;
2516 enum i915_cache_level level;
2517};
2518
2519static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
2520{
2521 struct insert_page *arg = _arg;
2522
2523 gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
2524 bxt_vtd_ggtt_wa(arg->vm);
2525
2526 return 0;
2527}
2528
2529static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
2530 dma_addr_t addr,
2531 u64 offset,
2532 enum i915_cache_level level,
2533 u32 unused)
2534{
2535 struct insert_page arg = { vm, addr, offset, level };
2536
2537 stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
2538}
2539
2540struct insert_entries {
2541 struct i915_address_space *vm;
2542 struct i915_vma *vma;
2543 enum i915_cache_level level;
2544};
2545
2546static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
2547{
2548 struct insert_entries *arg = _arg;
2549
2550 gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, 0);
2551 bxt_vtd_ggtt_wa(arg->vm);
2552
2553 return 0;
2554}
2555
2556static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2557 struct i915_vma *vma,
2558 enum i915_cache_level level,
2559 u32 unused)
2560{
2561 struct insert_entries arg = { vm, vma, level };
2562
2563 stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
2564}
2565
2566struct clear_range {
2567 struct i915_address_space *vm;
2568 u64 start;
2569 u64 length;
2570};
2571
2572static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
2573{
2574 struct clear_range *arg = _arg;
2575
2576 gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
2577 bxt_vtd_ggtt_wa(arg->vm);
2578
2579 return 0;
2580}
2581
2582static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
2583 u64 start,
2584 u64 length)
2585{
2586 struct clear_range arg = { vm, start, length };
2587
2588 stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
2589}
2590
2591static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2592 u64 start, u64 length)
2593{
2594 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2595 unsigned first_entry = start >> PAGE_SHIFT;
2596 unsigned num_entries = length >> PAGE_SHIFT;
2597 gen6_pte_t scratch_pte, __iomem *gtt_base =
2598 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2599 const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2600 int i;
2601
2602 if (WARN(num_entries > max_entries,
2603 "First entry = %d; Num entries = %d (max=%d)\n",
2604 first_entry, num_entries, max_entries))
2605 num_entries = max_entries;
2606
2607 scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2608 I915_CACHE_LLC, 0);
2609
2610 for (i = 0; i < num_entries; i++)
2611 iowrite32(scratch_pte, >t_base[i]);
2612}
2613
2614static void i915_ggtt_insert_page(struct i915_address_space *vm,
2615 dma_addr_t addr,
2616 u64 offset,
2617 enum i915_cache_level cache_level,
2618 u32 unused)
2619{
2620 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2621 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2622
2623 intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2624}
2625
2626static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2627 struct i915_vma *vma,
2628 enum i915_cache_level cache_level,
2629 u32 unused)
2630{
2631 unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2632 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2633
2634 intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
2635 flags);
2636}
2637
2638static void i915_ggtt_clear_range(struct i915_address_space *vm,
2639 u64 start, u64 length)
2640{
2641 intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2642}
2643
2644static int ggtt_bind_vma(struct i915_vma *vma,
2645 enum i915_cache_level cache_level,
2646 u32 flags)
2647{
2648 struct drm_i915_private *i915 = vma->vm->i915;
2649 struct drm_i915_gem_object *obj = vma->obj;
2650 u32 pte_flags;
2651
2652 /* Currently applicable only to VLV */
2653 pte_flags = 0;
2654 if (obj->gt_ro)
2655 pte_flags |= PTE_READ_ONLY;
2656
2657 intel_runtime_pm_get(i915);
2658 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2659 intel_runtime_pm_put(i915);
2660
2661 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
2662
2663 /*
2664 * Without aliasing PPGTT there's no difference between
2665 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2666 * upgrade to both bound if we bind either to avoid double-binding.
2667 */
2668 vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2669
2670 return 0;
2671}
2672
2673static void ggtt_unbind_vma(struct i915_vma *vma)
2674{
2675 struct drm_i915_private *i915 = vma->vm->i915;
2676
2677 intel_runtime_pm_get(i915);
2678 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2679 intel_runtime_pm_put(i915);
2680}
2681
2682static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2683 enum i915_cache_level cache_level,
2684 u32 flags)
2685{
2686 struct drm_i915_private *i915 = vma->vm->i915;
2687 u32 pte_flags;
2688 int ret;
2689
2690 /* Currently applicable only to VLV */
2691 pte_flags = 0;
2692 if (vma->obj->gt_ro)
2693 pte_flags |= PTE_READ_ONLY;
2694
2695 if (flags & I915_VMA_LOCAL_BIND) {
2696 struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2697
2698 if (!(vma->flags & I915_VMA_LOCAL_BIND) &&
2699 appgtt->base.allocate_va_range) {
2700 ret = appgtt->base.allocate_va_range(&appgtt->base,
2701 vma->node.start,
2702 vma->size);
2703 if (ret)
2704 return ret;
2705 }
2706
2707 appgtt->base.insert_entries(&appgtt->base, vma, cache_level,
2708 pte_flags);
2709 }
2710
2711 if (flags & I915_VMA_GLOBAL_BIND) {
2712 intel_runtime_pm_get(i915);
2713 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2714 intel_runtime_pm_put(i915);
2715 }
2716
2717 return 0;
2718}
2719
2720static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2721{
2722 struct drm_i915_private *i915 = vma->vm->i915;
2723
2724 if (vma->flags & I915_VMA_GLOBAL_BIND) {
2725 intel_runtime_pm_get(i915);
2726 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2727 intel_runtime_pm_put(i915);
2728 }
2729
2730 if (vma->flags & I915_VMA_LOCAL_BIND) {
2731 struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->base;
2732
2733 vm->clear_range(vm, vma->node.start, vma->size);
2734 }
2735}
2736
2737void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2738 struct sg_table *pages)
2739{
2740 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2741 struct device *kdev = &dev_priv->drm.pdev->dev;
2742 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2743
2744 if (unlikely(ggtt->do_idle_maps)) {
2745 if (i915_gem_wait_for_idle(dev_priv, 0)) {
2746 DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2747 /* Wait a bit, in hopes it avoids the hang */
2748 udelay(10);
2749 }
2750 }
2751
2752 dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2753}
2754
2755static int ggtt_set_pages(struct i915_vma *vma)
2756{
2757 int ret;
2758
2759 GEM_BUG_ON(vma->pages);
2760
2761 ret = i915_get_ggtt_vma_pages(vma);
2762 if (ret)
2763 return ret;
2764
2765 vma->page_sizes = vma->obj->mm.page_sizes;
2766
2767 return 0;
2768}
2769
2770static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2771 unsigned long color,
2772 u64 *start,
2773 u64 *end)
2774{
2775 if (node->allocated && node->color != color)
2776 *start += I915_GTT_PAGE_SIZE;
2777
2778 /* Also leave a space between the unallocated reserved node after the
2779 * GTT and any objects within the GTT, i.e. we use the color adjustment
2780 * to insert a guard page to prevent prefetches crossing over the
2781 * GTT boundary.
2782 */
2783 node = list_next_entry(node, node_list);
2784 if (node->color != color)
2785 *end -= I915_GTT_PAGE_SIZE;
2786}
2787
2788int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
2789{
2790 struct i915_ggtt *ggtt = &i915->ggtt;
2791 struct i915_hw_ppgtt *ppgtt;
2792 int err;
2793
2794 ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM), "[alias]");
2795 if (IS_ERR(ppgtt))
2796 return PTR_ERR(ppgtt);
2797
2798 if (WARN_ON(ppgtt->base.total < ggtt->base.total)) {
2799 err = -ENODEV;
2800 goto err_ppgtt;
2801 }
2802
2803 if (ppgtt->base.allocate_va_range) {
2804 /* Note we only pre-allocate as far as the end of the global
2805 * GTT. On 48b / 4-level page-tables, the difference is very,
2806 * very significant! We have to preallocate as GVT/vgpu does
2807 * not like the page directory disappearing.
2808 */
2809 err = ppgtt->base.allocate_va_range(&ppgtt->base,
2810 0, ggtt->base.total);
2811 if (err)
2812 goto err_ppgtt;
2813 }
2814
2815 i915->mm.aliasing_ppgtt = ppgtt;
2816
2817 GEM_BUG_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2818 ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2819
2820 GEM_BUG_ON(ggtt->base.unbind_vma != ggtt_unbind_vma);
2821 ggtt->base.unbind_vma = aliasing_gtt_unbind_vma;
2822
2823 return 0;
2824
2825err_ppgtt:
2826 i915_ppgtt_put(ppgtt);
2827 return err;
2828}
2829
2830void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
2831{
2832 struct i915_ggtt *ggtt = &i915->ggtt;
2833 struct i915_hw_ppgtt *ppgtt;
2834
2835 ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
2836 if (!ppgtt)
2837 return;
2838
2839 i915_ppgtt_put(ppgtt);
2840
2841 ggtt->base.bind_vma = ggtt_bind_vma;
2842 ggtt->base.unbind_vma = ggtt_unbind_vma;
2843}
2844
2845int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2846{
2847 /* Let GEM Manage all of the aperture.
2848 *
2849 * However, leave one page at the end still bound to the scratch page.
2850 * There are a number of places where the hardware apparently prefetches
2851 * past the end of the object, and we've seen multiple hangs with the
2852 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2853 * aperture. One page should be enough to keep any prefetching inside
2854 * of the aperture.
2855 */
2856 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2857 unsigned long hole_start, hole_end;
2858 struct drm_mm_node *entry;
2859 int ret;
2860
2861 ret = intel_vgt_balloon(dev_priv);
2862 if (ret)
2863 return ret;
2864
2865 /* Reserve a mappable slot for our lockless error capture */
2866 ret = drm_mm_insert_node_in_range(&ggtt->base.mm, &ggtt->error_capture,
2867 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
2868 0, ggtt->mappable_end,
2869 DRM_MM_INSERT_LOW);
2870 if (ret)
2871 return ret;
2872
2873 /* Clear any non-preallocated blocks */
2874 drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2875 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2876 hole_start, hole_end);
2877 ggtt->base.clear_range(&ggtt->base, hole_start,
2878 hole_end - hole_start);
2879 }
2880
2881 /* And finally clear the reserved guard page */
2882 ggtt->base.clear_range(&ggtt->base,
2883 ggtt->base.total - PAGE_SIZE, PAGE_SIZE);
2884
2885 if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2886 ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2887 if (ret)
2888 goto err;
2889 }
2890
2891 return 0;
2892
2893err:
2894 drm_mm_remove_node(&ggtt->error_capture);
2895 return ret;
2896}
2897
2898/**
2899 * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2900 * @dev_priv: i915 device
2901 */
2902void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2903{
2904 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2905 struct i915_vma *vma, *vn;
2906 struct pagevec *pvec;
2907
2908 ggtt->base.closed = true;
2909
2910 mutex_lock(&dev_priv->drm.struct_mutex);
2911 GEM_BUG_ON(!list_empty(&ggtt->base.active_list));
2912 list_for_each_entry_safe(vma, vn, &ggtt->base.inactive_list, vm_link)
2913 WARN_ON(i915_vma_unbind(vma));
2914 mutex_unlock(&dev_priv->drm.struct_mutex);
2915
2916 i915_gem_cleanup_stolen(&dev_priv->drm);
2917
2918 mutex_lock(&dev_priv->drm.struct_mutex);
2919 i915_gem_fini_aliasing_ppgtt(dev_priv);
2920
2921 if (drm_mm_node_allocated(&ggtt->error_capture))
2922 drm_mm_remove_node(&ggtt->error_capture);
2923
2924 if (drm_mm_initialized(&ggtt->base.mm)) {
2925 intel_vgt_deballoon(dev_priv);
2926 i915_address_space_fini(&ggtt->base);
2927 }
2928
2929 ggtt->base.cleanup(&ggtt->base);
2930
2931 pvec = &dev_priv->mm.wc_stash;
2932 if (pvec->nr) {
2933 set_pages_array_wb(pvec->pages, pvec->nr);
2934 __pagevec_release(pvec);
2935 }
2936
2937 mutex_unlock(&dev_priv->drm.struct_mutex);
2938
2939 arch_phys_wc_del(ggtt->mtrr);
2940 io_mapping_fini(&ggtt->iomap);
2941}
2942
2943static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2944{
2945 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2946 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2947 return snb_gmch_ctl << 20;
2948}
2949
2950static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2951{
2952 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2953 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2954 if (bdw_gmch_ctl)
2955 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2956
2957#ifdef CONFIG_X86_32
2958 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2959 if (bdw_gmch_ctl > 4)
2960 bdw_gmch_ctl = 4;
2961#endif
2962
2963 return bdw_gmch_ctl << 20;
2964}
2965
2966static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2967{
2968 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2969 gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2970
2971 if (gmch_ctrl)
2972 return 1 << (20 + gmch_ctrl);
2973
2974 return 0;
2975}
2976
2977static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2978{
2979 struct drm_i915_private *dev_priv = ggtt->base.i915;
2980 struct pci_dev *pdev = dev_priv->drm.pdev;
2981 phys_addr_t phys_addr;
2982 int ret;
2983
2984 /* For Modern GENs the PTEs and register space are split in the BAR */
2985 phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2986
2987 /*
2988 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
2989 * will be dropped. For WC mappings in general we have 64 byte burst
2990 * writes when the WC buffer is flushed, so we can't use it, but have to
2991 * resort to an uncached mapping. The WC issue is easily caught by the
2992 * readback check when writing GTT PTE entries.
2993 */
2994 if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
2995 ggtt->gsm = ioremap_nocache(phys_addr, size);
2996 else
2997 ggtt->gsm = ioremap_wc(phys_addr, size);
2998 if (!ggtt->gsm) {
2999 DRM_ERROR("Failed to map the ggtt page table\n");
3000 return -ENOMEM;
3001 }
3002
3003 ret = setup_scratch_page(&ggtt->base, GFP_DMA32);
3004 if (ret) {
3005 DRM_ERROR("Scratch setup failed\n");
3006 /* iounmap will also get called at remove, but meh */
3007 iounmap(ggtt->gsm);
3008 return ret;
3009 }
3010
3011 return 0;
3012}
3013
3014static struct intel_ppat_entry *
3015__alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
3016{
3017 struct intel_ppat_entry *entry = &ppat->entries[index];
3018
3019 GEM_BUG_ON(index >= ppat->max_entries);
3020 GEM_BUG_ON(test_bit(index, ppat->used));
3021
3022 entry->ppat = ppat;
3023 entry->value = value;
3024 kref_init(&entry->ref);
3025 set_bit(index, ppat->used);
3026 set_bit(index, ppat->dirty);
3027
3028 return entry;
3029}
3030
3031static void __free_ppat_entry(struct intel_ppat_entry *entry)
3032{
3033 struct intel_ppat *ppat = entry->ppat;
3034 unsigned int index = entry - ppat->entries;
3035
3036 GEM_BUG_ON(index >= ppat->max_entries);
3037 GEM_BUG_ON(!test_bit(index, ppat->used));
3038
3039 entry->value = ppat->clear_value;
3040 clear_bit(index, ppat->used);
3041 set_bit(index, ppat->dirty);
3042}
3043
3044/**
3045 * intel_ppat_get - get a usable PPAT entry
3046 * @i915: i915 device instance
3047 * @value: the PPAT value required by the caller
3048 *
3049 * The function tries to search if there is an existing PPAT entry which
3050 * matches with the required value. If perfectly matched, the existing PPAT
3051 * entry will be used. If only partially matched, it will try to check if
3052 * there is any available PPAT index. If yes, it will allocate a new PPAT
3053 * index for the required entry and update the HW. If not, the partially
3054 * matched entry will be used.
3055 */
3056const struct intel_ppat_entry *
3057intel_ppat_get(struct drm_i915_private *i915, u8 value)
3058{
3059 struct intel_ppat *ppat = &i915->ppat;
3060 struct intel_ppat_entry *entry = NULL;
3061 unsigned int scanned, best_score;
3062 int i;
3063
3064 GEM_BUG_ON(!ppat->max_entries);
3065
3066 scanned = best_score = 0;
3067 for_each_set_bit(i, ppat->used, ppat->max_entries) {
3068 unsigned int score;
3069
3070 score = ppat->match(ppat->entries[i].value, value);
3071 if (score > best_score) {
3072 entry = &ppat->entries[i];
3073 if (score == INTEL_PPAT_PERFECT_MATCH) {
3074 kref_get(&entry->ref);
3075 return entry;
3076 }
3077 best_score = score;
3078 }
3079 scanned++;
3080 }
3081
3082 if (scanned == ppat->max_entries) {
3083 if (!entry)
3084 return ERR_PTR(-ENOSPC);
3085
3086 kref_get(&entry->ref);
3087 return entry;
3088 }
3089
3090 i = find_first_zero_bit(ppat->used, ppat->max_entries);
3091 entry = __alloc_ppat_entry(ppat, i, value);
3092 ppat->update_hw(i915);
3093 return entry;
3094}
3095
3096static void release_ppat(struct kref *kref)
3097{
3098 struct intel_ppat_entry *entry =
3099 container_of(kref, struct intel_ppat_entry, ref);
3100 struct drm_i915_private *i915 = entry->ppat->i915;
3101
3102 __free_ppat_entry(entry);
3103 entry->ppat->update_hw(i915);
3104}
3105
3106/**
3107 * intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
3108 * @entry: an intel PPAT entry
3109 *
3110 * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
3111 * entry is dynamically allocated, its reference count will be decreased. Once
3112 * the reference count becomes into zero, the PPAT index becomes free again.
3113 */
3114void intel_ppat_put(const struct intel_ppat_entry *entry)
3115{
3116 struct intel_ppat *ppat = entry->ppat;
3117 unsigned int index = entry - ppat->entries;
3118
3119 GEM_BUG_ON(!ppat->max_entries);
3120
3121 kref_put(&ppat->entries[index].ref, release_ppat);
3122}
3123
3124static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
3125{
3126 struct intel_ppat *ppat = &dev_priv->ppat;
3127 int i;
3128
3129 for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
3130 I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
3131 clear_bit(i, ppat->dirty);
3132 }
3133}
3134
3135static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
3136{
3137 struct intel_ppat *ppat = &dev_priv->ppat;
3138 u64 pat = 0;
3139 int i;
3140
3141 for (i = 0; i < ppat->max_entries; i++)
3142 pat |= GEN8_PPAT(i, ppat->entries[i].value);
3143
3144 bitmap_clear(ppat->dirty, 0, ppat->max_entries);
3145
3146 I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
3147 I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
3148}
3149
3150static unsigned int bdw_private_pat_match(u8 src, u8 dst)
3151{
3152 unsigned int score = 0;
3153 enum {
3154 AGE_MATCH = BIT(0),
3155 TC_MATCH = BIT(1),
3156 CA_MATCH = BIT(2),
3157 };
3158
3159 /* Cache attribute has to be matched. */
3160 if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
3161 return 0;
3162
3163 score |= CA_MATCH;
3164
3165 if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
3166 score |= TC_MATCH;
3167
3168 if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
3169 score |= AGE_MATCH;
3170
3171 if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
3172 return INTEL_PPAT_PERFECT_MATCH;
3173
3174 return score;
3175}
3176
3177static unsigned int chv_private_pat_match(u8 src, u8 dst)
3178{
3179 return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
3180 INTEL_PPAT_PERFECT_MATCH : 0;
3181}
3182
3183static void cnl_setup_private_ppat(struct intel_ppat *ppat)
3184{
3185 ppat->max_entries = 8;
3186 ppat->update_hw = cnl_private_pat_update_hw;
3187 ppat->match = bdw_private_pat_match;
3188 ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
3189
3190 __alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
3191 __alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
3192 __alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
3193 __alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
3194 __alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
3195 __alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
3196 __alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
3197 __alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3198}
3199
3200/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
3201 * bits. When using advanced contexts each context stores its own PAT, but
3202 * writing this data shouldn't be harmful even in those cases. */
3203static void bdw_setup_private_ppat(struct intel_ppat *ppat)
3204{
3205 ppat->max_entries = 8;
3206 ppat->update_hw = bdw_private_pat_update_hw;
3207 ppat->match = bdw_private_pat_match;
3208 ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
3209
3210 if (!USES_PPGTT(ppat->i915)) {
3211 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
3212 * so RTL will always use the value corresponding to
3213 * pat_sel = 000".
3214 * So let's disable cache for GGTT to avoid screen corruptions.
3215 * MOCS still can be used though.
3216 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
3217 * before this patch, i.e. the same uncached + snooping access
3218 * like on gen6/7 seems to be in effect.
3219 * - So this just fixes blitter/render access. Again it looks
3220 * like it's not just uncached access, but uncached + snooping.
3221 * So we can still hold onto all our assumptions wrt cpu
3222 * clflushing on LLC machines.
3223 */
3224 __alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
3225 return;
3226 }
3227
3228 __alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC); /* for normal objects, no eLLC */
3229 __alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC); /* for something pointing to ptes? */
3230 __alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC); /* for scanout with eLLC */
3231 __alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC); /* Uncached objects, mostly for scanout */
3232 __alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
3233 __alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
3234 __alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
3235 __alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
3236}
3237
3238static void chv_setup_private_ppat(struct intel_ppat *ppat)
3239{
3240 ppat->max_entries = 8;
3241 ppat->update_hw = bdw_private_pat_update_hw;
3242 ppat->match = chv_private_pat_match;
3243 ppat->clear_value = CHV_PPAT_SNOOP;
3244
3245 /*
3246 * Map WB on BDW to snooped on CHV.
3247 *
3248 * Only the snoop bit has meaning for CHV, the rest is
3249 * ignored.
3250 *
3251 * The hardware will never snoop for certain types of accesses:
3252 * - CPU GTT (GMADR->GGTT->no snoop->memory)
3253 * - PPGTT page tables
3254 * - some other special cycles
3255 *
3256 * As with BDW, we also need to consider the following for GT accesses:
3257 * "For GGTT, there is NO pat_sel[2:0] from the entry,
3258 * so RTL will always use the value corresponding to
3259 * pat_sel = 000".
3260 * Which means we must set the snoop bit in PAT entry 0
3261 * in order to keep the global status page working.
3262 */
3263
3264 __alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
3265 __alloc_ppat_entry(ppat, 1, 0);
3266 __alloc_ppat_entry(ppat, 2, 0);
3267 __alloc_ppat_entry(ppat, 3, 0);
3268 __alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
3269 __alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
3270 __alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
3271 __alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
3272}
3273
3274static void gen6_gmch_remove(struct i915_address_space *vm)
3275{
3276 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
3277
3278 iounmap(ggtt->gsm);
3279 cleanup_scratch_page(vm);
3280}
3281
3282static void setup_private_pat(struct drm_i915_private *dev_priv)
3283{
3284 struct intel_ppat *ppat = &dev_priv->ppat;
3285 int i;
3286
3287 ppat->i915 = dev_priv;
3288
3289 if (INTEL_GEN(dev_priv) >= 10)
3290 cnl_setup_private_ppat(ppat);
3291 else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3292 chv_setup_private_ppat(ppat);
3293 else
3294 bdw_setup_private_ppat(ppat);
3295
3296 GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);
3297
3298 for_each_clear_bit(i, ppat->used, ppat->max_entries) {
3299 ppat->entries[i].value = ppat->clear_value;
3300 ppat->entries[i].ppat = ppat;
3301 set_bit(i, ppat->dirty);
3302 }
3303
3304 ppat->update_hw(dev_priv);
3305}
3306
3307static int gen8_gmch_probe(struct i915_ggtt *ggtt)
3308{
3309 struct drm_i915_private *dev_priv = ggtt->base.i915;
3310 struct pci_dev *pdev = dev_priv->drm.pdev;
3311 unsigned int size;
3312 u16 snb_gmch_ctl;
3313 int err;
3314
3315 /* TODO: We're not aware of mappable constraints on gen8 yet */
3316 ggtt->gmadr =
3317 (struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3318 pci_resource_len(pdev, 2));
3319 ggtt->mappable_end = resource_size(&ggtt->gmadr);
3320
3321 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
3322 if (!err)
3323 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
3324 if (err)
3325 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3326
3327 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3328
3329 if (INTEL_GEN(dev_priv) >= 9) {
3330 size = gen8_get_total_gtt_size(snb_gmch_ctl);
3331 } else if (IS_CHERRYVIEW(dev_priv)) {
3332 size = chv_get_total_gtt_size(snb_gmch_ctl);
3333 } else {
3334 size = gen8_get_total_gtt_size(snb_gmch_ctl);
3335 }
3336
3337 ggtt->base.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3338 ggtt->base.cleanup = gen6_gmch_remove;
3339 ggtt->base.bind_vma = ggtt_bind_vma;
3340 ggtt->base.unbind_vma = ggtt_unbind_vma;
3341 ggtt->base.set_pages = ggtt_set_pages;
3342 ggtt->base.clear_pages = clear_pages;
3343 ggtt->base.insert_page = gen8_ggtt_insert_page;
3344 ggtt->base.clear_range = nop_clear_range;
3345 if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
3346 ggtt->base.clear_range = gen8_ggtt_clear_range;
3347
3348 ggtt->base.insert_entries = gen8_ggtt_insert_entries;
3349
3350 /* Serialize GTT updates with aperture access on BXT if VT-d is on. */
3351 if (intel_ggtt_update_needs_vtd_wa(dev_priv)) {
3352 ggtt->base.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
3353 ggtt->base.insert_page = bxt_vtd_ggtt_insert_page__BKL;
3354 if (ggtt->base.clear_range != nop_clear_range)
3355 ggtt->base.clear_range = bxt_vtd_ggtt_clear_range__BKL;
3356 }
3357
3358 ggtt->invalidate = gen6_ggtt_invalidate;
3359
3360 setup_private_pat(dev_priv);
3361
3362 return ggtt_probe_common(ggtt, size);
3363}
3364
3365static int gen6_gmch_probe(struct i915_ggtt *ggtt)
3366{
3367 struct drm_i915_private *dev_priv = ggtt->base.i915;
3368 struct pci_dev *pdev = dev_priv->drm.pdev;
3369 unsigned int size;
3370 u16 snb_gmch_ctl;
3371 int err;
3372
3373 ggtt->gmadr =
3374 (struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
3375 pci_resource_len(pdev, 2));
3376 ggtt->mappable_end = resource_size(&ggtt->gmadr);
3377
3378 /* 64/512MB is the current min/max we actually know of, but this is just
3379 * a coarse sanity check.
3380 */
3381 if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
3382 DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
3383 return -ENXIO;
3384 }
3385
3386 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
3387 if (!err)
3388 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
3389 if (err)
3390 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
3391 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3392
3393 size = gen6_get_total_gtt_size(snb_gmch_ctl);
3394 ggtt->base.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3395
3396 ggtt->base.clear_range = gen6_ggtt_clear_range;
3397 ggtt->base.insert_page = gen6_ggtt_insert_page;
3398 ggtt->base.insert_entries = gen6_ggtt_insert_entries;
3399 ggtt->base.bind_vma = ggtt_bind_vma;
3400 ggtt->base.unbind_vma = ggtt_unbind_vma;
3401 ggtt->base.set_pages = ggtt_set_pages;
3402 ggtt->base.clear_pages = clear_pages;
3403 ggtt->base.cleanup = gen6_gmch_remove;
3404
3405 ggtt->invalidate = gen6_ggtt_invalidate;
3406
3407 if (HAS_EDRAM(dev_priv))
3408 ggtt->base.pte_encode = iris_pte_encode;
3409 else if (IS_HASWELL(dev_priv))
3410 ggtt->base.pte_encode = hsw_pte_encode;
3411 else if (IS_VALLEYVIEW(dev_priv))
3412 ggtt->base.pte_encode = byt_pte_encode;
3413 else if (INTEL_GEN(dev_priv) >= 7)
3414 ggtt->base.pte_encode = ivb_pte_encode;
3415 else
3416 ggtt->base.pte_encode = snb_pte_encode;
3417
3418 return ggtt_probe_common(ggtt, size);
3419}
3420
3421static void i915_gmch_remove(struct i915_address_space *vm)
3422{
3423 intel_gmch_remove();
3424}
3425
3426static int i915_gmch_probe(struct i915_ggtt *ggtt)
3427{
3428 struct drm_i915_private *dev_priv = ggtt->base.i915;
3429 phys_addr_t gmadr_base;
3430 int ret;
3431
3432 ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
3433 if (!ret) {
3434 DRM_ERROR("failed to set up gmch\n");
3435 return -EIO;
3436 }
3437
3438 intel_gtt_get(&ggtt->base.total,
3439 &gmadr_base,
3440 &ggtt->mappable_end);
3441
3442 ggtt->gmadr =
3443 (struct resource) DEFINE_RES_MEM(gmadr_base,
3444 ggtt->mappable_end);
3445
3446 ggtt->do_idle_maps = needs_idle_maps(dev_priv);
3447 ggtt->base.insert_page = i915_ggtt_insert_page;
3448 ggtt->base.insert_entries = i915_ggtt_insert_entries;
3449 ggtt->base.clear_range = i915_ggtt_clear_range;
3450 ggtt->base.bind_vma = ggtt_bind_vma;
3451 ggtt->base.unbind_vma = ggtt_unbind_vma;
3452 ggtt->base.set_pages = ggtt_set_pages;
3453 ggtt->base.clear_pages = clear_pages;
3454 ggtt->base.cleanup = i915_gmch_remove;
3455
3456 ggtt->invalidate = gmch_ggtt_invalidate;
3457
3458 if (unlikely(ggtt->do_idle_maps))
3459 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3460
3461 return 0;
3462}
3463
3464/**
3465 * i915_ggtt_probe_hw - Probe GGTT hardware location
3466 * @dev_priv: i915 device
3467 */
3468int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3469{
3470 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3471 int ret;
3472
3473 ggtt->base.i915 = dev_priv;
3474 ggtt->base.dma = &dev_priv->drm.pdev->dev;
3475
3476 if (INTEL_GEN(dev_priv) <= 5)
3477 ret = i915_gmch_probe(ggtt);
3478 else if (INTEL_GEN(dev_priv) < 8)
3479 ret = gen6_gmch_probe(ggtt);
3480 else
3481 ret = gen8_gmch_probe(ggtt);
3482 if (ret)
3483 return ret;
3484
3485 /* Trim the GGTT to fit the GuC mappable upper range (when enabled).
3486 * This is easier than doing range restriction on the fly, as we
3487 * currently don't have any bits spare to pass in this upper
3488 * restriction!
3489 */
3490 if (USES_GUC(dev_priv)) {
3491 ggtt->base.total = min_t(u64, ggtt->base.total, GUC_GGTT_TOP);
3492 ggtt->mappable_end = min_t(u64, ggtt->mappable_end, ggtt->base.total);
3493 }
3494
3495 if ((ggtt->base.total - 1) >> 32) {
3496 DRM_ERROR("We never expected a Global GTT with more than 32bits"
3497 " of address space! Found %lldM!\n",
3498 ggtt->base.total >> 20);
3499 ggtt->base.total = 1ULL << 32;
3500 ggtt->mappable_end = min_t(u64, ggtt->mappable_end, ggtt->base.total);
3501 }
3502
3503 if (ggtt->mappable_end > ggtt->base.total) {
3504 DRM_ERROR("mappable aperture extends past end of GGTT,"
3505 " aperture=%pa, total=%llx\n",
3506 &ggtt->mappable_end, ggtt->base.total);
3507 ggtt->mappable_end = ggtt->base.total;
3508 }
3509
3510 /* GMADR is the PCI mmio aperture into the global GTT. */
3511 DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->base.total >> 20);
3512 DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
3513 DRM_DEBUG_DRIVER("DSM size = %lluM\n",
3514 (u64)resource_size(&intel_graphics_stolen_res) >> 20);
3515 if (intel_vtd_active())
3516 DRM_INFO("VT-d active for gfx access\n");
3517
3518 return 0;
3519}
3520
3521/**
3522 * i915_ggtt_init_hw - Initialize GGTT hardware
3523 * @dev_priv: i915 device
3524 */
3525int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3526{
3527 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3528 int ret;
3529
3530 INIT_LIST_HEAD(&dev_priv->vm_list);
3531
3532 /* Note that we use page colouring to enforce a guard page at the
3533 * end of the address space. This is required as the CS may prefetch
3534 * beyond the end of the batch buffer, across the page boundary,
3535 * and beyond the end of the GTT if we do not provide a guard.
3536 */
3537 mutex_lock(&dev_priv->drm.struct_mutex);
3538 i915_address_space_init(&ggtt->base, dev_priv, "[global]");
3539 if (!HAS_LLC(dev_priv) && !USES_PPGTT(dev_priv))
3540 ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
3541 mutex_unlock(&dev_priv->drm.struct_mutex);
3542
3543 if (!io_mapping_init_wc(&dev_priv->ggtt.iomap,
3544 dev_priv->ggtt.gmadr.start,
3545 dev_priv->ggtt.mappable_end)) {
3546 ret = -EIO;
3547 goto out_gtt_cleanup;
3548 }
3549
3550 ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
3551
3552 /*
3553 * Initialise stolen early so that we may reserve preallocated
3554 * objects for the BIOS to KMS transition.
3555 */
3556 ret = i915_gem_init_stolen(dev_priv);
3557 if (ret)
3558 goto out_gtt_cleanup;
3559
3560 return 0;
3561
3562out_gtt_cleanup:
3563 ggtt->base.cleanup(&ggtt->base);
3564 return ret;
3565}
3566
3567int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3568{
3569 if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3570 return -EIO;
3571
3572 return 0;
3573}
3574
3575void i915_ggtt_enable_guc(struct drm_i915_private *i915)
3576{
3577 GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);
3578
3579 i915->ggtt.invalidate = guc_ggtt_invalidate;
3580
3581 i915_ggtt_invalidate(i915);
3582}
3583
3584void i915_ggtt_disable_guc(struct drm_i915_private *i915)
3585{
3586 /* We should only be called after i915_ggtt_enable_guc() */
3587 GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);
3588
3589 i915->ggtt.invalidate = gen6_ggtt_invalidate;
3590
3591 i915_ggtt_invalidate(i915);
3592}
3593
3594void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3595{
3596 struct i915_ggtt *ggtt = &dev_priv->ggtt;
3597 struct drm_i915_gem_object *obj, *on;
3598
3599 i915_check_and_clear_faults(dev_priv);
3600
3601 /* First fill our portion of the GTT with scratch pages */
3602 ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total);
3603
3604 ggtt->base.closed = true; /* skip rewriting PTE on VMA unbind */
3605
3606 /* clflush objects bound into the GGTT and rebind them. */
3607 list_for_each_entry_safe(obj, on, &dev_priv->mm.bound_list, mm.link) {
3608 bool ggtt_bound = false;
3609 struct i915_vma *vma;
3610
3611 for_each_ggtt_vma(vma, obj) {
3612 if (!i915_vma_unbind(vma))
3613 continue;
3614
3615 WARN_ON(i915_vma_bind(vma, obj->cache_level,
3616 PIN_UPDATE));
3617 ggtt_bound = true;
3618 }
3619
3620 if (ggtt_bound)
3621 WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3622 }
3623
3624 ggtt->base.closed = false;
3625
3626 if (INTEL_GEN(dev_priv) >= 8) {
3627 struct intel_ppat *ppat = &dev_priv->ppat;
3628
3629 bitmap_set(ppat->dirty, 0, ppat->max_entries);
3630 dev_priv->ppat.update_hw(dev_priv);
3631 return;
3632 }
3633
3634 if (USES_PPGTT(dev_priv)) {
3635 struct i915_address_space *vm;
3636
3637 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3638 struct i915_hw_ppgtt *ppgtt;
3639
3640 if (i915_is_ggtt(vm))
3641 ppgtt = dev_priv->mm.aliasing_ppgtt;
3642 else
3643 ppgtt = i915_vm_to_ppgtt(vm);
3644
3645 gen6_write_page_range(ppgtt, 0, ppgtt->base.total);
3646 }
3647 }
3648
3649 i915_ggtt_invalidate(dev_priv);
3650}
3651
3652static struct scatterlist *
3653rotate_pages(const dma_addr_t *in, unsigned int offset,
3654 unsigned int width, unsigned int height,
3655 unsigned int stride,
3656 struct sg_table *st, struct scatterlist *sg)
3657{
3658 unsigned int column, row;
3659 unsigned int src_idx;
3660
3661 for (column = 0; column < width; column++) {
3662 src_idx = stride * (height - 1) + column;
3663 for (row = 0; row < height; row++) {
3664 st->nents++;
3665 /* We don't need the pages, but need to initialize
3666 * the entries so the sg list can be happily traversed.
3667 * The only thing we need are DMA addresses.
3668 */
3669 sg_set_page(sg, NULL, PAGE_SIZE, 0);
3670 sg_dma_address(sg) = in[offset + src_idx];
3671 sg_dma_len(sg) = PAGE_SIZE;
3672 sg = sg_next(sg);
3673 src_idx -= stride;
3674 }
3675 }
3676
3677 return sg;
3678}
3679
3680static noinline struct sg_table *
3681intel_rotate_pages(struct intel_rotation_info *rot_info,
3682 struct drm_i915_gem_object *obj)
3683{
3684 const unsigned long n_pages = obj->base.size / PAGE_SIZE;
3685 unsigned int size = intel_rotation_info_size(rot_info);
3686 struct sgt_iter sgt_iter;
3687 dma_addr_t dma_addr;
3688 unsigned long i;
3689 dma_addr_t *page_addr_list;
3690 struct sg_table *st;
3691 struct scatterlist *sg;
3692 int ret = -ENOMEM;
3693
3694 /* Allocate a temporary list of source pages for random access. */
3695 page_addr_list = kvmalloc_array(n_pages,
3696 sizeof(dma_addr_t),
3697 GFP_KERNEL);
3698 if (!page_addr_list)
3699 return ERR_PTR(ret);
3700
3701 /* Allocate target SG list. */
3702 st = kmalloc(sizeof(*st), GFP_KERNEL);
3703 if (!st)
3704 goto err_st_alloc;
3705
3706 ret = sg_alloc_table(st, size, GFP_KERNEL);
3707 if (ret)
3708 goto err_sg_alloc;
3709
3710 /* Populate source page list from the object. */
3711 i = 0;
3712 for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages)
3713 page_addr_list[i++] = dma_addr;
3714
3715 GEM_BUG_ON(i != n_pages);
3716 st->nents = 0;
3717 sg = st->sgl;
3718
3719 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3720 sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
3721 rot_info->plane[i].width, rot_info->plane[i].height,
3722 rot_info->plane[i].stride, st, sg);
3723 }
3724
3725 kvfree(page_addr_list);
3726
3727 return st;
3728
3729err_sg_alloc:
3730 kfree(st);
3731err_st_alloc:
3732 kvfree(page_addr_list);
3733
3734 DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3735 obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3736
3737 return ERR_PTR(ret);
3738}
3739
3740static noinline struct sg_table *
3741intel_partial_pages(const struct i915_ggtt_view *view,
3742 struct drm_i915_gem_object *obj)
3743{
3744 struct sg_table *st;
3745 struct scatterlist *sg, *iter;
3746 unsigned int count = view->partial.size;
3747 unsigned int offset;
3748 int ret = -ENOMEM;
3749
3750 st = kmalloc(sizeof(*st), GFP_KERNEL);
3751 if (!st)
3752 goto err_st_alloc;
3753
3754 ret = sg_alloc_table(st, count, GFP_KERNEL);
3755 if (ret)
3756 goto err_sg_alloc;
3757
3758 iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3759 GEM_BUG_ON(!iter);
3760
3761 sg = st->sgl;
3762 st->nents = 0;
3763 do {
3764 unsigned int len;
3765
3766 len = min(iter->length - (offset << PAGE_SHIFT),
3767 count << PAGE_SHIFT);
3768 sg_set_page(sg, NULL, len, 0);
3769 sg_dma_address(sg) =
3770 sg_dma_address(iter) + (offset << PAGE_SHIFT);
3771 sg_dma_len(sg) = len;
3772
3773 st->nents++;
3774 count -= len >> PAGE_SHIFT;
3775 if (count == 0) {
3776 sg_mark_end(sg);
3777 return st;
3778 }
3779
3780 sg = __sg_next(sg);
3781 iter = __sg_next(iter);
3782 offset = 0;
3783 } while (1);
3784
3785err_sg_alloc:
3786 kfree(st);
3787err_st_alloc:
3788 return ERR_PTR(ret);
3789}
3790
3791static int
3792i915_get_ggtt_vma_pages(struct i915_vma *vma)
3793{
3794 int ret;
3795
3796 /* The vma->pages are only valid within the lifespan of the borrowed
3797 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3798 * must be the vma->pages. A simple rule is that vma->pages must only
3799 * be accessed when the obj->mm.pages are pinned.
3800 */
3801 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3802
3803 switch (vma->ggtt_view.type) {
3804 default:
3805 GEM_BUG_ON(vma->ggtt_view.type);
3806 /* fall through */
3807 case I915_GGTT_VIEW_NORMAL:
3808 vma->pages = vma->obj->mm.pages;
3809 return 0;
3810
3811 case I915_GGTT_VIEW_ROTATED:
3812 vma->pages =
3813 intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
3814 break;
3815
3816 case I915_GGTT_VIEW_PARTIAL:
3817 vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3818 break;
3819 }
3820
3821 ret = 0;
3822 if (unlikely(IS_ERR(vma->pages))) {
3823 ret = PTR_ERR(vma->pages);
3824 vma->pages = NULL;
3825 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3826 vma->ggtt_view.type, ret);
3827 }
3828 return ret;
3829}
3830
3831/**
3832 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3833 * @vm: the &struct i915_address_space
3834 * @node: the &struct drm_mm_node (typically i915_vma.mode)
3835 * @size: how much space to allocate inside the GTT,
3836 * must be #I915_GTT_PAGE_SIZE aligned
3837 * @offset: where to insert inside the GTT,
3838 * must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
3839 * (@offset + @size) must fit within the address space
3840 * @color: color to apply to node, if this node is not from a VMA,
3841 * color must be #I915_COLOR_UNEVICTABLE
3842 * @flags: control search and eviction behaviour
3843 *
3844 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
3845 * the address space (using @size and @color). If the @node does not fit, it
3846 * tries to evict any overlapping nodes from the GTT, including any
3847 * neighbouring nodes if the colors do not match (to ensure guard pages between
3848 * differing domains). See i915_gem_evict_for_node() for the gory details
3849 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
3850 * evicting active overlapping objects, and any overlapping node that is pinned
3851 * or marked as unevictable will also result in failure.
3852 *
3853 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3854 * asked to wait for eviction and interrupted.
3855 */
3856int i915_gem_gtt_reserve(struct i915_address_space *vm,
3857 struct drm_mm_node *node,
3858 u64 size, u64 offset, unsigned long color,
3859 unsigned int flags)
3860{
3861 int err;
3862
3863 GEM_BUG_ON(!size);
3864 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3865 GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
3866 GEM_BUG_ON(range_overflows(offset, size, vm->total));
3867 GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base);
3868 GEM_BUG_ON(drm_mm_node_allocated(node));
3869
3870 node->size = size;
3871 node->start = offset;
3872 node->color = color;
3873
3874 err = drm_mm_reserve_node(&vm->mm, node);
3875 if (err != -ENOSPC)
3876 return err;
3877
3878 if (flags & PIN_NOEVICT)
3879 return -ENOSPC;
3880
3881 err = i915_gem_evict_for_node(vm, node, flags);
3882 if (err == 0)
3883 err = drm_mm_reserve_node(&vm->mm, node);
3884
3885 return err;
3886}
3887
3888static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
3889{
3890 u64 range, addr;
3891
3892 GEM_BUG_ON(range_overflows(start, len, end));
3893 GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
3894
3895 range = round_down(end - len, align) - round_up(start, align);
3896 if (range) {
3897 if (sizeof(unsigned long) == sizeof(u64)) {
3898 addr = get_random_long();
3899 } else {
3900 addr = get_random_int();
3901 if (range > U32_MAX) {
3902 addr <<= 32;
3903 addr |= get_random_int();
3904 }
3905 }
3906 div64_u64_rem(addr, range, &addr);
3907 start += addr;
3908 }
3909
3910 return round_up(start, align);
3911}
3912
3913/**
3914 * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3915 * @vm: the &struct i915_address_space
3916 * @node: the &struct drm_mm_node (typically i915_vma.node)
3917 * @size: how much space to allocate inside the GTT,
3918 * must be #I915_GTT_PAGE_SIZE aligned
3919 * @alignment: required alignment of starting offset, may be 0 but
3920 * if specified, this must be a power-of-two and at least
3921 * #I915_GTT_MIN_ALIGNMENT
3922 * @color: color to apply to node
3923 * @start: start of any range restriction inside GTT (0 for all),
3924 * must be #I915_GTT_PAGE_SIZE aligned
3925 * @end: end of any range restriction inside GTT (U64_MAX for all),
3926 * must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
3927 * @flags: control search and eviction behaviour
3928 *
3929 * i915_gem_gtt_insert() first searches for an available hole into which
3930 * is can insert the node. The hole address is aligned to @alignment and
3931 * its @size must then fit entirely within the [@start, @end] bounds. The
3932 * nodes on either side of the hole must match @color, or else a guard page
3933 * will be inserted between the two nodes (or the node evicted). If no
3934 * suitable hole is found, first a victim is randomly selected and tested
3935 * for eviction, otherwise then the LRU list of objects within the GTT
3936 * is scanned to find the first set of replacement nodes to create the hole.
3937 * Those old overlapping nodes are evicted from the GTT (and so must be
3938 * rebound before any future use). Any node that is currently pinned cannot
3939 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
3940 * active and #PIN_NONBLOCK is specified, that node is also skipped when
3941 * searching for an eviction candidate. See i915_gem_evict_something() for
3942 * the gory details on the eviction algorithm.
3943 *
3944 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3945 * asked to wait for eviction and interrupted.
3946 */
3947int i915_gem_gtt_insert(struct i915_address_space *vm,
3948 struct drm_mm_node *node,
3949 u64 size, u64 alignment, unsigned long color,
3950 u64 start, u64 end, unsigned int flags)
3951{
3952 enum drm_mm_insert_mode mode;
3953 u64 offset;
3954 int err;
3955
3956 lockdep_assert_held(&vm->i915->drm.struct_mutex);
3957 GEM_BUG_ON(!size);
3958 GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3959 GEM_BUG_ON(alignment && !is_power_of_2(alignment));
3960 GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
3961 GEM_BUG_ON(start >= end);
3962 GEM_BUG_ON(start > 0 && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
3963 GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3964 GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base);
3965 GEM_BUG_ON(drm_mm_node_allocated(node));
3966
3967 if (unlikely(range_overflows(start, size, end)))
3968 return -ENOSPC;
3969
3970 if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
3971 return -ENOSPC;
3972
3973 mode = DRM_MM_INSERT_BEST;
3974 if (flags & PIN_HIGH)
3975 mode = DRM_MM_INSERT_HIGH;
3976 if (flags & PIN_MAPPABLE)
3977 mode = DRM_MM_INSERT_LOW;
3978
3979 /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3980 * so we know that we always have a minimum alignment of 4096.
3981 * The drm_mm range manager is optimised to return results
3982 * with zero alignment, so where possible use the optimal
3983 * path.
3984 */
3985 BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
3986 if (alignment <= I915_GTT_MIN_ALIGNMENT)
3987 alignment = 0;
3988
3989 err = drm_mm_insert_node_in_range(&vm->mm, node,
3990 size, alignment, color,
3991 start, end, mode);
3992 if (err != -ENOSPC)
3993 return err;
3994
3995 if (flags & PIN_NOEVICT)
3996 return -ENOSPC;
3997
3998 /* No free space, pick a slot at random.
3999 *
4000 * There is a pathological case here using a GTT shared between
4001 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
4002 *
4003 * |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
4004 * (64k objects) (448k objects)
4005 *
4006 * Now imagine that the eviction LRU is ordered top-down (just because
4007 * pathology meets real life), and that we need to evict an object to
4008 * make room inside the aperture. The eviction scan then has to walk
4009 * the 448k list before it finds one within range. And now imagine that
4010 * it has to search for a new hole between every byte inside the memcpy,
4011 * for several simultaneous clients.
4012 *
4013 * On a full-ppgtt system, if we have run out of available space, there
4014 * will be lots and lots of objects in the eviction list! Again,
4015 * searching that LRU list may be slow if we are also applying any
4016 * range restrictions (e.g. restriction to low 4GiB) and so, for
4017 * simplicity and similarilty between different GTT, try the single
4018 * random replacement first.
4019 */
4020 offset = random_offset(start, end,
4021 size, alignment ?: I915_GTT_MIN_ALIGNMENT);
4022 err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
4023 if (err != -ENOSPC)
4024 return err;
4025
4026 /* Randomly selected placement is pinned, do a search */
4027 err = i915_gem_evict_something(vm, size, alignment, color,
4028 start, end, flags);
4029 if (err)
4030 return err;
4031
4032 return drm_mm_insert_node_in_range(&vm->mm, node,
4033 size, alignment, color,
4034 start, end, DRM_MM_INSERT_EVICT);
4035}
4036
4037#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4038#include "selftests/mock_gtt.c"
4039#include "selftests/i915_gem_gtt.c"
4040#endif