Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * Copyright 2014 Advanced Micro Devices, Inc.
  3 *
  4 * Permission is hereby granted, free of charge, to any person obtaining a
  5 * copy of this software and associated documentation files (the "Software"),
  6 * to deal in the Software without restriction, including without limitation
  7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8 * and/or sell copies of the Software, and to permit persons to whom the
  9 * Software is furnished to do so, subject to the following conditions:
 10 *
 11 * The above copyright notice and this permission notice shall be included in
 12 * all copies or substantial portions of the Software.
 13 *
 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 20 * OTHER DEALINGS IN THE SOFTWARE.
 21 */
 22
 23#if defined(CONFIG_AMD_IOMMU_V2_MODULE) || defined(CONFIG_AMD_IOMMU_V2)
 24#include <linux/amd-iommu.h>
 25#endif
 26#include <linux/bsearch.h>
 27#include <linux/pci.h>
 28#include <linux/slab.h>
 29#include "kfd_priv.h"
 30#include "kfd_device_queue_manager.h"
 31#include "kfd_pm4_headers_vi.h"
 32#include "cwsr_trap_handler_gfx8.asm"
 33#include "kfd_iommu.h"
 34
 35#define MQD_SIZE_ALIGNED 768
 36static atomic_t kfd_device_suspended = ATOMIC_INIT(0);
 37
 38#ifdef KFD_SUPPORT_IOMMU_V2
 39static const struct kfd_device_info kaveri_device_info = {
 40	.asic_family = CHIP_KAVERI,
 41	.max_pasid_bits = 16,
 42	/* max num of queues for KV.TODO should be a dynamic value */
 43	.max_no_of_hqd	= 24,
 44	.ih_ring_entry_size = 4 * sizeof(uint32_t),
 45	.event_interrupt_class = &event_interrupt_class_cik,
 46	.num_of_watch_points = 4,
 47	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 48	.supports_cwsr = false,
 49	.needs_iommu_device = true,
 50	.needs_pci_atomics = false,
 51};
 52
 53static const struct kfd_device_info carrizo_device_info = {
 54	.asic_family = CHIP_CARRIZO,
 55	.max_pasid_bits = 16,
 56	/* max num of queues for CZ.TODO should be a dynamic value */
 57	.max_no_of_hqd	= 24,
 58	.ih_ring_entry_size = 4 * sizeof(uint32_t),
 59	.event_interrupt_class = &event_interrupt_class_cik,
 60	.num_of_watch_points = 4,
 61	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 62	.supports_cwsr = true,
 63	.needs_iommu_device = true,
 64	.needs_pci_atomics = false,
 65};
 66#endif
 67
 68static const struct kfd_device_info hawaii_device_info = {
 69	.asic_family = CHIP_HAWAII,
 70	.max_pasid_bits = 16,
 71	/* max num of queues for KV.TODO should be a dynamic value */
 72	.max_no_of_hqd	= 24,
 73	.ih_ring_entry_size = 4 * sizeof(uint32_t),
 74	.event_interrupt_class = &event_interrupt_class_cik,
 75	.num_of_watch_points = 4,
 76	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 77	.supports_cwsr = false,
 78	.needs_iommu_device = false,
 79	.needs_pci_atomics = false,
 80};
 81
 82static const struct kfd_device_info tonga_device_info = {
 83	.asic_family = CHIP_TONGA,
 84	.max_pasid_bits = 16,
 85	.max_no_of_hqd  = 24,
 86	.ih_ring_entry_size = 4 * sizeof(uint32_t),
 87	.event_interrupt_class = &event_interrupt_class_cik,
 88	.num_of_watch_points = 4,
 89	.mqd_size_aligned = MQD_SIZE_ALIGNED,
 90	.supports_cwsr = false,
 91	.needs_iommu_device = false,
 92	.needs_pci_atomics = true,
 93};
 94
 95static const struct kfd_device_info tonga_vf_device_info = {
 96	.asic_family = CHIP_TONGA,
 97	.max_pasid_bits = 16,
 98	.max_no_of_hqd  = 24,
 99	.ih_ring_entry_size = 4 * sizeof(uint32_t),
100	.event_interrupt_class = &event_interrupt_class_cik,
101	.num_of_watch_points = 4,
102	.mqd_size_aligned = MQD_SIZE_ALIGNED,
103	.supports_cwsr = false,
104	.needs_iommu_device = false,
105	.needs_pci_atomics = false,
106};
107
108static const struct kfd_device_info fiji_device_info = {
109	.asic_family = CHIP_FIJI,
110	.max_pasid_bits = 16,
111	.max_no_of_hqd  = 24,
112	.ih_ring_entry_size = 4 * sizeof(uint32_t),
113	.event_interrupt_class = &event_interrupt_class_cik,
114	.num_of_watch_points = 4,
115	.mqd_size_aligned = MQD_SIZE_ALIGNED,
116	.supports_cwsr = true,
117	.needs_iommu_device = false,
118	.needs_pci_atomics = true,
119};
120
121static const struct kfd_device_info fiji_vf_device_info = {
122	.asic_family = CHIP_FIJI,
123	.max_pasid_bits = 16,
124	.max_no_of_hqd  = 24,
125	.ih_ring_entry_size = 4 * sizeof(uint32_t),
126	.event_interrupt_class = &event_interrupt_class_cik,
127	.num_of_watch_points = 4,
128	.mqd_size_aligned = MQD_SIZE_ALIGNED,
129	.supports_cwsr = true,
130	.needs_iommu_device = false,
131	.needs_pci_atomics = false,
132};
133
134
135static const struct kfd_device_info polaris10_device_info = {
136	.asic_family = CHIP_POLARIS10,
137	.max_pasid_bits = 16,
138	.max_no_of_hqd  = 24,
139	.ih_ring_entry_size = 4 * sizeof(uint32_t),
140	.event_interrupt_class = &event_interrupt_class_cik,
141	.num_of_watch_points = 4,
142	.mqd_size_aligned = MQD_SIZE_ALIGNED,
143	.supports_cwsr = true,
144	.needs_iommu_device = false,
145	.needs_pci_atomics = true,
146};
147
148static const struct kfd_device_info polaris10_vf_device_info = {
149	.asic_family = CHIP_POLARIS10,
150	.max_pasid_bits = 16,
151	.max_no_of_hqd  = 24,
152	.ih_ring_entry_size = 4 * sizeof(uint32_t),
153	.event_interrupt_class = &event_interrupt_class_cik,
154	.num_of_watch_points = 4,
155	.mqd_size_aligned = MQD_SIZE_ALIGNED,
156	.supports_cwsr = true,
157	.needs_iommu_device = false,
158	.needs_pci_atomics = false,
159};
160
161static const struct kfd_device_info polaris11_device_info = {
162	.asic_family = CHIP_POLARIS11,
163	.max_pasid_bits = 16,
164	.max_no_of_hqd  = 24,
165	.ih_ring_entry_size = 4 * sizeof(uint32_t),
166	.event_interrupt_class = &event_interrupt_class_cik,
167	.num_of_watch_points = 4,
168	.mqd_size_aligned = MQD_SIZE_ALIGNED,
169	.supports_cwsr = true,
170	.needs_iommu_device = false,
171	.needs_pci_atomics = true,
172};
173
174
175struct kfd_deviceid {
176	unsigned short did;
177	const struct kfd_device_info *device_info;
178};
179
180static const struct kfd_deviceid supported_devices[] = {
181#ifdef KFD_SUPPORT_IOMMU_V2
182	{ 0x1304, &kaveri_device_info },	/* Kaveri */
183	{ 0x1305, &kaveri_device_info },	/* Kaveri */
184	{ 0x1306, &kaveri_device_info },	/* Kaveri */
185	{ 0x1307, &kaveri_device_info },	/* Kaveri */
186	{ 0x1309, &kaveri_device_info },	/* Kaveri */
187	{ 0x130A, &kaveri_device_info },	/* Kaveri */
188	{ 0x130B, &kaveri_device_info },	/* Kaveri */
189	{ 0x130C, &kaveri_device_info },	/* Kaveri */
190	{ 0x130D, &kaveri_device_info },	/* Kaveri */
191	{ 0x130E, &kaveri_device_info },	/* Kaveri */
192	{ 0x130F, &kaveri_device_info },	/* Kaveri */
193	{ 0x1310, &kaveri_device_info },	/* Kaveri */
194	{ 0x1311, &kaveri_device_info },	/* Kaveri */
195	{ 0x1312, &kaveri_device_info },	/* Kaveri */
196	{ 0x1313, &kaveri_device_info },	/* Kaveri */
197	{ 0x1315, &kaveri_device_info },	/* Kaveri */
198	{ 0x1316, &kaveri_device_info },	/* Kaveri */
199	{ 0x1317, &kaveri_device_info },	/* Kaveri */
200	{ 0x1318, &kaveri_device_info },	/* Kaveri */
201	{ 0x131B, &kaveri_device_info },	/* Kaveri */
202	{ 0x131C, &kaveri_device_info },	/* Kaveri */
203	{ 0x131D, &kaveri_device_info },	/* Kaveri */
204	{ 0x9870, &carrizo_device_info },	/* Carrizo */
205	{ 0x9874, &carrizo_device_info },	/* Carrizo */
206	{ 0x9875, &carrizo_device_info },	/* Carrizo */
207	{ 0x9876, &carrizo_device_info },	/* Carrizo */
208	{ 0x9877, &carrizo_device_info },	/* Carrizo */
209#endif
210	{ 0x67A0, &hawaii_device_info },	/* Hawaii */
211	{ 0x67A1, &hawaii_device_info },	/* Hawaii */
212	{ 0x67A2, &hawaii_device_info },	/* Hawaii */
213	{ 0x67A8, &hawaii_device_info },	/* Hawaii */
214	{ 0x67A9, &hawaii_device_info },	/* Hawaii */
215	{ 0x67AA, &hawaii_device_info },	/* Hawaii */
216	{ 0x67B0, &hawaii_device_info },	/* Hawaii */
217	{ 0x67B1, &hawaii_device_info },	/* Hawaii */
218	{ 0x67B8, &hawaii_device_info },	/* Hawaii */
219	{ 0x67B9, &hawaii_device_info },	/* Hawaii */
220	{ 0x67BA, &hawaii_device_info },	/* Hawaii */
221	{ 0x67BE, &hawaii_device_info },	/* Hawaii */
222	{ 0x6920, &tonga_device_info },		/* Tonga */
223	{ 0x6921, &tonga_device_info },		/* Tonga */
224	{ 0x6928, &tonga_device_info },		/* Tonga */
225	{ 0x6929, &tonga_device_info },		/* Tonga */
226	{ 0x692B, &tonga_device_info },		/* Tonga */
227	{ 0x692F, &tonga_vf_device_info },	/* Tonga vf */
228	{ 0x6938, &tonga_device_info },		/* Tonga */
229	{ 0x6939, &tonga_device_info },		/* Tonga */
230	{ 0x7300, &fiji_device_info },		/* Fiji */
231	{ 0x730F, &fiji_vf_device_info },	/* Fiji vf*/
232	{ 0x67C0, &polaris10_device_info },	/* Polaris10 */
233	{ 0x67C1, &polaris10_device_info },	/* Polaris10 */
234	{ 0x67C2, &polaris10_device_info },	/* Polaris10 */
235	{ 0x67C4, &polaris10_device_info },	/* Polaris10 */
236	{ 0x67C7, &polaris10_device_info },	/* Polaris10 */
237	{ 0x67C8, &polaris10_device_info },	/* Polaris10 */
238	{ 0x67C9, &polaris10_device_info },	/* Polaris10 */
239	{ 0x67CA, &polaris10_device_info },	/* Polaris10 */
240	{ 0x67CC, &polaris10_device_info },	/* Polaris10 */
241	{ 0x67CF, &polaris10_device_info },	/* Polaris10 */
242	{ 0x67D0, &polaris10_vf_device_info },	/* Polaris10 vf*/
243	{ 0x67DF, &polaris10_device_info },	/* Polaris10 */
244	{ 0x67E0, &polaris11_device_info },	/* Polaris11 */
245	{ 0x67E1, &polaris11_device_info },	/* Polaris11 */
246	{ 0x67E3, &polaris11_device_info },	/* Polaris11 */
247	{ 0x67E7, &polaris11_device_info },	/* Polaris11 */
248	{ 0x67E8, &polaris11_device_info },	/* Polaris11 */
249	{ 0x67E9, &polaris11_device_info },	/* Polaris11 */
250	{ 0x67EB, &polaris11_device_info },	/* Polaris11 */
251	{ 0x67EF, &polaris11_device_info },	/* Polaris11 */
252	{ 0x67FF, &polaris11_device_info },	/* Polaris11 */
253};
254
255static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
256				unsigned int chunk_size);
257static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
258
259static int kfd_resume(struct kfd_dev *kfd);
260
261static const struct kfd_device_info *lookup_device_info(unsigned short did)
262{
263	size_t i;
264
265	for (i = 0; i < ARRAY_SIZE(supported_devices); i++) {
266		if (supported_devices[i].did == did) {
267			WARN_ON(!supported_devices[i].device_info);
268			return supported_devices[i].device_info;
269		}
270	}
271
272	dev_warn(kfd_device, "DID %04x is missing in supported_devices\n",
273		 did);
274
275	return NULL;
276}
277
278struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
279	struct pci_dev *pdev, const struct kfd2kgd_calls *f2g)
280{
281	struct kfd_dev *kfd;
282
283	const struct kfd_device_info *device_info =
284					lookup_device_info(pdev->device);
285
286	if (!device_info) {
287		dev_err(kfd_device, "kgd2kfd_probe failed\n");
288		return NULL;
289	}
290
291	if (device_info->needs_pci_atomics) {
292		/* Allow BIF to recode atomics to PCIe 3.0
293		 * AtomicOps. 32 and 64-bit requests are possible and
294		 * must be supported.
295		 */
296		if (pci_enable_atomic_ops_to_root(pdev,
297				PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
298				PCI_EXP_DEVCAP2_ATOMIC_COMP64) < 0) {
299			dev_info(kfd_device,
300				"skipped device %x:%x, PCI rejects atomics",
301				 pdev->vendor, pdev->device);
302			return NULL;
303		}
304	}
305
306	kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
307	if (!kfd)
308		return NULL;
309
310	kfd->kgd = kgd;
311	kfd->device_info = device_info;
312	kfd->pdev = pdev;
313	kfd->init_complete = false;
314	kfd->kfd2kgd = f2g;
315
316	mutex_init(&kfd->doorbell_mutex);
317	memset(&kfd->doorbell_available_index, 0,
318		sizeof(kfd->doorbell_available_index));
319
320	return kfd;
321}
322
323static void kfd_cwsr_init(struct kfd_dev *kfd)
324{
325	if (cwsr_enable && kfd->device_info->supports_cwsr) {
326		BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
327
328		kfd->cwsr_isa = cwsr_trap_gfx8_hex;
329		kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
330		kfd->cwsr_enabled = true;
331	}
332}
333
334bool kgd2kfd_device_init(struct kfd_dev *kfd,
335			 const struct kgd2kfd_shared_resources *gpu_resources)
336{
337	unsigned int size;
338
339	kfd->shared_resources = *gpu_resources;
340
341	kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
342	kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
343	kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd
344			- kfd->vm_info.first_vmid_kfd + 1;
345
346	/* Verify module parameters regarding mapped process number*/
347	if ((hws_max_conc_proc < 0)
348			|| (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) {
349		dev_err(kfd_device,
350			"hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
351			hws_max_conc_proc, kfd->vm_info.vmid_num_kfd,
352			kfd->vm_info.vmid_num_kfd);
353		kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd;
354	} else
355		kfd->max_proc_per_quantum = hws_max_conc_proc;
356
357	/* calculate max size of mqds needed for queues */
358	size = max_num_of_queues_per_device *
359			kfd->device_info->mqd_size_aligned;
360
361	/*
362	 * calculate max size of runlist packet.
363	 * There can be only 2 packets at once
364	 */
365	size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_mes_map_process) +
366		max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
367		+ sizeof(struct pm4_mes_runlist)) * 2;
368
369	/* Add size of HIQ & DIQ */
370	size += KFD_KERNEL_QUEUE_SIZE * 2;
371
372	/* add another 512KB for all other allocations on gart (HPD, fences) */
373	size += 512 * 1024;
374
375	if (kfd->kfd2kgd->init_gtt_mem_allocation(
376			kfd->kgd, size, &kfd->gtt_mem,
377			&kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr)){
378		dev_err(kfd_device, "Could not allocate %d bytes\n", size);
379		goto out;
380	}
381
382	dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
383
384	/* Initialize GTT sa with 512 byte chunk size */
385	if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
386		dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
387		goto kfd_gtt_sa_init_error;
388	}
389
390	if (kfd_doorbell_init(kfd)) {
391		dev_err(kfd_device,
392			"Error initializing doorbell aperture\n");
393		goto kfd_doorbell_error;
394	}
395
396	if (kfd_topology_add_device(kfd)) {
397		dev_err(kfd_device, "Error adding device to topology\n");
398		goto kfd_topology_add_device_error;
399	}
400
401	if (kfd_interrupt_init(kfd)) {
402		dev_err(kfd_device, "Error initializing interrupts\n");
403		goto kfd_interrupt_error;
404	}
405
406	kfd->dqm = device_queue_manager_init(kfd);
407	if (!kfd->dqm) {
408		dev_err(kfd_device, "Error initializing queue manager\n");
409		goto device_queue_manager_error;
410	}
411
412	if (kfd_iommu_device_init(kfd)) {
413		dev_err(kfd_device, "Error initializing iommuv2\n");
414		goto device_iommu_error;
415	}
416
417	kfd_cwsr_init(kfd);
418
419	if (kfd_resume(kfd))
420		goto kfd_resume_error;
421
422	kfd->dbgmgr = NULL;
423
424	kfd->init_complete = true;
425	dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor,
426		 kfd->pdev->device);
427
428	pr_debug("Starting kfd with the following scheduling policy %d\n",
429		kfd->dqm->sched_policy);
430
431	goto out;
432
433kfd_resume_error:
434device_iommu_error:
435	device_queue_manager_uninit(kfd->dqm);
436device_queue_manager_error:
437	kfd_interrupt_exit(kfd);
438kfd_interrupt_error:
439	kfd_topology_remove_device(kfd);
440kfd_topology_add_device_error:
441	kfd_doorbell_fini(kfd);
442kfd_doorbell_error:
443	kfd_gtt_sa_fini(kfd);
444kfd_gtt_sa_init_error:
445	kfd->kfd2kgd->free_gtt_mem(kfd->kgd, kfd->gtt_mem);
446	dev_err(kfd_device,
447		"device %x:%x NOT added due to errors\n",
448		kfd->pdev->vendor, kfd->pdev->device);
449out:
450	return kfd->init_complete;
451}
452
453void kgd2kfd_device_exit(struct kfd_dev *kfd)
454{
455	if (kfd->init_complete) {
456		kgd2kfd_suspend(kfd);
457		device_queue_manager_uninit(kfd->dqm);
458		kfd_interrupt_exit(kfd);
459		kfd_topology_remove_device(kfd);
460		kfd_doorbell_fini(kfd);
461		kfd_gtt_sa_fini(kfd);
462		kfd->kfd2kgd->free_gtt_mem(kfd->kgd, kfd->gtt_mem);
463	}
464
465	kfree(kfd);
466}
467
468void kgd2kfd_suspend(struct kfd_dev *kfd)
469{
470	if (!kfd->init_complete)
471		return;
472
473	/* For first KFD device suspend all the KFD processes */
474	if (atomic_inc_return(&kfd_device_suspended) == 1)
475		kfd_suspend_all_processes();
476
477	kfd->dqm->ops.stop(kfd->dqm);
478
479	kfd_iommu_suspend(kfd);
480}
481
482int kgd2kfd_resume(struct kfd_dev *kfd)
483{
484	int ret, count;
485
486	if (!kfd->init_complete)
487		return 0;
488
489	ret = kfd_resume(kfd);
490	if (ret)
491		return ret;
492
493	count = atomic_dec_return(&kfd_device_suspended);
494	WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
495	if (count == 0)
496		ret = kfd_resume_all_processes();
497
498	return ret;
499}
500
501static int kfd_resume(struct kfd_dev *kfd)
502{
503	int err = 0;
504
505	err = kfd_iommu_resume(kfd);
506	if (err) {
507		dev_err(kfd_device,
508			"Failed to resume IOMMU for device %x:%x\n",
509			kfd->pdev->vendor, kfd->pdev->device);
510		return err;
511	}
512
513	err = kfd->dqm->ops.start(kfd->dqm);
514	if (err) {
515		dev_err(kfd_device,
516			"Error starting queue manager for device %x:%x\n",
517			kfd->pdev->vendor, kfd->pdev->device);
518		goto dqm_start_error;
519	}
520
521	return err;
522
523dqm_start_error:
524	kfd_iommu_suspend(kfd);
525	return err;
526}
527
528/* This is called directly from KGD at ISR. */
529void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
530{
531	if (!kfd->init_complete)
532		return;
533
534	spin_lock(&kfd->interrupt_lock);
535
536	if (kfd->interrupts_active
537	    && interrupt_is_wanted(kfd, ih_ring_entry)
538	    && enqueue_ih_ring_entry(kfd, ih_ring_entry))
539		queue_work(kfd->ih_wq, &kfd->interrupt_work);
540
541	spin_unlock(&kfd->interrupt_lock);
542}
543
544/** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
545 *   prepare for safe eviction of KFD BOs that belong to the specified
546 *   process.
547 *
548 * @mm: mm_struct that identifies the specified KFD process
549 * @fence: eviction fence attached to KFD process BOs
550 *
551 */
552int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
553					       struct dma_fence *fence)
554{
555	struct kfd_process *p;
556	unsigned long active_time;
557	unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
558
559	if (!fence)
560		return -EINVAL;
561
562	if (dma_fence_is_signaled(fence))
563		return 0;
564
565	p = kfd_lookup_process_by_mm(mm);
566	if (!p)
567		return -ENODEV;
568
569	if (fence->seqno == p->last_eviction_seqno)
570		goto out;
571
572	p->last_eviction_seqno = fence->seqno;
573
574	/* Avoid KFD process starvation. Wait for at least
575	 * PROCESS_ACTIVE_TIME_MS before evicting the process again
576	 */
577	active_time = get_jiffies_64() - p->last_restore_timestamp;
578	if (delay_jiffies > active_time)
579		delay_jiffies -= active_time;
580	else
581		delay_jiffies = 0;
582
583	/* During process initialization eviction_work.dwork is initialized
584	 * to kfd_evict_bo_worker
585	 */
586	schedule_delayed_work(&p->eviction_work, delay_jiffies);
587out:
588	kfd_unref_process(p);
589	return 0;
590}
591
592static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
593				unsigned int chunk_size)
594{
595	unsigned int num_of_longs;
596
597	if (WARN_ON(buf_size < chunk_size))
598		return -EINVAL;
599	if (WARN_ON(buf_size == 0))
600		return -EINVAL;
601	if (WARN_ON(chunk_size == 0))
602		return -EINVAL;
603
604	kfd->gtt_sa_chunk_size = chunk_size;
605	kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
606
607	num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) /
608		BITS_PER_LONG;
609
610	kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL);
611
612	if (!kfd->gtt_sa_bitmap)
613		return -ENOMEM;
614
615	pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
616			kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
617
618	mutex_init(&kfd->gtt_sa_lock);
619
620	return 0;
621
622}
623
624static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
625{
626	mutex_destroy(&kfd->gtt_sa_lock);
627	kfree(kfd->gtt_sa_bitmap);
628}
629
630static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
631						unsigned int bit_num,
632						unsigned int chunk_size)
633{
634	return start_addr + bit_num * chunk_size;
635}
636
637static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
638						unsigned int bit_num,
639						unsigned int chunk_size)
640{
641	return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
642}
643
644int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
645			struct kfd_mem_obj **mem_obj)
646{
647	unsigned int found, start_search, cur_size;
648
649	if (size == 0)
650		return -EINVAL;
651
652	if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
653		return -ENOMEM;
654
655	*mem_obj = kmalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
656	if ((*mem_obj) == NULL)
657		return -ENOMEM;
658
659	pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
660
661	start_search = 0;
662
663	mutex_lock(&kfd->gtt_sa_lock);
664
665kfd_gtt_restart_search:
666	/* Find the first chunk that is free */
667	found = find_next_zero_bit(kfd->gtt_sa_bitmap,
668					kfd->gtt_sa_num_of_chunks,
669					start_search);
670
671	pr_debug("Found = %d\n", found);
672
673	/* If there wasn't any free chunk, bail out */
674	if (found == kfd->gtt_sa_num_of_chunks)
675		goto kfd_gtt_no_free_chunk;
676
677	/* Update fields of mem_obj */
678	(*mem_obj)->range_start = found;
679	(*mem_obj)->range_end = found;
680	(*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
681					kfd->gtt_start_gpu_addr,
682					found,
683					kfd->gtt_sa_chunk_size);
684	(*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
685					kfd->gtt_start_cpu_ptr,
686					found,
687					kfd->gtt_sa_chunk_size);
688
689	pr_debug("gpu_addr = %p, cpu_addr = %p\n",
690			(uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
691
692	/* If we need only one chunk, mark it as allocated and get out */
693	if (size <= kfd->gtt_sa_chunk_size) {
694		pr_debug("Single bit\n");
695		set_bit(found, kfd->gtt_sa_bitmap);
696		goto kfd_gtt_out;
697	}
698
699	/* Otherwise, try to see if we have enough contiguous chunks */
700	cur_size = size - kfd->gtt_sa_chunk_size;
701	do {
702		(*mem_obj)->range_end =
703			find_next_zero_bit(kfd->gtt_sa_bitmap,
704					kfd->gtt_sa_num_of_chunks, ++found);
705		/*
706		 * If next free chunk is not contiguous than we need to
707		 * restart our search from the last free chunk we found (which
708		 * wasn't contiguous to the previous ones
709		 */
710		if ((*mem_obj)->range_end != found) {
711			start_search = found;
712			goto kfd_gtt_restart_search;
713		}
714
715		/*
716		 * If we reached end of buffer, bail out with error
717		 */
718		if (found == kfd->gtt_sa_num_of_chunks)
719			goto kfd_gtt_no_free_chunk;
720
721		/* Check if we don't need another chunk */
722		if (cur_size <= kfd->gtt_sa_chunk_size)
723			cur_size = 0;
724		else
725			cur_size -= kfd->gtt_sa_chunk_size;
726
727	} while (cur_size > 0);
728
729	pr_debug("range_start = %d, range_end = %d\n",
730		(*mem_obj)->range_start, (*mem_obj)->range_end);
731
732	/* Mark the chunks as allocated */
733	for (found = (*mem_obj)->range_start;
734		found <= (*mem_obj)->range_end;
735		found++)
736		set_bit(found, kfd->gtt_sa_bitmap);
737
738kfd_gtt_out:
739	mutex_unlock(&kfd->gtt_sa_lock);
740	return 0;
741
742kfd_gtt_no_free_chunk:
743	pr_debug("Allocation failed with mem_obj = %p\n", mem_obj);
744	mutex_unlock(&kfd->gtt_sa_lock);
745	kfree(mem_obj);
746	return -ENOMEM;
747}
748
749int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
750{
751	unsigned int bit;
752
753	/* Act like kfree when trying to free a NULL object */
754	if (!mem_obj)
755		return 0;
756
757	pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
758			mem_obj, mem_obj->range_start, mem_obj->range_end);
759
760	mutex_lock(&kfd->gtt_sa_lock);
761
762	/* Mark the chunks as free */
763	for (bit = mem_obj->range_start;
764		bit <= mem_obj->range_end;
765		bit++)
766		clear_bit(bit, kfd->gtt_sa_bitmap);
767
768	mutex_unlock(&kfd->gtt_sa_lock);
769
770	kfree(mem_obj);
771	return 0;
772}