Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/* Copyright (c) 2010,2015, The Linux Foundation. All rights reserved.
  2 * Copyright (C) 2015 Linaro Ltd.
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License version 2 and
  6 * only version 2 as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it will be useful,
  9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 11 * GNU General Public License for more details.
 12 *
 13 * You should have received a copy of the GNU General Public License
 14 * along with this program; if not, write to the Free Software
 15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 16 * 02110-1301, USA.
 17 */
 18
 19#include <linux/slab.h>
 20#include <linux/io.h>
 21#include <linux/module.h>
 22#include <linux/mutex.h>
 23#include <linux/errno.h>
 24#include <linux/err.h>
 25#include <linux/qcom_scm.h>
 26#include <linux/dma-mapping.h>
 27
 28#include "qcom_scm.h"
 29
 30#define QCOM_SCM_FLAG_COLDBOOT_CPU0	0x00
 31#define QCOM_SCM_FLAG_COLDBOOT_CPU1	0x01
 32#define QCOM_SCM_FLAG_COLDBOOT_CPU2	0x08
 33#define QCOM_SCM_FLAG_COLDBOOT_CPU3	0x20
 34
 35#define QCOM_SCM_FLAG_WARMBOOT_CPU0	0x04
 36#define QCOM_SCM_FLAG_WARMBOOT_CPU1	0x02
 37#define QCOM_SCM_FLAG_WARMBOOT_CPU2	0x10
 38#define QCOM_SCM_FLAG_WARMBOOT_CPU3	0x40
 39
 40struct qcom_scm_entry {
 41	int flag;
 42	void *entry;
 43};
 44
 45static struct qcom_scm_entry qcom_scm_wb[] = {
 46	{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU0 },
 47	{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU1 },
 48	{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU2 },
 49	{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU3 },
 50};
 51
 52static DEFINE_MUTEX(qcom_scm_lock);
 53
 54/**
 55 * struct qcom_scm_command - one SCM command buffer
 56 * @len: total available memory for command and response
 57 * @buf_offset: start of command buffer
 58 * @resp_hdr_offset: start of response buffer
 59 * @id: command to be executed
 60 * @buf: buffer returned from qcom_scm_get_command_buffer()
 61 *
 62 * An SCM command is laid out in memory as follows:
 63 *
 64 *	------------------- <--- struct qcom_scm_command
 65 *	| command header  |
 66 *	------------------- <--- qcom_scm_get_command_buffer()
 67 *	| command buffer  |
 68 *	------------------- <--- struct qcom_scm_response and
 69 *	| response header |      qcom_scm_command_to_response()
 70 *	------------------- <--- qcom_scm_get_response_buffer()
 71 *	| response buffer |
 72 *	-------------------
 73 *
 74 * There can be arbitrary padding between the headers and buffers so
 75 * you should always use the appropriate qcom_scm_get_*_buffer() routines
 76 * to access the buffers in a safe manner.
 77 */
 78struct qcom_scm_command {
 79	__le32 len;
 80	__le32 buf_offset;
 81	__le32 resp_hdr_offset;
 82	__le32 id;
 83	__le32 buf[0];
 84};
 85
 86/**
 87 * struct qcom_scm_response - one SCM response buffer
 88 * @len: total available memory for response
 89 * @buf_offset: start of response data relative to start of qcom_scm_response
 90 * @is_complete: indicates if the command has finished processing
 91 */
 92struct qcom_scm_response {
 93	__le32 len;
 94	__le32 buf_offset;
 95	__le32 is_complete;
 96};
 97
 98/**
 99 * qcom_scm_command_to_response() - Get a pointer to a qcom_scm_response
100 * @cmd: command
101 *
102 * Returns a pointer to a response for a command.
103 */
104static inline struct qcom_scm_response *qcom_scm_command_to_response(
105		const struct qcom_scm_command *cmd)
106{
107	return (void *)cmd + le32_to_cpu(cmd->resp_hdr_offset);
108}
109
110/**
111 * qcom_scm_get_command_buffer() - Get a pointer to a command buffer
112 * @cmd: command
113 *
114 * Returns a pointer to the command buffer of a command.
115 */
116static inline void *qcom_scm_get_command_buffer(const struct qcom_scm_command *cmd)
117{
118	return (void *)cmd->buf;
119}
120
121/**
122 * qcom_scm_get_response_buffer() - Get a pointer to a response buffer
123 * @rsp: response
124 *
125 * Returns a pointer to a response buffer of a response.
126 */
127static inline void *qcom_scm_get_response_buffer(const struct qcom_scm_response *rsp)
128{
129	return (void *)rsp + le32_to_cpu(rsp->buf_offset);
130}
131
132static u32 smc(u32 cmd_addr)
133{
134	int context_id;
135	register u32 r0 asm("r0") = 1;
136	register u32 r1 asm("r1") = (u32)&context_id;
137	register u32 r2 asm("r2") = cmd_addr;
138	do {
139		asm volatile(
140			__asmeq("%0", "r0")
141			__asmeq("%1", "r0")
142			__asmeq("%2", "r1")
143			__asmeq("%3", "r2")
144#ifdef REQUIRES_SEC
145			".arch_extension sec\n"
146#endif
147			"smc	#0	@ switch to secure world\n"
148			: "=r" (r0)
149			: "r" (r0), "r" (r1), "r" (r2)
150			: "r3", "r12");
151	} while (r0 == QCOM_SCM_INTERRUPTED);
152
153	return r0;
154}
155
156/**
157 * qcom_scm_call() - Send an SCM command
158 * @dev: struct device
159 * @svc_id: service identifier
160 * @cmd_id: command identifier
161 * @cmd_buf: command buffer
162 * @cmd_len: length of the command buffer
163 * @resp_buf: response buffer
164 * @resp_len: length of the response buffer
165 *
166 * Sends a command to the SCM and waits for the command to finish processing.
167 *
168 * A note on cache maintenance:
169 * Note that any buffers that are expected to be accessed by the secure world
170 * must be flushed before invoking qcom_scm_call and invalidated in the cache
171 * immediately after qcom_scm_call returns. Cache maintenance on the command
172 * and response buffers is taken care of by qcom_scm_call; however, callers are
173 * responsible for any other cached buffers passed over to the secure world.
174 */
175static int qcom_scm_call(struct device *dev, u32 svc_id, u32 cmd_id,
176			 const void *cmd_buf, size_t cmd_len, void *resp_buf,
177			 size_t resp_len)
178{
179	int ret;
180	struct qcom_scm_command *cmd;
181	struct qcom_scm_response *rsp;
182	size_t alloc_len = sizeof(*cmd) + cmd_len + sizeof(*rsp) + resp_len;
183	dma_addr_t cmd_phys;
184
185	cmd = kzalloc(PAGE_ALIGN(alloc_len), GFP_KERNEL);
186	if (!cmd)
187		return -ENOMEM;
188
189	cmd->len = cpu_to_le32(alloc_len);
190	cmd->buf_offset = cpu_to_le32(sizeof(*cmd));
191	cmd->resp_hdr_offset = cpu_to_le32(sizeof(*cmd) + cmd_len);
192
193	cmd->id = cpu_to_le32((svc_id << 10) | cmd_id);
194	if (cmd_buf)
195		memcpy(qcom_scm_get_command_buffer(cmd), cmd_buf, cmd_len);
196
197	rsp = qcom_scm_command_to_response(cmd);
198
199	cmd_phys = dma_map_single(dev, cmd, alloc_len, DMA_TO_DEVICE);
200	if (dma_mapping_error(dev, cmd_phys)) {
201		kfree(cmd);
202		return -ENOMEM;
203	}
204
205	mutex_lock(&qcom_scm_lock);
206	ret = smc(cmd_phys);
207	if (ret < 0)
208		ret = qcom_scm_remap_error(ret);
209	mutex_unlock(&qcom_scm_lock);
210	if (ret)
211		goto out;
212
213	do {
214		dma_sync_single_for_cpu(dev, cmd_phys + sizeof(*cmd) + cmd_len,
215					sizeof(*rsp), DMA_FROM_DEVICE);
216	} while (!rsp->is_complete);
217
218	if (resp_buf) {
219		dma_sync_single_for_cpu(dev, cmd_phys + sizeof(*cmd) + cmd_len +
220					le32_to_cpu(rsp->buf_offset),
221					resp_len, DMA_FROM_DEVICE);
222		memcpy(resp_buf, qcom_scm_get_response_buffer(rsp),
223		       resp_len);
224	}
225out:
226	dma_unmap_single(dev, cmd_phys, alloc_len, DMA_TO_DEVICE);
227	kfree(cmd);
228	return ret;
229}
230
231#define SCM_CLASS_REGISTER	(0x2 << 8)
232#define SCM_MASK_IRQS		BIT(5)
233#define SCM_ATOMIC(svc, cmd, n) (((((svc) << 10)|((cmd) & 0x3ff)) << 12) | \
234				SCM_CLASS_REGISTER | \
235				SCM_MASK_IRQS | \
236				(n & 0xf))
237
238/**
239 * qcom_scm_call_atomic1() - Send an atomic SCM command with one argument
240 * @svc_id: service identifier
241 * @cmd_id: command identifier
242 * @arg1: first argument
243 *
244 * This shall only be used with commands that are guaranteed to be
245 * uninterruptable, atomic and SMP safe.
246 */
247static s32 qcom_scm_call_atomic1(u32 svc, u32 cmd, u32 arg1)
248{
249	int context_id;
250
251	register u32 r0 asm("r0") = SCM_ATOMIC(svc, cmd, 1);
252	register u32 r1 asm("r1") = (u32)&context_id;
253	register u32 r2 asm("r2") = arg1;
254
255	asm volatile(
256			__asmeq("%0", "r0")
257			__asmeq("%1", "r0")
258			__asmeq("%2", "r1")
259			__asmeq("%3", "r2")
260#ifdef REQUIRES_SEC
261			".arch_extension sec\n"
262#endif
263			"smc    #0      @ switch to secure world\n"
264			: "=r" (r0)
265			: "r" (r0), "r" (r1), "r" (r2)
266			: "r3", "r12");
267	return r0;
268}
269
270/**
271 * qcom_scm_call_atomic2() - Send an atomic SCM command with two arguments
272 * @svc_id:	service identifier
273 * @cmd_id:	command identifier
274 * @arg1:	first argument
275 * @arg2:	second argument
276 *
277 * This shall only be used with commands that are guaranteed to be
278 * uninterruptable, atomic and SMP safe.
279 */
280static s32 qcom_scm_call_atomic2(u32 svc, u32 cmd, u32 arg1, u32 arg2)
281{
282	int context_id;
283
284	register u32 r0 asm("r0") = SCM_ATOMIC(svc, cmd, 2);
285	register u32 r1 asm("r1") = (u32)&context_id;
286	register u32 r2 asm("r2") = arg1;
287	register u32 r3 asm("r3") = arg2;
288
289	asm volatile(
290			__asmeq("%0", "r0")
291			__asmeq("%1", "r0")
292			__asmeq("%2", "r1")
293			__asmeq("%3", "r2")
294			__asmeq("%4", "r3")
295#ifdef REQUIRES_SEC
296			".arch_extension sec\n"
297#endif
298			"smc    #0      @ switch to secure world\n"
299			: "=r" (r0)
300			: "r" (r0), "r" (r1), "r" (r2), "r" (r3)
301			: "r12");
302	return r0;
303}
304
305u32 qcom_scm_get_version(void)
306{
307	int context_id;
308	static u32 version = -1;
309	register u32 r0 asm("r0");
310	register u32 r1 asm("r1");
311
312	if (version != -1)
313		return version;
314
315	mutex_lock(&qcom_scm_lock);
316
317	r0 = 0x1 << 8;
318	r1 = (u32)&context_id;
319	do {
320		asm volatile(
321			__asmeq("%0", "r0")
322			__asmeq("%1", "r1")
323			__asmeq("%2", "r0")
324			__asmeq("%3", "r1")
325#ifdef REQUIRES_SEC
326			".arch_extension sec\n"
327#endif
328			"smc	#0	@ switch to secure world\n"
329			: "=r" (r0), "=r" (r1)
330			: "r" (r0), "r" (r1)
331			: "r2", "r3", "r12");
332	} while (r0 == QCOM_SCM_INTERRUPTED);
333
334	version = r1;
335	mutex_unlock(&qcom_scm_lock);
336
337	return version;
338}
339EXPORT_SYMBOL(qcom_scm_get_version);
340
341/**
342 * qcom_scm_set_cold_boot_addr() - Set the cold boot address for cpus
343 * @entry: Entry point function for the cpus
344 * @cpus: The cpumask of cpus that will use the entry point
345 *
346 * Set the cold boot address of the cpus. Any cpu outside the supported
347 * range would be removed from the cpu present mask.
348 */
349int __qcom_scm_set_cold_boot_addr(void *entry, const cpumask_t *cpus)
350{
351	int flags = 0;
352	int cpu;
353	int scm_cb_flags[] = {
354		QCOM_SCM_FLAG_COLDBOOT_CPU0,
355		QCOM_SCM_FLAG_COLDBOOT_CPU1,
356		QCOM_SCM_FLAG_COLDBOOT_CPU2,
357		QCOM_SCM_FLAG_COLDBOOT_CPU3,
358	};
359
360	if (!cpus || (cpus && cpumask_empty(cpus)))
361		return -EINVAL;
362
363	for_each_cpu(cpu, cpus) {
364		if (cpu < ARRAY_SIZE(scm_cb_flags))
365			flags |= scm_cb_flags[cpu];
366		else
367			set_cpu_present(cpu, false);
368	}
369
370	return qcom_scm_call_atomic2(QCOM_SCM_SVC_BOOT, QCOM_SCM_BOOT_ADDR,
371				    flags, virt_to_phys(entry));
372}
373
374/**
375 * qcom_scm_set_warm_boot_addr() - Set the warm boot address for cpus
376 * @entry: Entry point function for the cpus
377 * @cpus: The cpumask of cpus that will use the entry point
378 *
379 * Set the Linux entry point for the SCM to transfer control to when coming
380 * out of a power down. CPU power down may be executed on cpuidle or hotplug.
381 */
382int __qcom_scm_set_warm_boot_addr(struct device *dev, void *entry,
383				  const cpumask_t *cpus)
384{
385	int ret;
386	int flags = 0;
387	int cpu;
388	struct {
389		__le32 flags;
390		__le32 addr;
391	} cmd;
392
393	/*
394	 * Reassign only if we are switching from hotplug entry point
395	 * to cpuidle entry point or vice versa.
396	 */
397	for_each_cpu(cpu, cpus) {
398		if (entry == qcom_scm_wb[cpu].entry)
399			continue;
400		flags |= qcom_scm_wb[cpu].flag;
401	}
402
403	/* No change in entry function */
404	if (!flags)
405		return 0;
406
407	cmd.addr = cpu_to_le32(virt_to_phys(entry));
408	cmd.flags = cpu_to_le32(flags);
409	ret = qcom_scm_call(dev, QCOM_SCM_SVC_BOOT, QCOM_SCM_BOOT_ADDR,
410			    &cmd, sizeof(cmd), NULL, 0);
411	if (!ret) {
412		for_each_cpu(cpu, cpus)
413			qcom_scm_wb[cpu].entry = entry;
414	}
415
416	return ret;
417}
418
419/**
420 * qcom_scm_cpu_power_down() - Power down the cpu
421 * @flags - Flags to flush cache
422 *
423 * This is an end point to power down cpu. If there was a pending interrupt,
424 * the control would return from this function, otherwise, the cpu jumps to the
425 * warm boot entry point set for this cpu upon reset.
426 */
427void __qcom_scm_cpu_power_down(u32 flags)
428{
429	qcom_scm_call_atomic1(QCOM_SCM_SVC_BOOT, QCOM_SCM_CMD_TERMINATE_PC,
430			flags & QCOM_SCM_FLUSH_FLAG_MASK);
431}
432
433int __qcom_scm_is_call_available(struct device *dev, u32 svc_id, u32 cmd_id)
434{
435	int ret;
436	__le32 svc_cmd = cpu_to_le32((svc_id << 10) | cmd_id);
437	__le32 ret_val = 0;
438
439	ret = qcom_scm_call(dev, QCOM_SCM_SVC_INFO, QCOM_IS_CALL_AVAIL_CMD,
440			    &svc_cmd, sizeof(svc_cmd), &ret_val,
441			    sizeof(ret_val));
442	if (ret)
443		return ret;
444
445	return le32_to_cpu(ret_val);
446}
447
448int __qcom_scm_hdcp_req(struct device *dev, struct qcom_scm_hdcp_req *req,
449			u32 req_cnt, u32 *resp)
450{
451	if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT)
452		return -ERANGE;
453
454	return qcom_scm_call(dev, QCOM_SCM_SVC_HDCP, QCOM_SCM_CMD_HDCP,
455		req, req_cnt * sizeof(*req), resp, sizeof(*resp));
456}
457
458void __qcom_scm_init(void)
459{
460}
461
462bool __qcom_scm_pas_supported(struct device *dev, u32 peripheral)
463{
464	__le32 out;
465	__le32 in;
466	int ret;
467
468	in = cpu_to_le32(peripheral);
469	ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL,
470			    QCOM_SCM_PAS_IS_SUPPORTED_CMD,
471			    &in, sizeof(in),
472			    &out, sizeof(out));
473
474	return ret ? false : !!out;
475}
476
477int __qcom_scm_pas_init_image(struct device *dev, u32 peripheral,
478			      dma_addr_t metadata_phys)
479{
480	__le32 scm_ret;
481	int ret;
482	struct {
483		__le32 proc;
484		__le32 image_addr;
485	} request;
486
487	request.proc = cpu_to_le32(peripheral);
488	request.image_addr = cpu_to_le32(metadata_phys);
489
490	ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL,
491			    QCOM_SCM_PAS_INIT_IMAGE_CMD,
492			    &request, sizeof(request),
493			    &scm_ret, sizeof(scm_ret));
494
495	return ret ? : le32_to_cpu(scm_ret);
496}
497
498int __qcom_scm_pas_mem_setup(struct device *dev, u32 peripheral,
499			     phys_addr_t addr, phys_addr_t size)
500{
501	__le32 scm_ret;
502	int ret;
503	struct {
504		__le32 proc;
505		__le32 addr;
506		__le32 len;
507	} request;
508
509	request.proc = cpu_to_le32(peripheral);
510	request.addr = cpu_to_le32(addr);
511	request.len = cpu_to_le32(size);
512
513	ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL,
514			    QCOM_SCM_PAS_MEM_SETUP_CMD,
515			    &request, sizeof(request),
516			    &scm_ret, sizeof(scm_ret));
517
518	return ret ? : le32_to_cpu(scm_ret);
519}
520
521int __qcom_scm_pas_auth_and_reset(struct device *dev, u32 peripheral)
522{
523	__le32 out;
524	__le32 in;
525	int ret;
526
527	in = cpu_to_le32(peripheral);
528	ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL,
529			    QCOM_SCM_PAS_AUTH_AND_RESET_CMD,
530			    &in, sizeof(in),
531			    &out, sizeof(out));
532
533	return ret ? : le32_to_cpu(out);
534}
535
536int __qcom_scm_pas_shutdown(struct device *dev, u32 peripheral)
537{
538	__le32 out;
539	__le32 in;
540	int ret;
541
542	in = cpu_to_le32(peripheral);
543	ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL,
544			    QCOM_SCM_PAS_SHUTDOWN_CMD,
545			    &in, sizeof(in),
546			    &out, sizeof(out));
547
548	return ret ? : le32_to_cpu(out);
549}
550
551int __qcom_scm_pas_mss_reset(struct device *dev, bool reset)
552{
553	__le32 out;
554	__le32 in = cpu_to_le32(reset);
555	int ret;
556
557	ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL, QCOM_SCM_PAS_MSS_RESET,
558			&in, sizeof(in),
559			&out, sizeof(out));
560
561	return ret ? : le32_to_cpu(out);
562}
563
564int __qcom_scm_set_dload_mode(struct device *dev, bool enable)
565{
566	return qcom_scm_call_atomic2(QCOM_SCM_SVC_BOOT, QCOM_SCM_SET_DLOAD_MODE,
567				     enable ? QCOM_SCM_SET_DLOAD_MODE : 0, 0);
568}
569
570int __qcom_scm_set_remote_state(struct device *dev, u32 state, u32 id)
571{
572	struct {
573		__le32 state;
574		__le32 id;
575	} req;
576	__le32 scm_ret = 0;
577	int ret;
578
579	req.state = cpu_to_le32(state);
580	req.id = cpu_to_le32(id);
581
582	ret = qcom_scm_call(dev, QCOM_SCM_SVC_BOOT, QCOM_SCM_SET_REMOTE_STATE,
583			    &req, sizeof(req), &scm_ret, sizeof(scm_ret));
584
585	return ret ? : le32_to_cpu(scm_ret);
586}
587
588int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region,
589			  size_t mem_sz, phys_addr_t src, size_t src_sz,
590			  phys_addr_t dest, size_t dest_sz)
591{
592	return -ENODEV;
593}
594
595int __qcom_scm_restore_sec_cfg(struct device *dev, u32 device_id,
596			       u32 spare)
597{
598	return -ENODEV;
599}
600
601int __qcom_scm_iommu_secure_ptbl_size(struct device *dev, u32 spare,
602				      size_t *size)
603{
604	return -ENODEV;
605}
606
607int __qcom_scm_iommu_secure_ptbl_init(struct device *dev, u64 addr, u32 size,
608				      u32 spare)
609{
610	return -ENODEV;
611}
612
613int __qcom_scm_io_readl(struct device *dev, phys_addr_t addr,
614			unsigned int *val)
615{
616	int ret;
617
618	ret = qcom_scm_call_atomic1(QCOM_SCM_SVC_IO, QCOM_SCM_IO_READ, addr);
619	if (ret >= 0)
620		*val = ret;
621
622	return ret < 0 ? ret : 0;
623}
624
625int __qcom_scm_io_writel(struct device *dev, phys_addr_t addr, unsigned int val)
626{
627	return qcom_scm_call_atomic2(QCOM_SCM_SVC_IO, QCOM_SCM_IO_WRITE,
628				     addr, val);
629}