Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Common EFI memory map functions.
  4 */
  5
  6#define pr_fmt(fmt) "efi: " fmt
  7
  8#include <linux/init.h>
  9#include <linux/kernel.h>
 10#include <linux/efi.h>
 11#include <linux/io.h>
 12#include <asm/early_ioremap.h>
 13#include <linux/memblock.h>
 14#include <linux/slab.h>
 15
 16static phys_addr_t __init __efi_memmap_alloc_early(unsigned long size)
 17{
 18	return memblock_alloc(size, 0);
 19}
 20
 21static phys_addr_t __init __efi_memmap_alloc_late(unsigned long size)
 22{
 23	unsigned int order = get_order(size);
 24	struct page *p = alloc_pages(GFP_KERNEL, order);
 25
 26	if (!p)
 27		return 0;
 28
 29	return PFN_PHYS(page_to_pfn(p));
 30}
 31
 32/**
 33 * efi_memmap_alloc - Allocate memory for the EFI memory map
 34 * @num_entries: Number of entries in the allocated map.
 35 *
 36 * Depending on whether mm_init() has already been invoked or not,
 37 * either memblock or "normal" page allocation is used.
 38 *
 39 * Returns the physical address of the allocated memory map on
 40 * success, zero on failure.
 41 */
 42phys_addr_t __init efi_memmap_alloc(unsigned int num_entries)
 43{
 44	unsigned long size = num_entries * efi.memmap.desc_size;
 45
 46	if (slab_is_available())
 47		return __efi_memmap_alloc_late(size);
 48
 49	return __efi_memmap_alloc_early(size);
 50}
 51
 52/**
 53 * __efi_memmap_init - Common code for mapping the EFI memory map
 54 * @data: EFI memory map data
 55 * @late: Use early or late mapping function?
 56 *
 57 * This function takes care of figuring out which function to use to
 58 * map the EFI memory map in efi.memmap based on how far into the boot
 59 * we are.
 60 *
 61 * During bootup @late should be %false since we only have access to
 62 * the early_memremap*() functions as the vmalloc space isn't setup.
 63 * Once the kernel is fully booted we can fallback to the more robust
 64 * memremap*() API.
 65 *
 66 * Returns zero on success, a negative error code on failure.
 67 */
 68static int __init
 69__efi_memmap_init(struct efi_memory_map_data *data, bool late)
 70{
 71	struct efi_memory_map map;
 72	phys_addr_t phys_map;
 73
 74	if (efi_enabled(EFI_PARAVIRT))
 75		return 0;
 76
 77	phys_map = data->phys_map;
 78
 79	if (late)
 80		map.map = memremap(phys_map, data->size, MEMREMAP_WB);
 81	else
 82		map.map = early_memremap(phys_map, data->size);
 83
 84	if (!map.map) {
 85		pr_err("Could not map the memory map!\n");
 86		return -ENOMEM;
 87	}
 88
 89	map.phys_map = data->phys_map;
 90	map.nr_map = data->size / data->desc_size;
 91	map.map_end = map.map + data->size;
 92
 93	map.desc_version = data->desc_version;
 94	map.desc_size = data->desc_size;
 95	map.late = late;
 96
 97	set_bit(EFI_MEMMAP, &efi.flags);
 98
 99	efi.memmap = map;
100
101	return 0;
102}
103
104/**
105 * efi_memmap_init_early - Map the EFI memory map data structure
106 * @data: EFI memory map data
107 *
108 * Use early_memremap() to map the passed in EFI memory map and assign
109 * it to efi.memmap.
110 */
111int __init efi_memmap_init_early(struct efi_memory_map_data *data)
112{
113	/* Cannot go backwards */
114	WARN_ON(efi.memmap.late);
115
116	return __efi_memmap_init(data, false);
117}
118
119void __init efi_memmap_unmap(void)
120{
121	if (!efi.memmap.late) {
122		unsigned long size;
123
124		size = efi.memmap.desc_size * efi.memmap.nr_map;
125		early_memunmap(efi.memmap.map, size);
126	} else {
127		memunmap(efi.memmap.map);
128	}
129
130	efi.memmap.map = NULL;
131	clear_bit(EFI_MEMMAP, &efi.flags);
132}
133
134/**
135 * efi_memmap_init_late - Map efi.memmap with memremap()
136 * @phys_addr: Physical address of the new EFI memory map
137 * @size: Size in bytes of the new EFI memory map
138 *
139 * Setup a mapping of the EFI memory map using ioremap_cache(). This
140 * function should only be called once the vmalloc space has been
141 * setup and is therefore not suitable for calling during early EFI
142 * initialise, e.g. in efi_init(). Additionally, it expects
143 * efi_memmap_init_early() to have already been called.
144 *
145 * The reason there are two EFI memmap initialisation
146 * (efi_memmap_init_early() and this late version) is because the
147 * early EFI memmap should be explicitly unmapped once EFI
148 * initialisation is complete as the fixmap space used to map the EFI
149 * memmap (via early_memremap()) is a scarce resource.
150 *
151 * This late mapping is intended to persist for the duration of
152 * runtime so that things like efi_mem_desc_lookup() and
153 * efi_mem_attributes() always work.
154 *
155 * Returns zero on success, a negative error code on failure.
156 */
157int __init efi_memmap_init_late(phys_addr_t addr, unsigned long size)
158{
159	struct efi_memory_map_data data = {
160		.phys_map = addr,
161		.size = size,
162	};
163
164	/* Did we forget to unmap the early EFI memmap? */
165	WARN_ON(efi.memmap.map);
166
167	/* Were we already called? */
168	WARN_ON(efi.memmap.late);
169
170	/*
171	 * It makes no sense to allow callers to register different
172	 * values for the following fields. Copy them out of the
173	 * existing early EFI memmap.
174	 */
175	data.desc_version = efi.memmap.desc_version;
176	data.desc_size = efi.memmap.desc_size;
177
178	return __efi_memmap_init(&data, true);
179}
180
181/**
182 * efi_memmap_install - Install a new EFI memory map in efi.memmap
183 * @addr: Physical address of the memory map
184 * @nr_map: Number of entries in the memory map
185 *
186 * Unlike efi_memmap_init_*(), this function does not allow the caller
187 * to switch from early to late mappings. It simply uses the existing
188 * mapping function and installs the new memmap.
189 *
190 * Returns zero on success, a negative error code on failure.
191 */
192int __init efi_memmap_install(phys_addr_t addr, unsigned int nr_map)
193{
194	struct efi_memory_map_data data;
195
196	efi_memmap_unmap();
197
198	data.phys_map = addr;
199	data.size = efi.memmap.desc_size * nr_map;
200	data.desc_version = efi.memmap.desc_version;
201	data.desc_size = efi.memmap.desc_size;
202
203	return __efi_memmap_init(&data, efi.memmap.late);
204}
205
206/**
207 * efi_memmap_split_count - Count number of additional EFI memmap entries
208 * @md: EFI memory descriptor to split
209 * @range: Address range (start, end) to split around
210 *
211 * Returns the number of additional EFI memmap entries required to
212 * accomodate @range.
213 */
214int __init efi_memmap_split_count(efi_memory_desc_t *md, struct range *range)
215{
216	u64 m_start, m_end;
217	u64 start, end;
218	int count = 0;
219
220	start = md->phys_addr;
221	end = start + (md->num_pages << EFI_PAGE_SHIFT) - 1;
222
223	/* modifying range */
224	m_start = range->start;
225	m_end = range->end;
226
227	if (m_start <= start) {
228		/* split into 2 parts */
229		if (start < m_end && m_end < end)
230			count++;
231	}
232
233	if (start < m_start && m_start < end) {
234		/* split into 3 parts */
235		if (m_end < end)
236			count += 2;
237		/* split into 2 parts */
238		if (end <= m_end)
239			count++;
240	}
241
242	return count;
243}
244
245/**
246 * efi_memmap_insert - Insert a memory region in an EFI memmap
247 * @old_memmap: The existing EFI memory map structure
248 * @buf: Address of buffer to store new map
249 * @mem: Memory map entry to insert
250 *
251 * It is suggested that you call efi_memmap_split_count() first
252 * to see how large @buf needs to be.
253 */
254void __init efi_memmap_insert(struct efi_memory_map *old_memmap, void *buf,
255			      struct efi_mem_range *mem)
256{
257	u64 m_start, m_end, m_attr;
258	efi_memory_desc_t *md;
259	u64 start, end;
260	void *old, *new;
261
262	/* modifying range */
263	m_start = mem->range.start;
264	m_end = mem->range.end;
265	m_attr = mem->attribute;
266
267	/*
268	 * The EFI memory map deals with regions in EFI_PAGE_SIZE
269	 * units. Ensure that the region described by 'mem' is aligned
270	 * correctly.
271	 */
272	if (!IS_ALIGNED(m_start, EFI_PAGE_SIZE) ||
273	    !IS_ALIGNED(m_end + 1, EFI_PAGE_SIZE)) {
274		WARN_ON(1);
275		return;
276	}
277
278	for (old = old_memmap->map, new = buf;
279	     old < old_memmap->map_end;
280	     old += old_memmap->desc_size, new += old_memmap->desc_size) {
281
282		/* copy original EFI memory descriptor */
283		memcpy(new, old, old_memmap->desc_size);
284		md = new;
285		start = md->phys_addr;
286		end = md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT) - 1;
287
288		if (m_start <= start && end <= m_end)
289			md->attribute |= m_attr;
290
291		if (m_start <= start &&
292		    (start < m_end && m_end < end)) {
293			/* first part */
294			md->attribute |= m_attr;
295			md->num_pages = (m_end - md->phys_addr + 1) >>
296				EFI_PAGE_SHIFT;
297			/* latter part */
298			new += old_memmap->desc_size;
299			memcpy(new, old, old_memmap->desc_size);
300			md = new;
301			md->phys_addr = m_end + 1;
302			md->num_pages = (end - md->phys_addr + 1) >>
303				EFI_PAGE_SHIFT;
304		}
305
306		if ((start < m_start && m_start < end) && m_end < end) {
307			/* first part */
308			md->num_pages = (m_start - md->phys_addr) >>
309				EFI_PAGE_SHIFT;
310			/* middle part */
311			new += old_memmap->desc_size;
312			memcpy(new, old, old_memmap->desc_size);
313			md = new;
314			md->attribute |= m_attr;
315			md->phys_addr = m_start;
316			md->num_pages = (m_end - m_start + 1) >>
317				EFI_PAGE_SHIFT;
318			/* last part */
319			new += old_memmap->desc_size;
320			memcpy(new, old, old_memmap->desc_size);
321			md = new;
322			md->phys_addr = m_end + 1;
323			md->num_pages = (end - m_end) >>
324				EFI_PAGE_SHIFT;
325		}
326
327		if ((start < m_start && m_start < end) &&
328		    (end <= m_end)) {
329			/* first part */
330			md->num_pages = (m_start - md->phys_addr) >>
331				EFI_PAGE_SHIFT;
332			/* latter part */
333			new += old_memmap->desc_size;
334			memcpy(new, old, old_memmap->desc_size);
335			md = new;
336			md->phys_addr = m_start;
337			md->num_pages = (end - md->phys_addr + 1) >>
338				EFI_PAGE_SHIFT;
339			md->attribute |= m_attr;
340		}
341	}
342}