Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * drivers/clocksource/arm_global_timer.c
  3 *
  4 * Copyright (C) 2013 STMicroelectronics (R&D) Limited.
  5 * Author: Stuart Menefy <stuart.menefy@st.com>
  6 * Author: Srinivas Kandagatla <srinivas.kandagatla@st.com>
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11 */
 12
 13#include <linux/init.h>
 14#include <linux/interrupt.h>
 15#include <linux/clocksource.h>
 16#include <linux/clockchips.h>
 17#include <linux/cpu.h>
 18#include <linux/clk.h>
 19#include <linux/delay.h>
 20#include <linux/err.h>
 21#include <linux/io.h>
 22#include <linux/of.h>
 23#include <linux/of_irq.h>
 24#include <linux/of_address.h>
 25#include <linux/sched_clock.h>
 26
 27#include <asm/cputype.h>
 28
 29#define GT_COUNTER0	0x00
 30#define GT_COUNTER1	0x04
 31
 32#define GT_CONTROL	0x08
 33#define GT_CONTROL_TIMER_ENABLE		BIT(0)  /* this bit is NOT banked */
 34#define GT_CONTROL_COMP_ENABLE		BIT(1)	/* banked */
 35#define GT_CONTROL_IRQ_ENABLE		BIT(2)	/* banked */
 36#define GT_CONTROL_AUTO_INC		BIT(3)	/* banked */
 37
 38#define GT_INT_STATUS	0x0c
 39#define GT_INT_STATUS_EVENT_FLAG	BIT(0)
 40
 41#define GT_COMP0	0x10
 42#define GT_COMP1	0x14
 43#define GT_AUTO_INC	0x18
 44
 45/*
 46 * We are expecting to be clocked by the ARM peripheral clock.
 47 *
 48 * Note: it is assumed we are using a prescaler value of zero, so this is
 49 * the units for all operations.
 50 */
 51static void __iomem *gt_base;
 52static unsigned long gt_clk_rate;
 53static int gt_ppi;
 54static struct clock_event_device __percpu *gt_evt;
 55
 56/*
 57 * To get the value from the Global Timer Counter register proceed as follows:
 58 * 1. Read the upper 32-bit timer counter register
 59 * 2. Read the lower 32-bit timer counter register
 60 * 3. Read the upper 32-bit timer counter register again. If the value is
 61 *  different to the 32-bit upper value read previously, go back to step 2.
 62 *  Otherwise the 64-bit timer counter value is correct.
 63 */
 64static u64 notrace _gt_counter_read(void)
 65{
 66	u64 counter;
 67	u32 lower;
 68	u32 upper, old_upper;
 69
 70	upper = readl_relaxed(gt_base + GT_COUNTER1);
 71	do {
 72		old_upper = upper;
 73		lower = readl_relaxed(gt_base + GT_COUNTER0);
 74		upper = readl_relaxed(gt_base + GT_COUNTER1);
 75	} while (upper != old_upper);
 76
 77	counter = upper;
 78	counter <<= 32;
 79	counter |= lower;
 80	return counter;
 81}
 82
 83static u64 gt_counter_read(void)
 84{
 85	return _gt_counter_read();
 86}
 87
 88/**
 89 * To ensure that updates to comparator value register do not set the
 90 * Interrupt Status Register proceed as follows:
 91 * 1. Clear the Comp Enable bit in the Timer Control Register.
 92 * 2. Write the lower 32-bit Comparator Value Register.
 93 * 3. Write the upper 32-bit Comparator Value Register.
 94 * 4. Set the Comp Enable bit and, if necessary, the IRQ enable bit.
 95 */
 96static void gt_compare_set(unsigned long delta, int periodic)
 97{
 98	u64 counter = gt_counter_read();
 99	unsigned long ctrl;
100
101	counter += delta;
102	ctrl = GT_CONTROL_TIMER_ENABLE;
103	writel_relaxed(ctrl, gt_base + GT_CONTROL);
104	writel_relaxed(lower_32_bits(counter), gt_base + GT_COMP0);
105	writel_relaxed(upper_32_bits(counter), gt_base + GT_COMP1);
106
107	if (periodic) {
108		writel_relaxed(delta, gt_base + GT_AUTO_INC);
109		ctrl |= GT_CONTROL_AUTO_INC;
110	}
111
112	ctrl |= GT_CONTROL_COMP_ENABLE | GT_CONTROL_IRQ_ENABLE;
113	writel_relaxed(ctrl, gt_base + GT_CONTROL);
114}
115
116static int gt_clockevent_shutdown(struct clock_event_device *evt)
117{
118	unsigned long ctrl;
119
120	ctrl = readl(gt_base + GT_CONTROL);
121	ctrl &= ~(GT_CONTROL_COMP_ENABLE | GT_CONTROL_IRQ_ENABLE |
122		  GT_CONTROL_AUTO_INC);
123	writel(ctrl, gt_base + GT_CONTROL);
124	return 0;
125}
126
127static int gt_clockevent_set_periodic(struct clock_event_device *evt)
128{
129	gt_compare_set(DIV_ROUND_CLOSEST(gt_clk_rate, HZ), 1);
130	return 0;
131}
132
133static int gt_clockevent_set_next_event(unsigned long evt,
134					struct clock_event_device *unused)
135{
136	gt_compare_set(evt, 0);
137	return 0;
138}
139
140static irqreturn_t gt_clockevent_interrupt(int irq, void *dev_id)
141{
142	struct clock_event_device *evt = dev_id;
143
144	if (!(readl_relaxed(gt_base + GT_INT_STATUS) &
145				GT_INT_STATUS_EVENT_FLAG))
146		return IRQ_NONE;
147
148	/**
149	 * ERRATA 740657( Global Timer can send 2 interrupts for
150	 * the same event in single-shot mode)
151	 * Workaround:
152	 *	Either disable single-shot mode.
153	 *	Or
154	 *	Modify the Interrupt Handler to avoid the
155	 *	offending sequence. This is achieved by clearing
156	 *	the Global Timer flag _after_ having incremented
157	 *	the Comparator register	value to a higher value.
158	 */
159	if (clockevent_state_oneshot(evt))
160		gt_compare_set(ULONG_MAX, 0);
161
162	writel_relaxed(GT_INT_STATUS_EVENT_FLAG, gt_base + GT_INT_STATUS);
163	evt->event_handler(evt);
164
165	return IRQ_HANDLED;
166}
167
168static int gt_starting_cpu(unsigned int cpu)
169{
170	struct clock_event_device *clk = this_cpu_ptr(gt_evt);
171
172	clk->name = "arm_global_timer";
173	clk->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT |
174		CLOCK_EVT_FEAT_PERCPU;
175	clk->set_state_shutdown = gt_clockevent_shutdown;
176	clk->set_state_periodic = gt_clockevent_set_periodic;
177	clk->set_state_oneshot = gt_clockevent_shutdown;
178	clk->set_state_oneshot_stopped = gt_clockevent_shutdown;
179	clk->set_next_event = gt_clockevent_set_next_event;
180	clk->cpumask = cpumask_of(cpu);
181	clk->rating = 300;
182	clk->irq = gt_ppi;
183	clockevents_config_and_register(clk, gt_clk_rate,
184					1, 0xffffffff);
185	enable_percpu_irq(clk->irq, IRQ_TYPE_NONE);
186	return 0;
187}
188
189static int gt_dying_cpu(unsigned int cpu)
190{
191	struct clock_event_device *clk = this_cpu_ptr(gt_evt);
192
193	gt_clockevent_shutdown(clk);
194	disable_percpu_irq(clk->irq);
195	return 0;
196}
197
198static u64 gt_clocksource_read(struct clocksource *cs)
199{
200	return gt_counter_read();
201}
202
203static void gt_resume(struct clocksource *cs)
204{
205	unsigned long ctrl;
206
207	ctrl = readl(gt_base + GT_CONTROL);
208	if (!(ctrl & GT_CONTROL_TIMER_ENABLE))
209		/* re-enable timer on resume */
210		writel(GT_CONTROL_TIMER_ENABLE, gt_base + GT_CONTROL);
211}
212
213static struct clocksource gt_clocksource = {
214	.name	= "arm_global_timer",
215	.rating	= 300,
216	.read	= gt_clocksource_read,
217	.mask	= CLOCKSOURCE_MASK(64),
218	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
219	.resume = gt_resume,
220};
221
222#ifdef CONFIG_CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK
223static u64 notrace gt_sched_clock_read(void)
224{
225	return _gt_counter_read();
226}
227#endif
228
229static unsigned long gt_read_long(void)
230{
231	return readl_relaxed(gt_base + GT_COUNTER0);
232}
233
234static struct delay_timer gt_delay_timer = {
235	.read_current_timer = gt_read_long,
236};
237
238static void __init gt_delay_timer_init(void)
239{
240	gt_delay_timer.freq = gt_clk_rate;
241	register_current_timer_delay(&gt_delay_timer);
242}
243
244static int __init gt_clocksource_init(void)
245{
246	writel(0, gt_base + GT_CONTROL);
247	writel(0, gt_base + GT_COUNTER0);
248	writel(0, gt_base + GT_COUNTER1);
249	/* enables timer on all the cores */
250	writel(GT_CONTROL_TIMER_ENABLE, gt_base + GT_CONTROL);
251
252#ifdef CONFIG_CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK
253	sched_clock_register(gt_sched_clock_read, 64, gt_clk_rate);
254#endif
255	return clocksource_register_hz(&gt_clocksource, gt_clk_rate);
256}
257
258static int __init global_timer_of_register(struct device_node *np)
259{
260	struct clk *gt_clk;
261	int err = 0;
262
263	/*
264	 * In A9 r2p0 the comparators for each processor with the global timer
265	 * fire when the timer value is greater than or equal to. In previous
266	 * revisions the comparators fired when the timer value was equal to.
267	 */
268	if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A9
269	    && (read_cpuid_id() & 0xf0000f) < 0x200000) {
270		pr_warn("global-timer: non support for this cpu version.\n");
271		return -ENOSYS;
272	}
273
274	gt_ppi = irq_of_parse_and_map(np, 0);
275	if (!gt_ppi) {
276		pr_warn("global-timer: unable to parse irq\n");
277		return -EINVAL;
278	}
279
280	gt_base = of_iomap(np, 0);
281	if (!gt_base) {
282		pr_warn("global-timer: invalid base address\n");
283		return -ENXIO;
284	}
285
286	gt_clk = of_clk_get(np, 0);
287	if (!IS_ERR(gt_clk)) {
288		err = clk_prepare_enable(gt_clk);
289		if (err)
290			goto out_unmap;
291	} else {
292		pr_warn("global-timer: clk not found\n");
293		err = -EINVAL;
294		goto out_unmap;
295	}
296
297	gt_clk_rate = clk_get_rate(gt_clk);
298	gt_evt = alloc_percpu(struct clock_event_device);
299	if (!gt_evt) {
300		pr_warn("global-timer: can't allocate memory\n");
301		err = -ENOMEM;
302		goto out_clk;
303	}
304
305	err = request_percpu_irq(gt_ppi, gt_clockevent_interrupt,
306				 "gt", gt_evt);
307	if (err) {
308		pr_warn("global-timer: can't register interrupt %d (%d)\n",
309			gt_ppi, err);
310		goto out_free;
311	}
312
313	/* Register and immediately configure the timer on the boot CPU */
314	err = gt_clocksource_init();
315	if (err)
316		goto out_irq;
317	
318	err = cpuhp_setup_state(CPUHP_AP_ARM_GLOBAL_TIMER_STARTING,
319				"clockevents/arm/global_timer:starting",
320				gt_starting_cpu, gt_dying_cpu);
321	if (err)
322		goto out_irq;
323
324	gt_delay_timer_init();
325
326	return 0;
327
328out_irq:
329	free_percpu_irq(gt_ppi, gt_evt);
330out_free:
331	free_percpu(gt_evt);
332out_clk:
333	clk_disable_unprepare(gt_clk);
334out_unmap:
335	iounmap(gt_base);
336	WARN(err, "ARM Global timer register failed (%d)\n", err);
337
338	return err;
339}
340
341/* Only tested on r2p2 and r3p0  */
342TIMER_OF_DECLARE(arm_gt, "arm,cortex-a9-global-timer",
343			global_timer_of_register);