Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * drivers/base/power/main.c - Where the driver meets power management.
   3 *
   4 * Copyright (c) 2003 Patrick Mochel
   5 * Copyright (c) 2003 Open Source Development Lab
   6 *
   7 * This file is released under the GPLv2
   8 *
   9 *
  10 * The driver model core calls device_pm_add() when a device is registered.
  11 * This will initialize the embedded device_pm_info object in the device
  12 * and add it to the list of power-controlled devices. sysfs entries for
  13 * controlling device power management will also be added.
  14 *
  15 * A separate list is used for keeping track of power info, because the power
  16 * domain dependencies may differ from the ancestral dependencies that the
  17 * subsystem list maintains.
  18 */
  19
  20#include <linux/device.h>
  21#include <linux/kallsyms.h>
  22#include <linux/mutex.h>
  23#include <linux/pm.h>
  24#include <linux/pm_runtime.h>
  25#include <linux/resume-trace.h>
 
  26#include <linux/interrupt.h>
  27#include <linux/sched.h>
 
  28#include <linux/async.h>
  29#include <linux/suspend.h>
 
 
 
 
  30
  31#include "../base.h"
  32#include "power.h"
  33
 
 
  34/*
  35 * The entries in the dpm_list list are in a depth first order, simply
  36 * because children are guaranteed to be discovered after parents, and
  37 * are inserted at the back of the list on discovery.
  38 *
  39 * Since device_pm_add() may be called with a device lock held,
  40 * we must never try to acquire a device lock while holding
  41 * dpm_list_mutex.
  42 */
  43
  44LIST_HEAD(dpm_list);
  45LIST_HEAD(dpm_prepared_list);
  46LIST_HEAD(dpm_suspended_list);
  47LIST_HEAD(dpm_noirq_list);
 
  48
 
  49static DEFINE_MUTEX(dpm_list_mtx);
  50static pm_message_t pm_transition;
  51
  52static int async_error;
  53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  54/**
  55 * device_pm_init - Initialize the PM-related part of a device object.
  56 * @dev: Device object being initialized.
  57 */
  58void device_pm_init(struct device *dev)
  59{
  60	dev->power.is_prepared = false;
  61	dev->power.is_suspended = false;
 
 
  62	init_completion(&dev->power.completion);
  63	complete_all(&dev->power.completion);
  64	dev->power.wakeup = NULL;
  65	spin_lock_init(&dev->power.lock);
  66	pm_runtime_init(dev);
  67	INIT_LIST_HEAD(&dev->power.entry);
  68}
  69
  70/**
  71 * device_pm_lock - Lock the list of active devices used by the PM core.
  72 */
  73void device_pm_lock(void)
  74{
  75	mutex_lock(&dpm_list_mtx);
  76}
  77
  78/**
  79 * device_pm_unlock - Unlock the list of active devices used by the PM core.
  80 */
  81void device_pm_unlock(void)
  82{
  83	mutex_unlock(&dpm_list_mtx);
  84}
  85
  86/**
  87 * device_pm_add - Add a device to the PM core's list of active devices.
  88 * @dev: Device to add to the list.
  89 */
  90void device_pm_add(struct device *dev)
  91{
  92	pr_debug("PM: Adding info for %s:%s\n",
  93		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
 
  94	mutex_lock(&dpm_list_mtx);
  95	if (dev->parent && dev->parent->power.is_prepared)
  96		dev_warn(dev, "parent %s should not be sleeping\n",
  97			dev_name(dev->parent));
  98	list_add_tail(&dev->power.entry, &dpm_list);
 
  99	mutex_unlock(&dpm_list_mtx);
 100}
 101
 102/**
 103 * device_pm_remove - Remove a device from the PM core's list of active devices.
 104 * @dev: Device to be removed from the list.
 105 */
 106void device_pm_remove(struct device *dev)
 107{
 108	pr_debug("PM: Removing info for %s:%s\n",
 109		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
 110	complete_all(&dev->power.completion);
 111	mutex_lock(&dpm_list_mtx);
 112	list_del_init(&dev->power.entry);
 
 113	mutex_unlock(&dpm_list_mtx);
 114	device_wakeup_disable(dev);
 115	pm_runtime_remove(dev);
 
 116}
 117
 118/**
 119 * device_pm_move_before - Move device in the PM core's list of active devices.
 120 * @deva: Device to move in dpm_list.
 121 * @devb: Device @deva should come before.
 122 */
 123void device_pm_move_before(struct device *deva, struct device *devb)
 124{
 125	pr_debug("PM: Moving %s:%s before %s:%s\n",
 126		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
 127		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
 128	/* Delete deva from dpm_list and reinsert before devb. */
 129	list_move_tail(&deva->power.entry, &devb->power.entry);
 130}
 131
 132/**
 133 * device_pm_move_after - Move device in the PM core's list of active devices.
 134 * @deva: Device to move in dpm_list.
 135 * @devb: Device @deva should come after.
 136 */
 137void device_pm_move_after(struct device *deva, struct device *devb)
 138{
 139	pr_debug("PM: Moving %s:%s after %s:%s\n",
 140		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
 141		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
 142	/* Delete deva from dpm_list and reinsert after devb. */
 143	list_move(&deva->power.entry, &devb->power.entry);
 144}
 145
 146/**
 147 * device_pm_move_last - Move device to end of the PM core's list of devices.
 148 * @dev: Device to move in dpm_list.
 149 */
 150void device_pm_move_last(struct device *dev)
 151{
 152	pr_debug("PM: Moving %s:%s to end of list\n",
 153		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
 154	list_move_tail(&dev->power.entry, &dpm_list);
 155}
 156
 157static ktime_t initcall_debug_start(struct device *dev)
 158{
 159	ktime_t calltime = ktime_set(0, 0);
 160
 161	if (initcall_debug) {
 162		pr_info("calling  %s+ @ %i\n",
 163				dev_name(dev), task_pid_nr(current));
 
 164		calltime = ktime_get();
 165	}
 166
 167	return calltime;
 168}
 169
 170static void initcall_debug_report(struct device *dev, ktime_t calltime,
 171				  int error)
 
 172{
 173	ktime_t delta, rettime;
 
 174
 175	if (initcall_debug) {
 176		rettime = ktime_get();
 177		delta = ktime_sub(rettime, calltime);
 
 178		pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
 179			error, (unsigned long long)ktime_to_ns(delta) >> 10);
 180	}
 181}
 182
 183/**
 184 * dpm_wait - Wait for a PM operation to complete.
 185 * @dev: Device to wait for.
 186 * @async: If unset, wait only if the device's power.async_suspend flag is set.
 187 */
 188static void dpm_wait(struct device *dev, bool async)
 189{
 190	if (!dev)
 191		return;
 192
 193	if (async || (pm_async_enabled && dev->power.async_suspend))
 194		wait_for_completion(&dev->power.completion);
 195}
 196
 197static int dpm_wait_fn(struct device *dev, void *async_ptr)
 198{
 199	dpm_wait(dev, *((bool *)async_ptr));
 200	return 0;
 201}
 202
 203static void dpm_wait_for_children(struct device *dev, bool async)
 204{
 205       device_for_each_child(dev, &async, dpm_wait_fn);
 206}
 207
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 208/**
 209 * pm_op - Execute the PM operation appropriate for given PM event.
 210 * @dev: Device to handle.
 211 * @ops: PM operations to choose from.
 212 * @state: PM transition of the system being carried out.
 213 */
 214static int pm_op(struct device *dev,
 215		 const struct dev_pm_ops *ops,
 216		 pm_message_t state)
 217{
 218	int error = 0;
 219	ktime_t calltime;
 220
 221	calltime = initcall_debug_start(dev);
 222
 223	switch (state.event) {
 224#ifdef CONFIG_SUSPEND
 225	case PM_EVENT_SUSPEND:
 226		if (ops->suspend) {
 227			error = ops->suspend(dev);
 228			suspend_report_result(ops->suspend, error);
 229		}
 230		break;
 231	case PM_EVENT_RESUME:
 232		if (ops->resume) {
 233			error = ops->resume(dev);
 234			suspend_report_result(ops->resume, error);
 235		}
 236		break;
 237#endif /* CONFIG_SUSPEND */
 238#ifdef CONFIG_HIBERNATE_CALLBACKS
 239	case PM_EVENT_FREEZE:
 240	case PM_EVENT_QUIESCE:
 241		if (ops->freeze) {
 242			error = ops->freeze(dev);
 243			suspend_report_result(ops->freeze, error);
 244		}
 245		break;
 246	case PM_EVENT_HIBERNATE:
 247		if (ops->poweroff) {
 248			error = ops->poweroff(dev);
 249			suspend_report_result(ops->poweroff, error);
 250		}
 251		break;
 252	case PM_EVENT_THAW:
 253	case PM_EVENT_RECOVER:
 254		if (ops->thaw) {
 255			error = ops->thaw(dev);
 256			suspend_report_result(ops->thaw, error);
 257		}
 258		break;
 259	case PM_EVENT_RESTORE:
 260		if (ops->restore) {
 261			error = ops->restore(dev);
 262			suspend_report_result(ops->restore, error);
 263		}
 264		break;
 265#endif /* CONFIG_HIBERNATE_CALLBACKS */
 266	default:
 267		error = -EINVAL;
 268	}
 269
 270	initcall_debug_report(dev, calltime, error);
 271
 272	return error;
 273}
 274
 275/**
 276 * pm_noirq_op - Execute the PM operation appropriate for given PM event.
 277 * @dev: Device to handle.
 278 * @ops: PM operations to choose from.
 279 * @state: PM transition of the system being carried out.
 280 *
 281 * The driver of @dev will not receive interrupts while this function is being
 282 * executed.
 283 */
 284static int pm_noirq_op(struct device *dev,
 285			const struct dev_pm_ops *ops,
 286			pm_message_t state)
 287{
 288	int error = 0;
 289	ktime_t calltime = ktime_set(0, 0), delta, rettime;
 290
 291	if (initcall_debug) {
 292		pr_info("calling  %s+ @ %i, parent: %s\n",
 293				dev_name(dev), task_pid_nr(current),
 294				dev->parent ? dev_name(dev->parent) : "none");
 295		calltime = ktime_get();
 296	}
 297
 298	switch (state.event) {
 299#ifdef CONFIG_SUSPEND
 300	case PM_EVENT_SUSPEND:
 301		if (ops->suspend_noirq) {
 302			error = ops->suspend_noirq(dev);
 303			suspend_report_result(ops->suspend_noirq, error);
 304		}
 305		break;
 306	case PM_EVENT_RESUME:
 307		if (ops->resume_noirq) {
 308			error = ops->resume_noirq(dev);
 309			suspend_report_result(ops->resume_noirq, error);
 310		}
 311		break;
 312#endif /* CONFIG_SUSPEND */
 313#ifdef CONFIG_HIBERNATE_CALLBACKS
 314	case PM_EVENT_FREEZE:
 315	case PM_EVENT_QUIESCE:
 316		if (ops->freeze_noirq) {
 317			error = ops->freeze_noirq(dev);
 318			suspend_report_result(ops->freeze_noirq, error);
 319		}
 320		break;
 321	case PM_EVENT_HIBERNATE:
 322		if (ops->poweroff_noirq) {
 323			error = ops->poweroff_noirq(dev);
 324			suspend_report_result(ops->poweroff_noirq, error);
 325		}
 326		break;
 327	case PM_EVENT_THAW:
 328	case PM_EVENT_RECOVER:
 329		if (ops->thaw_noirq) {
 330			error = ops->thaw_noirq(dev);
 331			suspend_report_result(ops->thaw_noirq, error);
 332		}
 333		break;
 334	case PM_EVENT_RESTORE:
 335		if (ops->restore_noirq) {
 336			error = ops->restore_noirq(dev);
 337			suspend_report_result(ops->restore_noirq, error);
 338		}
 339		break;
 340#endif /* CONFIG_HIBERNATE_CALLBACKS */
 341	default:
 342		error = -EINVAL;
 343	}
 344
 345	if (initcall_debug) {
 346		rettime = ktime_get();
 347		delta = ktime_sub(rettime, calltime);
 348		printk("initcall %s_i+ returned %d after %Ld usecs\n",
 349			dev_name(dev), error,
 350			(unsigned long long)ktime_to_ns(delta) >> 10);
 351	}
 352
 353	return error;
 354}
 355
 356static char *pm_verb(int event)
 
 
 
 
 
 
 
 
 357{
 358	switch (event) {
 
 359	case PM_EVENT_SUSPEND:
 360		return "suspend";
 361	case PM_EVENT_RESUME:
 362		return "resume";
 
 
 363	case PM_EVENT_FREEZE:
 364		return "freeze";
 365	case PM_EVENT_QUIESCE:
 366		return "quiesce";
 367	case PM_EVENT_HIBERNATE:
 368		return "hibernate";
 369	case PM_EVENT_THAW:
 370		return "thaw";
 371	case PM_EVENT_RESTORE:
 372		return "restore";
 373	case PM_EVENT_RECOVER:
 374		return "recover";
 375	default:
 376		return "(unknown PM event)";
 
 377	}
 
 
 378}
 379
 380static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info)
 381{
 382	dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
 383		((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
 384		", may wakeup" : "");
 385}
 386
 387static void pm_dev_err(struct device *dev, pm_message_t state, char *info,
 388			int error)
 389{
 390	printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
 391		dev_name(dev), pm_verb(state.event), info, error);
 392}
 393
 394static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info)
 
 395{
 396	ktime_t calltime;
 397	u64 usecs64;
 398	int usecs;
 399
 400	calltime = ktime_get();
 401	usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
 402	do_div(usecs64, NSEC_PER_USEC);
 403	usecs = usecs64;
 404	if (usecs == 0)
 405		usecs = 1;
 406	pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n",
 407		info ?: "", info ? " " : "", pm_verb(state.event),
 408		usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 409}
 410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 411/*------------------------- Resume routines -------------------------*/
 412
 413/**
 414 * device_resume_noirq - Execute an "early resume" callback for given device.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 415 * @dev: Device to handle.
 416 * @state: PM transition of the system being carried out.
 
 417 *
 418 * The driver of @dev will not receive interrupts while this function is being
 419 * executed.
 420 */
 421static int device_resume_noirq(struct device *dev, pm_message_t state)
 422{
 
 
 
 423	int error = 0;
 424
 425	TRACE_DEVICE(dev);
 426	TRACE_RESUME(0);
 427
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 428	if (dev->pm_domain) {
 429		pm_dev_dbg(dev, state, "EARLY power domain ");
 430		error = pm_noirq_op(dev, &dev->pm_domain->ops, state);
 431	} else if (dev->type && dev->type->pm) {
 432		pm_dev_dbg(dev, state, "EARLY type ");
 433		error = pm_noirq_op(dev, dev->type->pm, state);
 434	} else if (dev->class && dev->class->pm) {
 435		pm_dev_dbg(dev, state, "EARLY class ");
 436		error = pm_noirq_op(dev, dev->class->pm, state);
 437	} else if (dev->bus && dev->bus->pm) {
 438		pm_dev_dbg(dev, state, "EARLY ");
 439		error = pm_noirq_op(dev, dev->bus->pm, state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 440	}
 441
 
 
 
 
 442	TRACE_RESUME(error);
 
 
 
 443	return error;
 444}
 445
 
 
 
 
 
 
 
 
 
 
 
 
 446/**
 447 * dpm_resume_noirq - Execute "early resume" callbacks for non-sysdev devices.
 448 * @state: PM transition of the system being carried out.
 449 *
 450 * Call the "noirq" resume handlers for all devices marked as DPM_OFF_IRQ and
 451 * enable device drivers to receive interrupts.
 452 */
 453void dpm_resume_noirq(pm_message_t state)
 454{
 
 455	ktime_t starttime = ktime_get();
 456
 
 457	mutex_lock(&dpm_list_mtx);
 458	while (!list_empty(&dpm_noirq_list)) {
 459		struct device *dev = to_device(dpm_noirq_list.next);
 460		int error;
 
 
 
 
 
 
 
 
 
 
 
 461
 
 
 462		get_device(dev);
 463		list_move_tail(&dev->power.entry, &dpm_suspended_list);
 464		mutex_unlock(&dpm_list_mtx);
 465
 466		error = device_resume_noirq(dev, state);
 467		if (error)
 468			pm_dev_err(dev, state, " early", error);
 469
 
 
 
 
 
 
 
 
 470		mutex_lock(&dpm_list_mtx);
 471		put_device(dev);
 472	}
 473	mutex_unlock(&dpm_list_mtx);
 474	dpm_show_time(starttime, state, "early");
 475	resume_device_irqs();
 
 476}
 477EXPORT_SYMBOL_GPL(dpm_resume_noirq);
 478
 479/**
 480 * legacy_resume - Execute a legacy (bus or class) resume callback for device.
 481 * @dev: Device to resume.
 482 * @cb: Resume callback to execute.
 483 */
 484static int legacy_resume(struct device *dev, int (*cb)(struct device *dev))
 485{
 486	int error;
 487	ktime_t calltime;
 488
 489	calltime = initcall_debug_start(dev);
 490
 491	error = cb(dev);
 492	suspend_report_result(cb, error);
 493
 494	initcall_debug_report(dev, calltime, error);
 495
 496	return error;
 497}
 
 498
 499/**
 500 * device_resume - Execute "resume" callbacks for given device.
 501 * @dev: Device to handle.
 502 * @state: PM transition of the system being carried out.
 503 * @async: If true, the device is being resumed asynchronously.
 504 */
 505static int device_resume(struct device *dev, pm_message_t state, bool async)
 506{
 
 
 507	int error = 0;
 508	bool put = false;
 509
 510	TRACE_DEVICE(dev);
 511	TRACE_RESUME(0);
 512
 513	dpm_wait(dev->parent, async);
 
 
 
 
 
 
 
 
 
 
 514	device_lock(dev);
 515
 516	/*
 517	 * This is a fib.  But we'll allow new children to be added below
 518	 * a resumed device, even if the device hasn't been completed yet.
 519	 */
 520	dev->power.is_prepared = false;
 521
 522	if (!dev->power.is_suspended)
 523		goto Unlock;
 524
 525	pm_runtime_enable(dev);
 526	put = true;
 527
 528	if (dev->pm_domain) {
 529		pm_dev_dbg(dev, state, "power domain ");
 530		error = pm_op(dev, &dev->pm_domain->ops, state);
 531		goto End;
 532	}
 533
 534	if (dev->type && dev->type->pm) {
 535		pm_dev_dbg(dev, state, "type ");
 536		error = pm_op(dev, dev->type->pm, state);
 537		goto End;
 538	}
 539
 540	if (dev->class) {
 541		if (dev->class->pm) {
 542			pm_dev_dbg(dev, state, "class ");
 543			error = pm_op(dev, dev->class->pm, state);
 544			goto End;
 545		} else if (dev->class->resume) {
 546			pm_dev_dbg(dev, state, "legacy class ");
 547			error = legacy_resume(dev, dev->class->resume);
 548			goto End;
 549		}
 550	}
 551
 552	if (dev->bus) {
 553		if (dev->bus->pm) {
 554			pm_dev_dbg(dev, state, "");
 555			error = pm_op(dev, dev->bus->pm, state);
 556		} else if (dev->bus->resume) {
 557			pm_dev_dbg(dev, state, "legacy ");
 558			error = legacy_resume(dev, dev->bus->resume);
 
 559		}
 560	}
 561
 
 
 
 
 
 
 562 End:
 
 563	dev->power.is_suspended = false;
 564
 565 Unlock:
 566	device_unlock(dev);
 
 
 
 567	complete_all(&dev->power.completion);
 568
 569	TRACE_RESUME(error);
 570
 571	if (put)
 572		pm_runtime_put_sync(dev);
 573
 574	return error;
 575}
 576
 577static void async_resume(void *data, async_cookie_t cookie)
 578{
 579	struct device *dev = (struct device *)data;
 580	int error;
 581
 582	error = device_resume(dev, pm_transition, true);
 583	if (error)
 584		pm_dev_err(dev, pm_transition, " async", error);
 585	put_device(dev);
 586}
 587
 588static bool is_async(struct device *dev)
 589{
 590	return dev->power.async_suspend && pm_async_enabled
 591		&& !pm_trace_is_enabled();
 592}
 593
 594/**
 595 * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
 596 * @state: PM transition of the system being carried out.
 597 *
 598 * Execute the appropriate "resume" callback for all devices whose status
 599 * indicates that they are suspended.
 600 */
 601void dpm_resume(pm_message_t state)
 602{
 603	struct device *dev;
 604	ktime_t starttime = ktime_get();
 605
 
 606	might_sleep();
 607
 608	mutex_lock(&dpm_list_mtx);
 609	pm_transition = state;
 610	async_error = 0;
 611
 612	list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
 613		INIT_COMPLETION(dev->power.completion);
 614		if (is_async(dev)) {
 615			get_device(dev);
 616			async_schedule(async_resume, dev);
 617		}
 618	}
 619
 620	while (!list_empty(&dpm_suspended_list)) {
 621		dev = to_device(dpm_suspended_list.next);
 622		get_device(dev);
 623		if (!is_async(dev)) {
 624			int error;
 625
 626			mutex_unlock(&dpm_list_mtx);
 627
 628			error = device_resume(dev, state, false);
 629			if (error)
 
 
 
 630				pm_dev_err(dev, state, "", error);
 
 631
 632			mutex_lock(&dpm_list_mtx);
 633		}
 634		if (!list_empty(&dev->power.entry))
 635			list_move_tail(&dev->power.entry, &dpm_prepared_list);
 636		put_device(dev);
 637	}
 638	mutex_unlock(&dpm_list_mtx);
 639	async_synchronize_full();
 640	dpm_show_time(starttime, state, NULL);
 
 
 
 641}
 642
 643/**
 644 * device_complete - Complete a PM transition for given device.
 645 * @dev: Device to handle.
 646 * @state: PM transition of the system being carried out.
 647 */
 648static void device_complete(struct device *dev, pm_message_t state)
 649{
 
 
 
 
 
 
 650	device_lock(dev);
 651
 652	if (dev->pm_domain) {
 653		pm_dev_dbg(dev, state, "completing power domain ");
 654		if (dev->pm_domain->ops.complete)
 655			dev->pm_domain->ops.complete(dev);
 656	} else if (dev->type && dev->type->pm) {
 657		pm_dev_dbg(dev, state, "completing type ");
 658		if (dev->type->pm->complete)
 659			dev->type->pm->complete(dev);
 660	} else if (dev->class && dev->class->pm) {
 661		pm_dev_dbg(dev, state, "completing class ");
 662		if (dev->class->pm->complete)
 663			dev->class->pm->complete(dev);
 664	} else if (dev->bus && dev->bus->pm) {
 665		pm_dev_dbg(dev, state, "completing ");
 666		if (dev->bus->pm->complete)
 667			dev->bus->pm->complete(dev);
 
 
 
 
 
 
 
 
 
 668	}
 669
 670	device_unlock(dev);
 
 
 671}
 672
 673/**
 674 * dpm_complete - Complete a PM transition for all non-sysdev devices.
 675 * @state: PM transition of the system being carried out.
 676 *
 677 * Execute the ->complete() callbacks for all devices whose PM status is not
 678 * DPM_ON (this allows new devices to be registered).
 679 */
 680void dpm_complete(pm_message_t state)
 681{
 682	struct list_head list;
 683
 
 684	might_sleep();
 685
 686	INIT_LIST_HEAD(&list);
 687	mutex_lock(&dpm_list_mtx);
 688	while (!list_empty(&dpm_prepared_list)) {
 689		struct device *dev = to_device(dpm_prepared_list.prev);
 690
 691		get_device(dev);
 692		dev->power.is_prepared = false;
 693		list_move(&dev->power.entry, &list);
 694		mutex_unlock(&dpm_list_mtx);
 695
 
 696		device_complete(dev, state);
 
 697
 698		mutex_lock(&dpm_list_mtx);
 699		put_device(dev);
 700	}
 701	list_splice(&list, &dpm_list);
 702	mutex_unlock(&dpm_list_mtx);
 
 
 
 
 703}
 704
 705/**
 706 * dpm_resume_end - Execute "resume" callbacks and complete system transition.
 707 * @state: PM transition of the system being carried out.
 708 *
 709 * Execute "resume" callbacks for all devices and complete the PM transition of
 710 * the system.
 711 */
 712void dpm_resume_end(pm_message_t state)
 713{
 714	dpm_resume(state);
 715	dpm_complete(state);
 716}
 717EXPORT_SYMBOL_GPL(dpm_resume_end);
 718
 719
 720/*------------------------- Suspend routines -------------------------*/
 721
 722/**
 723 * resume_event - Return a "resume" message for given "suspend" sleep state.
 724 * @sleep_state: PM message representing a sleep state.
 725 *
 726 * Return a PM message representing the resume event corresponding to given
 727 * sleep state.
 728 */
 729static pm_message_t resume_event(pm_message_t sleep_state)
 730{
 731	switch (sleep_state.event) {
 732	case PM_EVENT_SUSPEND:
 733		return PMSG_RESUME;
 734	case PM_EVENT_FREEZE:
 735	case PM_EVENT_QUIESCE:
 736		return PMSG_RECOVER;
 737	case PM_EVENT_HIBERNATE:
 738		return PMSG_RESTORE;
 739	}
 740	return PMSG_ON;
 741}
 742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 743/**
 744 * device_suspend_noirq - Execute a "late suspend" callback for given device.
 745 * @dev: Device to handle.
 746 * @state: PM transition of the system being carried out.
 
 747 *
 748 * The driver of @dev will not receive interrupts while this function is being
 749 * executed.
 750 */
 751static int device_suspend_noirq(struct device *dev, pm_message_t state)
 752{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 753	int error;
 754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 755	if (dev->pm_domain) {
 756		pm_dev_dbg(dev, state, "LATE power domain ");
 757		error = pm_noirq_op(dev, &dev->pm_domain->ops, state);
 758		if (error)
 759			return error;
 760	} else if (dev->type && dev->type->pm) {
 761		pm_dev_dbg(dev, state, "LATE type ");
 762		error = pm_noirq_op(dev, dev->type->pm, state);
 763		if (error)
 764			return error;
 765	} else if (dev->class && dev->class->pm) {
 766		pm_dev_dbg(dev, state, "LATE class ");
 767		error = pm_noirq_op(dev, dev->class->pm, state);
 768		if (error)
 769			return error;
 770	} else if (dev->bus && dev->bus->pm) {
 771		pm_dev_dbg(dev, state, "LATE ");
 772		error = pm_noirq_op(dev, dev->bus->pm, state);
 773		if (error)
 774			return error;
 775	}
 776
 777	return 0;
 
 
 
 778}
 779
 780/**
 781 * dpm_suspend_noirq - Execute "late suspend" callbacks for non-sysdev devices.
 
 782 * @state: PM transition of the system being carried out.
 
 783 *
 784 * Prevent device drivers from receiving interrupts and call the "noirq" suspend
 785 * handlers for all non-sysdev devices.
 786 */
 787int dpm_suspend_noirq(pm_message_t state)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 788{
 789	ktime_t starttime = ktime_get();
 790	int error = 0;
 791
 792	suspend_device_irqs();
 793	mutex_lock(&dpm_list_mtx);
 
 
 
 794	while (!list_empty(&dpm_suspended_list)) {
 795		struct device *dev = to_device(dpm_suspended_list.prev);
 796
 797		get_device(dev);
 798		mutex_unlock(&dpm_list_mtx);
 799
 800		error = device_suspend_noirq(dev, state);
 801
 802		mutex_lock(&dpm_list_mtx);
 
 
 
 803		if (error) {
 804			pm_dev_err(dev, state, " late", error);
 
 805			put_device(dev);
 806			break;
 807		}
 808		if (!list_empty(&dev->power.entry))
 809			list_move(&dev->power.entry, &dpm_noirq_list);
 810		put_device(dev);
 
 
 
 811	}
 812	mutex_unlock(&dpm_list_mtx);
 813	if (error)
 814		dpm_resume_noirq(resume_event(state));
 815	else
 816		dpm_show_time(starttime, state, "late");
 
 
 
 
 
 
 817	return error;
 818}
 819EXPORT_SYMBOL_GPL(dpm_suspend_noirq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 820
 821/**
 822 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
 823 * @dev: Device to suspend.
 824 * @state: PM transition of the system being carried out.
 825 * @cb: Suspend callback to execute.
 
 826 */
 827static int legacy_suspend(struct device *dev, pm_message_t state,
 828			  int (*cb)(struct device *dev, pm_message_t state))
 
 829{
 830	int error;
 831	ktime_t calltime;
 832
 833	calltime = initcall_debug_start(dev);
 834
 
 835	error = cb(dev, state);
 
 836	suspend_report_result(cb, error);
 837
 838	initcall_debug_report(dev, calltime, error);
 839
 840	return error;
 841}
 842
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 843/**
 844 * device_suspend - Execute "suspend" callbacks for given device.
 845 * @dev: Device to handle.
 846 * @state: PM transition of the system being carried out.
 847 * @async: If true, the device is being suspended asynchronously.
 848 */
 849static int __device_suspend(struct device *dev, pm_message_t state, bool async)
 850{
 
 
 851	int error = 0;
 
 852
 853	dpm_wait_for_children(dev, async);
 
 
 
 854
 855	if (async_error)
 856		return 0;
 857
 858	pm_runtime_get_noresume(dev);
 
 
 
 
 
 859	if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
 860		pm_wakeup_event(dev, 0);
 861
 862	if (pm_wakeup_pending()) {
 863		pm_runtime_put_sync(dev);
 864		async_error = -EBUSY;
 865		return 0;
 866	}
 867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 868	device_lock(dev);
 869
 870	if (dev->pm_domain) {
 871		pm_dev_dbg(dev, state, "power domain ");
 872		error = pm_op(dev, &dev->pm_domain->ops, state);
 873		goto End;
 874	}
 875
 876	if (dev->type && dev->type->pm) {
 877		pm_dev_dbg(dev, state, "type ");
 878		error = pm_op(dev, dev->type->pm, state);
 879		goto End;
 880	}
 881
 882	if (dev->class) {
 883		if (dev->class->pm) {
 884			pm_dev_dbg(dev, state, "class ");
 885			error = pm_op(dev, dev->class->pm, state);
 886			goto End;
 887		} else if (dev->class->suspend) {
 888			pm_dev_dbg(dev, state, "legacy class ");
 889			error = legacy_suspend(dev, state, dev->class->suspend);
 890			goto End;
 891		}
 892	}
 893
 894	if (dev->bus) {
 895		if (dev->bus->pm) {
 896			pm_dev_dbg(dev, state, "");
 897			error = pm_op(dev, dev->bus->pm, state);
 898		} else if (dev->bus->suspend) {
 899			pm_dev_dbg(dev, state, "legacy ");
 900			error = legacy_suspend(dev, state, dev->bus->suspend);
 
 
 901		}
 902	}
 903
 
 
 
 
 
 
 
 
 904 End:
 905	dev->power.is_suspended = !error;
 
 
 
 
 
 
 
 906
 907	device_unlock(dev);
 908	complete_all(&dev->power.completion);
 909
 910	if (error) {
 911		pm_runtime_put_sync(dev);
 912		async_error = error;
 913	} else if (dev->power.is_suspended) {
 914		__pm_runtime_disable(dev, false);
 915	}
 916
 
 
 917	return error;
 918}
 919
 920static void async_suspend(void *data, async_cookie_t cookie)
 921{
 922	struct device *dev = (struct device *)data;
 923	int error;
 924
 925	error = __device_suspend(dev, pm_transition, true);
 926	if (error)
 
 927		pm_dev_err(dev, pm_transition, " async", error);
 
 928
 929	put_device(dev);
 930}
 931
 932static int device_suspend(struct device *dev)
 933{
 934	INIT_COMPLETION(dev->power.completion);
 935
 936	if (pm_async_enabled && dev->power.async_suspend) {
 937		get_device(dev);
 938		async_schedule(async_suspend, dev);
 939		return 0;
 940	}
 941
 942	return __device_suspend(dev, pm_transition, false);
 943}
 944
 945/**
 946 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
 947 * @state: PM transition of the system being carried out.
 948 */
 949int dpm_suspend(pm_message_t state)
 950{
 951	ktime_t starttime = ktime_get();
 952	int error = 0;
 953
 
 954	might_sleep();
 955
 
 
 956	mutex_lock(&dpm_list_mtx);
 957	pm_transition = state;
 958	async_error = 0;
 959	while (!list_empty(&dpm_prepared_list)) {
 960		struct device *dev = to_device(dpm_prepared_list.prev);
 961
 962		get_device(dev);
 963		mutex_unlock(&dpm_list_mtx);
 964
 965		error = device_suspend(dev);
 966
 967		mutex_lock(&dpm_list_mtx);
 968		if (error) {
 969			pm_dev_err(dev, state, "", error);
 
 970			put_device(dev);
 971			break;
 972		}
 973		if (!list_empty(&dev->power.entry))
 974			list_move(&dev->power.entry, &dpm_suspended_list);
 975		put_device(dev);
 976		if (async_error)
 977			break;
 978	}
 979	mutex_unlock(&dpm_list_mtx);
 980	async_synchronize_full();
 981	if (!error)
 982		error = async_error;
 983	if (!error)
 984		dpm_show_time(starttime, state, NULL);
 
 
 
 
 985	return error;
 986}
 987
 988/**
 989 * device_prepare - Prepare a device for system power transition.
 990 * @dev: Device to handle.
 991 * @state: PM transition of the system being carried out.
 992 *
 993 * Execute the ->prepare() callback(s) for given device.  No new children of the
 994 * device may be registered after this function has returned.
 995 */
 996static int device_prepare(struct device *dev, pm_message_t state)
 997{
 998	int error = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 999
1000	device_lock(dev);
1001
1002	if (dev->pm_domain) {
1003		pm_dev_dbg(dev, state, "preparing power domain ");
1004		if (dev->pm_domain->ops.prepare)
1005			error = dev->pm_domain->ops.prepare(dev);
1006		suspend_report_result(dev->pm_domain->ops.prepare, error);
1007		if (error)
1008			goto End;
1009	} else if (dev->type && dev->type->pm) {
1010		pm_dev_dbg(dev, state, "preparing type ");
1011		if (dev->type->pm->prepare)
1012			error = dev->type->pm->prepare(dev);
1013		suspend_report_result(dev->type->pm->prepare, error);
1014		if (error)
1015			goto End;
1016	} else if (dev->class && dev->class->pm) {
1017		pm_dev_dbg(dev, state, "preparing class ");
1018		if (dev->class->pm->prepare)
1019			error = dev->class->pm->prepare(dev);
1020		suspend_report_result(dev->class->pm->prepare, error);
1021		if (error)
1022			goto End;
1023	} else if (dev->bus && dev->bus->pm) {
1024		pm_dev_dbg(dev, state, "preparing ");
1025		if (dev->bus->pm->prepare)
1026			error = dev->bus->pm->prepare(dev);
1027		suspend_report_result(dev->bus->pm->prepare, error);
1028	}
1029
1030 End:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1031	device_unlock(dev);
1032
1033	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1034}
1035
1036/**
1037 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1038 * @state: PM transition of the system being carried out.
1039 *
1040 * Execute the ->prepare() callback(s) for all devices.
1041 */
1042int dpm_prepare(pm_message_t state)
1043{
1044	int error = 0;
1045
 
1046	might_sleep();
1047
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1048	mutex_lock(&dpm_list_mtx);
1049	while (!list_empty(&dpm_list)) {
1050		struct device *dev = to_device(dpm_list.next);
1051
1052		get_device(dev);
1053		mutex_unlock(&dpm_list_mtx);
1054
 
1055		error = device_prepare(dev, state);
 
1056
1057		mutex_lock(&dpm_list_mtx);
1058		if (error) {
1059			if (error == -EAGAIN) {
1060				put_device(dev);
1061				error = 0;
1062				continue;
1063			}
1064			printk(KERN_INFO "PM: Device %s not prepared "
1065				"for power transition: code %d\n",
1066				dev_name(dev), error);
1067			put_device(dev);
1068			break;
1069		}
1070		dev->power.is_prepared = true;
1071		if (!list_empty(&dev->power.entry))
1072			list_move_tail(&dev->power.entry, &dpm_prepared_list);
1073		put_device(dev);
1074	}
1075	mutex_unlock(&dpm_list_mtx);
 
1076	return error;
1077}
1078
1079/**
1080 * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1081 * @state: PM transition of the system being carried out.
1082 *
1083 * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1084 * callbacks for them.
1085 */
1086int dpm_suspend_start(pm_message_t state)
1087{
1088	int error;
1089
1090	error = dpm_prepare(state);
1091	if (!error)
 
 
 
1092		error = dpm_suspend(state);
1093	return error;
1094}
1095EXPORT_SYMBOL_GPL(dpm_suspend_start);
1096
1097void __suspend_report_result(const char *function, void *fn, int ret)
1098{
1099	if (ret)
1100		printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
1101}
1102EXPORT_SYMBOL_GPL(__suspend_report_result);
1103
1104/**
1105 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1106 * @dev: Device to wait for.
1107 * @subordinate: Device that needs to wait for @dev.
1108 */
1109int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1110{
1111	dpm_wait(dev, subordinate->power.async_suspend);
1112	return async_error;
1113}
1114EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
v4.17
   1/*
   2 * drivers/base/power/main.c - Where the driver meets power management.
   3 *
   4 * Copyright (c) 2003 Patrick Mochel
   5 * Copyright (c) 2003 Open Source Development Lab
   6 *
   7 * This file is released under the GPLv2
   8 *
   9 *
  10 * The driver model core calls device_pm_add() when a device is registered.
  11 * This will initialize the embedded device_pm_info object in the device
  12 * and add it to the list of power-controlled devices. sysfs entries for
  13 * controlling device power management will also be added.
  14 *
  15 * A separate list is used for keeping track of power info, because the power
  16 * domain dependencies may differ from the ancestral dependencies that the
  17 * subsystem list maintains.
  18 */
  19
  20#include <linux/device.h>
  21#include <linux/export.h>
  22#include <linux/mutex.h>
  23#include <linux/pm.h>
  24#include <linux/pm_runtime.h>
  25#include <linux/pm-trace.h>
  26#include <linux/pm_wakeirq.h>
  27#include <linux/interrupt.h>
  28#include <linux/sched.h>
  29#include <linux/sched/debug.h>
  30#include <linux/async.h>
  31#include <linux/suspend.h>
  32#include <trace/events/power.h>
  33#include <linux/cpufreq.h>
  34#include <linux/cpuidle.h>
  35#include <linux/timer.h>
  36
  37#include "../base.h"
  38#include "power.h"
  39
  40typedef int (*pm_callback_t)(struct device *);
  41
  42/*
  43 * The entries in the dpm_list list are in a depth first order, simply
  44 * because children are guaranteed to be discovered after parents, and
  45 * are inserted at the back of the list on discovery.
  46 *
  47 * Since device_pm_add() may be called with a device lock held,
  48 * we must never try to acquire a device lock while holding
  49 * dpm_list_mutex.
  50 */
  51
  52LIST_HEAD(dpm_list);
  53static LIST_HEAD(dpm_prepared_list);
  54static LIST_HEAD(dpm_suspended_list);
  55static LIST_HEAD(dpm_late_early_list);
  56static LIST_HEAD(dpm_noirq_list);
  57
  58struct suspend_stats suspend_stats;
  59static DEFINE_MUTEX(dpm_list_mtx);
  60static pm_message_t pm_transition;
  61
  62static int async_error;
  63
  64static const char *pm_verb(int event)
  65{
  66	switch (event) {
  67	case PM_EVENT_SUSPEND:
  68		return "suspend";
  69	case PM_EVENT_RESUME:
  70		return "resume";
  71	case PM_EVENT_FREEZE:
  72		return "freeze";
  73	case PM_EVENT_QUIESCE:
  74		return "quiesce";
  75	case PM_EVENT_HIBERNATE:
  76		return "hibernate";
  77	case PM_EVENT_THAW:
  78		return "thaw";
  79	case PM_EVENT_RESTORE:
  80		return "restore";
  81	case PM_EVENT_RECOVER:
  82		return "recover";
  83	default:
  84		return "(unknown PM event)";
  85	}
  86}
  87
  88/**
  89 * device_pm_sleep_init - Initialize system suspend-related device fields.
  90 * @dev: Device object being initialized.
  91 */
  92void device_pm_sleep_init(struct device *dev)
  93{
  94	dev->power.is_prepared = false;
  95	dev->power.is_suspended = false;
  96	dev->power.is_noirq_suspended = false;
  97	dev->power.is_late_suspended = false;
  98	init_completion(&dev->power.completion);
  99	complete_all(&dev->power.completion);
 100	dev->power.wakeup = NULL;
 
 
 101	INIT_LIST_HEAD(&dev->power.entry);
 102}
 103
 104/**
 105 * device_pm_lock - Lock the list of active devices used by the PM core.
 106 */
 107void device_pm_lock(void)
 108{
 109	mutex_lock(&dpm_list_mtx);
 110}
 111
 112/**
 113 * device_pm_unlock - Unlock the list of active devices used by the PM core.
 114 */
 115void device_pm_unlock(void)
 116{
 117	mutex_unlock(&dpm_list_mtx);
 118}
 119
 120/**
 121 * device_pm_add - Add a device to the PM core's list of active devices.
 122 * @dev: Device to add to the list.
 123 */
 124void device_pm_add(struct device *dev)
 125{
 126	pr_debug("PM: Adding info for %s:%s\n",
 127		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
 128	device_pm_check_callbacks(dev);
 129	mutex_lock(&dpm_list_mtx);
 130	if (dev->parent && dev->parent->power.is_prepared)
 131		dev_warn(dev, "parent %s should not be sleeping\n",
 132			dev_name(dev->parent));
 133	list_add_tail(&dev->power.entry, &dpm_list);
 134	dev->power.in_dpm_list = true;
 135	mutex_unlock(&dpm_list_mtx);
 136}
 137
 138/**
 139 * device_pm_remove - Remove a device from the PM core's list of active devices.
 140 * @dev: Device to be removed from the list.
 141 */
 142void device_pm_remove(struct device *dev)
 143{
 144	pr_debug("PM: Removing info for %s:%s\n",
 145		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
 146	complete_all(&dev->power.completion);
 147	mutex_lock(&dpm_list_mtx);
 148	list_del_init(&dev->power.entry);
 149	dev->power.in_dpm_list = false;
 150	mutex_unlock(&dpm_list_mtx);
 151	device_wakeup_disable(dev);
 152	pm_runtime_remove(dev);
 153	device_pm_check_callbacks(dev);
 154}
 155
 156/**
 157 * device_pm_move_before - Move device in the PM core's list of active devices.
 158 * @deva: Device to move in dpm_list.
 159 * @devb: Device @deva should come before.
 160 */
 161void device_pm_move_before(struct device *deva, struct device *devb)
 162{
 163	pr_debug("PM: Moving %s:%s before %s:%s\n",
 164		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
 165		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
 166	/* Delete deva from dpm_list and reinsert before devb. */
 167	list_move_tail(&deva->power.entry, &devb->power.entry);
 168}
 169
 170/**
 171 * device_pm_move_after - Move device in the PM core's list of active devices.
 172 * @deva: Device to move in dpm_list.
 173 * @devb: Device @deva should come after.
 174 */
 175void device_pm_move_after(struct device *deva, struct device *devb)
 176{
 177	pr_debug("PM: Moving %s:%s after %s:%s\n",
 178		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
 179		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
 180	/* Delete deva from dpm_list and reinsert after devb. */
 181	list_move(&deva->power.entry, &devb->power.entry);
 182}
 183
 184/**
 185 * device_pm_move_last - Move device to end of the PM core's list of devices.
 186 * @dev: Device to move in dpm_list.
 187 */
 188void device_pm_move_last(struct device *dev)
 189{
 190	pr_debug("PM: Moving %s:%s to end of list\n",
 191		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
 192	list_move_tail(&dev->power.entry, &dpm_list);
 193}
 194
 195static ktime_t initcall_debug_start(struct device *dev)
 196{
 197	ktime_t calltime = 0;
 198
 199	if (pm_print_times_enabled) {
 200		pr_info("calling  %s+ @ %i, parent: %s\n",
 201			dev_name(dev), task_pid_nr(current),
 202			dev->parent ? dev_name(dev->parent) : "none");
 203		calltime = ktime_get();
 204	}
 205
 206	return calltime;
 207}
 208
 209static void initcall_debug_report(struct device *dev, ktime_t calltime,
 210				  int error, pm_message_t state,
 211				  const char *info)
 212{
 213	ktime_t rettime;
 214	s64 nsecs;
 215
 216	rettime = ktime_get();
 217	nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
 218
 219	if (pm_print_times_enabled) {
 220		pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
 221			error, (unsigned long long)nsecs >> 10);
 222	}
 223}
 224
 225/**
 226 * dpm_wait - Wait for a PM operation to complete.
 227 * @dev: Device to wait for.
 228 * @async: If unset, wait only if the device's power.async_suspend flag is set.
 229 */
 230static void dpm_wait(struct device *dev, bool async)
 231{
 232	if (!dev)
 233		return;
 234
 235	if (async || (pm_async_enabled && dev->power.async_suspend))
 236		wait_for_completion(&dev->power.completion);
 237}
 238
 239static int dpm_wait_fn(struct device *dev, void *async_ptr)
 240{
 241	dpm_wait(dev, *((bool *)async_ptr));
 242	return 0;
 243}
 244
 245static void dpm_wait_for_children(struct device *dev, bool async)
 246{
 247       device_for_each_child(dev, &async, dpm_wait_fn);
 248}
 249
 250static void dpm_wait_for_suppliers(struct device *dev, bool async)
 251{
 252	struct device_link *link;
 253	int idx;
 254
 255	idx = device_links_read_lock();
 256
 257	/*
 258	 * If the supplier goes away right after we've checked the link to it,
 259	 * we'll wait for its completion to change the state, but that's fine,
 260	 * because the only things that will block as a result are the SRCU
 261	 * callbacks freeing the link objects for the links in the list we're
 262	 * walking.
 263	 */
 264	list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
 265		if (READ_ONCE(link->status) != DL_STATE_DORMANT)
 266			dpm_wait(link->supplier, async);
 267
 268	device_links_read_unlock(idx);
 269}
 270
 271static void dpm_wait_for_superior(struct device *dev, bool async)
 272{
 273	dpm_wait(dev->parent, async);
 274	dpm_wait_for_suppliers(dev, async);
 275}
 276
 277static void dpm_wait_for_consumers(struct device *dev, bool async)
 278{
 279	struct device_link *link;
 280	int idx;
 281
 282	idx = device_links_read_lock();
 283
 284	/*
 285	 * The status of a device link can only be changed from "dormant" by a
 286	 * probe, but that cannot happen during system suspend/resume.  In
 287	 * theory it can change to "dormant" at that time, but then it is
 288	 * reasonable to wait for the target device anyway (eg. if it goes
 289	 * away, it's better to wait for it to go away completely and then
 290	 * continue instead of trying to continue in parallel with its
 291	 * unregistration).
 292	 */
 293	list_for_each_entry_rcu(link, &dev->links.consumers, s_node)
 294		if (READ_ONCE(link->status) != DL_STATE_DORMANT)
 295			dpm_wait(link->consumer, async);
 296
 297	device_links_read_unlock(idx);
 298}
 299
 300static void dpm_wait_for_subordinate(struct device *dev, bool async)
 301{
 302	dpm_wait_for_children(dev, async);
 303	dpm_wait_for_consumers(dev, async);
 304}
 305
 306/**
 307 * pm_op - Return the PM operation appropriate for given PM event.
 
 308 * @ops: PM operations to choose from.
 309 * @state: PM transition of the system being carried out.
 310 */
 311static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
 
 
 312{
 
 
 
 
 
 313	switch (state.event) {
 314#ifdef CONFIG_SUSPEND
 315	case PM_EVENT_SUSPEND:
 316		return ops->suspend;
 
 
 
 
 317	case PM_EVENT_RESUME:
 318		return ops->resume;
 
 
 
 
 319#endif /* CONFIG_SUSPEND */
 320#ifdef CONFIG_HIBERNATE_CALLBACKS
 321	case PM_EVENT_FREEZE:
 322	case PM_EVENT_QUIESCE:
 323		return ops->freeze;
 
 
 
 
 324	case PM_EVENT_HIBERNATE:
 325		return ops->poweroff;
 
 
 
 
 326	case PM_EVENT_THAW:
 327	case PM_EVENT_RECOVER:
 328		return ops->thaw;
 
 
 
 329		break;
 330	case PM_EVENT_RESTORE:
 331		return ops->restore;
 
 
 
 
 332#endif /* CONFIG_HIBERNATE_CALLBACKS */
 
 
 333	}
 334
 335	return NULL;
 
 
 336}
 337
 338/**
 339 * pm_late_early_op - Return the PM operation appropriate for given PM event.
 
 340 * @ops: PM operations to choose from.
 341 * @state: PM transition of the system being carried out.
 342 *
 343 * Runtime PM is disabled for @dev while this function is being executed.
 
 344 */
 345static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
 346				      pm_message_t state)
 
 347{
 
 
 
 
 
 
 
 
 
 
 348	switch (state.event) {
 349#ifdef CONFIG_SUSPEND
 350	case PM_EVENT_SUSPEND:
 351		return ops->suspend_late;
 
 
 
 
 352	case PM_EVENT_RESUME:
 353		return ops->resume_early;
 
 
 
 
 354#endif /* CONFIG_SUSPEND */
 355#ifdef CONFIG_HIBERNATE_CALLBACKS
 356	case PM_EVENT_FREEZE:
 357	case PM_EVENT_QUIESCE:
 358		return ops->freeze_late;
 
 
 
 
 359	case PM_EVENT_HIBERNATE:
 360		return ops->poweroff_late;
 
 
 
 
 361	case PM_EVENT_THAW:
 362	case PM_EVENT_RECOVER:
 363		return ops->thaw_early;
 
 
 
 
 364	case PM_EVENT_RESTORE:
 365		return ops->restore_early;
 
 
 
 
 366#endif /* CONFIG_HIBERNATE_CALLBACKS */
 
 
 
 
 
 
 
 
 
 
 367	}
 368
 369	return NULL;
 370}
 371
 372/**
 373 * pm_noirq_op - Return the PM operation appropriate for given PM event.
 374 * @ops: PM operations to choose from.
 375 * @state: PM transition of the system being carried out.
 376 *
 377 * The driver of @dev will not receive interrupts while this function is being
 378 * executed.
 379 */
 380static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
 381{
 382	switch (state.event) {
 383#ifdef CONFIG_SUSPEND
 384	case PM_EVENT_SUSPEND:
 385		return ops->suspend_noirq;
 386	case PM_EVENT_RESUME:
 387		return ops->resume_noirq;
 388#endif /* CONFIG_SUSPEND */
 389#ifdef CONFIG_HIBERNATE_CALLBACKS
 390	case PM_EVENT_FREEZE:
 
 391	case PM_EVENT_QUIESCE:
 392		return ops->freeze_noirq;
 393	case PM_EVENT_HIBERNATE:
 394		return ops->poweroff_noirq;
 395	case PM_EVENT_THAW:
 
 
 
 396	case PM_EVENT_RECOVER:
 397		return ops->thaw_noirq;
 398	case PM_EVENT_RESTORE:
 399		return ops->restore_noirq;
 400#endif /* CONFIG_HIBERNATE_CALLBACKS */
 401	}
 402
 403	return NULL;
 404}
 405
 406static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info)
 407{
 408	dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
 409		((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
 410		", may wakeup" : "");
 411}
 412
 413static void pm_dev_err(struct device *dev, pm_message_t state, const char *info,
 414			int error)
 415{
 416	printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
 417		dev_name(dev), pm_verb(state.event), info, error);
 418}
 419
 420static void dpm_show_time(ktime_t starttime, pm_message_t state, int error,
 421			  const char *info)
 422{
 423	ktime_t calltime;
 424	u64 usecs64;
 425	int usecs;
 426
 427	calltime = ktime_get();
 428	usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
 429	do_div(usecs64, NSEC_PER_USEC);
 430	usecs = usecs64;
 431	if (usecs == 0)
 432		usecs = 1;
 433
 434	pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n",
 435		  info ?: "", info ? " " : "", pm_verb(state.event),
 436		  error ? "aborted" : "complete",
 437		  usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
 438}
 439
 440static int dpm_run_callback(pm_callback_t cb, struct device *dev,
 441			    pm_message_t state, const char *info)
 442{
 443	ktime_t calltime;
 444	int error;
 445
 446	if (!cb)
 447		return 0;
 448
 449	calltime = initcall_debug_start(dev);
 450
 451	pm_dev_dbg(dev, state, info);
 452	trace_device_pm_callback_start(dev, info, state.event);
 453	error = cb(dev);
 454	trace_device_pm_callback_end(dev, error);
 455	suspend_report_result(cb, error);
 456
 457	initcall_debug_report(dev, calltime, error, state, info);
 458
 459	return error;
 460}
 461
 462#ifdef CONFIG_DPM_WATCHDOG
 463struct dpm_watchdog {
 464	struct device		*dev;
 465	struct task_struct	*tsk;
 466	struct timer_list	timer;
 467};
 468
 469#define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
 470	struct dpm_watchdog wd
 471
 472/**
 473 * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
 474 * @data: Watchdog object address.
 475 *
 476 * Called when a driver has timed out suspending or resuming.
 477 * There's not much we can do here to recover so panic() to
 478 * capture a crash-dump in pstore.
 479 */
 480static void dpm_watchdog_handler(struct timer_list *t)
 481{
 482	struct dpm_watchdog *wd = from_timer(wd, t, timer);
 483
 484	dev_emerg(wd->dev, "**** DPM device timeout ****\n");
 485	show_stack(wd->tsk, NULL);
 486	panic("%s %s: unrecoverable failure\n",
 487		dev_driver_string(wd->dev), dev_name(wd->dev));
 488}
 489
 490/**
 491 * dpm_watchdog_set - Enable pm watchdog for given device.
 492 * @wd: Watchdog. Must be allocated on the stack.
 493 * @dev: Device to handle.
 494 */
 495static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
 496{
 497	struct timer_list *timer = &wd->timer;
 498
 499	wd->dev = dev;
 500	wd->tsk = current;
 501
 502	timer_setup_on_stack(timer, dpm_watchdog_handler, 0);
 503	/* use same timeout value for both suspend and resume */
 504	timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
 505	add_timer(timer);
 506}
 507
 508/**
 509 * dpm_watchdog_clear - Disable suspend/resume watchdog.
 510 * @wd: Watchdog to disable.
 511 */
 512static void dpm_watchdog_clear(struct dpm_watchdog *wd)
 513{
 514	struct timer_list *timer = &wd->timer;
 515
 516	del_timer_sync(timer);
 517	destroy_timer_on_stack(timer);
 518}
 519#else
 520#define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
 521#define dpm_watchdog_set(x, y)
 522#define dpm_watchdog_clear(x)
 523#endif
 524
 525/*------------------------- Resume routines -------------------------*/
 526
 527/**
 528 * dev_pm_skip_next_resume_phases - Skip next system resume phases for device.
 529 * @dev: Target device.
 530 *
 531 * Make the core skip the "early resume" and "resume" phases for @dev.
 532 *
 533 * This function can be called by middle-layer code during the "noirq" phase of
 534 * system resume if necessary, but not by device drivers.
 535 */
 536void dev_pm_skip_next_resume_phases(struct device *dev)
 537{
 538	dev->power.is_late_suspended = false;
 539	dev->power.is_suspended = false;
 540}
 541
 542/**
 543 * suspend_event - Return a "suspend" message for given "resume" one.
 544 * @resume_msg: PM message representing a system-wide resume transition.
 545 */
 546static pm_message_t suspend_event(pm_message_t resume_msg)
 547{
 548	switch (resume_msg.event) {
 549	case PM_EVENT_RESUME:
 550		return PMSG_SUSPEND;
 551	case PM_EVENT_THAW:
 552	case PM_EVENT_RESTORE:
 553		return PMSG_FREEZE;
 554	case PM_EVENT_RECOVER:
 555		return PMSG_HIBERNATE;
 556	}
 557	return PMSG_ON;
 558}
 559
 560/**
 561 * dev_pm_may_skip_resume - System-wide device resume optimization check.
 562 * @dev: Target device.
 563 *
 564 * Checks whether or not the device may be left in suspend after a system-wide
 565 * transition to the working state.
 566 */
 567bool dev_pm_may_skip_resume(struct device *dev)
 568{
 569	return !dev->power.must_resume && pm_transition.event != PM_EVENT_RESTORE;
 570}
 571
 572static pm_callback_t dpm_subsys_resume_noirq_cb(struct device *dev,
 573						pm_message_t state,
 574						const char **info_p)
 575{
 576	pm_callback_t callback;
 577	const char *info;
 578
 579	if (dev->pm_domain) {
 580		info = "noirq power domain ";
 581		callback = pm_noirq_op(&dev->pm_domain->ops, state);
 582	} else if (dev->type && dev->type->pm) {
 583		info = "noirq type ";
 584		callback = pm_noirq_op(dev->type->pm, state);
 585	} else if (dev->class && dev->class->pm) {
 586		info = "noirq class ";
 587		callback = pm_noirq_op(dev->class->pm, state);
 588	} else if (dev->bus && dev->bus->pm) {
 589		info = "noirq bus ";
 590		callback = pm_noirq_op(dev->bus->pm, state);
 591	} else {
 592		return NULL;
 593	}
 594
 595	if (info_p)
 596		*info_p = info;
 597
 598	return callback;
 599}
 600
 601static pm_callback_t dpm_subsys_suspend_noirq_cb(struct device *dev,
 602						 pm_message_t state,
 603						 const char **info_p);
 604
 605static pm_callback_t dpm_subsys_suspend_late_cb(struct device *dev,
 606						pm_message_t state,
 607						const char **info_p);
 608
 609/**
 610 * device_resume_noirq - Execute a "noirq resume" callback for given device.
 611 * @dev: Device to handle.
 612 * @state: PM transition of the system being carried out.
 613 * @async: If true, the device is being resumed asynchronously.
 614 *
 615 * The driver of @dev will not receive interrupts while this function is being
 616 * executed.
 617 */
 618static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
 619{
 620	pm_callback_t callback;
 621	const char *info;
 622	bool skip_resume;
 623	int error = 0;
 624
 625	TRACE_DEVICE(dev);
 626	TRACE_RESUME(0);
 627
 628	if (dev->power.syscore || dev->power.direct_complete)
 629		goto Out;
 630
 631	if (!dev->power.is_noirq_suspended)
 632		goto Out;
 633
 634	dpm_wait_for_superior(dev, async);
 635
 636	skip_resume = dev_pm_may_skip_resume(dev);
 637
 638	callback = dpm_subsys_resume_noirq_cb(dev, state, &info);
 639	if (callback)
 640		goto Run;
 641
 642	if (skip_resume)
 643		goto Skip;
 644
 645	if (dev_pm_smart_suspend_and_suspended(dev)) {
 646		pm_message_t suspend_msg = suspend_event(state);
 647
 648		/*
 649		 * If "freeze" callbacks have been skipped during a transition
 650		 * related to hibernation, the subsequent "thaw" callbacks must
 651		 * be skipped too or bad things may happen.  Otherwise, resume
 652		 * callbacks are going to be run for the device, so its runtime
 653		 * PM status must be changed to reflect the new state after the
 654		 * transition under way.
 655		 */
 656		if (!dpm_subsys_suspend_late_cb(dev, suspend_msg, NULL) &&
 657		    !dpm_subsys_suspend_noirq_cb(dev, suspend_msg, NULL)) {
 658			if (state.event == PM_EVENT_THAW) {
 659				skip_resume = true;
 660				goto Skip;
 661			} else {
 662				pm_runtime_set_active(dev);
 663			}
 664		}
 665	}
 666
 667	if (dev->driver && dev->driver->pm) {
 668		info = "noirq driver ";
 669		callback = pm_noirq_op(dev->driver->pm, state);
 670	}
 671
 672Run:
 673	error = dpm_run_callback(callback, dev, state, info);
 674
 675Skip:
 676	dev->power.is_noirq_suspended = false;
 677
 678	if (skip_resume) {
 679		/*
 680		 * The device is going to be left in suspend, but it might not
 681		 * have been in runtime suspend before the system suspended, so
 682		 * its runtime PM status needs to be updated to avoid confusing
 683		 * the runtime PM framework when runtime PM is enabled for the
 684		 * device again.
 685		 */
 686		pm_runtime_set_suspended(dev);
 687		dev_pm_skip_next_resume_phases(dev);
 688	}
 689
 690Out:
 691	complete_all(&dev->power.completion);
 692	TRACE_RESUME(error);
 693	return error;
 694}
 695
 696static bool is_async(struct device *dev)
 697{
 698	return dev->power.async_suspend && pm_async_enabled
 699		&& !pm_trace_is_enabled();
 700}
 701
 702static void async_resume_noirq(void *data, async_cookie_t cookie)
 703{
 704	struct device *dev = (struct device *)data;
 705	int error;
 706
 707	error = device_resume_noirq(dev, pm_transition, true);
 708	if (error)
 709		pm_dev_err(dev, pm_transition, " async", error);
 710
 711	put_device(dev);
 712}
 713
 714void dpm_noirq_resume_devices(pm_message_t state)
 715{
 716	struct device *dev;
 717	ktime_t starttime = ktime_get();
 718
 719	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
 720	mutex_lock(&dpm_list_mtx);
 721	pm_transition = state;
 722
 723	/*
 724	 * Advanced the async threads upfront,
 725	 * in case the starting of async threads is
 726	 * delayed by non-async resuming devices.
 727	 */
 728	list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
 729		reinit_completion(&dev->power.completion);
 730		if (is_async(dev)) {
 731			get_device(dev);
 732			async_schedule(async_resume_noirq, dev);
 733		}
 734	}
 735
 736	while (!list_empty(&dpm_noirq_list)) {
 737		dev = to_device(dpm_noirq_list.next);
 738		get_device(dev);
 739		list_move_tail(&dev->power.entry, &dpm_late_early_list);
 740		mutex_unlock(&dpm_list_mtx);
 741
 742		if (!is_async(dev)) {
 743			int error;
 744
 745			error = device_resume_noirq(dev, state, false);
 746			if (error) {
 747				suspend_stats.failed_resume_noirq++;
 748				dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
 749				dpm_save_failed_dev(dev_name(dev));
 750				pm_dev_err(dev, state, " noirq", error);
 751			}
 752		}
 753
 754		mutex_lock(&dpm_list_mtx);
 755		put_device(dev);
 756	}
 757	mutex_unlock(&dpm_list_mtx);
 758	async_synchronize_full();
 759	dpm_show_time(starttime, state, 0, "noirq");
 760	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
 761}
 762
 763void dpm_noirq_end(void)
 764{
 765	resume_device_irqs();
 766	device_wakeup_disarm_wake_irqs();
 767	cpuidle_resume();
 768}
 769
 770/**
 771 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
 772 * @state: PM transition of the system being carried out.
 773 *
 774 * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and
 775 * allow device drivers' interrupt handlers to be called.
 776 */
 777void dpm_resume_noirq(pm_message_t state)
 778{
 779	dpm_noirq_resume_devices(state);
 780	dpm_noirq_end();
 781}
 782
 783static pm_callback_t dpm_subsys_resume_early_cb(struct device *dev,
 784						pm_message_t state,
 785						const char **info_p)
 786{
 787	pm_callback_t callback;
 788	const char *info;
 789
 790	if (dev->pm_domain) {
 791		info = "early power domain ";
 792		callback = pm_late_early_op(&dev->pm_domain->ops, state);
 793	} else if (dev->type && dev->type->pm) {
 794		info = "early type ";
 795		callback = pm_late_early_op(dev->type->pm, state);
 796	} else if (dev->class && dev->class->pm) {
 797		info = "early class ";
 798		callback = pm_late_early_op(dev->class->pm, state);
 799	} else if (dev->bus && dev->bus->pm) {
 800		info = "early bus ";
 801		callback = pm_late_early_op(dev->bus->pm, state);
 802	} else {
 803		return NULL;
 804	}
 805
 806	if (info_p)
 807		*info_p = info;
 808
 809	return callback;
 810}
 811
 812/**
 813 * device_resume_early - Execute an "early resume" callback for given device.
 814 * @dev: Device to handle.
 815 * @state: PM transition of the system being carried out.
 816 * @async: If true, the device is being resumed asynchronously.
 817 *
 818 * Runtime PM is disabled for @dev while this function is being executed.
 819 */
 820static int device_resume_early(struct device *dev, pm_message_t state, bool async)
 821{
 822	pm_callback_t callback;
 823	const char *info;
 824	int error = 0;
 825
 826	TRACE_DEVICE(dev);
 827	TRACE_RESUME(0);
 828
 829	if (dev->power.syscore || dev->power.direct_complete)
 830		goto Out;
 831
 832	if (!dev->power.is_late_suspended)
 833		goto Out;
 834
 835	dpm_wait_for_superior(dev, async);
 836
 837	callback = dpm_subsys_resume_early_cb(dev, state, &info);
 838
 839	if (!callback && dev->driver && dev->driver->pm) {
 840		info = "early driver ";
 841		callback = pm_late_early_op(dev->driver->pm, state);
 842	}
 843
 844	error = dpm_run_callback(callback, dev, state, info);
 845	dev->power.is_late_suspended = false;
 846
 847 Out:
 848	TRACE_RESUME(error);
 849
 850	pm_runtime_enable(dev);
 851	complete_all(&dev->power.completion);
 852	return error;
 853}
 854
 855static void async_resume_early(void *data, async_cookie_t cookie)
 856{
 857	struct device *dev = (struct device *)data;
 858	int error;
 859
 860	error = device_resume_early(dev, pm_transition, true);
 861	if (error)
 862		pm_dev_err(dev, pm_transition, " async", error);
 863
 864	put_device(dev);
 865}
 866
 867/**
 868 * dpm_resume_early - Execute "early resume" callbacks for all devices.
 869 * @state: PM transition of the system being carried out.
 
 
 
 870 */
 871void dpm_resume_early(pm_message_t state)
 872{
 873	struct device *dev;
 874	ktime_t starttime = ktime_get();
 875
 876	trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
 877	mutex_lock(&dpm_list_mtx);
 878	pm_transition = state;
 879
 880	/*
 881	 * Advanced the async threads upfront,
 882	 * in case the starting of async threads is
 883	 * delayed by non-async resuming devices.
 884	 */
 885	list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
 886		reinit_completion(&dev->power.completion);
 887		if (is_async(dev)) {
 888			get_device(dev);
 889			async_schedule(async_resume_early, dev);
 890		}
 891	}
 892
 893	while (!list_empty(&dpm_late_early_list)) {
 894		dev = to_device(dpm_late_early_list.next);
 895		get_device(dev);
 896		list_move_tail(&dev->power.entry, &dpm_suspended_list);
 897		mutex_unlock(&dpm_list_mtx);
 898
 899		if (!is_async(dev)) {
 900			int error;
 
 901
 902			error = device_resume_early(dev, state, false);
 903			if (error) {
 904				suspend_stats.failed_resume_early++;
 905				dpm_save_failed_step(SUSPEND_RESUME_EARLY);
 906				dpm_save_failed_dev(dev_name(dev));
 907				pm_dev_err(dev, state, " early", error);
 908			}
 909		}
 910		mutex_lock(&dpm_list_mtx);
 911		put_device(dev);
 912	}
 913	mutex_unlock(&dpm_list_mtx);
 914	async_synchronize_full();
 915	dpm_show_time(starttime, state, 0, "early");
 916	trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
 917}
 
 918
 919/**
 920 * dpm_resume_start - Execute "noirq" and "early" device callbacks.
 921 * @state: PM transition of the system being carried out.
 
 922 */
 923void dpm_resume_start(pm_message_t state)
 924{
 925	dpm_resume_noirq(state);
 926	dpm_resume_early(state);
 
 
 
 
 
 
 
 
 
 927}
 928EXPORT_SYMBOL_GPL(dpm_resume_start);
 929
 930/**
 931 * device_resume - Execute "resume" callbacks for given device.
 932 * @dev: Device to handle.
 933 * @state: PM transition of the system being carried out.
 934 * @async: If true, the device is being resumed asynchronously.
 935 */
 936static int device_resume(struct device *dev, pm_message_t state, bool async)
 937{
 938	pm_callback_t callback = NULL;
 939	const char *info = NULL;
 940	int error = 0;
 941	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
 942
 943	TRACE_DEVICE(dev);
 944	TRACE_RESUME(0);
 945
 946	if (dev->power.syscore)
 947		goto Complete;
 948
 949	if (dev->power.direct_complete) {
 950		/* Match the pm_runtime_disable() in __device_suspend(). */
 951		pm_runtime_enable(dev);
 952		goto Complete;
 953	}
 954
 955	dpm_wait_for_superior(dev, async);
 956	dpm_watchdog_set(&wd, dev);
 957	device_lock(dev);
 958
 959	/*
 960	 * This is a fib.  But we'll allow new children to be added below
 961	 * a resumed device, even if the device hasn't been completed yet.
 962	 */
 963	dev->power.is_prepared = false;
 964
 965	if (!dev->power.is_suspended)
 966		goto Unlock;
 967
 
 
 
 968	if (dev->pm_domain) {
 969		info = "power domain ";
 970		callback = pm_op(&dev->pm_domain->ops, state);
 971		goto Driver;
 972	}
 973
 974	if (dev->type && dev->type->pm) {
 975		info = "type ";
 976		callback = pm_op(dev->type->pm, state);
 977		goto Driver;
 978	}
 979
 980	if (dev->class && dev->class->pm) {
 981		info = "class ";
 982		callback = pm_op(dev->class->pm, state);
 983		goto Driver;
 
 
 
 
 
 
 984	}
 985
 986	if (dev->bus) {
 987		if (dev->bus->pm) {
 988			info = "bus ";
 989			callback = pm_op(dev->bus->pm, state);
 990		} else if (dev->bus->resume) {
 991			info = "legacy bus ";
 992			callback = dev->bus->resume;
 993			goto End;
 994		}
 995	}
 996
 997 Driver:
 998	if (!callback && dev->driver && dev->driver->pm) {
 999		info = "driver ";
1000		callback = pm_op(dev->driver->pm, state);
1001	}
1002
1003 End:
1004	error = dpm_run_callback(callback, dev, state, info);
1005	dev->power.is_suspended = false;
1006
1007 Unlock:
1008	device_unlock(dev);
1009	dpm_watchdog_clear(&wd);
1010
1011 Complete:
1012	complete_all(&dev->power.completion);
1013
1014	TRACE_RESUME(error);
1015
 
 
 
1016	return error;
1017}
1018
1019static void async_resume(void *data, async_cookie_t cookie)
1020{
1021	struct device *dev = (struct device *)data;
1022	int error;
1023
1024	error = device_resume(dev, pm_transition, true);
1025	if (error)
1026		pm_dev_err(dev, pm_transition, " async", error);
1027	put_device(dev);
1028}
1029
 
 
 
 
 
 
1030/**
1031 * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
1032 * @state: PM transition of the system being carried out.
1033 *
1034 * Execute the appropriate "resume" callback for all devices whose status
1035 * indicates that they are suspended.
1036 */
1037void dpm_resume(pm_message_t state)
1038{
1039	struct device *dev;
1040	ktime_t starttime = ktime_get();
1041
1042	trace_suspend_resume(TPS("dpm_resume"), state.event, true);
1043	might_sleep();
1044
1045	mutex_lock(&dpm_list_mtx);
1046	pm_transition = state;
1047	async_error = 0;
1048
1049	list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
1050		reinit_completion(&dev->power.completion);
1051		if (is_async(dev)) {
1052			get_device(dev);
1053			async_schedule(async_resume, dev);
1054		}
1055	}
1056
1057	while (!list_empty(&dpm_suspended_list)) {
1058		dev = to_device(dpm_suspended_list.next);
1059		get_device(dev);
1060		if (!is_async(dev)) {
1061			int error;
1062
1063			mutex_unlock(&dpm_list_mtx);
1064
1065			error = device_resume(dev, state, false);
1066			if (error) {
1067				suspend_stats.failed_resume++;
1068				dpm_save_failed_step(SUSPEND_RESUME);
1069				dpm_save_failed_dev(dev_name(dev));
1070				pm_dev_err(dev, state, "", error);
1071			}
1072
1073			mutex_lock(&dpm_list_mtx);
1074		}
1075		if (!list_empty(&dev->power.entry))
1076			list_move_tail(&dev->power.entry, &dpm_prepared_list);
1077		put_device(dev);
1078	}
1079	mutex_unlock(&dpm_list_mtx);
1080	async_synchronize_full();
1081	dpm_show_time(starttime, state, 0, NULL);
1082
1083	cpufreq_resume();
1084	trace_suspend_resume(TPS("dpm_resume"), state.event, false);
1085}
1086
1087/**
1088 * device_complete - Complete a PM transition for given device.
1089 * @dev: Device to handle.
1090 * @state: PM transition of the system being carried out.
1091 */
1092static void device_complete(struct device *dev, pm_message_t state)
1093{
1094	void (*callback)(struct device *) = NULL;
1095	const char *info = NULL;
1096
1097	if (dev->power.syscore)
1098		return;
1099
1100	device_lock(dev);
1101
1102	if (dev->pm_domain) {
1103		info = "completing power domain ";
1104		callback = dev->pm_domain->ops.complete;
 
1105	} else if (dev->type && dev->type->pm) {
1106		info = "completing type ";
1107		callback = dev->type->pm->complete;
 
1108	} else if (dev->class && dev->class->pm) {
1109		info = "completing class ";
1110		callback = dev->class->pm->complete;
 
1111	} else if (dev->bus && dev->bus->pm) {
1112		info = "completing bus ";
1113		callback = dev->bus->pm->complete;
1114	}
1115
1116	if (!callback && dev->driver && dev->driver->pm) {
1117		info = "completing driver ";
1118		callback = dev->driver->pm->complete;
1119	}
1120
1121	if (callback) {
1122		pm_dev_dbg(dev, state, info);
1123		callback(dev);
1124	}
1125
1126	device_unlock(dev);
1127
1128	pm_runtime_put(dev);
1129}
1130
1131/**
1132 * dpm_complete - Complete a PM transition for all non-sysdev devices.
1133 * @state: PM transition of the system being carried out.
1134 *
1135 * Execute the ->complete() callbacks for all devices whose PM status is not
1136 * DPM_ON (this allows new devices to be registered).
1137 */
1138void dpm_complete(pm_message_t state)
1139{
1140	struct list_head list;
1141
1142	trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1143	might_sleep();
1144
1145	INIT_LIST_HEAD(&list);
1146	mutex_lock(&dpm_list_mtx);
1147	while (!list_empty(&dpm_prepared_list)) {
1148		struct device *dev = to_device(dpm_prepared_list.prev);
1149
1150		get_device(dev);
1151		dev->power.is_prepared = false;
1152		list_move(&dev->power.entry, &list);
1153		mutex_unlock(&dpm_list_mtx);
1154
1155		trace_device_pm_callback_start(dev, "", state.event);
1156		device_complete(dev, state);
1157		trace_device_pm_callback_end(dev, 0);
1158
1159		mutex_lock(&dpm_list_mtx);
1160		put_device(dev);
1161	}
1162	list_splice(&list, &dpm_list);
1163	mutex_unlock(&dpm_list_mtx);
1164
1165	/* Allow device probing and trigger re-probing of deferred devices */
1166	device_unblock_probing();
1167	trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1168}
1169
1170/**
1171 * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1172 * @state: PM transition of the system being carried out.
1173 *
1174 * Execute "resume" callbacks for all devices and complete the PM transition of
1175 * the system.
1176 */
1177void dpm_resume_end(pm_message_t state)
1178{
1179	dpm_resume(state);
1180	dpm_complete(state);
1181}
1182EXPORT_SYMBOL_GPL(dpm_resume_end);
1183
1184
1185/*------------------------- Suspend routines -------------------------*/
1186
1187/**
1188 * resume_event - Return a "resume" message for given "suspend" sleep state.
1189 * @sleep_state: PM message representing a sleep state.
1190 *
1191 * Return a PM message representing the resume event corresponding to given
1192 * sleep state.
1193 */
1194static pm_message_t resume_event(pm_message_t sleep_state)
1195{
1196	switch (sleep_state.event) {
1197	case PM_EVENT_SUSPEND:
1198		return PMSG_RESUME;
1199	case PM_EVENT_FREEZE:
1200	case PM_EVENT_QUIESCE:
1201		return PMSG_RECOVER;
1202	case PM_EVENT_HIBERNATE:
1203		return PMSG_RESTORE;
1204	}
1205	return PMSG_ON;
1206}
1207
1208static void dpm_superior_set_must_resume(struct device *dev)
1209{
1210	struct device_link *link;
1211	int idx;
1212
1213	if (dev->parent)
1214		dev->parent->power.must_resume = true;
1215
1216	idx = device_links_read_lock();
1217
1218	list_for_each_entry_rcu(link, &dev->links.suppliers, c_node)
1219		link->supplier->power.must_resume = true;
1220
1221	device_links_read_unlock(idx);
1222}
1223
1224static pm_callback_t dpm_subsys_suspend_noirq_cb(struct device *dev,
1225						 pm_message_t state,
1226						 const char **info_p)
1227{
1228	pm_callback_t callback;
1229	const char *info;
1230
1231	if (dev->pm_domain) {
1232		info = "noirq power domain ";
1233		callback = pm_noirq_op(&dev->pm_domain->ops, state);
1234	} else if (dev->type && dev->type->pm) {
1235		info = "noirq type ";
1236		callback = pm_noirq_op(dev->type->pm, state);
1237	} else if (dev->class && dev->class->pm) {
1238		info = "noirq class ";
1239		callback = pm_noirq_op(dev->class->pm, state);
1240	} else if (dev->bus && dev->bus->pm) {
1241		info = "noirq bus ";
1242		callback = pm_noirq_op(dev->bus->pm, state);
1243	} else {
1244		return NULL;
1245	}
1246
1247	if (info_p)
1248		*info_p = info;
1249
1250	return callback;
1251}
1252
1253static bool device_must_resume(struct device *dev, pm_message_t state,
1254			       bool no_subsys_suspend_noirq)
1255{
1256	pm_message_t resume_msg = resume_event(state);
1257
1258	/*
1259	 * If all of the device driver's "noirq", "late" and "early" callbacks
1260	 * are invoked directly by the core, the decision to allow the device to
1261	 * stay in suspend can be based on its current runtime PM status and its
1262	 * wakeup settings.
1263	 */
1264	if (no_subsys_suspend_noirq &&
1265	    !dpm_subsys_suspend_late_cb(dev, state, NULL) &&
1266	    !dpm_subsys_resume_early_cb(dev, resume_msg, NULL) &&
1267	    !dpm_subsys_resume_noirq_cb(dev, resume_msg, NULL))
1268		return !pm_runtime_status_suspended(dev) &&
1269			(resume_msg.event != PM_EVENT_RESUME ||
1270			 (device_can_wakeup(dev) && !device_may_wakeup(dev)));
1271
1272	/*
1273	 * The only safe strategy here is to require that if the device may not
1274	 * be left in suspend, resume callbacks must be invoked for it.
1275	 */
1276	return !dev->power.may_skip_resume;
1277}
1278
1279/**
1280 * __device_suspend_noirq - Execute a "noirq suspend" callback for given device.
1281 * @dev: Device to handle.
1282 * @state: PM transition of the system being carried out.
1283 * @async: If true, the device is being suspended asynchronously.
1284 *
1285 * The driver of @dev will not receive interrupts while this function is being
1286 * executed.
1287 */
1288static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1289{
1290	pm_callback_t callback;
1291	const char *info;
1292	bool no_subsys_cb = false;
1293	int error = 0;
1294
1295	TRACE_DEVICE(dev);
1296	TRACE_SUSPEND(0);
1297
1298	dpm_wait_for_subordinate(dev, async);
1299
1300	if (async_error)
1301		goto Complete;
1302
1303	if (pm_wakeup_pending()) {
1304		async_error = -EBUSY;
1305		goto Complete;
1306	}
1307
1308	if (dev->power.syscore || dev->power.direct_complete)
1309		goto Complete;
1310
1311	callback = dpm_subsys_suspend_noirq_cb(dev, state, &info);
1312	if (callback)
1313		goto Run;
1314
1315	no_subsys_cb = !dpm_subsys_suspend_late_cb(dev, state, NULL);
1316
1317	if (dev_pm_smart_suspend_and_suspended(dev) && no_subsys_cb)
1318		goto Skip;
1319
1320	if (dev->driver && dev->driver->pm) {
1321		info = "noirq driver ";
1322		callback = pm_noirq_op(dev->driver->pm, state);
1323	}
1324
1325Run:
1326	error = dpm_run_callback(callback, dev, state, info);
1327	if (error) {
1328		async_error = error;
1329		goto Complete;
1330	}
1331
1332Skip:
1333	dev->power.is_noirq_suspended = true;
1334
1335	if (dev_pm_test_driver_flags(dev, DPM_FLAG_LEAVE_SUSPENDED)) {
1336		dev->power.must_resume = dev->power.must_resume ||
1337				atomic_read(&dev->power.usage_count) > 1 ||
1338				device_must_resume(dev, state, no_subsys_cb);
1339	} else {
1340		dev->power.must_resume = true;
1341	}
1342
1343	if (dev->power.must_resume)
1344		dpm_superior_set_must_resume(dev);
1345
1346Complete:
1347	complete_all(&dev->power.completion);
1348	TRACE_SUSPEND(error);
1349	return error;
1350}
1351
1352static void async_suspend_noirq(void *data, async_cookie_t cookie)
1353{
1354	struct device *dev = (struct device *)data;
1355	int error;
1356
1357	error = __device_suspend_noirq(dev, pm_transition, true);
1358	if (error) {
1359		dpm_save_failed_dev(dev_name(dev));
1360		pm_dev_err(dev, pm_transition, " async", error);
1361	}
1362
1363	put_device(dev);
1364}
1365
1366static int device_suspend_noirq(struct device *dev)
1367{
1368	reinit_completion(&dev->power.completion);
1369
1370	if (is_async(dev)) {
1371		get_device(dev);
1372		async_schedule(async_suspend_noirq, dev);
1373		return 0;
1374	}
1375	return __device_suspend_noirq(dev, pm_transition, false);
1376}
1377
1378void dpm_noirq_begin(void)
1379{
1380	cpuidle_pause();
1381	device_wakeup_arm_wake_irqs();
1382	suspend_device_irqs();
1383}
1384
1385int dpm_noirq_suspend_devices(pm_message_t state)
1386{
1387	ktime_t starttime = ktime_get();
1388	int error = 0;
1389
1390	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1391	mutex_lock(&dpm_list_mtx);
1392	pm_transition = state;
1393	async_error = 0;
1394
1395	while (!list_empty(&dpm_late_early_list)) {
1396		struct device *dev = to_device(dpm_late_early_list.prev);
1397
1398		get_device(dev);
1399		mutex_unlock(&dpm_list_mtx);
1400
1401		error = device_suspend_noirq(dev);
1402
1403		mutex_lock(&dpm_list_mtx);
1404		if (error) {
1405			pm_dev_err(dev, state, " noirq", error);
1406			dpm_save_failed_dev(dev_name(dev));
1407			put_device(dev);
1408			break;
1409		}
1410		if (!list_empty(&dev->power.entry))
1411			list_move(&dev->power.entry, &dpm_noirq_list);
1412		put_device(dev);
1413
1414		if (async_error)
1415			break;
1416	}
1417	mutex_unlock(&dpm_list_mtx);
1418	async_synchronize_full();
1419	if (!error)
1420		error = async_error;
1421
1422	if (error) {
1423		suspend_stats.failed_suspend_noirq++;
1424		dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1425	}
1426	dpm_show_time(starttime, state, error, "noirq");
1427	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1428	return error;
1429}
1430
1431/**
1432 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1433 * @state: PM transition of the system being carried out.
1434 *
1435 * Prevent device drivers' interrupt handlers from being called and invoke
1436 * "noirq" suspend callbacks for all non-sysdev devices.
1437 */
1438int dpm_suspend_noirq(pm_message_t state)
1439{
1440	int ret;
1441
1442	dpm_noirq_begin();
1443	ret = dpm_noirq_suspend_devices(state);
1444	if (ret)
1445		dpm_resume_noirq(resume_event(state));
1446
1447	return ret;
1448}
1449
1450static void dpm_propagate_wakeup_to_parent(struct device *dev)
1451{
1452	struct device *parent = dev->parent;
1453
1454	if (!parent)
1455		return;
1456
1457	spin_lock_irq(&parent->power.lock);
1458
1459	if (dev->power.wakeup_path && !parent->power.ignore_children)
1460		parent->power.wakeup_path = true;
1461
1462	spin_unlock_irq(&parent->power.lock);
1463}
1464
1465static pm_callback_t dpm_subsys_suspend_late_cb(struct device *dev,
1466						pm_message_t state,
1467						const char **info_p)
1468{
1469	pm_callback_t callback;
1470	const char *info;
1471
1472	if (dev->pm_domain) {
1473		info = "late power domain ";
1474		callback = pm_late_early_op(&dev->pm_domain->ops, state);
 
 
1475	} else if (dev->type && dev->type->pm) {
1476		info = "late type ";
1477		callback = pm_late_early_op(dev->type->pm, state);
 
 
1478	} else if (dev->class && dev->class->pm) {
1479		info = "late class ";
1480		callback = pm_late_early_op(dev->class->pm, state);
 
 
1481	} else if (dev->bus && dev->bus->pm) {
1482		info = "late bus ";
1483		callback = pm_late_early_op(dev->bus->pm, state);
1484	} else {
1485		return NULL;
1486	}
1487
1488	if (info_p)
1489		*info_p = info;
1490
1491	return callback;
1492}
1493
1494/**
1495 * __device_suspend_late - Execute a "late suspend" callback for given device.
1496 * @dev: Device to handle.
1497 * @state: PM transition of the system being carried out.
1498 * @async: If true, the device is being suspended asynchronously.
1499 *
1500 * Runtime PM is disabled for @dev while this function is being executed.
 
1501 */
1502static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1503{
1504	pm_callback_t callback;
1505	const char *info;
1506	int error = 0;
1507
1508	TRACE_DEVICE(dev);
1509	TRACE_SUSPEND(0);
1510
1511	__pm_runtime_disable(dev, false);
1512
1513	dpm_wait_for_subordinate(dev, async);
1514
1515	if (async_error)
1516		goto Complete;
1517
1518	if (pm_wakeup_pending()) {
1519		async_error = -EBUSY;
1520		goto Complete;
1521	}
1522
1523	if (dev->power.syscore || dev->power.direct_complete)
1524		goto Complete;
1525
1526	callback = dpm_subsys_suspend_late_cb(dev, state, &info);
1527	if (callback)
1528		goto Run;
1529
1530	if (dev_pm_smart_suspend_and_suspended(dev) &&
1531	    !dpm_subsys_suspend_noirq_cb(dev, state, NULL))
1532		goto Skip;
1533
1534	if (dev->driver && dev->driver->pm) {
1535		info = "late driver ";
1536		callback = pm_late_early_op(dev->driver->pm, state);
1537	}
1538
1539Run:
1540	error = dpm_run_callback(callback, dev, state, info);
1541	if (error) {
1542		async_error = error;
1543		goto Complete;
1544	}
1545	dpm_propagate_wakeup_to_parent(dev);
1546
1547Skip:
1548	dev->power.is_late_suspended = true;
1549
1550Complete:
1551	TRACE_SUSPEND(error);
1552	complete_all(&dev->power.completion);
1553	return error;
1554}
1555
1556static void async_suspend_late(void *data, async_cookie_t cookie)
1557{
1558	struct device *dev = (struct device *)data;
1559	int error;
1560
1561	error = __device_suspend_late(dev, pm_transition, true);
1562	if (error) {
1563		dpm_save_failed_dev(dev_name(dev));
1564		pm_dev_err(dev, pm_transition, " async", error);
1565	}
1566	put_device(dev);
1567}
1568
1569static int device_suspend_late(struct device *dev)
1570{
1571	reinit_completion(&dev->power.completion);
1572
1573	if (is_async(dev)) {
1574		get_device(dev);
1575		async_schedule(async_suspend_late, dev);
1576		return 0;
1577	}
1578
1579	return __device_suspend_late(dev, pm_transition, false);
1580}
1581
1582/**
1583 * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1584 * @state: PM transition of the system being carried out.
1585 */
1586int dpm_suspend_late(pm_message_t state)
1587{
1588	ktime_t starttime = ktime_get();
1589	int error = 0;
1590
1591	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1592	mutex_lock(&dpm_list_mtx);
1593	pm_transition = state;
1594	async_error = 0;
1595
1596	while (!list_empty(&dpm_suspended_list)) {
1597		struct device *dev = to_device(dpm_suspended_list.prev);
1598
1599		get_device(dev);
1600		mutex_unlock(&dpm_list_mtx);
1601
1602		error = device_suspend_late(dev);
1603
1604		mutex_lock(&dpm_list_mtx);
1605		if (!list_empty(&dev->power.entry))
1606			list_move(&dev->power.entry, &dpm_late_early_list);
1607
1608		if (error) {
1609			pm_dev_err(dev, state, " late", error);
1610			dpm_save_failed_dev(dev_name(dev));
1611			put_device(dev);
1612			break;
1613		}
 
 
1614		put_device(dev);
1615
1616		if (async_error)
1617			break;
1618	}
1619	mutex_unlock(&dpm_list_mtx);
1620	async_synchronize_full();
1621	if (!error)
1622		error = async_error;
1623	if (error) {
1624		suspend_stats.failed_suspend_late++;
1625		dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1626		dpm_resume_early(resume_event(state));
1627	}
1628	dpm_show_time(starttime, state, error, "late");
1629	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1630	return error;
1631}
1632
1633/**
1634 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1635 * @state: PM transition of the system being carried out.
1636 */
1637int dpm_suspend_end(pm_message_t state)
1638{
1639	int error = dpm_suspend_late(state);
1640	if (error)
1641		return error;
1642
1643	error = dpm_suspend_noirq(state);
1644	if (error) {
1645		dpm_resume_early(resume_event(state));
1646		return error;
1647	}
1648
1649	return 0;
1650}
1651EXPORT_SYMBOL_GPL(dpm_suspend_end);
1652
1653/**
1654 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1655 * @dev: Device to suspend.
1656 * @state: PM transition of the system being carried out.
1657 * @cb: Suspend callback to execute.
1658 * @info: string description of caller.
1659 */
1660static int legacy_suspend(struct device *dev, pm_message_t state,
1661			  int (*cb)(struct device *dev, pm_message_t state),
1662			  const char *info)
1663{
1664	int error;
1665	ktime_t calltime;
1666
1667	calltime = initcall_debug_start(dev);
1668
1669	trace_device_pm_callback_start(dev, info, state.event);
1670	error = cb(dev, state);
1671	trace_device_pm_callback_end(dev, error);
1672	suspend_report_result(cb, error);
1673
1674	initcall_debug_report(dev, calltime, error, state, info);
1675
1676	return error;
1677}
1678
1679static void dpm_clear_superiors_direct_complete(struct device *dev)
1680{
1681	struct device_link *link;
1682	int idx;
1683
1684	if (dev->parent) {
1685		spin_lock_irq(&dev->parent->power.lock);
1686		dev->parent->power.direct_complete = false;
1687		spin_unlock_irq(&dev->parent->power.lock);
1688	}
1689
1690	idx = device_links_read_lock();
1691
1692	list_for_each_entry_rcu(link, &dev->links.suppliers, c_node) {
1693		spin_lock_irq(&link->supplier->power.lock);
1694		link->supplier->power.direct_complete = false;
1695		spin_unlock_irq(&link->supplier->power.lock);
1696	}
1697
1698	device_links_read_unlock(idx);
1699}
1700
1701/**
1702 * __device_suspend - Execute "suspend" callbacks for given device.
1703 * @dev: Device to handle.
1704 * @state: PM transition of the system being carried out.
1705 * @async: If true, the device is being suspended asynchronously.
1706 */
1707static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1708{
1709	pm_callback_t callback = NULL;
1710	const char *info = NULL;
1711	int error = 0;
1712	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1713
1714	TRACE_DEVICE(dev);
1715	TRACE_SUSPEND(0);
1716
1717	dpm_wait_for_subordinate(dev, async);
1718
1719	if (async_error)
1720		goto Complete;
1721
1722	/*
1723	 * If a device configured to wake up the system from sleep states
1724	 * has been suspended at run time and there's a resume request pending
1725	 * for it, this is equivalent to the device signaling wakeup, so the
1726	 * system suspend operation should be aborted.
1727	 */
1728	if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1729		pm_wakeup_event(dev, 0);
1730
1731	if (pm_wakeup_pending()) {
 
1732		async_error = -EBUSY;
1733		goto Complete;
1734	}
1735
1736	if (dev->power.syscore)
1737		goto Complete;
1738
1739	if (dev->power.direct_complete) {
1740		if (pm_runtime_status_suspended(dev)) {
1741			pm_runtime_disable(dev);
1742			if (pm_runtime_status_suspended(dev))
1743				goto Complete;
1744
1745			pm_runtime_enable(dev);
1746		}
1747		dev->power.direct_complete = false;
1748	}
1749
1750	dev->power.may_skip_resume = false;
1751	dev->power.must_resume = false;
1752
1753	dpm_watchdog_set(&wd, dev);
1754	device_lock(dev);
1755
1756	if (dev->pm_domain) {
1757		info = "power domain ";
1758		callback = pm_op(&dev->pm_domain->ops, state);
1759		goto Run;
1760	}
1761
1762	if (dev->type && dev->type->pm) {
1763		info = "type ";
1764		callback = pm_op(dev->type->pm, state);
1765		goto Run;
1766	}
1767
1768	if (dev->class && dev->class->pm) {
1769		info = "class ";
1770		callback = pm_op(dev->class->pm, state);
1771		goto Run;
 
 
 
 
 
 
1772	}
1773
1774	if (dev->bus) {
1775		if (dev->bus->pm) {
1776			info = "bus ";
1777			callback = pm_op(dev->bus->pm, state);
1778		} else if (dev->bus->suspend) {
1779			pm_dev_dbg(dev, state, "legacy bus ");
1780			error = legacy_suspend(dev, state, dev->bus->suspend,
1781						"legacy bus ");
1782			goto End;
1783		}
1784	}
1785
1786 Run:
1787	if (!callback && dev->driver && dev->driver->pm) {
1788		info = "driver ";
1789		callback = pm_op(dev->driver->pm, state);
1790	}
1791
1792	error = dpm_run_callback(callback, dev, state, info);
1793
1794 End:
1795	if (!error) {
1796		dev->power.is_suspended = true;
1797		if (device_may_wakeup(dev))
1798			dev->power.wakeup_path = true;
1799
1800		dpm_propagate_wakeup_to_parent(dev);
1801		dpm_clear_superiors_direct_complete(dev);
1802	}
1803
1804	device_unlock(dev);
1805	dpm_watchdog_clear(&wd);
1806
1807 Complete:
1808	if (error)
1809		async_error = error;
 
 
 
1810
1811	complete_all(&dev->power.completion);
1812	TRACE_SUSPEND(error);
1813	return error;
1814}
1815
1816static void async_suspend(void *data, async_cookie_t cookie)
1817{
1818	struct device *dev = (struct device *)data;
1819	int error;
1820
1821	error = __device_suspend(dev, pm_transition, true);
1822	if (error) {
1823		dpm_save_failed_dev(dev_name(dev));
1824		pm_dev_err(dev, pm_transition, " async", error);
1825	}
1826
1827	put_device(dev);
1828}
1829
1830static int device_suspend(struct device *dev)
1831{
1832	reinit_completion(&dev->power.completion);
1833
1834	if (is_async(dev)) {
1835		get_device(dev);
1836		async_schedule(async_suspend, dev);
1837		return 0;
1838	}
1839
1840	return __device_suspend(dev, pm_transition, false);
1841}
1842
1843/**
1844 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1845 * @state: PM transition of the system being carried out.
1846 */
1847int dpm_suspend(pm_message_t state)
1848{
1849	ktime_t starttime = ktime_get();
1850	int error = 0;
1851
1852	trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1853	might_sleep();
1854
1855	cpufreq_suspend();
1856
1857	mutex_lock(&dpm_list_mtx);
1858	pm_transition = state;
1859	async_error = 0;
1860	while (!list_empty(&dpm_prepared_list)) {
1861		struct device *dev = to_device(dpm_prepared_list.prev);
1862
1863		get_device(dev);
1864		mutex_unlock(&dpm_list_mtx);
1865
1866		error = device_suspend(dev);
1867
1868		mutex_lock(&dpm_list_mtx);
1869		if (error) {
1870			pm_dev_err(dev, state, "", error);
1871			dpm_save_failed_dev(dev_name(dev));
1872			put_device(dev);
1873			break;
1874		}
1875		if (!list_empty(&dev->power.entry))
1876			list_move(&dev->power.entry, &dpm_suspended_list);
1877		put_device(dev);
1878		if (async_error)
1879			break;
1880	}
1881	mutex_unlock(&dpm_list_mtx);
1882	async_synchronize_full();
1883	if (!error)
1884		error = async_error;
1885	if (error) {
1886		suspend_stats.failed_suspend++;
1887		dpm_save_failed_step(SUSPEND_SUSPEND);
1888	}
1889	dpm_show_time(starttime, state, error, NULL);
1890	trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1891	return error;
1892}
1893
1894/**
1895 * device_prepare - Prepare a device for system power transition.
1896 * @dev: Device to handle.
1897 * @state: PM transition of the system being carried out.
1898 *
1899 * Execute the ->prepare() callback(s) for given device.  No new children of the
1900 * device may be registered after this function has returned.
1901 */
1902static int device_prepare(struct device *dev, pm_message_t state)
1903{
1904	int (*callback)(struct device *) = NULL;
1905	int ret = 0;
1906
1907	if (dev->power.syscore)
1908		return 0;
1909
1910	WARN_ON(!pm_runtime_enabled(dev) &&
1911		dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND |
1912					      DPM_FLAG_LEAVE_SUSPENDED));
1913
1914	/*
1915	 * If a device's parent goes into runtime suspend at the wrong time,
1916	 * it won't be possible to resume the device.  To prevent this we
1917	 * block runtime suspend here, during the prepare phase, and allow
1918	 * it again during the complete phase.
1919	 */
1920	pm_runtime_get_noresume(dev);
1921
1922	device_lock(dev);
1923
1924	dev->power.wakeup_path = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1925
1926	if (dev->power.no_pm_callbacks)
1927		goto unlock;
1928
1929	if (dev->pm_domain)
1930		callback = dev->pm_domain->ops.prepare;
1931	else if (dev->type && dev->type->pm)
1932		callback = dev->type->pm->prepare;
1933	else if (dev->class && dev->class->pm)
1934		callback = dev->class->pm->prepare;
1935	else if (dev->bus && dev->bus->pm)
1936		callback = dev->bus->pm->prepare;
1937
1938	if (!callback && dev->driver && dev->driver->pm)
1939		callback = dev->driver->pm->prepare;
1940
1941	if (callback)
1942		ret = callback(dev);
1943
1944unlock:
1945	device_unlock(dev);
1946
1947	if (ret < 0) {
1948		suspend_report_result(callback, ret);
1949		pm_runtime_put(dev);
1950		return ret;
1951	}
1952	/*
1953	 * A positive return value from ->prepare() means "this device appears
1954	 * to be runtime-suspended and its state is fine, so if it really is
1955	 * runtime-suspended, you can leave it in that state provided that you
1956	 * will do the same thing with all of its descendants".  This only
1957	 * applies to suspend transitions, however.
1958	 */
1959	spin_lock_irq(&dev->power.lock);
1960	dev->power.direct_complete = state.event == PM_EVENT_SUSPEND &&
1961		((pm_runtime_suspended(dev) && ret > 0) ||
1962		 dev->power.no_pm_callbacks) &&
1963		!dev_pm_test_driver_flags(dev, DPM_FLAG_NEVER_SKIP);
1964	spin_unlock_irq(&dev->power.lock);
1965	return 0;
1966}
1967
1968/**
1969 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1970 * @state: PM transition of the system being carried out.
1971 *
1972 * Execute the ->prepare() callback(s) for all devices.
1973 */
1974int dpm_prepare(pm_message_t state)
1975{
1976	int error = 0;
1977
1978	trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1979	might_sleep();
1980
1981	/*
1982	 * Give a chance for the known devices to complete their probes, before
1983	 * disable probing of devices. This sync point is important at least
1984	 * at boot time + hibernation restore.
1985	 */
1986	wait_for_device_probe();
1987	/*
1988	 * It is unsafe if probing of devices will happen during suspend or
1989	 * hibernation and system behavior will be unpredictable in this case.
1990	 * So, let's prohibit device's probing here and defer their probes
1991	 * instead. The normal behavior will be restored in dpm_complete().
1992	 */
1993	device_block_probing();
1994
1995	mutex_lock(&dpm_list_mtx);
1996	while (!list_empty(&dpm_list)) {
1997		struct device *dev = to_device(dpm_list.next);
1998
1999		get_device(dev);
2000		mutex_unlock(&dpm_list_mtx);
2001
2002		trace_device_pm_callback_start(dev, "", state.event);
2003		error = device_prepare(dev, state);
2004		trace_device_pm_callback_end(dev, error);
2005
2006		mutex_lock(&dpm_list_mtx);
2007		if (error) {
2008			if (error == -EAGAIN) {
2009				put_device(dev);
2010				error = 0;
2011				continue;
2012			}
2013			printk(KERN_INFO "PM: Device %s not prepared "
2014				"for power transition: code %d\n",
2015				dev_name(dev), error);
2016			put_device(dev);
2017			break;
2018		}
2019		dev->power.is_prepared = true;
2020		if (!list_empty(&dev->power.entry))
2021			list_move_tail(&dev->power.entry, &dpm_prepared_list);
2022		put_device(dev);
2023	}
2024	mutex_unlock(&dpm_list_mtx);
2025	trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
2026	return error;
2027}
2028
2029/**
2030 * dpm_suspend_start - Prepare devices for PM transition and suspend them.
2031 * @state: PM transition of the system being carried out.
2032 *
2033 * Prepare all non-sysdev devices for system PM transition and execute "suspend"
2034 * callbacks for them.
2035 */
2036int dpm_suspend_start(pm_message_t state)
2037{
2038	int error;
2039
2040	error = dpm_prepare(state);
2041	if (error) {
2042		suspend_stats.failed_prepare++;
2043		dpm_save_failed_step(SUSPEND_PREPARE);
2044	} else
2045		error = dpm_suspend(state);
2046	return error;
2047}
2048EXPORT_SYMBOL_GPL(dpm_suspend_start);
2049
2050void __suspend_report_result(const char *function, void *fn, int ret)
2051{
2052	if (ret)
2053		printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
2054}
2055EXPORT_SYMBOL_GPL(__suspend_report_result);
2056
2057/**
2058 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
2059 * @dev: Device to wait for.
2060 * @subordinate: Device that needs to wait for @dev.
2061 */
2062int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
2063{
2064	dpm_wait(dev, subordinate->power.async_suspend);
2065	return async_error;
2066}
2067EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
2068
2069/**
2070 * dpm_for_each_dev - device iterator.
2071 * @data: data for the callback.
2072 * @fn: function to be called for each device.
2073 *
2074 * Iterate over devices in dpm_list, and call @fn for each device,
2075 * passing it @data.
2076 */
2077void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
2078{
2079	struct device *dev;
2080
2081	if (!fn)
2082		return;
2083
2084	device_pm_lock();
2085	list_for_each_entry(dev, &dpm_list, power.entry)
2086		fn(dev, data);
2087	device_pm_unlock();
2088}
2089EXPORT_SYMBOL_GPL(dpm_for_each_dev);
2090
2091static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
2092{
2093	if (!ops)
2094		return true;
2095
2096	return !ops->prepare &&
2097	       !ops->suspend &&
2098	       !ops->suspend_late &&
2099	       !ops->suspend_noirq &&
2100	       !ops->resume_noirq &&
2101	       !ops->resume_early &&
2102	       !ops->resume &&
2103	       !ops->complete;
2104}
2105
2106void device_pm_check_callbacks(struct device *dev)
2107{
2108	spin_lock_irq(&dev->power.lock);
2109	dev->power.no_pm_callbacks =
2110		(!dev->bus || (pm_ops_is_empty(dev->bus->pm) &&
2111		 !dev->bus->suspend && !dev->bus->resume)) &&
2112		(!dev->class || pm_ops_is_empty(dev->class->pm)) &&
2113		(!dev->type || pm_ops_is_empty(dev->type->pm)) &&
2114		(!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
2115		(!dev->driver || (pm_ops_is_empty(dev->driver->pm) &&
2116		 !dev->driver->suspend && !dev->driver->resume));
2117	spin_unlock_irq(&dev->power.lock);
2118}
2119
2120bool dev_pm_smart_suspend_and_suspended(struct device *dev)
2121{
2122	return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) &&
2123		pm_runtime_status_suspended(dev);
2124}