Linux Audio

Check our new training course

Loading...
v3.1
  1#include <linux/gfp.h>
  2#include <linux/initrd.h>
  3#include <linux/ioport.h>
  4#include <linux/swap.h>
  5#include <linux/memblock.h>
 
  6
  7#include <asm/cacheflush.h>
  8#include <asm/e820.h>
  9#include <asm/init.h>
 10#include <asm/page.h>
 11#include <asm/page_types.h>
 12#include <asm/sections.h>
 13#include <asm/setup.h>
 14#include <asm/system.h>
 15#include <asm/tlbflush.h>
 16#include <asm/tlb.h>
 17#include <asm/proto.h>
 
 
 
 
 
 
 18
 19unsigned long __initdata pgt_buf_start;
 20unsigned long __meminitdata pgt_buf_end;
 21unsigned long __meminitdata pgt_buf_top;
 
 
 
 22
 23int after_bootmem;
 24
 25int direct_gbpages
 26#ifdef CONFIG_DIRECT_GBPAGES
 27				= 1
 28#endif
 29;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 30
 31static void __init find_early_table_space(unsigned long end, int use_pse,
 32					  int use_gbpages)
 33{
 34	unsigned long puds, pmds, ptes, tables, start = 0, good_end = end;
 35	phys_addr_t base;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 36
 37	puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
 38	tables = roundup(puds * sizeof(pud_t), PAGE_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 39
 40	if (use_gbpages) {
 41		unsigned long extra;
 42
 43		extra = end - ((end>>PUD_SHIFT) << PUD_SHIFT);
 44		pmds = (extra + PMD_SIZE - 1) >> PMD_SHIFT;
 45	} else
 46		pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
 47
 48	tables += roundup(pmds * sizeof(pmd_t), PAGE_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 49
 50	if (use_pse) {
 51		unsigned long extra;
 52
 53		extra = end - ((end>>PMD_SHIFT) << PMD_SHIFT);
 54#ifdef CONFIG_X86_32
 55		extra += PMD_SIZE;
 56#endif
 57		ptes = (extra + PAGE_SIZE - 1) >> PAGE_SHIFT;
 58	} else
 59		ptes = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
 60
 61	tables += roundup(ptes * sizeof(pte_t), PAGE_SIZE);
 
 62
 63#ifdef CONFIG_X86_32
 64	/* for fixmap */
 65	tables += roundup(__end_of_fixed_addresses * sizeof(pte_t), PAGE_SIZE);
 
 
 
 
 
 
 
 66#endif
 67	good_end = max_pfn_mapped << PAGE_SHIFT;
 
 
 
 
 
 68
 69	base = memblock_find_in_range(start, good_end, tables, PAGE_SIZE);
 70	if (base == MEMBLOCK_ERROR)
 71		panic("Cannot find space for the kernel page tables");
 72
 73	pgt_buf_start = base >> PAGE_SHIFT;
 74	pgt_buf_end = pgt_buf_start;
 75	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
 76
 77	printk(KERN_DEBUG "kernel direct mapping tables up to %lx @ %lx-%lx\n",
 78		end, pgt_buf_start << PAGE_SHIFT, pgt_buf_top << PAGE_SHIFT);
 79}
 80
 81void __init native_pagetable_reserve(u64 start, u64 end)
 82{
 83	memblock_x86_reserve_range(start, end, "PGTABLE");
 84}
 85
 86struct map_range {
 87	unsigned long start;
 88	unsigned long end;
 89	unsigned page_size_mask;
 90};
 91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 92#ifdef CONFIG_X86_32
 93#define NR_RANGE_MR 3
 94#else /* CONFIG_X86_64 */
 95#define NR_RANGE_MR 5
 96#endif
 97
 98static int __meminit save_mr(struct map_range *mr, int nr_range,
 99			     unsigned long start_pfn, unsigned long end_pfn,
100			     unsigned long page_size_mask)
101{
102	if (start_pfn < end_pfn) {
103		if (nr_range >= NR_RANGE_MR)
104			panic("run out of range for init_memory_mapping\n");
105		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
106		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
107		mr[nr_range].page_size_mask = page_size_mask;
108		nr_range++;
109	}
110
111	return nr_range;
112}
113
114/*
115 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
116 * This runs before bootmem is initialized and gets pages directly from
117 * the physical memory. To access them they are temporarily mapped.
118 */
119unsigned long __init_refok init_memory_mapping(unsigned long start,
120					       unsigned long end)
121{
122	unsigned long page_size_mask = 0;
123	unsigned long start_pfn, end_pfn;
124	unsigned long ret = 0;
125	unsigned long pos;
126
127	struct map_range mr[NR_RANGE_MR];
128	int nr_range, i;
129	int use_pse, use_gbpages;
 
 
 
 
 
 
 
130
131	printk(KERN_INFO "init_memory_mapping: %016lx-%016lx\n", start, end);
 
 
 
 
 
 
 
 
 
 
 
 
132
133#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_KMEMCHECK)
 
 
 
 
 
 
 
 
134	/*
135	 * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
136	 * This will simplify cpa(), which otherwise needs to support splitting
137	 * large pages into small in interrupt context, etc.
138	 */
139	use_pse = use_gbpages = 0;
140#else
141	use_pse = cpu_has_pse;
142	use_gbpages = direct_gbpages;
143#endif
144
145	/* Enable PSE if available */
146	if (cpu_has_pse)
147		set_in_cr4(X86_CR4_PSE);
148
149	/* Enable PGE if available */
150	if (cpu_has_pge) {
151		set_in_cr4(X86_CR4_PGE);
152		__supported_pte_mask |= _PAGE_GLOBAL;
153	}
154
155	if (use_gbpages)
156		page_size_mask |= 1 << PG_LEVEL_1G;
157	if (use_pse)
158		page_size_mask |= 1 << PG_LEVEL_2M;
 
 
 
159
160	memset(mr, 0, sizeof(mr));
161	nr_range = 0;
162
163	/* head if not big page alignment ? */
164	start_pfn = start >> PAGE_SHIFT;
165	pos = start_pfn << PAGE_SHIFT;
166#ifdef CONFIG_X86_32
167	/*
168	 * Don't use a large page for the first 2/4MB of memory
169	 * because there are often fixed size MTRRs in there
170	 * and overlapping MTRRs into large pages can cause
171	 * slowdowns.
172	 */
173	if (pos == 0)
174		end_pfn = 1<<(PMD_SHIFT - PAGE_SHIFT);
175	else
176		end_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
177				 << (PMD_SHIFT - PAGE_SHIFT);
178#else /* CONFIG_X86_64 */
179	end_pfn = ((pos + (PMD_SIZE - 1)) >> PMD_SHIFT)
180			<< (PMD_SHIFT - PAGE_SHIFT);
181#endif
182	if (end_pfn > (end >> PAGE_SHIFT))
183		end_pfn = end >> PAGE_SHIFT;
184	if (start_pfn < end_pfn) {
185		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
186		pos = end_pfn << PAGE_SHIFT;
187	}
188
189	/* big page (2M) range */
190	start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
191			 << (PMD_SHIFT - PAGE_SHIFT);
192#ifdef CONFIG_X86_32
193	end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
194#else /* CONFIG_X86_64 */
195	end_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT)
196			 << (PUD_SHIFT - PAGE_SHIFT);
197	if (end_pfn > ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT)))
198		end_pfn = ((end>>PMD_SHIFT)<<(PMD_SHIFT - PAGE_SHIFT));
199#endif
200
201	if (start_pfn < end_pfn) {
202		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
203				page_size_mask & (1<<PG_LEVEL_2M));
204		pos = end_pfn << PAGE_SHIFT;
205	}
206
207#ifdef CONFIG_X86_64
208	/* big page (1G) range */
209	start_pfn = ((pos + (PUD_SIZE - 1))>>PUD_SHIFT)
210			 << (PUD_SHIFT - PAGE_SHIFT);
211	end_pfn = (end >> PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT);
212	if (start_pfn < end_pfn) {
213		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
214				page_size_mask &
215				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
216		pos = end_pfn << PAGE_SHIFT;
217	}
218
219	/* tail is not big page (1G) alignment */
220	start_pfn = ((pos + (PMD_SIZE - 1))>>PMD_SHIFT)
221			 << (PMD_SHIFT - PAGE_SHIFT);
222	end_pfn = (end >> PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
223	if (start_pfn < end_pfn) {
224		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
225				page_size_mask & (1<<PG_LEVEL_2M));
226		pos = end_pfn << PAGE_SHIFT;
227	}
228#endif
229
230	/* tail is not big page (2M) alignment */
231	start_pfn = pos>>PAGE_SHIFT;
232	end_pfn = end>>PAGE_SHIFT;
233	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
234
 
 
 
235	/* try to merge same page size and continuous */
236	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
237		unsigned long old_start;
238		if (mr[i].end != mr[i+1].start ||
239		    mr[i].page_size_mask != mr[i+1].page_size_mask)
240			continue;
241		/* move it */
242		old_start = mr[i].start;
243		memmove(&mr[i], &mr[i+1],
244			(nr_range - 1 - i) * sizeof(struct map_range));
245		mr[i--].start = old_start;
246		nr_range--;
247	}
248
249	for (i = 0; i < nr_range; i++)
250		printk(KERN_DEBUG " %010lx - %010lx page %s\n",
251				mr[i].start, mr[i].end,
252			(mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
253			 (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));
254
255	/*
256	 * Find space for the kernel direct mapping tables.
257	 *
258	 * Later we should allocate these tables in the local node of the
259	 * memory mapped. Unfortunately this is done currently before the
260	 * nodes are discovered.
261	 */
262	if (!after_bootmem)
263		find_early_table_space(end, use_pse, use_gbpages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
264
265	for (i = 0; i < nr_range; i++)
266		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
267						   mr[i].page_size_mask);
268
269#ifdef CONFIG_X86_32
270	early_ioremap_page_table_range_init();
271
272	load_cr3(swapper_pg_dir);
273#endif
274
275	__flush_tlb_all();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
276
 
 
 
 
 
277	/*
278	 * Reserve the kernel pagetable pages we used (pgt_buf_start -
279	 * pgt_buf_end) and free the other ones (pgt_buf_end - pgt_buf_top)
280	 * so that they can be reused for other purposes.
281	 *
282	 * On native it just means calling memblock_x86_reserve_range, on Xen it
283	 * also means marking RW the pagetable pages that we allocated before
284	 * but that haven't been used.
285	 *
286	 * In fact on xen we mark RO the whole range pgt_buf_start -
287	 * pgt_buf_top, because we have to make sure that when
288	 * init_memory_mapping reaches the pagetable pages area, it maps
289	 * RO all the pagetable pages, including the ones that are beyond
290	 * pgt_buf_end at that time.
291	 */
292	if (!after_bootmem && pgt_buf_end > pgt_buf_start)
293		x86_init.mapping.pagetable_reserve(PFN_PHYS(pgt_buf_start),
294				PFN_PHYS(pgt_buf_end));
295
296	if (!after_bootmem)
297		early_memtest(start, end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
298
299	return ret >> PAGE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
300}
301
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
302
303/*
304 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
305 * is valid. The argument is a physical page number.
306 *
307 *
308 * On x86, access has to be given to the first megabyte of ram because that area
309 * contains bios code and data regions used by X and dosemu and similar apps.
310 * Access has to be given to non-kernel-ram areas as well, these contain the PCI
311 * mmio resources as well as potential bios/acpi data regions.
 
 
312 */
313int devmem_is_allowed(unsigned long pagenr)
314{
315	if (pagenr <= 256)
316		return 1;
317	if (iomem_is_exclusive(pagenr << PAGE_SHIFT))
 
 
 
 
 
318		return 0;
319	if (!page_is_ram(pagenr))
320		return 1;
321	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
322}
323
324void free_init_pages(char *what, unsigned long begin, unsigned long end)
325{
326	unsigned long addr;
327	unsigned long begin_aligned, end_aligned;
328
329	/* Make sure boundaries are page aligned */
330	begin_aligned = PAGE_ALIGN(begin);
331	end_aligned   = end & PAGE_MASK;
332
333	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
334		begin = begin_aligned;
335		end   = end_aligned;
336	}
337
338	if (begin >= end)
339		return;
340
341	addr = begin;
342
343	/*
344	 * If debugging page accesses then do not free this memory but
345	 * mark them not present - any buggy init-section access will
346	 * create a kernel page fault:
347	 */
348#ifdef CONFIG_DEBUG_PAGEALLOC
349	printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
350		begin, end);
351	set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
352#else
353	/*
354	 * We just marked the kernel text read only above, now that
355	 * we are going to free part of that, we need to make that
356	 * writeable and non-executable first.
357	 */
358	set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
359	set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
360
361	printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
362
363	for (; addr < end; addr += PAGE_SIZE) {
364		ClearPageReserved(virt_to_page(addr));
365		init_page_count(virt_to_page(addr));
366		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
367		free_page(addr);
368		totalram_pages++;
369	}
370#endif
371}
372
373void free_initmem(void)
374{
375	free_init_pages("unused kernel memory",
 
 
376			(unsigned long)(&__init_begin),
377			(unsigned long)(&__init_end));
378}
379
380#ifdef CONFIG_BLK_DEV_INITRD
381void free_initrd_mem(unsigned long start, unsigned long end)
382{
383	/*
384	 * end could be not aligned, and We can not align that,
385	 * decompresser could be confused by aligned initrd_end
386	 * We already reserve the end partial page before in
387	 *   - i386_start_kernel()
388	 *   - x86_64_start_kernel()
389	 *   - relocate_initrd()
390	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
391	 */
392	free_init_pages("initrd memory", start, PAGE_ALIGN(end));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
393}
 
 
 
 
 
 
 
 
 
 
 
 
394#endif
v4.17
  1#include <linux/gfp.h>
  2#include <linux/initrd.h>
  3#include <linux/ioport.h>
  4#include <linux/swap.h>
  5#include <linux/memblock.h>
  6#include <linux/bootmem.h>	/* for max_low_pfn */
  7
  8#include <asm/set_memory.h>
  9#include <asm/e820/api.h>
 10#include <asm/init.h>
 11#include <asm/page.h>
 12#include <asm/page_types.h>
 13#include <asm/sections.h>
 14#include <asm/setup.h>
 
 15#include <asm/tlbflush.h>
 16#include <asm/tlb.h>
 17#include <asm/proto.h>
 18#include <asm/dma.h>		/* for MAX_DMA_PFN */
 19#include <asm/microcode.h>
 20#include <asm/kaslr.h>
 21#include <asm/hypervisor.h>
 22#include <asm/cpufeature.h>
 23#include <asm/pti.h>
 24
 25/*
 26 * We need to define the tracepoints somewhere, and tlb.c
 27 * is only compied when SMP=y.
 28 */
 29#define CREATE_TRACE_POINTS
 30#include <trace/events/tlb.h>
 31
 32#include "mm_internal.h"
 33
 34/*
 35 * Tables translating between page_cache_type_t and pte encoding.
 36 *
 37 * The default values are defined statically as minimal supported mode;
 38 * WC and WT fall back to UC-.  pat_init() updates these values to support
 39 * more cache modes, WC and WT, when it is safe to do so.  See pat_init()
 40 * for the details.  Note, __early_ioremap() used during early boot-time
 41 * takes pgprot_t (pte encoding) and does not use these tables.
 42 *
 43 *   Index into __cachemode2pte_tbl[] is the cachemode.
 44 *
 45 *   Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
 46 *   (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
 47 */
 48uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
 49	[_PAGE_CACHE_MODE_WB      ]	= 0         | 0        ,
 50	[_PAGE_CACHE_MODE_WC      ]	= 0         | _PAGE_PCD,
 51	[_PAGE_CACHE_MODE_UC_MINUS]	= 0         | _PAGE_PCD,
 52	[_PAGE_CACHE_MODE_UC      ]	= _PAGE_PWT | _PAGE_PCD,
 53	[_PAGE_CACHE_MODE_WT      ]	= 0         | _PAGE_PCD,
 54	[_PAGE_CACHE_MODE_WP      ]	= 0         | _PAGE_PCD,
 55};
 56EXPORT_SYMBOL(__cachemode2pte_tbl);
 57
 58uint8_t __pte2cachemode_tbl[8] = {
 59	[__pte2cm_idx( 0        | 0         | 0        )] = _PAGE_CACHE_MODE_WB,
 60	[__pte2cm_idx(_PAGE_PWT | 0         | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
 61	[__pte2cm_idx( 0        | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC_MINUS,
 62	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0        )] = _PAGE_CACHE_MODE_UC,
 63	[__pte2cm_idx( 0        | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
 64	[__pte2cm_idx(_PAGE_PWT | 0         | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
 65	[__pte2cm_idx(0         | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
 66	[__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
 67};
 68EXPORT_SYMBOL(__pte2cachemode_tbl);
 69
 70static unsigned long __initdata pgt_buf_start;
 71static unsigned long __initdata pgt_buf_end;
 72static unsigned long __initdata pgt_buf_top;
 73
 74static unsigned long min_pfn_mapped;
 75
 76static bool __initdata can_use_brk_pgt = true;
 77
 78/*
 79 * Pages returned are already directly mapped.
 80 *
 81 * Changing that is likely to break Xen, see commit:
 82 *
 83 *    279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
 84 *
 85 * for detailed information.
 86 */
 87__ref void *alloc_low_pages(unsigned int num)
 88{
 89	unsigned long pfn;
 90	int i;
 91
 92	if (after_bootmem) {
 93		unsigned int order;
 94
 95		order = get_order((unsigned long)num << PAGE_SHIFT);
 96		return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
 97	}
 
 98
 99	if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
100		unsigned long ret;
101		if (min_pfn_mapped >= max_pfn_mapped)
102			panic("alloc_low_pages: ran out of memory");
103		ret = memblock_find_in_range(min_pfn_mapped << PAGE_SHIFT,
104					max_pfn_mapped << PAGE_SHIFT,
105					PAGE_SIZE * num , PAGE_SIZE);
106		if (!ret)
107			panic("alloc_low_pages: can not alloc memory");
108		memblock_reserve(ret, PAGE_SIZE * num);
109		pfn = ret >> PAGE_SHIFT;
110	} else {
111		pfn = pgt_buf_end;
112		pgt_buf_end += num;
113		printk(KERN_DEBUG "BRK [%#010lx, %#010lx] PGTABLE\n",
114			pfn << PAGE_SHIFT, (pgt_buf_end << PAGE_SHIFT) - 1);
115	}
116
117	for (i = 0; i < num; i++) {
118		void *adr;
119
120		adr = __va((pfn + i) << PAGE_SHIFT);
121		clear_page(adr);
122	}
 
 
 
 
123
124	return __va(pfn << PAGE_SHIFT);
125}
126
127/*
128 * By default need 3 4k for initial PMD_SIZE,  3 4k for 0-ISA_END_ADDRESS.
129 * With KASLR memory randomization, depending on the machine e820 memory
130 * and the PUD alignment. We may need twice more pages when KASLR memory
131 * randomization is enabled.
132 */
133#ifndef CONFIG_RANDOMIZE_MEMORY
134#define INIT_PGD_PAGE_COUNT      6
135#else
136#define INIT_PGD_PAGE_COUNT      12
137#endif
138#define INIT_PGT_BUF_SIZE	(INIT_PGD_PAGE_COUNT * PAGE_SIZE)
139RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
140void  __init early_alloc_pgt_buf(void)
141{
142	unsigned long tables = INIT_PGT_BUF_SIZE;
143	phys_addr_t base;
144
145	base = __pa(extend_brk(tables, PAGE_SIZE));
 
 
146
147	pgt_buf_start = base >> PAGE_SHIFT;
148	pgt_buf_end = pgt_buf_start;
149	pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
 
 
 
150}
151
152int after_bootmem;
153
154early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
 
155
156struct map_range {
157	unsigned long start;
158	unsigned long end;
159	unsigned page_size_mask;
160};
161
162static int page_size_mask;
163
164static void __init probe_page_size_mask(void)
165{
166	/*
167	 * For pagealloc debugging, identity mapping will use small pages.
168	 * This will simplify cpa(), which otherwise needs to support splitting
169	 * large pages into small in interrupt context, etc.
170	 */
171	if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
172		page_size_mask |= 1 << PG_LEVEL_2M;
173	else
174		direct_gbpages = 0;
175
176	/* Enable PSE if available */
177	if (boot_cpu_has(X86_FEATURE_PSE))
178		cr4_set_bits_and_update_boot(X86_CR4_PSE);
179
180	/* Enable PGE if available */
181	__supported_pte_mask &= ~_PAGE_GLOBAL;
182	if (boot_cpu_has(X86_FEATURE_PGE)) {
183		cr4_set_bits_and_update_boot(X86_CR4_PGE);
184		__supported_pte_mask |= _PAGE_GLOBAL;
185	}
186
187	/* By the default is everything supported: */
188	__default_kernel_pte_mask = __supported_pte_mask;
189	/* Except when with PTI where the kernel is mostly non-Global: */
190	if (cpu_feature_enabled(X86_FEATURE_PTI))
191		__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
192
193	/* Enable 1 GB linear kernel mappings if available: */
194	if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
195		printk(KERN_INFO "Using GB pages for direct mapping\n");
196		page_size_mask |= 1 << PG_LEVEL_1G;
197	} else {
198		direct_gbpages = 0;
199	}
200}
201
202static void setup_pcid(void)
203{
204	if (!IS_ENABLED(CONFIG_X86_64))
205		return;
206
207	if (!boot_cpu_has(X86_FEATURE_PCID))
208		return;
209
210	if (boot_cpu_has(X86_FEATURE_PGE)) {
211		/*
212		 * This can't be cr4_set_bits_and_update_boot() -- the
213		 * trampoline code can't handle CR4.PCIDE and it wouldn't
214		 * do any good anyway.  Despite the name,
215		 * cr4_set_bits_and_update_boot() doesn't actually cause
216		 * the bits in question to remain set all the way through
217		 * the secondary boot asm.
218		 *
219		 * Instead, we brute-force it and set CR4.PCIDE manually in
220		 * start_secondary().
221		 */
222		cr4_set_bits(X86_CR4_PCIDE);
223
224		/*
225		 * INVPCID's single-context modes (2/3) only work if we set
226		 * X86_CR4_PCIDE, *and* we INVPCID support.  It's unusable
227		 * on systems that have X86_CR4_PCIDE clear, or that have
228		 * no INVPCID support at all.
229		 */
230		if (boot_cpu_has(X86_FEATURE_INVPCID))
231			setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
232	} else {
233		/*
234		 * flush_tlb_all(), as currently implemented, won't work if
235		 * PCID is on but PGE is not.  Since that combination
236		 * doesn't exist on real hardware, there's no reason to try
237		 * to fully support it, but it's polite to avoid corrupting
238		 * data if we're on an improperly configured VM.
239		 */
240		setup_clear_cpu_cap(X86_FEATURE_PCID);
241	}
242}
243
244#ifdef CONFIG_X86_32
245#define NR_RANGE_MR 3
246#else /* CONFIG_X86_64 */
247#define NR_RANGE_MR 5
248#endif
249
250static int __meminit save_mr(struct map_range *mr, int nr_range,
251			     unsigned long start_pfn, unsigned long end_pfn,
252			     unsigned long page_size_mask)
253{
254	if (start_pfn < end_pfn) {
255		if (nr_range >= NR_RANGE_MR)
256			panic("run out of range for init_memory_mapping\n");
257		mr[nr_range].start = start_pfn<<PAGE_SHIFT;
258		mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
259		mr[nr_range].page_size_mask = page_size_mask;
260		nr_range++;
261	}
262
263	return nr_range;
264}
265
266/*
267 * adjust the page_size_mask for small range to go with
268 *	big page size instead small one if nearby are ram too.
 
269 */
270static void __ref adjust_range_page_size_mask(struct map_range *mr,
271							 int nr_range)
272{
273	int i;
 
 
 
274
275	for (i = 0; i < nr_range; i++) {
276		if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
277		    !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
278			unsigned long start = round_down(mr[i].start, PMD_SIZE);
279			unsigned long end = round_up(mr[i].end, PMD_SIZE);
280
281#ifdef CONFIG_X86_32
282			if ((end >> PAGE_SHIFT) > max_low_pfn)
283				continue;
284#endif
285
286			if (memblock_is_region_memory(start, end - start))
287				mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
288		}
289		if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
290		    !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
291			unsigned long start = round_down(mr[i].start, PUD_SIZE);
292			unsigned long end = round_up(mr[i].end, PUD_SIZE);
293
294			if (memblock_is_region_memory(start, end - start))
295				mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
296		}
297	}
298}
299
300static const char *page_size_string(struct map_range *mr)
301{
302	static const char str_1g[] = "1G";
303	static const char str_2m[] = "2M";
304	static const char str_4m[] = "4M";
305	static const char str_4k[] = "4k";
306
307	if (mr->page_size_mask & (1<<PG_LEVEL_1G))
308		return str_1g;
309	/*
310	 * 32-bit without PAE has a 4M large page size.
311	 * PG_LEVEL_2M is misnamed, but we can at least
312	 * print out the right size in the string.
313	 */
314	if (IS_ENABLED(CONFIG_X86_32) &&
315	    !IS_ENABLED(CONFIG_X86_PAE) &&
316	    mr->page_size_mask & (1<<PG_LEVEL_2M))
317		return str_4m;
 
318
319	if (mr->page_size_mask & (1<<PG_LEVEL_2M))
320		return str_2m;
 
321
322	return str_4k;
323}
 
 
 
324
325static int __meminit split_mem_range(struct map_range *mr, int nr_range,
326				     unsigned long start,
327				     unsigned long end)
328{
329	unsigned long start_pfn, end_pfn, limit_pfn;
330	unsigned long pfn;
331	int i;
332
333	limit_pfn = PFN_DOWN(end);
 
334
335	/* head if not big page alignment ? */
336	pfn = start_pfn = PFN_DOWN(start);
 
337#ifdef CONFIG_X86_32
338	/*
339	 * Don't use a large page for the first 2/4MB of memory
340	 * because there are often fixed size MTRRs in there
341	 * and overlapping MTRRs into large pages can cause
342	 * slowdowns.
343	 */
344	if (pfn == 0)
345		end_pfn = PFN_DOWN(PMD_SIZE);
346	else
347		end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 
348#else /* CONFIG_X86_64 */
349	end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 
350#endif
351	if (end_pfn > limit_pfn)
352		end_pfn = limit_pfn;
353	if (start_pfn < end_pfn) {
354		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
355		pfn = end_pfn;
356	}
357
358	/* big page (2M) range */
359	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
 
360#ifdef CONFIG_X86_32
361	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
362#else /* CONFIG_X86_64 */
363	end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
364	if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
365		end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
 
366#endif
367
368	if (start_pfn < end_pfn) {
369		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
370				page_size_mask & (1<<PG_LEVEL_2M));
371		pfn = end_pfn;
372	}
373
374#ifdef CONFIG_X86_64
375	/* big page (1G) range */
376	start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
377	end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
 
378	if (start_pfn < end_pfn) {
379		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
380				page_size_mask &
381				 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
382		pfn = end_pfn;
383	}
384
385	/* tail is not big page (1G) alignment */
386	start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
387	end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
 
388	if (start_pfn < end_pfn) {
389		nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
390				page_size_mask & (1<<PG_LEVEL_2M));
391		pfn = end_pfn;
392	}
393#endif
394
395	/* tail is not big page (2M) alignment */
396	start_pfn = pfn;
397	end_pfn = limit_pfn;
398	nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
399
400	if (!after_bootmem)
401		adjust_range_page_size_mask(mr, nr_range);
402
403	/* try to merge same page size and continuous */
404	for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
405		unsigned long old_start;
406		if (mr[i].end != mr[i+1].start ||
407		    mr[i].page_size_mask != mr[i+1].page_size_mask)
408			continue;
409		/* move it */
410		old_start = mr[i].start;
411		memmove(&mr[i], &mr[i+1],
412			(nr_range - 1 - i) * sizeof(struct map_range));
413		mr[i--].start = old_start;
414		nr_range--;
415	}
416
417	for (i = 0; i < nr_range; i++)
418		pr_debug(" [mem %#010lx-%#010lx] page %s\n",
419				mr[i].start, mr[i].end - 1,
420				page_size_string(&mr[i]));
 
421
422	return nr_range;
423}
424
425struct range pfn_mapped[E820_MAX_ENTRIES];
426int nr_pfn_mapped;
427
428static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
429{
430	nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
431					     nr_pfn_mapped, start_pfn, end_pfn);
432	nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
433
434	max_pfn_mapped = max(max_pfn_mapped, end_pfn);
435
436	if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
437		max_low_pfn_mapped = max(max_low_pfn_mapped,
438					 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
439}
440
441bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
442{
443	int i;
444
445	for (i = 0; i < nr_pfn_mapped; i++)
446		if ((start_pfn >= pfn_mapped[i].start) &&
447		    (end_pfn <= pfn_mapped[i].end))
448			return true;
449
450	return false;
451}
452
453/*
454 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
455 * This runs before bootmem is initialized and gets pages directly from
456 * the physical memory. To access them they are temporarily mapped.
457 */
458unsigned long __ref init_memory_mapping(unsigned long start,
459					       unsigned long end)
460{
461	struct map_range mr[NR_RANGE_MR];
462	unsigned long ret = 0;
463	int nr_range, i;
464
465	pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
466	       start, end - 1);
467
468	memset(mr, 0, sizeof(mr));
469	nr_range = split_mem_range(mr, 0, start, end);
470
471	for (i = 0; i < nr_range; i++)
472		ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
473						   mr[i].page_size_mask);
474
475	add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
 
476
477	return ret >> PAGE_SHIFT;
478}
479
480/*
481 * We need to iterate through the E820 memory map and create direct mappings
482 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
483 * create direct mappings for all pfns from [0 to max_low_pfn) and
484 * [4GB to max_pfn) because of possible memory holes in high addresses
485 * that cannot be marked as UC by fixed/variable range MTRRs.
486 * Depending on the alignment of E820 ranges, this may possibly result
487 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
488 *
489 * init_mem_mapping() calls init_range_memory_mapping() with big range.
490 * That range would have hole in the middle or ends, and only ram parts
491 * will be mapped in init_range_memory_mapping().
492 */
493static unsigned long __init init_range_memory_mapping(
494					   unsigned long r_start,
495					   unsigned long r_end)
496{
497	unsigned long start_pfn, end_pfn;
498	unsigned long mapped_ram_size = 0;
499	int i;
500
501	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
502		u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
503		u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
504		if (start >= end)
505			continue;
506
507		/*
508		 * if it is overlapping with brk pgt, we need to
509		 * alloc pgt buf from memblock instead.
510		 */
511		can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
512				    min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
513		init_memory_mapping(start, end);
514		mapped_ram_size += end - start;
515		can_use_brk_pgt = true;
516	}
517
518	return mapped_ram_size;
519}
520
521static unsigned long __init get_new_step_size(unsigned long step_size)
522{
523	/*
524	 * Initial mapped size is PMD_SIZE (2M).
525	 * We can not set step_size to be PUD_SIZE (1G) yet.
526	 * In worse case, when we cross the 1G boundary, and
527	 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
528	 * to map 1G range with PTE. Hence we use one less than the
529	 * difference of page table level shifts.
 
530	 *
531	 * Don't need to worry about overflow in the top-down case, on 32bit,
532	 * when step_size is 0, round_down() returns 0 for start, and that
533	 * turns it into 0x100000000ULL.
534	 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
535	 * needs to be taken into consideration by the code below.
536	 */
537	return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
538}
 
539
540/**
541 * memory_map_top_down - Map [map_start, map_end) top down
542 * @map_start: start address of the target memory range
543 * @map_end: end address of the target memory range
544 *
545 * This function will setup direct mapping for memory range
546 * [map_start, map_end) in top-down. That said, the page tables
547 * will be allocated at the end of the memory, and we map the
548 * memory in top-down.
549 */
550static void __init memory_map_top_down(unsigned long map_start,
551				       unsigned long map_end)
552{
553	unsigned long real_end, start, last_start;
554	unsigned long step_size;
555	unsigned long addr;
556	unsigned long mapped_ram_size = 0;
557
558	/* xen has big range in reserved near end of ram, skip it at first.*/
559	addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
560	real_end = addr + PMD_SIZE;
561
562	/* step_size need to be small so pgt_buf from BRK could cover it */
563	step_size = PMD_SIZE;
564	max_pfn_mapped = 0; /* will get exact value next */
565	min_pfn_mapped = real_end >> PAGE_SHIFT;
566	last_start = start = real_end;
567
568	/*
569	 * We start from the top (end of memory) and go to the bottom.
570	 * The memblock_find_in_range() gets us a block of RAM from the
571	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
572	 * for page table.
573	 */
574	while (last_start > map_start) {
575		if (last_start > step_size) {
576			start = round_down(last_start - 1, step_size);
577			if (start < map_start)
578				start = map_start;
579		} else
580			start = map_start;
581		mapped_ram_size += init_range_memory_mapping(start,
582							last_start);
583		last_start = start;
584		min_pfn_mapped = last_start >> PAGE_SHIFT;
585		if (mapped_ram_size >= step_size)
586			step_size = get_new_step_size(step_size);
587	}
588
589	if (real_end < map_end)
590		init_range_memory_mapping(real_end, map_end);
591}
592
593/**
594 * memory_map_bottom_up - Map [map_start, map_end) bottom up
595 * @map_start: start address of the target memory range
596 * @map_end: end address of the target memory range
597 *
598 * This function will setup direct mapping for memory range
599 * [map_start, map_end) in bottom-up. Since we have limited the
600 * bottom-up allocation above the kernel, the page tables will
601 * be allocated just above the kernel and we map the memory
602 * in [map_start, map_end) in bottom-up.
603 */
604static void __init memory_map_bottom_up(unsigned long map_start,
605					unsigned long map_end)
606{
607	unsigned long next, start;
608	unsigned long mapped_ram_size = 0;
609	/* step_size need to be small so pgt_buf from BRK could cover it */
610	unsigned long step_size = PMD_SIZE;
611
612	start = map_start;
613	min_pfn_mapped = start >> PAGE_SHIFT;
614
615	/*
616	 * We start from the bottom (@map_start) and go to the top (@map_end).
617	 * The memblock_find_in_range() gets us a block of RAM from the
618	 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
619	 * for page table.
620	 */
621	while (start < map_end) {
622		if (step_size && map_end - start > step_size) {
623			next = round_up(start + 1, step_size);
624			if (next > map_end)
625				next = map_end;
626		} else {
627			next = map_end;
628		}
629
630		mapped_ram_size += init_range_memory_mapping(start, next);
631		start = next;
632
633		if (mapped_ram_size >= step_size)
634			step_size = get_new_step_size(step_size);
635	}
636}
637
638void __init init_mem_mapping(void)
639{
640	unsigned long end;
641
642	pti_check_boottime_disable();
643	probe_page_size_mask();
644	setup_pcid();
645
646#ifdef CONFIG_X86_64
647	end = max_pfn << PAGE_SHIFT;
648#else
649	end = max_low_pfn << PAGE_SHIFT;
650#endif
651
652	/* the ISA range is always mapped regardless of memory holes */
653	init_memory_mapping(0, ISA_END_ADDRESS);
654
655	/* Init the trampoline, possibly with KASLR memory offset */
656	init_trampoline();
657
658	/*
659	 * If the allocation is in bottom-up direction, we setup direct mapping
660	 * in bottom-up, otherwise we setup direct mapping in top-down.
661	 */
662	if (memblock_bottom_up()) {
663		unsigned long kernel_end = __pa_symbol(_end);
664
665		/*
666		 * we need two separate calls here. This is because we want to
667		 * allocate page tables above the kernel. So we first map
668		 * [kernel_end, end) to make memory above the kernel be mapped
669		 * as soon as possible. And then use page tables allocated above
670		 * the kernel to map [ISA_END_ADDRESS, kernel_end).
671		 */
672		memory_map_bottom_up(kernel_end, end);
673		memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
674	} else {
675		memory_map_top_down(ISA_END_ADDRESS, end);
676	}
677
678#ifdef CONFIG_X86_64
679	if (max_pfn > max_low_pfn) {
680		/* can we preseve max_low_pfn ?*/
681		max_low_pfn = max_pfn;
682	}
683#else
684	early_ioremap_page_table_range_init();
685#endif
686
687	load_cr3(swapper_pg_dir);
688	__flush_tlb_all();
689
690	x86_init.hyper.init_mem_mapping();
691
692	early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
693}
694
695/*
696 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
697 * is valid. The argument is a physical page number.
698 *
699 * On x86, access has to be given to the first megabyte of RAM because that
700 * area traditionally contains BIOS code and data regions used by X, dosemu,
701 * and similar apps. Since they map the entire memory range, the whole range
702 * must be allowed (for mapping), but any areas that would otherwise be
703 * disallowed are flagged as being "zero filled" instead of rejected.
704 * Access has to be given to non-kernel-ram areas as well, these contain the
705 * PCI mmio resources as well as potential bios/acpi data regions.
706 */
707int devmem_is_allowed(unsigned long pagenr)
708{
709	if (page_is_ram(pagenr)) {
710		/*
711		 * For disallowed memory regions in the low 1MB range,
712		 * request that the page be shown as all zeros.
713		 */
714		if (pagenr < 256)
715			return 2;
716
717		return 0;
718	}
719
720	/*
721	 * This must follow RAM test, since System RAM is considered a
722	 * restricted resource under CONFIG_STRICT_IOMEM.
723	 */
724	if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
725		/* Low 1MB bypasses iomem restrictions. */
726		if (pagenr < 256)
727			return 1;
728
729		return 0;
730	}
731
732	return 1;
733}
734
735void free_init_pages(char *what, unsigned long begin, unsigned long end)
736{
 
737	unsigned long begin_aligned, end_aligned;
738
739	/* Make sure boundaries are page aligned */
740	begin_aligned = PAGE_ALIGN(begin);
741	end_aligned   = end & PAGE_MASK;
742
743	if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
744		begin = begin_aligned;
745		end   = end_aligned;
746	}
747
748	if (begin >= end)
749		return;
750
 
 
751	/*
752	 * If debugging page accesses then do not free this memory but
753	 * mark them not present - any buggy init-section access will
754	 * create a kernel page fault:
755	 */
756	if (debug_pagealloc_enabled()) {
757		pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
758			begin, end - 1);
759		set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
760	} else {
761		/*
762		 * We just marked the kernel text read only above, now that
763		 * we are going to free part of that, we need to make that
764		 * writeable and non-executable first.
765		 */
766		set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
767		set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
768
769		free_reserved_area((void *)begin, (void *)end,
770				   POISON_FREE_INITMEM, what);
 
 
 
 
 
 
771	}
 
772}
773
774void __ref free_initmem(void)
775{
776	e820__reallocate_tables();
777
778	free_init_pages("unused kernel",
779			(unsigned long)(&__init_begin),
780			(unsigned long)(&__init_end));
781}
782
783#ifdef CONFIG_BLK_DEV_INITRD
784void __init free_initrd_mem(unsigned long start, unsigned long end)
785{
786	/*
787	 * end could be not aligned, and We can not align that,
788	 * decompresser could be confused by aligned initrd_end
789	 * We already reserve the end partial page before in
790	 *   - i386_start_kernel()
791	 *   - x86_64_start_kernel()
792	 *   - relocate_initrd()
793	 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
794	 */
795	free_init_pages("initrd", start, PAGE_ALIGN(end));
796}
797#endif
798
799/*
800 * Calculate the precise size of the DMA zone (first 16 MB of RAM),
801 * and pass it to the MM layer - to help it set zone watermarks more
802 * accurately.
803 *
804 * Done on 64-bit systems only for the time being, although 32-bit systems
805 * might benefit from this as well.
806 */
807void __init memblock_find_dma_reserve(void)
808{
809#ifdef CONFIG_X86_64
810	u64 nr_pages = 0, nr_free_pages = 0;
811	unsigned long start_pfn, end_pfn;
812	phys_addr_t start_addr, end_addr;
813	int i;
814	u64 u;
815
816	/*
817	 * Iterate over all memory ranges (free and reserved ones alike),
818	 * to calculate the total number of pages in the first 16 MB of RAM:
819	 */
820	nr_pages = 0;
821	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
822		start_pfn = min(start_pfn, MAX_DMA_PFN);
823		end_pfn   = min(end_pfn,   MAX_DMA_PFN);
824
825		nr_pages += end_pfn - start_pfn;
826	}
827
828	/*
829	 * Iterate over free memory ranges to calculate the number of free
830	 * pages in the DMA zone, while not counting potential partial
831	 * pages at the beginning or the end of the range:
832	 */
833	nr_free_pages = 0;
834	for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
835		start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
836		end_pfn   = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
837
838		if (start_pfn < end_pfn)
839			nr_free_pages += end_pfn - start_pfn;
840	}
841
842	set_dma_reserve(nr_pages - nr_free_pages);
843#endif
844}
845
846void __init zone_sizes_init(void)
847{
848	unsigned long max_zone_pfns[MAX_NR_ZONES];
849
850	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
851
852#ifdef CONFIG_ZONE_DMA
853	max_zone_pfns[ZONE_DMA]		= min(MAX_DMA_PFN, max_low_pfn);
854#endif
855#ifdef CONFIG_ZONE_DMA32
856	max_zone_pfns[ZONE_DMA32]	= min(MAX_DMA32_PFN, max_low_pfn);
857#endif
858	max_zone_pfns[ZONE_NORMAL]	= max_low_pfn;
859#ifdef CONFIG_HIGHMEM
860	max_zone_pfns[ZONE_HIGHMEM]	= max_pfn;
861#endif
862
863	free_area_init_nodes(max_zone_pfns);
864}
865
866__visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
867	.loaded_mm = &init_mm,
868	.next_asid = 1,
869	.cr4 = ~0UL,	/* fail hard if we screw up cr4 shadow initialization */
870};
871EXPORT_PER_CPU_SYMBOL(cpu_tlbstate);
872
873void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
874{
875	/* entry 0 MUST be WB (hardwired to speed up translations) */
876	BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
877
878	__cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
879	__pte2cachemode_tbl[entry] = cache;
880}