Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
Note: File does not exist in v3.1.
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * KVM/MIPS: MIPS specific KVM APIs
   7 *
   8 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
   9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
  10 */
  11
  12#include <linux/bitops.h>
  13#include <linux/errno.h>
  14#include <linux/err.h>
  15#include <linux/kdebug.h>
  16#include <linux/module.h>
  17#include <linux/uaccess.h>
  18#include <linux/vmalloc.h>
  19#include <linux/sched/signal.h>
  20#include <linux/fs.h>
  21#include <linux/bootmem.h>
  22
  23#include <asm/fpu.h>
  24#include <asm/page.h>
  25#include <asm/cacheflush.h>
  26#include <asm/mmu_context.h>
  27#include <asm/pgalloc.h>
  28#include <asm/pgtable.h>
  29
  30#include <linux/kvm_host.h>
  31
  32#include "interrupt.h"
  33#include "commpage.h"
  34
  35#define CREATE_TRACE_POINTS
  36#include "trace.h"
  37
  38#ifndef VECTORSPACING
  39#define VECTORSPACING 0x100	/* for EI/VI mode */
  40#endif
  41
  42#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
  43struct kvm_stats_debugfs_item debugfs_entries[] = {
  44	{ "wait",	  VCPU_STAT(wait_exits),	 KVM_STAT_VCPU },
  45	{ "cache",	  VCPU_STAT(cache_exits),	 KVM_STAT_VCPU },
  46	{ "signal",	  VCPU_STAT(signal_exits),	 KVM_STAT_VCPU },
  47	{ "interrupt",	  VCPU_STAT(int_exits),		 KVM_STAT_VCPU },
  48	{ "cop_unusable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
  49	{ "tlbmod",	  VCPU_STAT(tlbmod_exits),	 KVM_STAT_VCPU },
  50	{ "tlbmiss_ld",	  VCPU_STAT(tlbmiss_ld_exits),	 KVM_STAT_VCPU },
  51	{ "tlbmiss_st",	  VCPU_STAT(tlbmiss_st_exits),	 KVM_STAT_VCPU },
  52	{ "addrerr_st",	  VCPU_STAT(addrerr_st_exits),	 KVM_STAT_VCPU },
  53	{ "addrerr_ld",	  VCPU_STAT(addrerr_ld_exits),	 KVM_STAT_VCPU },
  54	{ "syscall",	  VCPU_STAT(syscall_exits),	 KVM_STAT_VCPU },
  55	{ "resvd_inst",	  VCPU_STAT(resvd_inst_exits),	 KVM_STAT_VCPU },
  56	{ "break_inst",	  VCPU_STAT(break_inst_exits),	 KVM_STAT_VCPU },
  57	{ "trap_inst",	  VCPU_STAT(trap_inst_exits),	 KVM_STAT_VCPU },
  58	{ "msa_fpe",	  VCPU_STAT(msa_fpe_exits),	 KVM_STAT_VCPU },
  59	{ "fpe",	  VCPU_STAT(fpe_exits),		 KVM_STAT_VCPU },
  60	{ "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
  61	{ "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
  62#ifdef CONFIG_KVM_MIPS_VZ
  63	{ "vz_gpsi",	  VCPU_STAT(vz_gpsi_exits),	 KVM_STAT_VCPU },
  64	{ "vz_gsfc",	  VCPU_STAT(vz_gsfc_exits),	 KVM_STAT_VCPU },
  65	{ "vz_hc",	  VCPU_STAT(vz_hc_exits),	 KVM_STAT_VCPU },
  66	{ "vz_grr",	  VCPU_STAT(vz_grr_exits),	 KVM_STAT_VCPU },
  67	{ "vz_gva",	  VCPU_STAT(vz_gva_exits),	 KVM_STAT_VCPU },
  68	{ "vz_ghfc",	  VCPU_STAT(vz_ghfc_exits),	 KVM_STAT_VCPU },
  69	{ "vz_gpa",	  VCPU_STAT(vz_gpa_exits),	 KVM_STAT_VCPU },
  70	{ "vz_resvd",	  VCPU_STAT(vz_resvd_exits),	 KVM_STAT_VCPU },
  71#endif
  72	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
  73	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
  74	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
  75	{ "halt_wakeup",  VCPU_STAT(halt_wakeup),	 KVM_STAT_VCPU },
  76	{NULL}
  77};
  78
  79bool kvm_trace_guest_mode_change;
  80
  81int kvm_guest_mode_change_trace_reg(void)
  82{
  83	kvm_trace_guest_mode_change = 1;
  84	return 0;
  85}
  86
  87void kvm_guest_mode_change_trace_unreg(void)
  88{
  89	kvm_trace_guest_mode_change = 0;
  90}
  91
  92/*
  93 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
  94 * Config7, so we are "runnable" if interrupts are pending
  95 */
  96int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  97{
  98	return !!(vcpu->arch.pending_exceptions);
  99}
 100
 101bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
 102{
 103	return false;
 104}
 105
 106int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
 107{
 108	return 1;
 109}
 110
 111int kvm_arch_hardware_enable(void)
 112{
 113	return kvm_mips_callbacks->hardware_enable();
 114}
 115
 116void kvm_arch_hardware_disable(void)
 117{
 118	kvm_mips_callbacks->hardware_disable();
 119}
 120
 121int kvm_arch_hardware_setup(void)
 122{
 123	return 0;
 124}
 125
 126void kvm_arch_check_processor_compat(void *rtn)
 127{
 128	*(int *)rtn = 0;
 129}
 130
 131int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
 132{
 133	switch (type) {
 134#ifdef CONFIG_KVM_MIPS_VZ
 135	case KVM_VM_MIPS_VZ:
 136#else
 137	case KVM_VM_MIPS_TE:
 138#endif
 139		break;
 140	default:
 141		/* Unsupported KVM type */
 142		return -EINVAL;
 143	};
 144
 145	/* Allocate page table to map GPA -> RPA */
 146	kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
 147	if (!kvm->arch.gpa_mm.pgd)
 148		return -ENOMEM;
 149
 150	return 0;
 151}
 152
 153bool kvm_arch_has_vcpu_debugfs(void)
 154{
 155	return false;
 156}
 157
 158int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
 159{
 160	return 0;
 161}
 162
 163void kvm_mips_free_vcpus(struct kvm *kvm)
 164{
 165	unsigned int i;
 166	struct kvm_vcpu *vcpu;
 167
 168	kvm_for_each_vcpu(i, vcpu, kvm) {
 169		kvm_arch_vcpu_free(vcpu);
 170	}
 171
 172	mutex_lock(&kvm->lock);
 173
 174	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
 175		kvm->vcpus[i] = NULL;
 176
 177	atomic_set(&kvm->online_vcpus, 0);
 178
 179	mutex_unlock(&kvm->lock);
 180}
 181
 182static void kvm_mips_free_gpa_pt(struct kvm *kvm)
 183{
 184	/* It should always be safe to remove after flushing the whole range */
 185	WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
 186	pgd_free(NULL, kvm->arch.gpa_mm.pgd);
 187}
 188
 189void kvm_arch_destroy_vm(struct kvm *kvm)
 190{
 191	kvm_mips_free_vcpus(kvm);
 192	kvm_mips_free_gpa_pt(kvm);
 193}
 194
 195long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
 196			unsigned long arg)
 197{
 198	return -ENOIOCTLCMD;
 199}
 200
 201int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
 202			    unsigned long npages)
 203{
 204	return 0;
 205}
 206
 207void kvm_arch_flush_shadow_all(struct kvm *kvm)
 208{
 209	/* Flush whole GPA */
 210	kvm_mips_flush_gpa_pt(kvm, 0, ~0);
 211
 212	/* Let implementation do the rest */
 213	kvm_mips_callbacks->flush_shadow_all(kvm);
 214}
 215
 216void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
 217				   struct kvm_memory_slot *slot)
 218{
 219	/*
 220	 * The slot has been made invalid (ready for moving or deletion), so we
 221	 * need to ensure that it can no longer be accessed by any guest VCPUs.
 222	 */
 223
 224	spin_lock(&kvm->mmu_lock);
 225	/* Flush slot from GPA */
 226	kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
 227			      slot->base_gfn + slot->npages - 1);
 228	/* Let implementation do the rest */
 229	kvm_mips_callbacks->flush_shadow_memslot(kvm, slot);
 230	spin_unlock(&kvm->mmu_lock);
 231}
 232
 233int kvm_arch_prepare_memory_region(struct kvm *kvm,
 234				   struct kvm_memory_slot *memslot,
 235				   const struct kvm_userspace_memory_region *mem,
 236				   enum kvm_mr_change change)
 237{
 238	return 0;
 239}
 240
 241void kvm_arch_commit_memory_region(struct kvm *kvm,
 242				   const struct kvm_userspace_memory_region *mem,
 243				   const struct kvm_memory_slot *old,
 244				   const struct kvm_memory_slot *new,
 245				   enum kvm_mr_change change)
 246{
 247	int needs_flush;
 248
 249	kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
 250		  __func__, kvm, mem->slot, mem->guest_phys_addr,
 251		  mem->memory_size, mem->userspace_addr);
 252
 253	/*
 254	 * If dirty page logging is enabled, write protect all pages in the slot
 255	 * ready for dirty logging.
 256	 *
 257	 * There is no need to do this in any of the following cases:
 258	 * CREATE:	No dirty mappings will already exist.
 259	 * MOVE/DELETE:	The old mappings will already have been cleaned up by
 260	 *		kvm_arch_flush_shadow_memslot()
 261	 */
 262	if (change == KVM_MR_FLAGS_ONLY &&
 263	    (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
 264	     new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
 265		spin_lock(&kvm->mmu_lock);
 266		/* Write protect GPA page table entries */
 267		needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
 268					new->base_gfn + new->npages - 1);
 269		/* Let implementation do the rest */
 270		if (needs_flush)
 271			kvm_mips_callbacks->flush_shadow_memslot(kvm, new);
 272		spin_unlock(&kvm->mmu_lock);
 273	}
 274}
 275
 276static inline void dump_handler(const char *symbol, void *start, void *end)
 277{
 278	u32 *p;
 279
 280	pr_debug("LEAF(%s)\n", symbol);
 281
 282	pr_debug("\t.set push\n");
 283	pr_debug("\t.set noreorder\n");
 284
 285	for (p = start; p < (u32 *)end; ++p)
 286		pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
 287
 288	pr_debug("\t.set\tpop\n");
 289
 290	pr_debug("\tEND(%s)\n", symbol);
 291}
 292
 293struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
 294{
 295	int err, size;
 296	void *gebase, *p, *handler, *refill_start, *refill_end;
 297	int i;
 298
 299	struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
 300
 301	if (!vcpu) {
 302		err = -ENOMEM;
 303		goto out;
 304	}
 305
 306	err = kvm_vcpu_init(vcpu, kvm, id);
 307
 308	if (err)
 309		goto out_free_cpu;
 310
 311	kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
 312
 313	/*
 314	 * Allocate space for host mode exception handlers that handle
 315	 * guest mode exits
 316	 */
 317	if (cpu_has_veic || cpu_has_vint)
 318		size = 0x200 + VECTORSPACING * 64;
 319	else
 320		size = 0x4000;
 321
 322	gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
 323
 324	if (!gebase) {
 325		err = -ENOMEM;
 326		goto out_uninit_cpu;
 327	}
 328	kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
 329		  ALIGN(size, PAGE_SIZE), gebase);
 330
 331	/*
 332	 * Check new ebase actually fits in CP0_EBase. The lack of a write gate
 333	 * limits us to the low 512MB of physical address space. If the memory
 334	 * we allocate is out of range, just give up now.
 335	 */
 336	if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
 337		kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
 338			gebase);
 339		err = -ENOMEM;
 340		goto out_free_gebase;
 341	}
 342
 343	/* Save new ebase */
 344	vcpu->arch.guest_ebase = gebase;
 345
 346	/* Build guest exception vectors dynamically in unmapped memory */
 347	handler = gebase + 0x2000;
 348
 349	/* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
 350	refill_start = gebase;
 351	if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && IS_ENABLED(CONFIG_64BIT))
 352		refill_start += 0x080;
 353	refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
 354
 355	/* General Exception Entry point */
 356	kvm_mips_build_exception(gebase + 0x180, handler);
 357
 358	/* For vectored interrupts poke the exception code @ all offsets 0-7 */
 359	for (i = 0; i < 8; i++) {
 360		kvm_debug("L1 Vectored handler @ %p\n",
 361			  gebase + 0x200 + (i * VECTORSPACING));
 362		kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
 363					 handler);
 364	}
 365
 366	/* General exit handler */
 367	p = handler;
 368	p = kvm_mips_build_exit(p);
 369
 370	/* Guest entry routine */
 371	vcpu->arch.vcpu_run = p;
 372	p = kvm_mips_build_vcpu_run(p);
 373
 374	/* Dump the generated code */
 375	pr_debug("#include <asm/asm.h>\n");
 376	pr_debug("#include <asm/regdef.h>\n");
 377	pr_debug("\n");
 378	dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
 379	dump_handler("kvm_tlb_refill", refill_start, refill_end);
 380	dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
 381	dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
 382
 383	/* Invalidate the icache for these ranges */
 384	flush_icache_range((unsigned long)gebase,
 385			   (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
 386
 387	/*
 388	 * Allocate comm page for guest kernel, a TLB will be reserved for
 389	 * mapping GVA @ 0xFFFF8000 to this page
 390	 */
 391	vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
 392
 393	if (!vcpu->arch.kseg0_commpage) {
 394		err = -ENOMEM;
 395		goto out_free_gebase;
 396	}
 397
 398	kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
 399	kvm_mips_commpage_init(vcpu);
 400
 401	/* Init */
 402	vcpu->arch.last_sched_cpu = -1;
 403	vcpu->arch.last_exec_cpu = -1;
 404
 405	return vcpu;
 406
 407out_free_gebase:
 408	kfree(gebase);
 409
 410out_uninit_cpu:
 411	kvm_vcpu_uninit(vcpu);
 412
 413out_free_cpu:
 414	kfree(vcpu);
 415
 416out:
 417	return ERR_PTR(err);
 418}
 419
 420void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
 421{
 422	hrtimer_cancel(&vcpu->arch.comparecount_timer);
 423
 424	kvm_vcpu_uninit(vcpu);
 425
 426	kvm_mips_dump_stats(vcpu);
 427
 428	kvm_mmu_free_memory_caches(vcpu);
 429	kfree(vcpu->arch.guest_ebase);
 430	kfree(vcpu->arch.kseg0_commpage);
 431	kfree(vcpu);
 432}
 433
 434void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
 435{
 436	kvm_arch_vcpu_free(vcpu);
 437}
 438
 439int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
 440					struct kvm_guest_debug *dbg)
 441{
 442	return -ENOIOCTLCMD;
 443}
 444
 445int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
 446{
 447	int r = -EINTR;
 448
 449	vcpu_load(vcpu);
 450
 451	kvm_sigset_activate(vcpu);
 452
 453	if (vcpu->mmio_needed) {
 454		if (!vcpu->mmio_is_write)
 455			kvm_mips_complete_mmio_load(vcpu, run);
 456		vcpu->mmio_needed = 0;
 457	}
 458
 459	if (run->immediate_exit)
 460		goto out;
 461
 462	lose_fpu(1);
 463
 464	local_irq_disable();
 465	guest_enter_irqoff();
 466	trace_kvm_enter(vcpu);
 467
 468	/*
 469	 * Make sure the read of VCPU requests in vcpu_run() callback is not
 470	 * reordered ahead of the write to vcpu->mode, or we could miss a TLB
 471	 * flush request while the requester sees the VCPU as outside of guest
 472	 * mode and not needing an IPI.
 473	 */
 474	smp_store_mb(vcpu->mode, IN_GUEST_MODE);
 475
 476	r = kvm_mips_callbacks->vcpu_run(run, vcpu);
 477
 478	trace_kvm_out(vcpu);
 479	guest_exit_irqoff();
 480	local_irq_enable();
 481
 482out:
 483	kvm_sigset_deactivate(vcpu);
 484
 485	vcpu_put(vcpu);
 486	return r;
 487}
 488
 489int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
 490			     struct kvm_mips_interrupt *irq)
 491{
 492	int intr = (int)irq->irq;
 493	struct kvm_vcpu *dvcpu = NULL;
 494
 495	if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
 496		kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
 497			  (int)intr);
 498
 499	if (irq->cpu == -1)
 500		dvcpu = vcpu;
 501	else
 502		dvcpu = vcpu->kvm->vcpus[irq->cpu];
 503
 504	if (intr == 2 || intr == 3 || intr == 4) {
 505		kvm_mips_callbacks->queue_io_int(dvcpu, irq);
 506
 507	} else if (intr == -2 || intr == -3 || intr == -4) {
 508		kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
 509	} else {
 510		kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
 511			irq->cpu, irq->irq);
 512		return -EINVAL;
 513	}
 514
 515	dvcpu->arch.wait = 0;
 516
 517	if (swq_has_sleeper(&dvcpu->wq))
 518		swake_up(&dvcpu->wq);
 519
 520	return 0;
 521}
 522
 523int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
 524				    struct kvm_mp_state *mp_state)
 525{
 526	return -ENOIOCTLCMD;
 527}
 528
 529int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
 530				    struct kvm_mp_state *mp_state)
 531{
 532	return -ENOIOCTLCMD;
 533}
 534
 535static u64 kvm_mips_get_one_regs[] = {
 536	KVM_REG_MIPS_R0,
 537	KVM_REG_MIPS_R1,
 538	KVM_REG_MIPS_R2,
 539	KVM_REG_MIPS_R3,
 540	KVM_REG_MIPS_R4,
 541	KVM_REG_MIPS_R5,
 542	KVM_REG_MIPS_R6,
 543	KVM_REG_MIPS_R7,
 544	KVM_REG_MIPS_R8,
 545	KVM_REG_MIPS_R9,
 546	KVM_REG_MIPS_R10,
 547	KVM_REG_MIPS_R11,
 548	KVM_REG_MIPS_R12,
 549	KVM_REG_MIPS_R13,
 550	KVM_REG_MIPS_R14,
 551	KVM_REG_MIPS_R15,
 552	KVM_REG_MIPS_R16,
 553	KVM_REG_MIPS_R17,
 554	KVM_REG_MIPS_R18,
 555	KVM_REG_MIPS_R19,
 556	KVM_REG_MIPS_R20,
 557	KVM_REG_MIPS_R21,
 558	KVM_REG_MIPS_R22,
 559	KVM_REG_MIPS_R23,
 560	KVM_REG_MIPS_R24,
 561	KVM_REG_MIPS_R25,
 562	KVM_REG_MIPS_R26,
 563	KVM_REG_MIPS_R27,
 564	KVM_REG_MIPS_R28,
 565	KVM_REG_MIPS_R29,
 566	KVM_REG_MIPS_R30,
 567	KVM_REG_MIPS_R31,
 568
 569#ifndef CONFIG_CPU_MIPSR6
 570	KVM_REG_MIPS_HI,
 571	KVM_REG_MIPS_LO,
 572#endif
 573	KVM_REG_MIPS_PC,
 574};
 575
 576static u64 kvm_mips_get_one_regs_fpu[] = {
 577	KVM_REG_MIPS_FCR_IR,
 578	KVM_REG_MIPS_FCR_CSR,
 579};
 580
 581static u64 kvm_mips_get_one_regs_msa[] = {
 582	KVM_REG_MIPS_MSA_IR,
 583	KVM_REG_MIPS_MSA_CSR,
 584};
 585
 586static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
 587{
 588	unsigned long ret;
 589
 590	ret = ARRAY_SIZE(kvm_mips_get_one_regs);
 591	if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
 592		ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
 593		/* odd doubles */
 594		if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
 595			ret += 16;
 596	}
 597	if (kvm_mips_guest_can_have_msa(&vcpu->arch))
 598		ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
 599	ret += kvm_mips_callbacks->num_regs(vcpu);
 600
 601	return ret;
 602}
 603
 604static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
 605{
 606	u64 index;
 607	unsigned int i;
 608
 609	if (copy_to_user(indices, kvm_mips_get_one_regs,
 610			 sizeof(kvm_mips_get_one_regs)))
 611		return -EFAULT;
 612	indices += ARRAY_SIZE(kvm_mips_get_one_regs);
 613
 614	if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
 615		if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
 616				 sizeof(kvm_mips_get_one_regs_fpu)))
 617			return -EFAULT;
 618		indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
 619
 620		for (i = 0; i < 32; ++i) {
 621			index = KVM_REG_MIPS_FPR_32(i);
 622			if (copy_to_user(indices, &index, sizeof(index)))
 623				return -EFAULT;
 624			++indices;
 625
 626			/* skip odd doubles if no F64 */
 627			if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
 628				continue;
 629
 630			index = KVM_REG_MIPS_FPR_64(i);
 631			if (copy_to_user(indices, &index, sizeof(index)))
 632				return -EFAULT;
 633			++indices;
 634		}
 635	}
 636
 637	if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
 638		if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
 639				 sizeof(kvm_mips_get_one_regs_msa)))
 640			return -EFAULT;
 641		indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
 642
 643		for (i = 0; i < 32; ++i) {
 644			index = KVM_REG_MIPS_VEC_128(i);
 645			if (copy_to_user(indices, &index, sizeof(index)))
 646				return -EFAULT;
 647			++indices;
 648		}
 649	}
 650
 651	return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
 652}
 653
 654static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
 655			    const struct kvm_one_reg *reg)
 656{
 657	struct mips_coproc *cop0 = vcpu->arch.cop0;
 658	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
 659	int ret;
 660	s64 v;
 661	s64 vs[2];
 662	unsigned int idx;
 663
 664	switch (reg->id) {
 665	/* General purpose registers */
 666	case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
 667		v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
 668		break;
 669#ifndef CONFIG_CPU_MIPSR6
 670	case KVM_REG_MIPS_HI:
 671		v = (long)vcpu->arch.hi;
 672		break;
 673	case KVM_REG_MIPS_LO:
 674		v = (long)vcpu->arch.lo;
 675		break;
 676#endif
 677	case KVM_REG_MIPS_PC:
 678		v = (long)vcpu->arch.pc;
 679		break;
 680
 681	/* Floating point registers */
 682	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
 683		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 684			return -EINVAL;
 685		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
 686		/* Odd singles in top of even double when FR=0 */
 687		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
 688			v = get_fpr32(&fpu->fpr[idx], 0);
 689		else
 690			v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
 691		break;
 692	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
 693		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 694			return -EINVAL;
 695		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
 696		/* Can't access odd doubles in FR=0 mode */
 697		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
 698			return -EINVAL;
 699		v = get_fpr64(&fpu->fpr[idx], 0);
 700		break;
 701	case KVM_REG_MIPS_FCR_IR:
 702		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 703			return -EINVAL;
 704		v = boot_cpu_data.fpu_id;
 705		break;
 706	case KVM_REG_MIPS_FCR_CSR:
 707		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 708			return -EINVAL;
 709		v = fpu->fcr31;
 710		break;
 711
 712	/* MIPS SIMD Architecture (MSA) registers */
 713	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
 714		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 715			return -EINVAL;
 716		/* Can't access MSA registers in FR=0 mode */
 717		if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
 718			return -EINVAL;
 719		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
 720#ifdef CONFIG_CPU_LITTLE_ENDIAN
 721		/* least significant byte first */
 722		vs[0] = get_fpr64(&fpu->fpr[idx], 0);
 723		vs[1] = get_fpr64(&fpu->fpr[idx], 1);
 724#else
 725		/* most significant byte first */
 726		vs[0] = get_fpr64(&fpu->fpr[idx], 1);
 727		vs[1] = get_fpr64(&fpu->fpr[idx], 0);
 728#endif
 729		break;
 730	case KVM_REG_MIPS_MSA_IR:
 731		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 732			return -EINVAL;
 733		v = boot_cpu_data.msa_id;
 734		break;
 735	case KVM_REG_MIPS_MSA_CSR:
 736		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 737			return -EINVAL;
 738		v = fpu->msacsr;
 739		break;
 740
 741	/* registers to be handled specially */
 742	default:
 743		ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
 744		if (ret)
 745			return ret;
 746		break;
 747	}
 748	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
 749		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
 750
 751		return put_user(v, uaddr64);
 752	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
 753		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
 754		u32 v32 = (u32)v;
 755
 756		return put_user(v32, uaddr32);
 757	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
 758		void __user *uaddr = (void __user *)(long)reg->addr;
 759
 760		return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
 761	} else {
 762		return -EINVAL;
 763	}
 764}
 765
 766static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
 767			    const struct kvm_one_reg *reg)
 768{
 769	struct mips_coproc *cop0 = vcpu->arch.cop0;
 770	struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
 771	s64 v;
 772	s64 vs[2];
 773	unsigned int idx;
 774
 775	if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
 776		u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
 777
 778		if (get_user(v, uaddr64) != 0)
 779			return -EFAULT;
 780	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
 781		u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
 782		s32 v32;
 783
 784		if (get_user(v32, uaddr32) != 0)
 785			return -EFAULT;
 786		v = (s64)v32;
 787	} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
 788		void __user *uaddr = (void __user *)(long)reg->addr;
 789
 790		return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
 791	} else {
 792		return -EINVAL;
 793	}
 794
 795	switch (reg->id) {
 796	/* General purpose registers */
 797	case KVM_REG_MIPS_R0:
 798		/* Silently ignore requests to set $0 */
 799		break;
 800	case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
 801		vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
 802		break;
 803#ifndef CONFIG_CPU_MIPSR6
 804	case KVM_REG_MIPS_HI:
 805		vcpu->arch.hi = v;
 806		break;
 807	case KVM_REG_MIPS_LO:
 808		vcpu->arch.lo = v;
 809		break;
 810#endif
 811	case KVM_REG_MIPS_PC:
 812		vcpu->arch.pc = v;
 813		break;
 814
 815	/* Floating point registers */
 816	case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
 817		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 818			return -EINVAL;
 819		idx = reg->id - KVM_REG_MIPS_FPR_32(0);
 820		/* Odd singles in top of even double when FR=0 */
 821		if (kvm_read_c0_guest_status(cop0) & ST0_FR)
 822			set_fpr32(&fpu->fpr[idx], 0, v);
 823		else
 824			set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
 825		break;
 826	case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
 827		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 828			return -EINVAL;
 829		idx = reg->id - KVM_REG_MIPS_FPR_64(0);
 830		/* Can't access odd doubles in FR=0 mode */
 831		if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
 832			return -EINVAL;
 833		set_fpr64(&fpu->fpr[idx], 0, v);
 834		break;
 835	case KVM_REG_MIPS_FCR_IR:
 836		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 837			return -EINVAL;
 838		/* Read-only */
 839		break;
 840	case KVM_REG_MIPS_FCR_CSR:
 841		if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 842			return -EINVAL;
 843		fpu->fcr31 = v;
 844		break;
 845
 846	/* MIPS SIMD Architecture (MSA) registers */
 847	case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
 848		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 849			return -EINVAL;
 850		idx = reg->id - KVM_REG_MIPS_VEC_128(0);
 851#ifdef CONFIG_CPU_LITTLE_ENDIAN
 852		/* least significant byte first */
 853		set_fpr64(&fpu->fpr[idx], 0, vs[0]);
 854		set_fpr64(&fpu->fpr[idx], 1, vs[1]);
 855#else
 856		/* most significant byte first */
 857		set_fpr64(&fpu->fpr[idx], 1, vs[0]);
 858		set_fpr64(&fpu->fpr[idx], 0, vs[1]);
 859#endif
 860		break;
 861	case KVM_REG_MIPS_MSA_IR:
 862		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 863			return -EINVAL;
 864		/* Read-only */
 865		break;
 866	case KVM_REG_MIPS_MSA_CSR:
 867		if (!kvm_mips_guest_has_msa(&vcpu->arch))
 868			return -EINVAL;
 869		fpu->msacsr = v;
 870		break;
 871
 872	/* registers to be handled specially */
 873	default:
 874		return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
 875	}
 876	return 0;
 877}
 878
 879static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
 880				     struct kvm_enable_cap *cap)
 881{
 882	int r = 0;
 883
 884	if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
 885		return -EINVAL;
 886	if (cap->flags)
 887		return -EINVAL;
 888	if (cap->args[0])
 889		return -EINVAL;
 890
 891	switch (cap->cap) {
 892	case KVM_CAP_MIPS_FPU:
 893		vcpu->arch.fpu_enabled = true;
 894		break;
 895	case KVM_CAP_MIPS_MSA:
 896		vcpu->arch.msa_enabled = true;
 897		break;
 898	default:
 899		r = -EINVAL;
 900		break;
 901	}
 902
 903	return r;
 904}
 905
 906long kvm_arch_vcpu_async_ioctl(struct file *filp, unsigned int ioctl,
 907			       unsigned long arg)
 908{
 909	struct kvm_vcpu *vcpu = filp->private_data;
 910	void __user *argp = (void __user *)arg;
 911
 912	if (ioctl == KVM_INTERRUPT) {
 913		struct kvm_mips_interrupt irq;
 914
 915		if (copy_from_user(&irq, argp, sizeof(irq)))
 916			return -EFAULT;
 917		kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
 918			  irq.irq);
 919
 920		return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
 921	}
 922
 923	return -ENOIOCTLCMD;
 924}
 925
 926long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
 927			 unsigned long arg)
 928{
 929	struct kvm_vcpu *vcpu = filp->private_data;
 930	void __user *argp = (void __user *)arg;
 931	long r;
 932
 933	vcpu_load(vcpu);
 934
 935	switch (ioctl) {
 936	case KVM_SET_ONE_REG:
 937	case KVM_GET_ONE_REG: {
 938		struct kvm_one_reg reg;
 939
 940		r = -EFAULT;
 941		if (copy_from_user(&reg, argp, sizeof(reg)))
 942			break;
 943		if (ioctl == KVM_SET_ONE_REG)
 944			r = kvm_mips_set_reg(vcpu, &reg);
 945		else
 946			r = kvm_mips_get_reg(vcpu, &reg);
 947		break;
 948	}
 949	case KVM_GET_REG_LIST: {
 950		struct kvm_reg_list __user *user_list = argp;
 951		struct kvm_reg_list reg_list;
 952		unsigned n;
 953
 954		r = -EFAULT;
 955		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
 956			break;
 957		n = reg_list.n;
 958		reg_list.n = kvm_mips_num_regs(vcpu);
 959		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
 960			break;
 961		r = -E2BIG;
 962		if (n < reg_list.n)
 963			break;
 964		r = kvm_mips_copy_reg_indices(vcpu, user_list->reg);
 965		break;
 966	}
 967	case KVM_ENABLE_CAP: {
 968		struct kvm_enable_cap cap;
 969
 970		r = -EFAULT;
 971		if (copy_from_user(&cap, argp, sizeof(cap)))
 972			break;
 973		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
 974		break;
 975	}
 976	default:
 977		r = -ENOIOCTLCMD;
 978	}
 979
 980	vcpu_put(vcpu);
 981	return r;
 982}
 983
 984/**
 985 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 986 * @kvm: kvm instance
 987 * @log: slot id and address to which we copy the log
 988 *
 989 * Steps 1-4 below provide general overview of dirty page logging. See
 990 * kvm_get_dirty_log_protect() function description for additional details.
 991 *
 992 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 993 * always flush the TLB (step 4) even if previous step failed  and the dirty
 994 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 995 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 996 * writes will be marked dirty for next log read.
 997 *
 998 *   1. Take a snapshot of the bit and clear it if needed.
 999 *   2. Write protect the corresponding page.
1000 *   3. Copy the snapshot to the userspace.
1001 *   4. Flush TLB's if needed.
1002 */
1003int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1004{
1005	struct kvm_memslots *slots;
1006	struct kvm_memory_slot *memslot;
1007	bool is_dirty = false;
1008	int r;
1009
1010	mutex_lock(&kvm->slots_lock);
1011
1012	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1013
1014	if (is_dirty) {
1015		slots = kvm_memslots(kvm);
1016		memslot = id_to_memslot(slots, log->slot);
1017
1018		/* Let implementation handle TLB/GVA invalidation */
1019		kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot);
1020	}
1021
1022	mutex_unlock(&kvm->slots_lock);
1023	return r;
1024}
1025
1026long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1027{
1028	long r;
1029
1030	switch (ioctl) {
1031	default:
1032		r = -ENOIOCTLCMD;
1033	}
1034
1035	return r;
1036}
1037
1038int kvm_arch_init(void *opaque)
1039{
1040	if (kvm_mips_callbacks) {
1041		kvm_err("kvm: module already exists\n");
1042		return -EEXIST;
1043	}
1044
1045	return kvm_mips_emulation_init(&kvm_mips_callbacks);
1046}
1047
1048void kvm_arch_exit(void)
1049{
1050	kvm_mips_callbacks = NULL;
1051}
1052
1053int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1054				  struct kvm_sregs *sregs)
1055{
1056	return -ENOIOCTLCMD;
1057}
1058
1059int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1060				  struct kvm_sregs *sregs)
1061{
1062	return -ENOIOCTLCMD;
1063}
1064
1065void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1066{
1067}
1068
1069int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1070{
1071	return -ENOIOCTLCMD;
1072}
1073
1074int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1075{
1076	return -ENOIOCTLCMD;
1077}
1078
1079int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1080{
1081	return VM_FAULT_SIGBUS;
1082}
1083
1084int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1085{
1086	int r;
1087
1088	switch (ext) {
1089	case KVM_CAP_ONE_REG:
1090	case KVM_CAP_ENABLE_CAP:
1091	case KVM_CAP_READONLY_MEM:
1092	case KVM_CAP_SYNC_MMU:
1093	case KVM_CAP_IMMEDIATE_EXIT:
1094		r = 1;
1095		break;
1096	case KVM_CAP_NR_VCPUS:
1097		r = num_online_cpus();
1098		break;
1099	case KVM_CAP_MAX_VCPUS:
1100		r = KVM_MAX_VCPUS;
1101		break;
1102	case KVM_CAP_MIPS_FPU:
1103		/* We don't handle systems with inconsistent cpu_has_fpu */
1104		r = !!raw_cpu_has_fpu;
1105		break;
1106	case KVM_CAP_MIPS_MSA:
1107		/*
1108		 * We don't support MSA vector partitioning yet:
1109		 * 1) It would require explicit support which can't be tested
1110		 *    yet due to lack of support in current hardware.
1111		 * 2) It extends the state that would need to be saved/restored
1112		 *    by e.g. QEMU for migration.
1113		 *
1114		 * When vector partitioning hardware becomes available, support
1115		 * could be added by requiring a flag when enabling
1116		 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1117		 * to save/restore the appropriate extra state.
1118		 */
1119		r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1120		break;
1121	default:
1122		r = kvm_mips_callbacks->check_extension(kvm, ext);
1123		break;
1124	}
1125	return r;
1126}
1127
1128int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1129{
1130	return kvm_mips_pending_timer(vcpu) ||
1131		kvm_read_c0_guest_cause(vcpu->arch.cop0) & C_TI;
1132}
1133
1134int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1135{
1136	int i;
1137	struct mips_coproc *cop0;
1138
1139	if (!vcpu)
1140		return -1;
1141
1142	kvm_debug("VCPU Register Dump:\n");
1143	kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1144	kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1145
1146	for (i = 0; i < 32; i += 4) {
1147		kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1148		       vcpu->arch.gprs[i],
1149		       vcpu->arch.gprs[i + 1],
1150		       vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1151	}
1152	kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1153	kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1154
1155	cop0 = vcpu->arch.cop0;
1156	kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
1157		  kvm_read_c0_guest_status(cop0),
1158		  kvm_read_c0_guest_cause(cop0));
1159
1160	kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1161
1162	return 0;
1163}
1164
1165int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1166{
1167	int i;
1168
1169	vcpu_load(vcpu);
1170
1171	for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1172		vcpu->arch.gprs[i] = regs->gpr[i];
1173	vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1174	vcpu->arch.hi = regs->hi;
1175	vcpu->arch.lo = regs->lo;
1176	vcpu->arch.pc = regs->pc;
1177
1178	vcpu_put(vcpu);
1179	return 0;
1180}
1181
1182int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1183{
1184	int i;
1185
1186	vcpu_load(vcpu);
1187
1188	for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1189		regs->gpr[i] = vcpu->arch.gprs[i];
1190
1191	regs->hi = vcpu->arch.hi;
1192	regs->lo = vcpu->arch.lo;
1193	regs->pc = vcpu->arch.pc;
1194
1195	vcpu_put(vcpu);
1196	return 0;
1197}
1198
1199static void kvm_mips_comparecount_func(unsigned long data)
1200{
1201	struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1202
1203	kvm_mips_callbacks->queue_timer_int(vcpu);
1204
1205	vcpu->arch.wait = 0;
1206	if (swq_has_sleeper(&vcpu->wq))
1207		swake_up(&vcpu->wq);
1208}
1209
1210/* low level hrtimer wake routine */
1211static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1212{
1213	struct kvm_vcpu *vcpu;
1214
1215	vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1216	kvm_mips_comparecount_func((unsigned long) vcpu);
1217	return kvm_mips_count_timeout(vcpu);
1218}
1219
1220int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1221{
1222	int err;
1223
1224	err = kvm_mips_callbacks->vcpu_init(vcpu);
1225	if (err)
1226		return err;
1227
1228	hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1229		     HRTIMER_MODE_REL);
1230	vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1231	return 0;
1232}
1233
1234void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1235{
1236	kvm_mips_callbacks->vcpu_uninit(vcpu);
1237}
1238
1239int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1240				  struct kvm_translation *tr)
1241{
1242	return 0;
1243}
1244
1245/* Initial guest state */
1246int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1247{
1248	return kvm_mips_callbacks->vcpu_setup(vcpu);
1249}
1250
1251static void kvm_mips_set_c0_status(void)
1252{
1253	u32 status = read_c0_status();
1254
1255	if (cpu_has_dsp)
1256		status |= (ST0_MX);
1257
1258	write_c0_status(status);
1259	ehb();
1260}
1261
1262/*
1263 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1264 */
1265int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1266{
1267	u32 cause = vcpu->arch.host_cp0_cause;
1268	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1269	u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1270	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1271	enum emulation_result er = EMULATE_DONE;
1272	u32 inst;
1273	int ret = RESUME_GUEST;
1274
1275	vcpu->mode = OUTSIDE_GUEST_MODE;
1276
1277	/* re-enable HTW before enabling interrupts */
1278	if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1279		htw_start();
1280
1281	/* Set a default exit reason */
1282	run->exit_reason = KVM_EXIT_UNKNOWN;
1283	run->ready_for_interrupt_injection = 1;
1284
1285	/*
1286	 * Set the appropriate status bits based on host CPU features,
1287	 * before we hit the scheduler
1288	 */
1289	kvm_mips_set_c0_status();
1290
1291	local_irq_enable();
1292
1293	kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1294			cause, opc, run, vcpu);
1295	trace_kvm_exit(vcpu, exccode);
1296
1297	if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1298		/*
1299		 * Do a privilege check, if in UM most of these exit conditions
1300		 * end up causing an exception to be delivered to the Guest
1301		 * Kernel
1302		 */
1303		er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1304		if (er == EMULATE_PRIV_FAIL) {
1305			goto skip_emul;
1306		} else if (er == EMULATE_FAIL) {
1307			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1308			ret = RESUME_HOST;
1309			goto skip_emul;
1310		}
1311	}
1312
1313	switch (exccode) {
1314	case EXCCODE_INT:
1315		kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1316
1317		++vcpu->stat.int_exits;
1318
1319		if (need_resched())
1320			cond_resched();
1321
1322		ret = RESUME_GUEST;
1323		break;
1324
1325	case EXCCODE_CPU:
1326		kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1327
1328		++vcpu->stat.cop_unusable_exits;
1329		ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1330		/* XXXKYMA: Might need to return to user space */
1331		if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1332			ret = RESUME_HOST;
1333		break;
1334
1335	case EXCCODE_MOD:
1336		++vcpu->stat.tlbmod_exits;
1337		ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1338		break;
1339
1340	case EXCCODE_TLBS:
1341		kvm_debug("TLB ST fault:  cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
1342			  cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1343			  badvaddr);
1344
1345		++vcpu->stat.tlbmiss_st_exits;
1346		ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1347		break;
1348
1349	case EXCCODE_TLBL:
1350		kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1351			  cause, opc, badvaddr);
1352
1353		++vcpu->stat.tlbmiss_ld_exits;
1354		ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1355		break;
1356
1357	case EXCCODE_ADES:
1358		++vcpu->stat.addrerr_st_exits;
1359		ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1360		break;
1361
1362	case EXCCODE_ADEL:
1363		++vcpu->stat.addrerr_ld_exits;
1364		ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1365		break;
1366
1367	case EXCCODE_SYS:
1368		++vcpu->stat.syscall_exits;
1369		ret = kvm_mips_callbacks->handle_syscall(vcpu);
1370		break;
1371
1372	case EXCCODE_RI:
1373		++vcpu->stat.resvd_inst_exits;
1374		ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1375		break;
1376
1377	case EXCCODE_BP:
1378		++vcpu->stat.break_inst_exits;
1379		ret = kvm_mips_callbacks->handle_break(vcpu);
1380		break;
1381
1382	case EXCCODE_TR:
1383		++vcpu->stat.trap_inst_exits;
1384		ret = kvm_mips_callbacks->handle_trap(vcpu);
1385		break;
1386
1387	case EXCCODE_MSAFPE:
1388		++vcpu->stat.msa_fpe_exits;
1389		ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1390		break;
1391
1392	case EXCCODE_FPE:
1393		++vcpu->stat.fpe_exits;
1394		ret = kvm_mips_callbacks->handle_fpe(vcpu);
1395		break;
1396
1397	case EXCCODE_MSADIS:
1398		++vcpu->stat.msa_disabled_exits;
1399		ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1400		break;
1401
1402	case EXCCODE_GE:
1403		/* defer exit accounting to handler */
1404		ret = kvm_mips_callbacks->handle_guest_exit(vcpu);
1405		break;
1406
1407	default:
1408		if (cause & CAUSEF_BD)
1409			opc += 1;
1410		inst = 0;
1411		kvm_get_badinstr(opc, vcpu, &inst);
1412		kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#x\n",
1413			exccode, opc, inst, badvaddr,
1414			kvm_read_c0_guest_status(vcpu->arch.cop0));
1415		kvm_arch_vcpu_dump_regs(vcpu);
1416		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1417		ret = RESUME_HOST;
1418		break;
1419
1420	}
1421
1422skip_emul:
1423	local_irq_disable();
1424
1425	if (ret == RESUME_GUEST)
1426		kvm_vz_acquire_htimer(vcpu);
1427
1428	if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1429		kvm_mips_deliver_interrupts(vcpu, cause);
1430
1431	if (!(ret & RESUME_HOST)) {
1432		/* Only check for signals if not already exiting to userspace */
1433		if (signal_pending(current)) {
1434			run->exit_reason = KVM_EXIT_INTR;
1435			ret = (-EINTR << 2) | RESUME_HOST;
1436			++vcpu->stat.signal_exits;
1437			trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1438		}
1439	}
1440
1441	if (ret == RESUME_GUEST) {
1442		trace_kvm_reenter(vcpu);
1443
1444		/*
1445		 * Make sure the read of VCPU requests in vcpu_reenter()
1446		 * callback is not reordered ahead of the write to vcpu->mode,
1447		 * or we could miss a TLB flush request while the requester sees
1448		 * the VCPU as outside of guest mode and not needing an IPI.
1449		 */
1450		smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1451
1452		kvm_mips_callbacks->vcpu_reenter(run, vcpu);
1453
1454		/*
1455		 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1456		 * is live), restore FCR31 / MSACSR.
1457		 *
1458		 * This should be before returning to the guest exception
1459		 * vector, as it may well cause an [MSA] FP exception if there
1460		 * are pending exception bits unmasked. (see
1461		 * kvm_mips_csr_die_notifier() for how that is handled).
1462		 */
1463		if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1464		    read_c0_status() & ST0_CU1)
1465			__kvm_restore_fcsr(&vcpu->arch);
1466
1467		if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1468		    read_c0_config5() & MIPS_CONF5_MSAEN)
1469			__kvm_restore_msacsr(&vcpu->arch);
1470	}
1471
1472	/* Disable HTW before returning to guest or host */
1473	if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1474		htw_stop();
1475
1476	return ret;
1477}
1478
1479/* Enable FPU for guest and restore context */
1480void kvm_own_fpu(struct kvm_vcpu *vcpu)
1481{
1482	struct mips_coproc *cop0 = vcpu->arch.cop0;
1483	unsigned int sr, cfg5;
1484
1485	preempt_disable();
1486
1487	sr = kvm_read_c0_guest_status(cop0);
1488
1489	/*
1490	 * If MSA state is already live, it is undefined how it interacts with
1491	 * FR=0 FPU state, and we don't want to hit reserved instruction
1492	 * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1493	 * play it safe and save it first.
1494	 *
1495	 * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1496	 * get called when guest CU1 is set, however we can't trust the guest
1497	 * not to clobber the status register directly via the commpage.
1498	 */
1499	if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1500	    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1501		kvm_lose_fpu(vcpu);
1502
1503	/*
1504	 * Enable FPU for guest
1505	 * We set FR and FRE according to guest context
1506	 */
1507	change_c0_status(ST0_CU1 | ST0_FR, sr);
1508	if (cpu_has_fre) {
1509		cfg5 = kvm_read_c0_guest_config5(cop0);
1510		change_c0_config5(MIPS_CONF5_FRE, cfg5);
1511	}
1512	enable_fpu_hazard();
1513
1514	/* If guest FPU state not active, restore it now */
1515	if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1516		__kvm_restore_fpu(&vcpu->arch);
1517		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1518		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1519	} else {
1520		trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1521	}
1522
1523	preempt_enable();
1524}
1525
1526#ifdef CONFIG_CPU_HAS_MSA
1527/* Enable MSA for guest and restore context */
1528void kvm_own_msa(struct kvm_vcpu *vcpu)
1529{
1530	struct mips_coproc *cop0 = vcpu->arch.cop0;
1531	unsigned int sr, cfg5;
1532
1533	preempt_disable();
1534
1535	/*
1536	 * Enable FPU if enabled in guest, since we're restoring FPU context
1537	 * anyway. We set FR and FRE according to guest context.
1538	 */
1539	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1540		sr = kvm_read_c0_guest_status(cop0);
1541
1542		/*
1543		 * If FR=0 FPU state is already live, it is undefined how it
1544		 * interacts with MSA state, so play it safe and save it first.
1545		 */
1546		if (!(sr & ST0_FR) &&
1547		    (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1548				KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1549			kvm_lose_fpu(vcpu);
1550
1551		change_c0_status(ST0_CU1 | ST0_FR, sr);
1552		if (sr & ST0_CU1 && cpu_has_fre) {
1553			cfg5 = kvm_read_c0_guest_config5(cop0);
1554			change_c0_config5(MIPS_CONF5_FRE, cfg5);
1555		}
1556	}
1557
1558	/* Enable MSA for guest */
1559	set_c0_config5(MIPS_CONF5_MSAEN);
1560	enable_fpu_hazard();
1561
1562	switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1563	case KVM_MIPS_AUX_FPU:
1564		/*
1565		 * Guest FPU state already loaded, only restore upper MSA state
1566		 */
1567		__kvm_restore_msa_upper(&vcpu->arch);
1568		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1569		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1570		break;
1571	case 0:
1572		/* Neither FPU or MSA already active, restore full MSA state */
1573		__kvm_restore_msa(&vcpu->arch);
1574		vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1575		if (kvm_mips_guest_has_fpu(&vcpu->arch))
1576			vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1577		trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1578			      KVM_TRACE_AUX_FPU_MSA);
1579		break;
1580	default:
1581		trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1582		break;
1583	}
1584
1585	preempt_enable();
1586}
1587#endif
1588
1589/* Drop FPU & MSA without saving it */
1590void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1591{
1592	preempt_disable();
1593	if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1594		disable_msa();
1595		trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1596		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1597	}
1598	if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1599		clear_c0_status(ST0_CU1 | ST0_FR);
1600		trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1601		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1602	}
1603	preempt_enable();
1604}
1605
1606/* Save and disable FPU & MSA */
1607void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1608{
1609	/*
1610	 * With T&E, FPU & MSA get disabled in root context (hardware) when it
1611	 * is disabled in guest context (software), but the register state in
1612	 * the hardware may still be in use.
1613	 * This is why we explicitly re-enable the hardware before saving.
1614	 */
1615
1616	preempt_disable();
1617	if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1618		if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1619			set_c0_config5(MIPS_CONF5_MSAEN);
1620			enable_fpu_hazard();
1621		}
1622
1623		__kvm_save_msa(&vcpu->arch);
1624		trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1625
1626		/* Disable MSA & FPU */
1627		disable_msa();
1628		if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1629			clear_c0_status(ST0_CU1 | ST0_FR);
1630			disable_fpu_hazard();
1631		}
1632		vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1633	} else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1634		if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1635			set_c0_status(ST0_CU1);
1636			enable_fpu_hazard();
1637		}
1638
1639		__kvm_save_fpu(&vcpu->arch);
1640		vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1641		trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1642
1643		/* Disable FPU */
1644		clear_c0_status(ST0_CU1 | ST0_FR);
1645		disable_fpu_hazard();
1646	}
1647	preempt_enable();
1648}
1649
1650/*
1651 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1652 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1653 * exception if cause bits are set in the value being written.
1654 */
1655static int kvm_mips_csr_die_notify(struct notifier_block *self,
1656				   unsigned long cmd, void *ptr)
1657{
1658	struct die_args *args = (struct die_args *)ptr;
1659	struct pt_regs *regs = args->regs;
1660	unsigned long pc;
1661
1662	/* Only interested in FPE and MSAFPE */
1663	if (cmd != DIE_FP && cmd != DIE_MSAFP)
1664		return NOTIFY_DONE;
1665
1666	/* Return immediately if guest context isn't active */
1667	if (!(current->flags & PF_VCPU))
1668		return NOTIFY_DONE;
1669
1670	/* Should never get here from user mode */
1671	BUG_ON(user_mode(regs));
1672
1673	pc = instruction_pointer(regs);
1674	switch (cmd) {
1675	case DIE_FP:
1676		/* match 2nd instruction in __kvm_restore_fcsr */
1677		if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1678			return NOTIFY_DONE;
1679		break;
1680	case DIE_MSAFP:
1681		/* match 2nd/3rd instruction in __kvm_restore_msacsr */
1682		if (!cpu_has_msa ||
1683		    pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1684		    pc > (unsigned long)&__kvm_restore_msacsr + 8)
1685			return NOTIFY_DONE;
1686		break;
1687	}
1688
1689	/* Move PC forward a little and continue executing */
1690	instruction_pointer(regs) += 4;
1691
1692	return NOTIFY_STOP;
1693}
1694
1695static struct notifier_block kvm_mips_csr_die_notifier = {
1696	.notifier_call = kvm_mips_csr_die_notify,
1697};
1698
1699static int __init kvm_mips_init(void)
1700{
1701	int ret;
1702
1703	ret = kvm_mips_entry_setup();
1704	if (ret)
1705		return ret;
1706
1707	ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1708
1709	if (ret)
1710		return ret;
1711
1712	register_die_notifier(&kvm_mips_csr_die_notifier);
1713
1714	return 0;
1715}
1716
1717static void __exit kvm_mips_exit(void)
1718{
1719	kvm_exit();
1720
1721	unregister_die_notifier(&kvm_mips_csr_die_notifier);
1722}
1723
1724module_init(kvm_mips_init);
1725module_exit(kvm_mips_exit);
1726
1727EXPORT_TRACEPOINT_SYMBOL(kvm_exit);