Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 *  Driver for A2 audio system used in SGI machines
  3 *  Copyright (c) 2008 Thomas Bogendoerfer <tsbogend@alpha.fanken.de>
  4 *
  5 *  Based on OSS code from Ladislav Michl <ladis@linux-mips.org>, which
  6 *  was based on code from Ulf Carlsson
  7 *
  8 *  This program is free software; you can redistribute it and/or modify
  9 *  it under the terms of the GNU General Public License version 2 as
 10 *  published by the Free Software Foundation.
 11 *
 12 *  This program is distributed in the hope that it will be useful,
 13 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 14 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 15 *  GNU General Public License for more details.
 16 *
 17 *  You should have received a copy of the GNU General Public License
 18 *  along with this program; if not, write to the Free Software
 19 *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 20 *
 21 */
 22#include <linux/kernel.h>
 23#include <linux/init.h>
 24#include <linux/interrupt.h>
 25#include <linux/dma-mapping.h>
 26#include <linux/platform_device.h>
 27#include <linux/io.h>
 28#include <linux/slab.h>
 
 29
 30#include <asm/sgi/hpc3.h>
 31#include <asm/sgi/ip22.h>
 32
 33#include <sound/core.h>
 34#include <sound/control.h>
 35#include <sound/pcm.h>
 36#include <sound/pcm-indirect.h>
 37#include <sound/initval.h>
 38
 39#include "hal2.h"
 40
 41static int index = SNDRV_DEFAULT_IDX1;  /* Index 0-MAX */
 42static char *id = SNDRV_DEFAULT_STR1;   /* ID for this card */
 43
 44module_param(index, int, 0444);
 45MODULE_PARM_DESC(index, "Index value for SGI HAL2 soundcard.");
 46module_param(id, charp, 0444);
 47MODULE_PARM_DESC(id, "ID string for SGI HAL2 soundcard.");
 48MODULE_DESCRIPTION("ALSA driver for SGI HAL2 audio");
 49MODULE_AUTHOR("Thomas Bogendoerfer");
 50MODULE_LICENSE("GPL");
 51
 52
 53#define H2_BLOCK_SIZE	1024
 54#define H2_BUF_SIZE	16384
 55
 56struct hal2_pbus {
 57	struct hpc3_pbus_dmacregs *pbus;
 58	int pbusnr;
 59	unsigned int ctrl;		/* Current state of pbus->pbdma_ctrl */
 60};
 61
 62struct hal2_desc {
 63	struct hpc_dma_desc desc;
 64	u32 pad;			/* padding */
 65};
 66
 67struct hal2_codec {
 68	struct snd_pcm_indirect pcm_indirect;
 69	struct snd_pcm_substream *substream;
 70
 71	unsigned char *buffer;
 72	dma_addr_t buffer_dma;
 73	struct hal2_desc *desc;
 74	dma_addr_t desc_dma;
 75	int desc_count;
 76	struct hal2_pbus pbus;
 77	int voices;			/* mono/stereo */
 78	unsigned int sample_rate;
 79	unsigned int master;		/* Master frequency */
 80	unsigned short mod;		/* MOD value */
 81	unsigned short inc;		/* INC value */
 82};
 83
 84#define H2_MIX_OUTPUT_ATT	0
 85#define H2_MIX_INPUT_GAIN	1
 86
 87struct snd_hal2 {
 88	struct snd_card *card;
 89
 90	struct hal2_ctl_regs *ctl_regs;	/* HAL2 ctl registers */
 91	struct hal2_aes_regs *aes_regs;	/* HAL2 aes registers */
 92	struct hal2_vol_regs *vol_regs;	/* HAL2 vol registers */
 93	struct hal2_syn_regs *syn_regs;	/* HAL2 syn registers */
 94
 95	struct hal2_codec dac;
 96	struct hal2_codec adc;
 97};
 98
 99#define H2_INDIRECT_WAIT(regs)	while (hal2_read(&regs->isr) & H2_ISR_TSTATUS);
100
101#define H2_READ_ADDR(addr)	(addr | (1<<7))
102#define H2_WRITE_ADDR(addr)	(addr)
103
104static inline u32 hal2_read(u32 *reg)
105{
106	return __raw_readl(reg);
107}
108
109static inline void hal2_write(u32 val, u32 *reg)
110{
111	__raw_writel(val, reg);
112}
113
114
115static u32 hal2_i_read32(struct snd_hal2 *hal2, u16 addr)
116{
117	u32 ret;
118	struct hal2_ctl_regs *regs = hal2->ctl_regs;
119
120	hal2_write(H2_READ_ADDR(addr), &regs->iar);
121	H2_INDIRECT_WAIT(regs);
122	ret = hal2_read(&regs->idr0) & 0xffff;
123	hal2_write(H2_READ_ADDR(addr) | 0x1, &regs->iar);
124	H2_INDIRECT_WAIT(regs);
125	ret |= (hal2_read(&regs->idr0) & 0xffff) << 16;
126	return ret;
127}
128
129static void hal2_i_write16(struct snd_hal2 *hal2, u16 addr, u16 val)
130{
131	struct hal2_ctl_regs *regs = hal2->ctl_regs;
132
133	hal2_write(val, &regs->idr0);
134	hal2_write(0, &regs->idr1);
135	hal2_write(0, &regs->idr2);
136	hal2_write(0, &regs->idr3);
137	hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
138	H2_INDIRECT_WAIT(regs);
139}
140
141static void hal2_i_write32(struct snd_hal2 *hal2, u16 addr, u32 val)
142{
143	struct hal2_ctl_regs *regs = hal2->ctl_regs;
144
145	hal2_write(val & 0xffff, &regs->idr0);
146	hal2_write(val >> 16, &regs->idr1);
147	hal2_write(0, &regs->idr2);
148	hal2_write(0, &regs->idr3);
149	hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
150	H2_INDIRECT_WAIT(regs);
151}
152
153static void hal2_i_setbit16(struct snd_hal2 *hal2, u16 addr, u16 bit)
154{
155	struct hal2_ctl_regs *regs = hal2->ctl_regs;
156
157	hal2_write(H2_READ_ADDR(addr), &regs->iar);
158	H2_INDIRECT_WAIT(regs);
159	hal2_write((hal2_read(&regs->idr0) & 0xffff) | bit, &regs->idr0);
160	hal2_write(0, &regs->idr1);
161	hal2_write(0, &regs->idr2);
162	hal2_write(0, &regs->idr3);
163	hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
164	H2_INDIRECT_WAIT(regs);
165}
166
167static void hal2_i_clearbit16(struct snd_hal2 *hal2, u16 addr, u16 bit)
168{
169	struct hal2_ctl_regs *regs = hal2->ctl_regs;
170
171	hal2_write(H2_READ_ADDR(addr), &regs->iar);
172	H2_INDIRECT_WAIT(regs);
173	hal2_write((hal2_read(&regs->idr0) & 0xffff) & ~bit, &regs->idr0);
174	hal2_write(0, &regs->idr1);
175	hal2_write(0, &regs->idr2);
176	hal2_write(0, &regs->idr3);
177	hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
178	H2_INDIRECT_WAIT(regs);
179}
180
181static int hal2_gain_info(struct snd_kcontrol *kcontrol,
182			       struct snd_ctl_elem_info *uinfo)
183{
184	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
185	uinfo->count = 2;
186	uinfo->value.integer.min = 0;
187	switch ((int)kcontrol->private_value) {
188	case H2_MIX_OUTPUT_ATT:
189		uinfo->value.integer.max = 31;
190		break;
191	case H2_MIX_INPUT_GAIN:
192		uinfo->value.integer.max = 15;
193		break;
194	}
195	return 0;
196}
197
198static int hal2_gain_get(struct snd_kcontrol *kcontrol,
199			       struct snd_ctl_elem_value *ucontrol)
200{
201	struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol);
202	u32 tmp;
203	int l, r;
204
205	switch ((int)kcontrol->private_value) {
206	case H2_MIX_OUTPUT_ATT:
207		tmp = hal2_i_read32(hal2, H2I_DAC_C2);
208		if (tmp & H2I_C2_MUTE) {
209			l = 0;
210			r = 0;
211		} else {
212			l = 31 - ((tmp >> H2I_C2_L_ATT_SHIFT) & 31);
213			r = 31 - ((tmp >> H2I_C2_R_ATT_SHIFT) & 31);
214		}
215		break;
216	case H2_MIX_INPUT_GAIN:
217		tmp = hal2_i_read32(hal2, H2I_ADC_C2);
218		l = (tmp >> H2I_C2_L_GAIN_SHIFT) & 15;
219		r = (tmp >> H2I_C2_R_GAIN_SHIFT) & 15;
220		break;
 
 
221	}
222	ucontrol->value.integer.value[0] = l;
223	ucontrol->value.integer.value[1] = r;
224
225	return 0;
226}
227
228static int hal2_gain_put(struct snd_kcontrol *kcontrol,
229			 struct snd_ctl_elem_value *ucontrol)
230{
231	struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol);
232	u32 old, new;
233	int l, r;
234
235	l = ucontrol->value.integer.value[0];
236	r = ucontrol->value.integer.value[1];
237
238	switch ((int)kcontrol->private_value) {
239	case H2_MIX_OUTPUT_ATT:
240		old = hal2_i_read32(hal2, H2I_DAC_C2);
241		new = old & ~(H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
242		if (l | r) {
243			l = 31 - l;
244			r = 31 - r;
245			new |= (l << H2I_C2_L_ATT_SHIFT);
246			new |= (r << H2I_C2_R_ATT_SHIFT);
247		} else
248			new |= H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE;
249		hal2_i_write32(hal2, H2I_DAC_C2, new);
250		break;
251	case H2_MIX_INPUT_GAIN:
252		old = hal2_i_read32(hal2, H2I_ADC_C2);
253		new = old & ~(H2I_C2_L_GAIN_M | H2I_C2_R_GAIN_M);
254		new |= (l << H2I_C2_L_GAIN_SHIFT);
255		new |= (r << H2I_C2_R_GAIN_SHIFT);
256		hal2_i_write32(hal2, H2I_ADC_C2, new);
257		break;
 
 
258	}
259	return old != new;
260}
261
262static struct snd_kcontrol_new hal2_ctrl_headphone __devinitdata = {
263	.iface          = SNDRV_CTL_ELEM_IFACE_MIXER,
264	.name           = "Headphone Playback Volume",
265	.access         = SNDRV_CTL_ELEM_ACCESS_READWRITE,
266	.private_value  = H2_MIX_OUTPUT_ATT,
267	.info           = hal2_gain_info,
268	.get            = hal2_gain_get,
269	.put            = hal2_gain_put,
270};
271
272static struct snd_kcontrol_new hal2_ctrl_mic __devinitdata = {
273	.iface          = SNDRV_CTL_ELEM_IFACE_MIXER,
274	.name           = "Mic Capture Volume",
275	.access         = SNDRV_CTL_ELEM_ACCESS_READWRITE,
276	.private_value  = H2_MIX_INPUT_GAIN,
277	.info           = hal2_gain_info,
278	.get            = hal2_gain_get,
279	.put            = hal2_gain_put,
280};
281
282static int __devinit hal2_mixer_create(struct snd_hal2 *hal2)
283{
284	int err;
285
286	/* mute DAC */
287	hal2_i_write32(hal2, H2I_DAC_C2,
288		       H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
289	/* mute ADC */
290	hal2_i_write32(hal2, H2I_ADC_C2, 0);
291
292	err = snd_ctl_add(hal2->card,
293			  snd_ctl_new1(&hal2_ctrl_headphone, hal2));
294	if (err < 0)
295		return err;
296
297	err = snd_ctl_add(hal2->card,
298			  snd_ctl_new1(&hal2_ctrl_mic, hal2));
299	if (err < 0)
300		return err;
301
302	return 0;
303}
304
305static irqreturn_t hal2_interrupt(int irq, void *dev_id)
306{
307	struct snd_hal2 *hal2 = dev_id;
308	irqreturn_t ret = IRQ_NONE;
309
310	/* decide what caused this interrupt */
311	if (hal2->dac.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
312		snd_pcm_period_elapsed(hal2->dac.substream);
313		ret = IRQ_HANDLED;
314	}
315	if (hal2->adc.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
316		snd_pcm_period_elapsed(hal2->adc.substream);
317		ret = IRQ_HANDLED;
318	}
319	return ret;
320}
321
322static int hal2_compute_rate(struct hal2_codec *codec, unsigned int rate)
323{
324	unsigned short mod;
325
326	if (44100 % rate < 48000 % rate) {
327		mod = 4 * 44100 / rate;
328		codec->master = 44100;
329	} else {
330		mod = 4 * 48000 / rate;
331		codec->master = 48000;
332	}
333
334	codec->inc = 4;
335	codec->mod = mod;
336	rate = 4 * codec->master / mod;
337
338	return rate;
339}
340
341static void hal2_set_dac_rate(struct snd_hal2 *hal2)
342{
343	unsigned int master = hal2->dac.master;
344	int inc = hal2->dac.inc;
345	int mod = hal2->dac.mod;
346
347	hal2_i_write16(hal2, H2I_BRES1_C1, (master == 44100) ? 1 : 0);
348	hal2_i_write32(hal2, H2I_BRES1_C2,
349		       ((0xffff & (inc - mod - 1)) << 16) | inc);
350}
351
352static void hal2_set_adc_rate(struct snd_hal2 *hal2)
353{
354	unsigned int master = hal2->adc.master;
355	int inc = hal2->adc.inc;
356	int mod = hal2->adc.mod;
357
358	hal2_i_write16(hal2, H2I_BRES2_C1, (master == 44100) ? 1 : 0);
359	hal2_i_write32(hal2, H2I_BRES2_C2,
360		       ((0xffff & (inc - mod - 1)) << 16) | inc);
361}
362
363static void hal2_setup_dac(struct snd_hal2 *hal2)
364{
365	unsigned int fifobeg, fifoend, highwater, sample_size;
366	struct hal2_pbus *pbus = &hal2->dac.pbus;
367
368	/* Now we set up some PBUS information. The PBUS needs information about
369	 * what portion of the fifo it will use. If it's receiving or
370	 * transmitting, and finally whether the stream is little endian or big
371	 * endian. The information is written later, on the start call.
372	 */
373	sample_size = 2 * hal2->dac.voices;
374	/* Fifo should be set to hold exactly four samples. Highwater mark
375	 * should be set to two samples. */
376	highwater = (sample_size * 2) >> 1;	/* halfwords */
377	fifobeg = 0;				/* playback is first */
378	fifoend = (sample_size * 4) >> 3;	/* doublewords */
379	pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_LD |
380		     (highwater << 8) | (fifobeg << 16) | (fifoend << 24);
381	/* We disable everything before we do anything at all */
382	pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
383	hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
384	/* Setup the HAL2 for playback */
385	hal2_set_dac_rate(hal2);
386	/* Set endianess */
387	hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECTX);
388	/* Set DMA bus */
389	hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
390	/* We are using 1st Bresenham clock generator for playback */
391	hal2_i_write16(hal2, H2I_DAC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
392			| (1 << H2I_C1_CLKID_SHIFT)
393			| (hal2->dac.voices << H2I_C1_DATAT_SHIFT));
394}
395
396static void hal2_setup_adc(struct snd_hal2 *hal2)
397{
398	unsigned int fifobeg, fifoend, highwater, sample_size;
399	struct hal2_pbus *pbus = &hal2->adc.pbus;
400
401	sample_size = 2 * hal2->adc.voices;
402	highwater = (sample_size * 2) >> 1;		/* halfwords */
403	fifobeg = (4 * 4) >> 3;				/* record is second */
404	fifoend = (4 * 4 + sample_size * 4) >> 3;	/* doublewords */
405	pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_RCV | HPC3_PDMACTRL_LD |
406		     (highwater << 8) | (fifobeg << 16) | (fifoend << 24);
407	pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
408	hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
409	/* Setup the HAL2 for record */
410	hal2_set_adc_rate(hal2);
411	/* Set endianess */
412	hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECR);
413	/* Set DMA bus */
414	hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
415	/* We are using 2nd Bresenham clock generator for record */
416	hal2_i_write16(hal2, H2I_ADC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
417			| (2 << H2I_C1_CLKID_SHIFT)
418			| (hal2->adc.voices << H2I_C1_DATAT_SHIFT));
419}
420
421static void hal2_start_dac(struct snd_hal2 *hal2)
422{
423	struct hal2_pbus *pbus = &hal2->dac.pbus;
424
425	pbus->pbus->pbdma_dptr = hal2->dac.desc_dma;
426	pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
427	/* enable DAC */
428	hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
429}
430
431static void hal2_start_adc(struct snd_hal2 *hal2)
432{
433	struct hal2_pbus *pbus = &hal2->adc.pbus;
434
435	pbus->pbus->pbdma_dptr = hal2->adc.desc_dma;
436	pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
437	/* enable ADC */
438	hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
439}
440
441static inline void hal2_stop_dac(struct snd_hal2 *hal2)
442{
443	hal2->dac.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
444	/* The HAL2 itself may remain enabled safely */
445}
446
447static inline void hal2_stop_adc(struct snd_hal2 *hal2)
448{
449	hal2->adc.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
450}
451
452static int hal2_alloc_dmabuf(struct hal2_codec *codec)
453{
454	struct hal2_desc *desc;
455	dma_addr_t desc_dma, buffer_dma;
456	int count = H2_BUF_SIZE / H2_BLOCK_SIZE;
457	int i;
458
459	codec->buffer = dma_alloc_noncoherent(NULL, H2_BUF_SIZE,
460					      &buffer_dma, GFP_KERNEL);
461	if (!codec->buffer)
462		return -ENOMEM;
463	desc = dma_alloc_noncoherent(NULL, count * sizeof(struct hal2_desc),
464				     &desc_dma, GFP_KERNEL);
465	if (!desc) {
466		dma_free_noncoherent(NULL, H2_BUF_SIZE,
467				     codec->buffer, buffer_dma);
468		return -ENOMEM;
469	}
470	codec->buffer_dma = buffer_dma;
471	codec->desc_dma = desc_dma;
472	codec->desc = desc;
473	for (i = 0; i < count; i++) {
474		desc->desc.pbuf = buffer_dma + i * H2_BLOCK_SIZE;
475		desc->desc.cntinfo = HPCDMA_XIE | H2_BLOCK_SIZE;
476		desc->desc.pnext = (i == count - 1) ?
477		      desc_dma : desc_dma + (i + 1) * sizeof(struct hal2_desc);
478		desc++;
479	}
480	dma_cache_sync(NULL, codec->desc, count * sizeof(struct hal2_desc),
481		       DMA_TO_DEVICE);
482	codec->desc_count = count;
483	return 0;
484}
485
486static void hal2_free_dmabuf(struct hal2_codec *codec)
487{
488	dma_free_noncoherent(NULL, codec->desc_count * sizeof(struct hal2_desc),
489			     codec->desc, codec->desc_dma);
490	dma_free_noncoherent(NULL, H2_BUF_SIZE, codec->buffer,
491			     codec->buffer_dma);
492}
493
494static struct snd_pcm_hardware hal2_pcm_hw = {
495	.info = (SNDRV_PCM_INFO_MMAP |
496		 SNDRV_PCM_INFO_MMAP_VALID |
497		 SNDRV_PCM_INFO_INTERLEAVED |
498		 SNDRV_PCM_INFO_BLOCK_TRANSFER),
499	.formats =          SNDRV_PCM_FMTBIT_S16_BE,
500	.rates =            SNDRV_PCM_RATE_8000_48000,
501	.rate_min =         8000,
502	.rate_max =         48000,
503	.channels_min =     2,
504	.channels_max =     2,
505	.buffer_bytes_max = 65536,
506	.period_bytes_min = 1024,
507	.period_bytes_max = 65536,
508	.periods_min =      2,
509	.periods_max =      1024,
510};
511
512static int hal2_pcm_hw_params(struct snd_pcm_substream *substream,
513			      struct snd_pcm_hw_params *params)
514{
515	int err;
516
517	err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(params));
518	if (err < 0)
519		return err;
520
521	return 0;
522}
523
524static int hal2_pcm_hw_free(struct snd_pcm_substream *substream)
525{
526	return snd_pcm_lib_free_pages(substream);
527}
528
529static int hal2_playback_open(struct snd_pcm_substream *substream)
530{
531	struct snd_pcm_runtime *runtime = substream->runtime;
532	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
533	int err;
534
535	runtime->hw = hal2_pcm_hw;
536
537	err = hal2_alloc_dmabuf(&hal2->dac);
538	if (err)
539		return err;
540	return 0;
541}
542
543static int hal2_playback_close(struct snd_pcm_substream *substream)
544{
545	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
546
547	hal2_free_dmabuf(&hal2->dac);
548	return 0;
549}
550
551static int hal2_playback_prepare(struct snd_pcm_substream *substream)
552{
553	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
554	struct snd_pcm_runtime *runtime = substream->runtime;
555	struct hal2_codec *dac = &hal2->dac;
556
557	dac->voices = runtime->channels;
558	dac->sample_rate = hal2_compute_rate(dac, runtime->rate);
559	memset(&dac->pcm_indirect, 0, sizeof(dac->pcm_indirect));
560	dac->pcm_indirect.hw_buffer_size = H2_BUF_SIZE;
561	dac->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
562	dac->substream = substream;
563	hal2_setup_dac(hal2);
564	return 0;
565}
566
567static int hal2_playback_trigger(struct snd_pcm_substream *substream, int cmd)
568{
569	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
570
571	switch (cmd) {
572	case SNDRV_PCM_TRIGGER_START:
573		hal2->dac.pcm_indirect.hw_io = hal2->dac.buffer_dma;
574		hal2->dac.pcm_indirect.hw_data = 0;
575		substream->ops->ack(substream);
576		hal2_start_dac(hal2);
577		break;
578	case SNDRV_PCM_TRIGGER_STOP:
579		hal2_stop_dac(hal2);
580		break;
581	default:
582		return -EINVAL;
583	}
584	return 0;
585}
586
587static snd_pcm_uframes_t
588hal2_playback_pointer(struct snd_pcm_substream *substream)
589{
590	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
591	struct hal2_codec *dac = &hal2->dac;
592
593	return snd_pcm_indirect_playback_pointer(substream, &dac->pcm_indirect,
594						 dac->pbus.pbus->pbdma_bptr);
595}
596
597static void hal2_playback_transfer(struct snd_pcm_substream *substream,
598				   struct snd_pcm_indirect *rec, size_t bytes)
599{
600	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
601	unsigned char *buf = hal2->dac.buffer + rec->hw_data;
602
603	memcpy(buf, substream->runtime->dma_area + rec->sw_data, bytes);
604	dma_cache_sync(NULL, buf, bytes, DMA_TO_DEVICE);
605
606}
607
608static int hal2_playback_ack(struct snd_pcm_substream *substream)
609{
610	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
611	struct hal2_codec *dac = &hal2->dac;
612
613	dac->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2;
614	snd_pcm_indirect_playback_transfer(substream,
615					   &dac->pcm_indirect,
616					   hal2_playback_transfer);
617	return 0;
618}
619
620static int hal2_capture_open(struct snd_pcm_substream *substream)
621{
622	struct snd_pcm_runtime *runtime = substream->runtime;
623	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
624	struct hal2_codec *adc = &hal2->adc;
625	int err;
626
627	runtime->hw = hal2_pcm_hw;
628
629	err = hal2_alloc_dmabuf(adc);
630	if (err)
631		return err;
632	return 0;
633}
634
635static int hal2_capture_close(struct snd_pcm_substream *substream)
636{
637	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
638
639	hal2_free_dmabuf(&hal2->adc);
640	return 0;
641}
642
643static int hal2_capture_prepare(struct snd_pcm_substream *substream)
644{
645	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
646	struct snd_pcm_runtime *runtime = substream->runtime;
647	struct hal2_codec *adc = &hal2->adc;
648
649	adc->voices = runtime->channels;
650	adc->sample_rate = hal2_compute_rate(adc, runtime->rate);
651	memset(&adc->pcm_indirect, 0, sizeof(adc->pcm_indirect));
652	adc->pcm_indirect.hw_buffer_size = H2_BUF_SIZE;
653	adc->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2;
654	adc->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
655	adc->substream = substream;
656	hal2_setup_adc(hal2);
657	return 0;
658}
659
660static int hal2_capture_trigger(struct snd_pcm_substream *substream, int cmd)
661{
662	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
663
664	switch (cmd) {
665	case SNDRV_PCM_TRIGGER_START:
666		hal2->adc.pcm_indirect.hw_io = hal2->adc.buffer_dma;
667		hal2->adc.pcm_indirect.hw_data = 0;
668		printk(KERN_DEBUG "buffer_dma %x\n", hal2->adc.buffer_dma);
669		hal2_start_adc(hal2);
670		break;
671	case SNDRV_PCM_TRIGGER_STOP:
672		hal2_stop_adc(hal2);
673		break;
674	default:
675		return -EINVAL;
676	}
677	return 0;
678}
679
680static snd_pcm_uframes_t
681hal2_capture_pointer(struct snd_pcm_substream *substream)
682{
683	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
684	struct hal2_codec *adc = &hal2->adc;
685
686	return snd_pcm_indirect_capture_pointer(substream, &adc->pcm_indirect,
687						adc->pbus.pbus->pbdma_bptr);
688}
689
690static void hal2_capture_transfer(struct snd_pcm_substream *substream,
691				  struct snd_pcm_indirect *rec, size_t bytes)
692{
693	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
694	unsigned char *buf = hal2->adc.buffer + rec->hw_data;
695
696	dma_cache_sync(NULL, buf, bytes, DMA_FROM_DEVICE);
697	memcpy(substream->runtime->dma_area + rec->sw_data, buf, bytes);
698}
699
700static int hal2_capture_ack(struct snd_pcm_substream *substream)
701{
702	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
703	struct hal2_codec *adc = &hal2->adc;
704
705	snd_pcm_indirect_capture_transfer(substream,
706					  &adc->pcm_indirect,
707					  hal2_capture_transfer);
708	return 0;
709}
710
711static struct snd_pcm_ops hal2_playback_ops = {
712	.open =        hal2_playback_open,
713	.close =       hal2_playback_close,
714	.ioctl =       snd_pcm_lib_ioctl,
715	.hw_params =   hal2_pcm_hw_params,
716	.hw_free =     hal2_pcm_hw_free,
717	.prepare =     hal2_playback_prepare,
718	.trigger =     hal2_playback_trigger,
719	.pointer =     hal2_playback_pointer,
720	.ack =         hal2_playback_ack,
721};
722
723static struct snd_pcm_ops hal2_capture_ops = {
724	.open =        hal2_capture_open,
725	.close =       hal2_capture_close,
726	.ioctl =       snd_pcm_lib_ioctl,
727	.hw_params =   hal2_pcm_hw_params,
728	.hw_free =     hal2_pcm_hw_free,
729	.prepare =     hal2_capture_prepare,
730	.trigger =     hal2_capture_trigger,
731	.pointer =     hal2_capture_pointer,
732	.ack =         hal2_capture_ack,
733};
734
735static int __devinit hal2_pcm_create(struct snd_hal2 *hal2)
736{
737	struct snd_pcm *pcm;
738	int err;
739
740	/* create first pcm device with one outputs and one input */
741	err = snd_pcm_new(hal2->card, "SGI HAL2 Audio", 0, 1, 1, &pcm);
742	if (err < 0)
743		return err;
744
745	pcm->private_data = hal2;
746	strcpy(pcm->name, "SGI HAL2");
747
748	/* set operators */
749	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
750			&hal2_playback_ops);
751	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
752			&hal2_capture_ops);
753	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
754					   snd_dma_continuous_data(GFP_KERNEL),
755					   0, 1024 * 1024);
756
757	return 0;
758}
759
760static int hal2_dev_free(struct snd_device *device)
761{
762	struct snd_hal2 *hal2 = device->device_data;
763
764	free_irq(SGI_HPCDMA_IRQ, hal2);
765	kfree(hal2);
766	return 0;
767}
768
769static struct snd_device_ops hal2_ops = {
770	.dev_free = hal2_dev_free,
771};
772
773static void hal2_init_codec(struct hal2_codec *codec, struct hpc3_regs *hpc3,
774			    int index)
775{
776	codec->pbus.pbusnr = index;
777	codec->pbus.pbus = &hpc3->pbdma[index];
778}
779
780static int hal2_detect(struct snd_hal2 *hal2)
781{
782	unsigned short board, major, minor;
783	unsigned short rev;
784
785	/* reset HAL2 */
786	hal2_write(0, &hal2->ctl_regs->isr);
787
788	/* release reset */
789	hal2_write(H2_ISR_GLOBAL_RESET_N | H2_ISR_CODEC_RESET_N,
790		   &hal2->ctl_regs->isr);
791
792
793	hal2_i_write16(hal2, H2I_RELAY_C, H2I_RELAY_C_STATE);
794	rev = hal2_read(&hal2->ctl_regs->rev);
795	if (rev & H2_REV_AUDIO_PRESENT)
796		return -ENODEV;
797
798	board = (rev & H2_REV_BOARD_M) >> 12;
799	major = (rev & H2_REV_MAJOR_CHIP_M) >> 4;
800	minor = (rev & H2_REV_MINOR_CHIP_M);
801
802	printk(KERN_INFO "SGI HAL2 revision %i.%i.%i\n",
803	       board, major, minor);
804
805	return 0;
806}
807
808static int hal2_create(struct snd_card *card, struct snd_hal2 **rchip)
809{
810	struct snd_hal2 *hal2;
811	struct hpc3_regs *hpc3 = hpc3c0;
812	int err;
813
814	hal2 = kzalloc(sizeof(struct snd_hal2), GFP_KERNEL);
815	if (!hal2)
816		return -ENOMEM;
817
818	hal2->card = card;
819
820	if (request_irq(SGI_HPCDMA_IRQ, hal2_interrupt, IRQF_SHARED,
821			"SGI HAL2", hal2)) {
822		printk(KERN_ERR "HAL2: Can't get irq %d\n", SGI_HPCDMA_IRQ);
823		kfree(hal2);
824		return -EAGAIN;
825	}
826
827	hal2->ctl_regs = (struct hal2_ctl_regs *)hpc3->pbus_extregs[0];
828	hal2->aes_regs = (struct hal2_aes_regs *)hpc3->pbus_extregs[1];
829	hal2->vol_regs = (struct hal2_vol_regs *)hpc3->pbus_extregs[2];
830	hal2->syn_regs = (struct hal2_syn_regs *)hpc3->pbus_extregs[3];
831
832	if (hal2_detect(hal2) < 0) {
833		kfree(hal2);
834		return -ENODEV;
835	}
836
837	hal2_init_codec(&hal2->dac, hpc3, 0);
838	hal2_init_codec(&hal2->adc, hpc3, 1);
839
840	/*
841	 * All DMA channel interfaces in HAL2 are designed to operate with
842	 * PBUS programmed for 2 cycles in D3, 2 cycles in D4 and 2 cycles
843	 * in D5. HAL2 is a 16-bit device which can accept both big and little
844	 * endian format. It assumes that even address bytes are on high
845	 * portion of PBUS (15:8) and assumes that HPC3 is programmed to
846	 * accept a live (unsynchronized) version of P_DREQ_N from HAL2.
847	 */
848#define HAL2_PBUS_DMACFG ((0 << HPC3_DMACFG_D3R_SHIFT) | \
849			  (2 << HPC3_DMACFG_D4R_SHIFT) | \
850			  (2 << HPC3_DMACFG_D5R_SHIFT) | \
851			  (0 << HPC3_DMACFG_D3W_SHIFT) | \
852			  (2 << HPC3_DMACFG_D4W_SHIFT) | \
853			  (2 << HPC3_DMACFG_D5W_SHIFT) | \
854				HPC3_DMACFG_DS16 | \
855				HPC3_DMACFG_EVENHI | \
856				HPC3_DMACFG_RTIME | \
857			  (8 << HPC3_DMACFG_BURST_SHIFT) | \
858				HPC3_DMACFG_DRQLIVE)
859	/*
860	 * Ignore what's mentioned in the specification and write value which
861	 * works in The Real World (TM)
862	 */
863	hpc3->pbus_dmacfg[hal2->dac.pbus.pbusnr][0] = 0x8208844;
864	hpc3->pbus_dmacfg[hal2->adc.pbus.pbusnr][0] = 0x8208844;
865
866	err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, hal2, &hal2_ops);
867	if (err < 0) {
868		free_irq(SGI_HPCDMA_IRQ, hal2);
869		kfree(hal2);
870		return err;
871	}
872	*rchip = hal2;
873	return 0;
874}
875
876static int __devinit hal2_probe(struct platform_device *pdev)
877{
878	struct snd_card *card;
879	struct snd_hal2 *chip;
880	int err;
881
882	err = snd_card_create(index, id, THIS_MODULE, 0, &card);
883	if (err < 0)
884		return err;
885
886	err = hal2_create(card, &chip);
887	if (err < 0) {
888		snd_card_free(card);
889		return err;
890	}
891	snd_card_set_dev(card, &pdev->dev);
892
893	err = hal2_pcm_create(chip);
894	if (err < 0) {
895		snd_card_free(card);
896		return err;
897	}
898	err = hal2_mixer_create(chip);
899	if (err < 0) {
900		snd_card_free(card);
901		return err;
902	}
903
904	strcpy(card->driver, "SGI HAL2 Audio");
905	strcpy(card->shortname, "SGI HAL2 Audio");
906	sprintf(card->longname, "%s irq %i",
907		card->shortname,
908		SGI_HPCDMA_IRQ);
909
910	err = snd_card_register(card);
911	if (err < 0) {
912		snd_card_free(card);
913		return err;
914	}
915	platform_set_drvdata(pdev, card);
916	return 0;
917}
918
919static int __devexit hal2_remove(struct platform_device *pdev)
920{
921	struct snd_card *card = platform_get_drvdata(pdev);
922
923	snd_card_free(card);
924	platform_set_drvdata(pdev, NULL);
925	return 0;
926}
927
928static struct platform_driver hal2_driver = {
929	.probe	= hal2_probe,
930	.remove	= __devexit_p(hal2_remove),
931	.driver = {
932		.name	= "sgihal2",
933		.owner	= THIS_MODULE,
934	}
935};
936
937static int __init alsa_card_hal2_init(void)
938{
939	return platform_driver_register(&hal2_driver);
940}
941
942static void __exit alsa_card_hal2_exit(void)
943{
944	platform_driver_unregister(&hal2_driver);
945}
946
947module_init(alsa_card_hal2_init);
948module_exit(alsa_card_hal2_exit);
v4.17
  1/*
  2 *  Driver for A2 audio system used in SGI machines
  3 *  Copyright (c) 2008 Thomas Bogendoerfer <tsbogend@alpha.fanken.de>
  4 *
  5 *  Based on OSS code from Ladislav Michl <ladis@linux-mips.org>, which
  6 *  was based on code from Ulf Carlsson
  7 *
  8 *  This program is free software; you can redistribute it and/or modify
  9 *  it under the terms of the GNU General Public License version 2 as
 10 *  published by the Free Software Foundation.
 11 *
 12 *  This program is distributed in the hope that it will be useful,
 13 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 14 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 15 *  GNU General Public License for more details.
 16 *
 17 *  You should have received a copy of the GNU General Public License
 18 *  along with this program; if not, write to the Free Software
 19 *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 20 *
 21 */
 22#include <linux/kernel.h>
 23#include <linux/init.h>
 24#include <linux/interrupt.h>
 25#include <linux/dma-mapping.h>
 26#include <linux/platform_device.h>
 27#include <linux/io.h>
 28#include <linux/slab.h>
 29#include <linux/module.h>
 30
 31#include <asm/sgi/hpc3.h>
 32#include <asm/sgi/ip22.h>
 33
 34#include <sound/core.h>
 35#include <sound/control.h>
 36#include <sound/pcm.h>
 37#include <sound/pcm-indirect.h>
 38#include <sound/initval.h>
 39
 40#include "hal2.h"
 41
 42static int index = SNDRV_DEFAULT_IDX1;  /* Index 0-MAX */
 43static char *id = SNDRV_DEFAULT_STR1;   /* ID for this card */
 44
 45module_param(index, int, 0444);
 46MODULE_PARM_DESC(index, "Index value for SGI HAL2 soundcard.");
 47module_param(id, charp, 0444);
 48MODULE_PARM_DESC(id, "ID string for SGI HAL2 soundcard.");
 49MODULE_DESCRIPTION("ALSA driver for SGI HAL2 audio");
 50MODULE_AUTHOR("Thomas Bogendoerfer");
 51MODULE_LICENSE("GPL");
 52
 53
 54#define H2_BLOCK_SIZE	1024
 55#define H2_BUF_SIZE	16384
 56
 57struct hal2_pbus {
 58	struct hpc3_pbus_dmacregs *pbus;
 59	int pbusnr;
 60	unsigned int ctrl;		/* Current state of pbus->pbdma_ctrl */
 61};
 62
 63struct hal2_desc {
 64	struct hpc_dma_desc desc;
 65	u32 pad;			/* padding */
 66};
 67
 68struct hal2_codec {
 69	struct snd_pcm_indirect pcm_indirect;
 70	struct snd_pcm_substream *substream;
 71
 72	unsigned char *buffer;
 73	dma_addr_t buffer_dma;
 74	struct hal2_desc *desc;
 75	dma_addr_t desc_dma;
 76	int desc_count;
 77	struct hal2_pbus pbus;
 78	int voices;			/* mono/stereo */
 79	unsigned int sample_rate;
 80	unsigned int master;		/* Master frequency */
 81	unsigned short mod;		/* MOD value */
 82	unsigned short inc;		/* INC value */
 83};
 84
 85#define H2_MIX_OUTPUT_ATT	0
 86#define H2_MIX_INPUT_GAIN	1
 87
 88struct snd_hal2 {
 89	struct snd_card *card;
 90
 91	struct hal2_ctl_regs *ctl_regs;	/* HAL2 ctl registers */
 92	struct hal2_aes_regs *aes_regs;	/* HAL2 aes registers */
 93	struct hal2_vol_regs *vol_regs;	/* HAL2 vol registers */
 94	struct hal2_syn_regs *syn_regs;	/* HAL2 syn registers */
 95
 96	struct hal2_codec dac;
 97	struct hal2_codec adc;
 98};
 99
100#define H2_INDIRECT_WAIT(regs)	while (hal2_read(&regs->isr) & H2_ISR_TSTATUS);
101
102#define H2_READ_ADDR(addr)	(addr | (1<<7))
103#define H2_WRITE_ADDR(addr)	(addr)
104
105static inline u32 hal2_read(u32 *reg)
106{
107	return __raw_readl(reg);
108}
109
110static inline void hal2_write(u32 val, u32 *reg)
111{
112	__raw_writel(val, reg);
113}
114
115
116static u32 hal2_i_read32(struct snd_hal2 *hal2, u16 addr)
117{
118	u32 ret;
119	struct hal2_ctl_regs *regs = hal2->ctl_regs;
120
121	hal2_write(H2_READ_ADDR(addr), &regs->iar);
122	H2_INDIRECT_WAIT(regs);
123	ret = hal2_read(&regs->idr0) & 0xffff;
124	hal2_write(H2_READ_ADDR(addr) | 0x1, &regs->iar);
125	H2_INDIRECT_WAIT(regs);
126	ret |= (hal2_read(&regs->idr0) & 0xffff) << 16;
127	return ret;
128}
129
130static void hal2_i_write16(struct snd_hal2 *hal2, u16 addr, u16 val)
131{
132	struct hal2_ctl_regs *regs = hal2->ctl_regs;
133
134	hal2_write(val, &regs->idr0);
135	hal2_write(0, &regs->idr1);
136	hal2_write(0, &regs->idr2);
137	hal2_write(0, &regs->idr3);
138	hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
139	H2_INDIRECT_WAIT(regs);
140}
141
142static void hal2_i_write32(struct snd_hal2 *hal2, u16 addr, u32 val)
143{
144	struct hal2_ctl_regs *regs = hal2->ctl_regs;
145
146	hal2_write(val & 0xffff, &regs->idr0);
147	hal2_write(val >> 16, &regs->idr1);
148	hal2_write(0, &regs->idr2);
149	hal2_write(0, &regs->idr3);
150	hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
151	H2_INDIRECT_WAIT(regs);
152}
153
154static void hal2_i_setbit16(struct snd_hal2 *hal2, u16 addr, u16 bit)
155{
156	struct hal2_ctl_regs *regs = hal2->ctl_regs;
157
158	hal2_write(H2_READ_ADDR(addr), &regs->iar);
159	H2_INDIRECT_WAIT(regs);
160	hal2_write((hal2_read(&regs->idr0) & 0xffff) | bit, &regs->idr0);
161	hal2_write(0, &regs->idr1);
162	hal2_write(0, &regs->idr2);
163	hal2_write(0, &regs->idr3);
164	hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
165	H2_INDIRECT_WAIT(regs);
166}
167
168static void hal2_i_clearbit16(struct snd_hal2 *hal2, u16 addr, u16 bit)
169{
170	struct hal2_ctl_regs *regs = hal2->ctl_regs;
171
172	hal2_write(H2_READ_ADDR(addr), &regs->iar);
173	H2_INDIRECT_WAIT(regs);
174	hal2_write((hal2_read(&regs->idr0) & 0xffff) & ~bit, &regs->idr0);
175	hal2_write(0, &regs->idr1);
176	hal2_write(0, &regs->idr2);
177	hal2_write(0, &regs->idr3);
178	hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
179	H2_INDIRECT_WAIT(regs);
180}
181
182static int hal2_gain_info(struct snd_kcontrol *kcontrol,
183			       struct snd_ctl_elem_info *uinfo)
184{
185	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
186	uinfo->count = 2;
187	uinfo->value.integer.min = 0;
188	switch ((int)kcontrol->private_value) {
189	case H2_MIX_OUTPUT_ATT:
190		uinfo->value.integer.max = 31;
191		break;
192	case H2_MIX_INPUT_GAIN:
193		uinfo->value.integer.max = 15;
194		break;
195	}
196	return 0;
197}
198
199static int hal2_gain_get(struct snd_kcontrol *kcontrol,
200			       struct snd_ctl_elem_value *ucontrol)
201{
202	struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol);
203	u32 tmp;
204	int l, r;
205
206	switch ((int)kcontrol->private_value) {
207	case H2_MIX_OUTPUT_ATT:
208		tmp = hal2_i_read32(hal2, H2I_DAC_C2);
209		if (tmp & H2I_C2_MUTE) {
210			l = 0;
211			r = 0;
212		} else {
213			l = 31 - ((tmp >> H2I_C2_L_ATT_SHIFT) & 31);
214			r = 31 - ((tmp >> H2I_C2_R_ATT_SHIFT) & 31);
215		}
216		break;
217	case H2_MIX_INPUT_GAIN:
218		tmp = hal2_i_read32(hal2, H2I_ADC_C2);
219		l = (tmp >> H2I_C2_L_GAIN_SHIFT) & 15;
220		r = (tmp >> H2I_C2_R_GAIN_SHIFT) & 15;
221		break;
222	default:
223		return -EINVAL;
224	}
225	ucontrol->value.integer.value[0] = l;
226	ucontrol->value.integer.value[1] = r;
227
228	return 0;
229}
230
231static int hal2_gain_put(struct snd_kcontrol *kcontrol,
232			 struct snd_ctl_elem_value *ucontrol)
233{
234	struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol);
235	u32 old, new;
236	int l, r;
237
238	l = ucontrol->value.integer.value[0];
239	r = ucontrol->value.integer.value[1];
240
241	switch ((int)kcontrol->private_value) {
242	case H2_MIX_OUTPUT_ATT:
243		old = hal2_i_read32(hal2, H2I_DAC_C2);
244		new = old & ~(H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
245		if (l | r) {
246			l = 31 - l;
247			r = 31 - r;
248			new |= (l << H2I_C2_L_ATT_SHIFT);
249			new |= (r << H2I_C2_R_ATT_SHIFT);
250		} else
251			new |= H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE;
252		hal2_i_write32(hal2, H2I_DAC_C2, new);
253		break;
254	case H2_MIX_INPUT_GAIN:
255		old = hal2_i_read32(hal2, H2I_ADC_C2);
256		new = old & ~(H2I_C2_L_GAIN_M | H2I_C2_R_GAIN_M);
257		new |= (l << H2I_C2_L_GAIN_SHIFT);
258		new |= (r << H2I_C2_R_GAIN_SHIFT);
259		hal2_i_write32(hal2, H2I_ADC_C2, new);
260		break;
261	default:
262		return -EINVAL;
263	}
264	return old != new;
265}
266
267static const struct snd_kcontrol_new hal2_ctrl_headphone = {
268	.iface          = SNDRV_CTL_ELEM_IFACE_MIXER,
269	.name           = "Headphone Playback Volume",
270	.access         = SNDRV_CTL_ELEM_ACCESS_READWRITE,
271	.private_value  = H2_MIX_OUTPUT_ATT,
272	.info           = hal2_gain_info,
273	.get            = hal2_gain_get,
274	.put            = hal2_gain_put,
275};
276
277static const struct snd_kcontrol_new hal2_ctrl_mic = {
278	.iface          = SNDRV_CTL_ELEM_IFACE_MIXER,
279	.name           = "Mic Capture Volume",
280	.access         = SNDRV_CTL_ELEM_ACCESS_READWRITE,
281	.private_value  = H2_MIX_INPUT_GAIN,
282	.info           = hal2_gain_info,
283	.get            = hal2_gain_get,
284	.put            = hal2_gain_put,
285};
286
287static int hal2_mixer_create(struct snd_hal2 *hal2)
288{
289	int err;
290
291	/* mute DAC */
292	hal2_i_write32(hal2, H2I_DAC_C2,
293		       H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
294	/* mute ADC */
295	hal2_i_write32(hal2, H2I_ADC_C2, 0);
296
297	err = snd_ctl_add(hal2->card,
298			  snd_ctl_new1(&hal2_ctrl_headphone, hal2));
299	if (err < 0)
300		return err;
301
302	err = snd_ctl_add(hal2->card,
303			  snd_ctl_new1(&hal2_ctrl_mic, hal2));
304	if (err < 0)
305		return err;
306
307	return 0;
308}
309
310static irqreturn_t hal2_interrupt(int irq, void *dev_id)
311{
312	struct snd_hal2 *hal2 = dev_id;
313	irqreturn_t ret = IRQ_NONE;
314
315	/* decide what caused this interrupt */
316	if (hal2->dac.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
317		snd_pcm_period_elapsed(hal2->dac.substream);
318		ret = IRQ_HANDLED;
319	}
320	if (hal2->adc.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
321		snd_pcm_period_elapsed(hal2->adc.substream);
322		ret = IRQ_HANDLED;
323	}
324	return ret;
325}
326
327static int hal2_compute_rate(struct hal2_codec *codec, unsigned int rate)
328{
329	unsigned short mod;
330
331	if (44100 % rate < 48000 % rate) {
332		mod = 4 * 44100 / rate;
333		codec->master = 44100;
334	} else {
335		mod = 4 * 48000 / rate;
336		codec->master = 48000;
337	}
338
339	codec->inc = 4;
340	codec->mod = mod;
341	rate = 4 * codec->master / mod;
342
343	return rate;
344}
345
346static void hal2_set_dac_rate(struct snd_hal2 *hal2)
347{
348	unsigned int master = hal2->dac.master;
349	int inc = hal2->dac.inc;
350	int mod = hal2->dac.mod;
351
352	hal2_i_write16(hal2, H2I_BRES1_C1, (master == 44100) ? 1 : 0);
353	hal2_i_write32(hal2, H2I_BRES1_C2,
354		       ((0xffff & (inc - mod - 1)) << 16) | inc);
355}
356
357static void hal2_set_adc_rate(struct snd_hal2 *hal2)
358{
359	unsigned int master = hal2->adc.master;
360	int inc = hal2->adc.inc;
361	int mod = hal2->adc.mod;
362
363	hal2_i_write16(hal2, H2I_BRES2_C1, (master == 44100) ? 1 : 0);
364	hal2_i_write32(hal2, H2I_BRES2_C2,
365		       ((0xffff & (inc - mod - 1)) << 16) | inc);
366}
367
368static void hal2_setup_dac(struct snd_hal2 *hal2)
369{
370	unsigned int fifobeg, fifoend, highwater, sample_size;
371	struct hal2_pbus *pbus = &hal2->dac.pbus;
372
373	/* Now we set up some PBUS information. The PBUS needs information about
374	 * what portion of the fifo it will use. If it's receiving or
375	 * transmitting, and finally whether the stream is little endian or big
376	 * endian. The information is written later, on the start call.
377	 */
378	sample_size = 2 * hal2->dac.voices;
379	/* Fifo should be set to hold exactly four samples. Highwater mark
380	 * should be set to two samples. */
381	highwater = (sample_size * 2) >> 1;	/* halfwords */
382	fifobeg = 0;				/* playback is first */
383	fifoend = (sample_size * 4) >> 3;	/* doublewords */
384	pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_LD |
385		     (highwater << 8) | (fifobeg << 16) | (fifoend << 24);
386	/* We disable everything before we do anything at all */
387	pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
388	hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
389	/* Setup the HAL2 for playback */
390	hal2_set_dac_rate(hal2);
391	/* Set endianess */
392	hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECTX);
393	/* Set DMA bus */
394	hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
395	/* We are using 1st Bresenham clock generator for playback */
396	hal2_i_write16(hal2, H2I_DAC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
397			| (1 << H2I_C1_CLKID_SHIFT)
398			| (hal2->dac.voices << H2I_C1_DATAT_SHIFT));
399}
400
401static void hal2_setup_adc(struct snd_hal2 *hal2)
402{
403	unsigned int fifobeg, fifoend, highwater, sample_size;
404	struct hal2_pbus *pbus = &hal2->adc.pbus;
405
406	sample_size = 2 * hal2->adc.voices;
407	highwater = (sample_size * 2) >> 1;		/* halfwords */
408	fifobeg = (4 * 4) >> 3;				/* record is second */
409	fifoend = (4 * 4 + sample_size * 4) >> 3;	/* doublewords */
410	pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_RCV | HPC3_PDMACTRL_LD |
411		     (highwater << 8) | (fifobeg << 16) | (fifoend << 24);
412	pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
413	hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
414	/* Setup the HAL2 for record */
415	hal2_set_adc_rate(hal2);
416	/* Set endianess */
417	hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECR);
418	/* Set DMA bus */
419	hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
420	/* We are using 2nd Bresenham clock generator for record */
421	hal2_i_write16(hal2, H2I_ADC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
422			| (2 << H2I_C1_CLKID_SHIFT)
423			| (hal2->adc.voices << H2I_C1_DATAT_SHIFT));
424}
425
426static void hal2_start_dac(struct snd_hal2 *hal2)
427{
428	struct hal2_pbus *pbus = &hal2->dac.pbus;
429
430	pbus->pbus->pbdma_dptr = hal2->dac.desc_dma;
431	pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
432	/* enable DAC */
433	hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
434}
435
436static void hal2_start_adc(struct snd_hal2 *hal2)
437{
438	struct hal2_pbus *pbus = &hal2->adc.pbus;
439
440	pbus->pbus->pbdma_dptr = hal2->adc.desc_dma;
441	pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
442	/* enable ADC */
443	hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
444}
445
446static inline void hal2_stop_dac(struct snd_hal2 *hal2)
447{
448	hal2->dac.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
449	/* The HAL2 itself may remain enabled safely */
450}
451
452static inline void hal2_stop_adc(struct snd_hal2 *hal2)
453{
454	hal2->adc.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
455}
456
457static int hal2_alloc_dmabuf(struct hal2_codec *codec)
458{
459	struct hal2_desc *desc;
460	dma_addr_t desc_dma, buffer_dma;
461	int count = H2_BUF_SIZE / H2_BLOCK_SIZE;
462	int i;
463
464	codec->buffer = dma_alloc_attrs(NULL, H2_BUF_SIZE, &buffer_dma,
465					GFP_KERNEL, DMA_ATTR_NON_CONSISTENT);
466	if (!codec->buffer)
467		return -ENOMEM;
468	desc = dma_alloc_attrs(NULL, count * sizeof(struct hal2_desc),
469			       &desc_dma, GFP_KERNEL, DMA_ATTR_NON_CONSISTENT);
470	if (!desc) {
471		dma_free_attrs(NULL, H2_BUF_SIZE, codec->buffer, buffer_dma,
472			       DMA_ATTR_NON_CONSISTENT);
473		return -ENOMEM;
474	}
475	codec->buffer_dma = buffer_dma;
476	codec->desc_dma = desc_dma;
477	codec->desc = desc;
478	for (i = 0; i < count; i++) {
479		desc->desc.pbuf = buffer_dma + i * H2_BLOCK_SIZE;
480		desc->desc.cntinfo = HPCDMA_XIE | H2_BLOCK_SIZE;
481		desc->desc.pnext = (i == count - 1) ?
482		      desc_dma : desc_dma + (i + 1) * sizeof(struct hal2_desc);
483		desc++;
484	}
485	dma_cache_sync(NULL, codec->desc, count * sizeof(struct hal2_desc),
486		       DMA_TO_DEVICE);
487	codec->desc_count = count;
488	return 0;
489}
490
491static void hal2_free_dmabuf(struct hal2_codec *codec)
492{
493	dma_free_attrs(NULL, codec->desc_count * sizeof(struct hal2_desc),
494		       codec->desc, codec->desc_dma, DMA_ATTR_NON_CONSISTENT);
495	dma_free_attrs(NULL, H2_BUF_SIZE, codec->buffer, codec->buffer_dma,
496		       DMA_ATTR_NON_CONSISTENT);
497}
498
499static const struct snd_pcm_hardware hal2_pcm_hw = {
500	.info = (SNDRV_PCM_INFO_MMAP |
501		 SNDRV_PCM_INFO_MMAP_VALID |
502		 SNDRV_PCM_INFO_INTERLEAVED |
503		 SNDRV_PCM_INFO_BLOCK_TRANSFER),
504	.formats =          SNDRV_PCM_FMTBIT_S16_BE,
505	.rates =            SNDRV_PCM_RATE_8000_48000,
506	.rate_min =         8000,
507	.rate_max =         48000,
508	.channels_min =     2,
509	.channels_max =     2,
510	.buffer_bytes_max = 65536,
511	.period_bytes_min = 1024,
512	.period_bytes_max = 65536,
513	.periods_min =      2,
514	.periods_max =      1024,
515};
516
517static int hal2_pcm_hw_params(struct snd_pcm_substream *substream,
518			      struct snd_pcm_hw_params *params)
519{
520	int err;
521
522	err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(params));
523	if (err < 0)
524		return err;
525
526	return 0;
527}
528
529static int hal2_pcm_hw_free(struct snd_pcm_substream *substream)
530{
531	return snd_pcm_lib_free_pages(substream);
532}
533
534static int hal2_playback_open(struct snd_pcm_substream *substream)
535{
536	struct snd_pcm_runtime *runtime = substream->runtime;
537	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
538	int err;
539
540	runtime->hw = hal2_pcm_hw;
541
542	err = hal2_alloc_dmabuf(&hal2->dac);
543	if (err)
544		return err;
545	return 0;
546}
547
548static int hal2_playback_close(struct snd_pcm_substream *substream)
549{
550	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
551
552	hal2_free_dmabuf(&hal2->dac);
553	return 0;
554}
555
556static int hal2_playback_prepare(struct snd_pcm_substream *substream)
557{
558	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
559	struct snd_pcm_runtime *runtime = substream->runtime;
560	struct hal2_codec *dac = &hal2->dac;
561
562	dac->voices = runtime->channels;
563	dac->sample_rate = hal2_compute_rate(dac, runtime->rate);
564	memset(&dac->pcm_indirect, 0, sizeof(dac->pcm_indirect));
565	dac->pcm_indirect.hw_buffer_size = H2_BUF_SIZE;
566	dac->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
567	dac->substream = substream;
568	hal2_setup_dac(hal2);
569	return 0;
570}
571
572static int hal2_playback_trigger(struct snd_pcm_substream *substream, int cmd)
573{
574	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
575
576	switch (cmd) {
577	case SNDRV_PCM_TRIGGER_START:
578		hal2->dac.pcm_indirect.hw_io = hal2->dac.buffer_dma;
579		hal2->dac.pcm_indirect.hw_data = 0;
580		substream->ops->ack(substream);
581		hal2_start_dac(hal2);
582		break;
583	case SNDRV_PCM_TRIGGER_STOP:
584		hal2_stop_dac(hal2);
585		break;
586	default:
587		return -EINVAL;
588	}
589	return 0;
590}
591
592static snd_pcm_uframes_t
593hal2_playback_pointer(struct snd_pcm_substream *substream)
594{
595	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
596	struct hal2_codec *dac = &hal2->dac;
597
598	return snd_pcm_indirect_playback_pointer(substream, &dac->pcm_indirect,
599						 dac->pbus.pbus->pbdma_bptr);
600}
601
602static void hal2_playback_transfer(struct snd_pcm_substream *substream,
603				   struct snd_pcm_indirect *rec, size_t bytes)
604{
605	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
606	unsigned char *buf = hal2->dac.buffer + rec->hw_data;
607
608	memcpy(buf, substream->runtime->dma_area + rec->sw_data, bytes);
609	dma_cache_sync(NULL, buf, bytes, DMA_TO_DEVICE);
610
611}
612
613static int hal2_playback_ack(struct snd_pcm_substream *substream)
614{
615	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
616	struct hal2_codec *dac = &hal2->dac;
617
618	dac->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2;
619	return snd_pcm_indirect_playback_transfer(substream,
620						  &dac->pcm_indirect,
621						  hal2_playback_transfer);
 
622}
623
624static int hal2_capture_open(struct snd_pcm_substream *substream)
625{
626	struct snd_pcm_runtime *runtime = substream->runtime;
627	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
628	struct hal2_codec *adc = &hal2->adc;
629	int err;
630
631	runtime->hw = hal2_pcm_hw;
632
633	err = hal2_alloc_dmabuf(adc);
634	if (err)
635		return err;
636	return 0;
637}
638
639static int hal2_capture_close(struct snd_pcm_substream *substream)
640{
641	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
642
643	hal2_free_dmabuf(&hal2->adc);
644	return 0;
645}
646
647static int hal2_capture_prepare(struct snd_pcm_substream *substream)
648{
649	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
650	struct snd_pcm_runtime *runtime = substream->runtime;
651	struct hal2_codec *adc = &hal2->adc;
652
653	adc->voices = runtime->channels;
654	adc->sample_rate = hal2_compute_rate(adc, runtime->rate);
655	memset(&adc->pcm_indirect, 0, sizeof(adc->pcm_indirect));
656	adc->pcm_indirect.hw_buffer_size = H2_BUF_SIZE;
657	adc->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2;
658	adc->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
659	adc->substream = substream;
660	hal2_setup_adc(hal2);
661	return 0;
662}
663
664static int hal2_capture_trigger(struct snd_pcm_substream *substream, int cmd)
665{
666	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
667
668	switch (cmd) {
669	case SNDRV_PCM_TRIGGER_START:
670		hal2->adc.pcm_indirect.hw_io = hal2->adc.buffer_dma;
671		hal2->adc.pcm_indirect.hw_data = 0;
672		printk(KERN_DEBUG "buffer_dma %x\n", hal2->adc.buffer_dma);
673		hal2_start_adc(hal2);
674		break;
675	case SNDRV_PCM_TRIGGER_STOP:
676		hal2_stop_adc(hal2);
677		break;
678	default:
679		return -EINVAL;
680	}
681	return 0;
682}
683
684static snd_pcm_uframes_t
685hal2_capture_pointer(struct snd_pcm_substream *substream)
686{
687	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
688	struct hal2_codec *adc = &hal2->adc;
689
690	return snd_pcm_indirect_capture_pointer(substream, &adc->pcm_indirect,
691						adc->pbus.pbus->pbdma_bptr);
692}
693
694static void hal2_capture_transfer(struct snd_pcm_substream *substream,
695				  struct snd_pcm_indirect *rec, size_t bytes)
696{
697	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
698	unsigned char *buf = hal2->adc.buffer + rec->hw_data;
699
700	dma_cache_sync(NULL, buf, bytes, DMA_FROM_DEVICE);
701	memcpy(substream->runtime->dma_area + rec->sw_data, buf, bytes);
702}
703
704static int hal2_capture_ack(struct snd_pcm_substream *substream)
705{
706	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
707	struct hal2_codec *adc = &hal2->adc;
708
709	return snd_pcm_indirect_capture_transfer(substream,
710						 &adc->pcm_indirect,
711						 hal2_capture_transfer);
 
712}
713
714static const struct snd_pcm_ops hal2_playback_ops = {
715	.open =        hal2_playback_open,
716	.close =       hal2_playback_close,
717	.ioctl =       snd_pcm_lib_ioctl,
718	.hw_params =   hal2_pcm_hw_params,
719	.hw_free =     hal2_pcm_hw_free,
720	.prepare =     hal2_playback_prepare,
721	.trigger =     hal2_playback_trigger,
722	.pointer =     hal2_playback_pointer,
723	.ack =         hal2_playback_ack,
724};
725
726static const struct snd_pcm_ops hal2_capture_ops = {
727	.open =        hal2_capture_open,
728	.close =       hal2_capture_close,
729	.ioctl =       snd_pcm_lib_ioctl,
730	.hw_params =   hal2_pcm_hw_params,
731	.hw_free =     hal2_pcm_hw_free,
732	.prepare =     hal2_capture_prepare,
733	.trigger =     hal2_capture_trigger,
734	.pointer =     hal2_capture_pointer,
735	.ack =         hal2_capture_ack,
736};
737
738static int hal2_pcm_create(struct snd_hal2 *hal2)
739{
740	struct snd_pcm *pcm;
741	int err;
742
743	/* create first pcm device with one outputs and one input */
744	err = snd_pcm_new(hal2->card, "SGI HAL2 Audio", 0, 1, 1, &pcm);
745	if (err < 0)
746		return err;
747
748	pcm->private_data = hal2;
749	strcpy(pcm->name, "SGI HAL2");
750
751	/* set operators */
752	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
753			&hal2_playback_ops);
754	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
755			&hal2_capture_ops);
756	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
757					   snd_dma_continuous_data(GFP_KERNEL),
758					   0, 1024 * 1024);
759
760	return 0;
761}
762
763static int hal2_dev_free(struct snd_device *device)
764{
765	struct snd_hal2 *hal2 = device->device_data;
766
767	free_irq(SGI_HPCDMA_IRQ, hal2);
768	kfree(hal2);
769	return 0;
770}
771
772static struct snd_device_ops hal2_ops = {
773	.dev_free = hal2_dev_free,
774};
775
776static void hal2_init_codec(struct hal2_codec *codec, struct hpc3_regs *hpc3,
777			    int index)
778{
779	codec->pbus.pbusnr = index;
780	codec->pbus.pbus = &hpc3->pbdma[index];
781}
782
783static int hal2_detect(struct snd_hal2 *hal2)
784{
785	unsigned short board, major, minor;
786	unsigned short rev;
787
788	/* reset HAL2 */
789	hal2_write(0, &hal2->ctl_regs->isr);
790
791	/* release reset */
792	hal2_write(H2_ISR_GLOBAL_RESET_N | H2_ISR_CODEC_RESET_N,
793		   &hal2->ctl_regs->isr);
794
795
796	hal2_i_write16(hal2, H2I_RELAY_C, H2I_RELAY_C_STATE);
797	rev = hal2_read(&hal2->ctl_regs->rev);
798	if (rev & H2_REV_AUDIO_PRESENT)
799		return -ENODEV;
800
801	board = (rev & H2_REV_BOARD_M) >> 12;
802	major = (rev & H2_REV_MAJOR_CHIP_M) >> 4;
803	minor = (rev & H2_REV_MINOR_CHIP_M);
804
805	printk(KERN_INFO "SGI HAL2 revision %i.%i.%i\n",
806	       board, major, minor);
807
808	return 0;
809}
810
811static int hal2_create(struct snd_card *card, struct snd_hal2 **rchip)
812{
813	struct snd_hal2 *hal2;
814	struct hpc3_regs *hpc3 = hpc3c0;
815	int err;
816
817	hal2 = kzalloc(sizeof(*hal2), GFP_KERNEL);
818	if (!hal2)
819		return -ENOMEM;
820
821	hal2->card = card;
822
823	if (request_irq(SGI_HPCDMA_IRQ, hal2_interrupt, IRQF_SHARED,
824			"SGI HAL2", hal2)) {
825		printk(KERN_ERR "HAL2: Can't get irq %d\n", SGI_HPCDMA_IRQ);
826		kfree(hal2);
827		return -EAGAIN;
828	}
829
830	hal2->ctl_regs = (struct hal2_ctl_regs *)hpc3->pbus_extregs[0];
831	hal2->aes_regs = (struct hal2_aes_regs *)hpc3->pbus_extregs[1];
832	hal2->vol_regs = (struct hal2_vol_regs *)hpc3->pbus_extregs[2];
833	hal2->syn_regs = (struct hal2_syn_regs *)hpc3->pbus_extregs[3];
834
835	if (hal2_detect(hal2) < 0) {
836		kfree(hal2);
837		return -ENODEV;
838	}
839
840	hal2_init_codec(&hal2->dac, hpc3, 0);
841	hal2_init_codec(&hal2->adc, hpc3, 1);
842
843	/*
844	 * All DMA channel interfaces in HAL2 are designed to operate with
845	 * PBUS programmed for 2 cycles in D3, 2 cycles in D4 and 2 cycles
846	 * in D5. HAL2 is a 16-bit device which can accept both big and little
847	 * endian format. It assumes that even address bytes are on high
848	 * portion of PBUS (15:8) and assumes that HPC3 is programmed to
849	 * accept a live (unsynchronized) version of P_DREQ_N from HAL2.
850	 */
851#define HAL2_PBUS_DMACFG ((0 << HPC3_DMACFG_D3R_SHIFT) | \
852			  (2 << HPC3_DMACFG_D4R_SHIFT) | \
853			  (2 << HPC3_DMACFG_D5R_SHIFT) | \
854			  (0 << HPC3_DMACFG_D3W_SHIFT) | \
855			  (2 << HPC3_DMACFG_D4W_SHIFT) | \
856			  (2 << HPC3_DMACFG_D5W_SHIFT) | \
857				HPC3_DMACFG_DS16 | \
858				HPC3_DMACFG_EVENHI | \
859				HPC3_DMACFG_RTIME | \
860			  (8 << HPC3_DMACFG_BURST_SHIFT) | \
861				HPC3_DMACFG_DRQLIVE)
862	/*
863	 * Ignore what's mentioned in the specification and write value which
864	 * works in The Real World (TM)
865	 */
866	hpc3->pbus_dmacfg[hal2->dac.pbus.pbusnr][0] = 0x8208844;
867	hpc3->pbus_dmacfg[hal2->adc.pbus.pbusnr][0] = 0x8208844;
868
869	err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, hal2, &hal2_ops);
870	if (err < 0) {
871		free_irq(SGI_HPCDMA_IRQ, hal2);
872		kfree(hal2);
873		return err;
874	}
875	*rchip = hal2;
876	return 0;
877}
878
879static int hal2_probe(struct platform_device *pdev)
880{
881	struct snd_card *card;
882	struct snd_hal2 *chip;
883	int err;
884
885	err = snd_card_new(&pdev->dev, index, id, THIS_MODULE, 0, &card);
886	if (err < 0)
887		return err;
888
889	err = hal2_create(card, &chip);
890	if (err < 0) {
891		snd_card_free(card);
892		return err;
893	}
 
894
895	err = hal2_pcm_create(chip);
896	if (err < 0) {
897		snd_card_free(card);
898		return err;
899	}
900	err = hal2_mixer_create(chip);
901	if (err < 0) {
902		snd_card_free(card);
903		return err;
904	}
905
906	strcpy(card->driver, "SGI HAL2 Audio");
907	strcpy(card->shortname, "SGI HAL2 Audio");
908	sprintf(card->longname, "%s irq %i",
909		card->shortname,
910		SGI_HPCDMA_IRQ);
911
912	err = snd_card_register(card);
913	if (err < 0) {
914		snd_card_free(card);
915		return err;
916	}
917	platform_set_drvdata(pdev, card);
918	return 0;
919}
920
921static int hal2_remove(struct platform_device *pdev)
922{
923	struct snd_card *card = platform_get_drvdata(pdev);
924
925	snd_card_free(card);
 
926	return 0;
927}
928
929static struct platform_driver hal2_driver = {
930	.probe	= hal2_probe,
931	.remove	= hal2_remove,
932	.driver = {
933		.name	= "sgihal2",
 
934	}
935};
936
937module_platform_driver(hal2_driver);