Linux Audio

Check our new training course

Loading...
v3.1
   1/* linux/net/ipv4/arp.c
   2 *
   3 * Copyright (C) 1994 by Florian  La Roche
   4 *
   5 * This module implements the Address Resolution Protocol ARP (RFC 826),
   6 * which is used to convert IP addresses (or in the future maybe other
   7 * high-level addresses) into a low-level hardware address (like an Ethernet
   8 * address).
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License
  12 * as published by the Free Software Foundation; either version
  13 * 2 of the License, or (at your option) any later version.
  14 *
  15 * Fixes:
  16 *		Alan Cox	:	Removed the Ethernet assumptions in
  17 *					Florian's code
  18 *		Alan Cox	:	Fixed some small errors in the ARP
  19 *					logic
  20 *		Alan Cox	:	Allow >4K in /proc
  21 *		Alan Cox	:	Make ARP add its own protocol entry
  22 *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
  23 *		Stephen Henson	:	Add AX25 support to arp_get_info()
  24 *		Alan Cox	:	Drop data when a device is downed.
  25 *		Alan Cox	:	Use init_timer().
  26 *		Alan Cox	:	Double lock fixes.
  27 *		Martin Seine	:	Move the arphdr structure
  28 *					to if_arp.h for compatibility.
  29 *					with BSD based programs.
  30 *		Andrew Tridgell :       Added ARP netmask code and
  31 *					re-arranged proxy handling.
  32 *		Alan Cox	:	Changed to use notifiers.
  33 *		Niibe Yutaka	:	Reply for this device or proxies only.
  34 *		Alan Cox	:	Don't proxy across hardware types!
  35 *		Jonathan Naylor :	Added support for NET/ROM.
  36 *		Mike Shaver     :       RFC1122 checks.
  37 *		Jonathan Naylor :	Only lookup the hardware address for
  38 *					the correct hardware type.
  39 *		Germano Caronni	:	Assorted subtle races.
  40 *		Craig Schlenter :	Don't modify permanent entry
  41 *					during arp_rcv.
  42 *		Russ Nelson	:	Tidied up a few bits.
  43 *		Alexey Kuznetsov:	Major changes to caching and behaviour,
  44 *					eg intelligent arp probing and
  45 *					generation
  46 *					of host down events.
  47 *		Alan Cox	:	Missing unlock in device events.
  48 *		Eckes		:	ARP ioctl control errors.
  49 *		Alexey Kuznetsov:	Arp free fix.
  50 *		Manuel Rodriguez:	Gratuitous ARP.
  51 *              Jonathan Layes  :       Added arpd support through kerneld
  52 *                                      message queue (960314)
  53 *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
  54 *		Mike McLagan    :	Routing by source
  55 *		Stuart Cheshire	:	Metricom and grat arp fixes
  56 *					*** FOR 2.1 clean this up ***
  57 *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
  58 *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
  59 *					folded into the mainstream FDDI code.
  60 *					Ack spit, Linus how did you allow that
  61 *					one in...
  62 *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
  63 *					clean up the APFDDI & gen. FDDI bits.
  64 *		Alexey Kuznetsov:	new arp state machine;
  65 *					now it is in net/core/neighbour.c.
  66 *		Krzysztof Halasa:	Added Frame Relay ARP support.
  67 *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
  68 *		Shmulik Hen:		Split arp_send to arp_create and
  69 *					arp_xmit so intermediate drivers like
  70 *					bonding can change the skb before
  71 *					sending (e.g. insert 8021q tag).
  72 *		Harald Welte	:	convert to make use of jenkins hash
  73 *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
  74 */
  75
 
 
  76#include <linux/module.h>
  77#include <linux/types.h>
  78#include <linux/string.h>
  79#include <linux/kernel.h>
  80#include <linux/capability.h>
  81#include <linux/socket.h>
  82#include <linux/sockios.h>
  83#include <linux/errno.h>
  84#include <linux/in.h>
  85#include <linux/mm.h>
  86#include <linux/inet.h>
  87#include <linux/inetdevice.h>
  88#include <linux/netdevice.h>
  89#include <linux/etherdevice.h>
  90#include <linux/fddidevice.h>
  91#include <linux/if_arp.h>
  92#include <linux/trdevice.h>
  93#include <linux/skbuff.h>
  94#include <linux/proc_fs.h>
  95#include <linux/seq_file.h>
  96#include <linux/stat.h>
  97#include <linux/init.h>
  98#include <linux/net.h>
  99#include <linux/rcupdate.h>
 100#include <linux/slab.h>
 101#ifdef CONFIG_SYSCTL
 102#include <linux/sysctl.h>
 103#endif
 104
 105#include <net/net_namespace.h>
 106#include <net/ip.h>
 107#include <net/icmp.h>
 108#include <net/route.h>
 109#include <net/protocol.h>
 110#include <net/tcp.h>
 111#include <net/sock.h>
 112#include <net/arp.h>
 113#include <net/ax25.h>
 114#include <net/netrom.h>
 115#if defined(CONFIG_ATM_CLIP) || defined(CONFIG_ATM_CLIP_MODULE)
 116#include <net/atmclip.h>
 117struct neigh_table *clip_tbl_hook;
 118EXPORT_SYMBOL(clip_tbl_hook);
 119#endif
 120
 121#include <asm/system.h>
 122#include <linux/uaccess.h>
 123
 124#include <linux/netfilter_arp.h>
 125
 126/*
 127 *	Interface to generic neighbour cache.
 128 */
 129static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 rnd);
 
 130static int arp_constructor(struct neighbour *neigh);
 131static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
 132static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
 133static void parp_redo(struct sk_buff *skb);
 134
 135static const struct neigh_ops arp_generic_ops = {
 136	.family =		AF_INET,
 137	.solicit =		arp_solicit,
 138	.error_report =		arp_error_report,
 139	.output =		neigh_resolve_output,
 140	.connected_output =	neigh_connected_output,
 141};
 142
 143static const struct neigh_ops arp_hh_ops = {
 144	.family =		AF_INET,
 145	.solicit =		arp_solicit,
 146	.error_report =		arp_error_report,
 147	.output =		neigh_resolve_output,
 148	.connected_output =	neigh_resolve_output,
 149};
 150
 151static const struct neigh_ops arp_direct_ops = {
 152	.family =		AF_INET,
 153	.output =		neigh_direct_output,
 154	.connected_output =	neigh_direct_output,
 155};
 156
 157static const struct neigh_ops arp_broken_ops = {
 158	.family =		AF_INET,
 159	.solicit =		arp_solicit,
 160	.error_report =		arp_error_report,
 161	.output =		neigh_compat_output,
 162	.connected_output =	neigh_compat_output,
 163};
 164
 165struct neigh_table arp_tbl = {
 166	.family		= AF_INET,
 167	.entry_size	= sizeof(struct neighbour) + 4,
 168	.key_len	= 4,
 
 169	.hash		= arp_hash,
 
 170	.constructor	= arp_constructor,
 171	.proxy_redo	= parp_redo,
 172	.id		= "arp_cache",
 173	.parms		= {
 174		.tbl			= &arp_tbl,
 175		.base_reachable_time	= 30 * HZ,
 176		.retrans_time		= 1 * HZ,
 177		.gc_staletime		= 60 * HZ,
 178		.reachable_time		= 30 * HZ,
 179		.delay_probe_time	= 5 * HZ,
 180		.queue_len		= 3,
 181		.ucast_probes		= 3,
 182		.mcast_probes		= 3,
 183		.anycast_delay		= 1 * HZ,
 184		.proxy_delay		= (8 * HZ) / 10,
 185		.proxy_qlen		= 64,
 186		.locktime		= 1 * HZ,
 
 
 
 
 
 187	},
 188	.gc_interval	= 30 * HZ,
 189	.gc_thresh1	= 128,
 190	.gc_thresh2	= 512,
 191	.gc_thresh3	= 1024,
 192};
 193EXPORT_SYMBOL(arp_tbl);
 194
 195int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
 196{
 197	switch (dev->type) {
 198	case ARPHRD_ETHER:
 199	case ARPHRD_FDDI:
 200	case ARPHRD_IEEE802:
 201		ip_eth_mc_map(addr, haddr);
 202		return 0;
 203	case ARPHRD_IEEE802_TR:
 204		ip_tr_mc_map(addr, haddr);
 205		return 0;
 206	case ARPHRD_INFINIBAND:
 207		ip_ib_mc_map(addr, dev->broadcast, haddr);
 208		return 0;
 209	case ARPHRD_IPGRE:
 210		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
 211		return 0;
 212	default:
 213		if (dir) {
 214			memcpy(haddr, dev->broadcast, dev->addr_len);
 215			return 0;
 216		}
 217	}
 218	return -EINVAL;
 219}
 220
 221
 222static u32 arp_hash(const void *pkey,
 223		    const struct net_device *dev,
 224		    __u32 hash_rnd)
 225{
 226	return arp_hashfn(*(u32 *)pkey, dev, hash_rnd);
 
 
 
 
 
 227}
 228
 229static int arp_constructor(struct neighbour *neigh)
 230{
 231	__be32 addr = *(__be32 *)neigh->primary_key;
 232	struct net_device *dev = neigh->dev;
 233	struct in_device *in_dev;
 234	struct neigh_parms *parms;
 
 
 
 
 235
 
 236	rcu_read_lock();
 237	in_dev = __in_dev_get_rcu(dev);
 238	if (in_dev == NULL) {
 239		rcu_read_unlock();
 240		return -EINVAL;
 241	}
 242
 243	neigh->type = inet_addr_type(dev_net(dev), addr);
 244
 245	parms = in_dev->arp_parms;
 246	__neigh_parms_put(neigh->parms);
 247	neigh->parms = neigh_parms_clone(parms);
 248	rcu_read_unlock();
 249
 250	if (!dev->header_ops) {
 251		neigh->nud_state = NUD_NOARP;
 252		neigh->ops = &arp_direct_ops;
 253		neigh->output = neigh_direct_output;
 254	} else {
 255		/* Good devices (checked by reading texts, but only Ethernet is
 256		   tested)
 257
 258		   ARPHRD_ETHER: (ethernet, apfddi)
 259		   ARPHRD_FDDI: (fddi)
 260		   ARPHRD_IEEE802: (tr)
 261		   ARPHRD_METRICOM: (strip)
 262		   ARPHRD_ARCNET:
 263		   etc. etc. etc.
 264
 265		   ARPHRD_IPDDP will also work, if author repairs it.
 266		   I did not it, because this driver does not work even
 267		   in old paradigm.
 268		 */
 269
 270#if 1
 271		/* So... these "amateur" devices are hopeless.
 272		   The only thing, that I can say now:
 273		   It is very sad that we need to keep ugly obsolete
 274		   code to make them happy.
 275
 276		   They should be moved to more reasonable state, now
 277		   they use rebuild_header INSTEAD OF hard_start_xmit!!!
 278		   Besides that, they are sort of out of date
 279		   (a lot of redundant clones/copies, useless in 2.1),
 280		   I wonder why people believe that they work.
 281		 */
 282		switch (dev->type) {
 283		default:
 284			break;
 285		case ARPHRD_ROSE:
 286#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
 287		case ARPHRD_AX25:
 288#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
 289		case ARPHRD_NETROM:
 290#endif
 291			neigh->ops = &arp_broken_ops;
 292			neigh->output = neigh->ops->output;
 293			return 0;
 294#else
 295			break;
 296#endif
 297		}
 298#endif
 299		if (neigh->type == RTN_MULTICAST) {
 300			neigh->nud_state = NUD_NOARP;
 301			arp_mc_map(addr, neigh->ha, dev, 1);
 302		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
 303			neigh->nud_state = NUD_NOARP;
 304			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
 305		} else if (neigh->type == RTN_BROADCAST ||
 306			   (dev->flags & IFF_POINTOPOINT)) {
 307			neigh->nud_state = NUD_NOARP;
 308			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
 309		}
 310
 311		if (dev->header_ops->cache)
 312			neigh->ops = &arp_hh_ops;
 313		else
 314			neigh->ops = &arp_generic_ops;
 315
 316		if (neigh->nud_state & NUD_VALID)
 317			neigh->output = neigh->ops->connected_output;
 318		else
 319			neigh->output = neigh->ops->output;
 320	}
 321	return 0;
 322}
 323
 324static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
 325{
 326	dst_link_failure(skb);
 327	kfree_skb(skb);
 328}
 329
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 330static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
 331{
 332	__be32 saddr = 0;
 333	u8  *dst_ha = NULL;
 334	struct net_device *dev = neigh->dev;
 335	__be32 target = *(__be32 *)neigh->primary_key;
 336	int probes = atomic_read(&neigh->probes);
 337	struct in_device *in_dev;
 
 338
 339	rcu_read_lock();
 340	in_dev = __in_dev_get_rcu(dev);
 341	if (!in_dev) {
 342		rcu_read_unlock();
 343		return;
 344	}
 345	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
 346	default:
 347	case 0:		/* By default announce any local IP */
 348		if (skb && inet_addr_type(dev_net(dev),
 349					  ip_hdr(skb)->saddr) == RTN_LOCAL)
 350			saddr = ip_hdr(skb)->saddr;
 351		break;
 352	case 1:		/* Restrict announcements of saddr in same subnet */
 353		if (!skb)
 354			break;
 355		saddr = ip_hdr(skb)->saddr;
 356		if (inet_addr_type(dev_net(dev), saddr) == RTN_LOCAL) {
 
 357			/* saddr should be known to target */
 358			if (inet_addr_onlink(in_dev, target, saddr))
 359				break;
 360		}
 361		saddr = 0;
 362		break;
 363	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
 364		break;
 365	}
 366	rcu_read_unlock();
 367
 368	if (!saddr)
 369		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
 370
 371	probes -= neigh->parms->ucast_probes;
 372	if (probes < 0) {
 373		if (!(neigh->nud_state & NUD_VALID))
 374			printk(KERN_DEBUG
 375			       "trying to ucast probe in NUD_INVALID\n");
 376		dst_ha = neigh->ha;
 377		read_lock_bh(&neigh->lock);
 378	} else {
 379		probes -= neigh->parms->app_probes;
 380		if (probes < 0) {
 381#ifdef CONFIG_ARPD
 382			neigh_app_ns(neigh);
 383#endif
 384			return;
 385		}
 386	}
 387
 388	arp_send(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
 389		 dst_ha, dev->dev_addr, NULL);
 390	if (dst_ha)
 391		read_unlock_bh(&neigh->lock);
 392}
 393
 394static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
 395{
 
 396	int scope;
 397
 398	switch (IN_DEV_ARP_IGNORE(in_dev)) {
 399	case 0:	/* Reply, the tip is already validated */
 400		return 0;
 401	case 1:	/* Reply only if tip is configured on the incoming interface */
 402		sip = 0;
 403		scope = RT_SCOPE_HOST;
 404		break;
 405	case 2:	/*
 406		 * Reply only if tip is configured on the incoming interface
 407		 * and is in same subnet as sip
 408		 */
 409		scope = RT_SCOPE_HOST;
 410		break;
 411	case 3:	/* Do not reply for scope host addresses */
 412		sip = 0;
 413		scope = RT_SCOPE_LINK;
 
 414		break;
 415	case 4:	/* Reserved */
 416	case 5:
 417	case 6:
 418	case 7:
 419		return 0;
 420	case 8:	/* Do not reply */
 421		return 1;
 422	default:
 423		return 0;
 424	}
 425	return !inet_confirm_addr(in_dev, sip, tip, scope);
 426}
 427
 428static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
 429{
 430	struct rtable *rt;
 431	int flag = 0;
 432	/*unsigned long now; */
 433	struct net *net = dev_net(dev);
 434
 435	rt = ip_route_output(net, sip, tip, 0, 0);
 436	if (IS_ERR(rt))
 437		return 1;
 438	if (rt->dst.dev != dev) {
 439		NET_INC_STATS_BH(net, LINUX_MIB_ARPFILTER);
 440		flag = 1;
 441	}
 442	ip_rt_put(rt);
 443	return flag;
 444}
 445
 446/* OBSOLETE FUNCTIONS */
 447
 448/*
 449 *	Find an arp mapping in the cache. If not found, post a request.
 450 *
 451 *	It is very UGLY routine: it DOES NOT use skb->dst->neighbour,
 452 *	even if it exists. It is supposed that skb->dev was mangled
 453 *	by a virtual device (eql, shaper). Nobody but broken devices
 454 *	is allowed to use this function, it is scheduled to be removed. --ANK
 455 */
 456
 457static int arp_set_predefined(int addr_hint, unsigned char *haddr,
 458			      __be32 paddr, struct net_device *dev)
 459{
 460	switch (addr_hint) {
 461	case RTN_LOCAL:
 462		printk(KERN_DEBUG "ARP: arp called for own IP address\n");
 463		memcpy(haddr, dev->dev_addr, dev->addr_len);
 464		return 1;
 465	case RTN_MULTICAST:
 466		arp_mc_map(paddr, haddr, dev, 1);
 467		return 1;
 468	case RTN_BROADCAST:
 469		memcpy(haddr, dev->broadcast, dev->addr_len);
 470		return 1;
 471	}
 472	return 0;
 473}
 474
 475
 476int arp_find(unsigned char *haddr, struct sk_buff *skb)
 477{
 478	struct net_device *dev = skb->dev;
 479	__be32 paddr;
 480	struct neighbour *n;
 481
 482	if (!skb_dst(skb)) {
 483		printk(KERN_DEBUG "arp_find is called with dst==NULL\n");
 484		kfree_skb(skb);
 485		return 1;
 486	}
 487
 488	paddr = skb_rtable(skb)->rt_gateway;
 489
 490	if (arp_set_predefined(inet_addr_type(dev_net(dev), paddr), haddr,
 491			       paddr, dev))
 492		return 0;
 493
 494	n = __neigh_lookup(&arp_tbl, &paddr, dev, 1);
 495
 496	if (n) {
 497		n->used = jiffies;
 498		if (n->nud_state & NUD_VALID || neigh_event_send(n, skb) == 0) {
 499			neigh_ha_snapshot(haddr, n, dev);
 500			neigh_release(n);
 501			return 0;
 502		}
 503		neigh_release(n);
 504	} else
 505		kfree_skb(skb);
 506	return 1;
 507}
 508EXPORT_SYMBOL(arp_find);
 509
 510/* END OF OBSOLETE FUNCTIONS */
 511
 512/*
 513 * Check if we can use proxy ARP for this path
 514 */
 515static inline int arp_fwd_proxy(struct in_device *in_dev,
 516				struct net_device *dev,	struct rtable *rt)
 517{
 518	struct in_device *out_dev;
 519	int imi, omi = -1;
 520
 521	if (rt->dst.dev == dev)
 522		return 0;
 523
 524	if (!IN_DEV_PROXY_ARP(in_dev))
 525		return 0;
 526	imi = IN_DEV_MEDIUM_ID(in_dev);
 527	if (imi == 0)
 528		return 1;
 529	if (imi == -1)
 530		return 0;
 531
 532	/* place to check for proxy_arp for routes */
 533
 534	out_dev = __in_dev_get_rcu(rt->dst.dev);
 535	if (out_dev)
 536		omi = IN_DEV_MEDIUM_ID(out_dev);
 537
 538	return omi != imi && omi != -1;
 539}
 540
 541/*
 542 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
 543 *
 544 * RFC3069 supports proxy arp replies back to the same interface.  This
 545 * is done to support (ethernet) switch features, like RFC 3069, where
 546 * the individual ports are not allowed to communicate with each
 547 * other, BUT they are allowed to talk to the upstream router.  As
 548 * described in RFC 3069, it is possible to allow these hosts to
 549 * communicate through the upstream router, by proxy_arp'ing.
 550 *
 551 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
 552 *
 553 *  This technology is known by different names:
 554 *    In RFC 3069 it is called VLAN Aggregation.
 555 *    Cisco and Allied Telesyn call it Private VLAN.
 556 *    Hewlett-Packard call it Source-Port filtering or port-isolation.
 557 *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
 558 *
 559 */
 560static inline int arp_fwd_pvlan(struct in_device *in_dev,
 561				struct net_device *dev,	struct rtable *rt,
 562				__be32 sip, __be32 tip)
 563{
 564	/* Private VLAN is only concerned about the same ethernet segment */
 565	if (rt->dst.dev != dev)
 566		return 0;
 567
 568	/* Don't reply on self probes (often done by windowz boxes)*/
 569	if (sip == tip)
 570		return 0;
 571
 572	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
 573		return 1;
 574	else
 575		return 0;
 576}
 577
 578/*
 579 *	Interface to link layer: send routine and receive handler.
 580 */
 581
 582/*
 583 *	Create an arp packet. If (dest_hw == NULL), we create a broadcast
 584 *	message.
 585 */
 586struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
 587			   struct net_device *dev, __be32 src_ip,
 588			   const unsigned char *dest_hw,
 589			   const unsigned char *src_hw,
 590			   const unsigned char *target_hw)
 591{
 592	struct sk_buff *skb;
 593	struct arphdr *arp;
 594	unsigned char *arp_ptr;
 
 
 595
 596	/*
 597	 *	Allocate a buffer
 598	 */
 599
 600	skb = alloc_skb(arp_hdr_len(dev) + LL_ALLOCATED_SPACE(dev), GFP_ATOMIC);
 601	if (skb == NULL)
 602		return NULL;
 603
 604	skb_reserve(skb, LL_RESERVED_SPACE(dev));
 605	skb_reset_network_header(skb);
 606	arp = (struct arphdr *) skb_put(skb, arp_hdr_len(dev));
 607	skb->dev = dev;
 608	skb->protocol = htons(ETH_P_ARP);
 609	if (src_hw == NULL)
 610		src_hw = dev->dev_addr;
 611	if (dest_hw == NULL)
 612		dest_hw = dev->broadcast;
 613
 614	/*
 615	 *	Fill the device header for the ARP frame
 616	 */
 617	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
 618		goto out;
 619
 620	/*
 621	 * Fill out the arp protocol part.
 622	 *
 623	 * The arp hardware type should match the device type, except for FDDI,
 624	 * which (according to RFC 1390) should always equal 1 (Ethernet).
 625	 */
 626	/*
 627	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
 628	 *	DIX code for the protocol. Make these device structure fields.
 629	 */
 630	switch (dev->type) {
 631	default:
 632		arp->ar_hrd = htons(dev->type);
 633		arp->ar_pro = htons(ETH_P_IP);
 634		break;
 635
 636#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
 637	case ARPHRD_AX25:
 638		arp->ar_hrd = htons(ARPHRD_AX25);
 639		arp->ar_pro = htons(AX25_P_IP);
 640		break;
 641
 642#if defined(CONFIG_NETROM) || defined(CONFIG_NETROM_MODULE)
 643	case ARPHRD_NETROM:
 644		arp->ar_hrd = htons(ARPHRD_NETROM);
 645		arp->ar_pro = htons(AX25_P_IP);
 646		break;
 647#endif
 648#endif
 649
 650#if defined(CONFIG_FDDI) || defined(CONFIG_FDDI_MODULE)
 651	case ARPHRD_FDDI:
 652		arp->ar_hrd = htons(ARPHRD_ETHER);
 653		arp->ar_pro = htons(ETH_P_IP);
 654		break;
 655#endif
 656#if defined(CONFIG_TR) || defined(CONFIG_TR_MODULE)
 657	case ARPHRD_IEEE802_TR:
 658		arp->ar_hrd = htons(ARPHRD_IEEE802);
 659		arp->ar_pro = htons(ETH_P_IP);
 660		break;
 661#endif
 662	}
 663
 664	arp->ar_hln = dev->addr_len;
 665	arp->ar_pln = 4;
 666	arp->ar_op = htons(type);
 667
 668	arp_ptr = (unsigned char *)(arp + 1);
 669
 670	memcpy(arp_ptr, src_hw, dev->addr_len);
 671	arp_ptr += dev->addr_len;
 672	memcpy(arp_ptr, &src_ip, 4);
 673	arp_ptr += 4;
 674	if (target_hw != NULL)
 675		memcpy(arp_ptr, target_hw, dev->addr_len);
 676	else
 677		memset(arp_ptr, 0, dev->addr_len);
 678	arp_ptr += dev->addr_len;
 
 
 
 
 
 
 
 
 679	memcpy(arp_ptr, &dest_ip, 4);
 680
 681	return skb;
 682
 683out:
 684	kfree_skb(skb);
 685	return NULL;
 686}
 687EXPORT_SYMBOL(arp_create);
 688
 
 
 
 
 
 689/*
 690 *	Send an arp packet.
 691 */
 692void arp_xmit(struct sk_buff *skb)
 693{
 694	/* Send it off, maybe filter it using firewalling first.  */
 695	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT, skb, NULL, skb->dev, dev_queue_xmit);
 
 
 696}
 697EXPORT_SYMBOL(arp_xmit);
 698
 699/*
 700 *	Create and send an arp packet.
 701 */
 702void arp_send(int type, int ptype, __be32 dest_ip,
 703	      struct net_device *dev, __be32 src_ip,
 704	      const unsigned char *dest_hw, const unsigned char *src_hw,
 705	      const unsigned char *target_hw)
 706{
 707	struct sk_buff *skb;
 708
 709	/*
 710	 *	No arp on this interface.
 711	 */
 712
 713	if (dev->flags&IFF_NOARP)
 714		return;
 715
 716	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
 717			 dest_hw, src_hw, target_hw);
 718	if (skb == NULL)
 719		return;
 720
 721	arp_xmit(skb);
 
 
 
 
 722}
 723EXPORT_SYMBOL(arp_send);
 724
 725/*
 726 *	Process an arp request.
 727 */
 728
 729static int arp_process(struct sk_buff *skb)
 730{
 731	struct net_device *dev = skb->dev;
 732	struct in_device *in_dev = __in_dev_get_rcu(dev);
 733	struct arphdr *arp;
 734	unsigned char *arp_ptr;
 735	struct rtable *rt;
 736	unsigned char *sha;
 
 737	__be32 sip, tip;
 738	u16 dev_type = dev->type;
 739	int addr_type;
 740	struct neighbour *n;
 741	struct net *net = dev_net(dev);
 
 742
 743	/* arp_rcv below verifies the ARP header and verifies the device
 744	 * is ARP'able.
 745	 */
 746
 747	if (in_dev == NULL)
 748		goto out;
 749
 750	arp = arp_hdr(skb);
 751
 752	switch (dev_type) {
 753	default:
 754		if (arp->ar_pro != htons(ETH_P_IP) ||
 755		    htons(dev_type) != arp->ar_hrd)
 756			goto out;
 757		break;
 758	case ARPHRD_ETHER:
 759	case ARPHRD_IEEE802_TR:
 760	case ARPHRD_FDDI:
 761	case ARPHRD_IEEE802:
 762		/*
 763		 * ETHERNET, Token Ring and Fibre Channel (which are IEEE 802
 764		 * devices, according to RFC 2625) devices will accept ARP
 765		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
 766		 * This is the case also of FDDI, where the RFC 1390 says that
 767		 * FDDI devices should accept ARP hardware of (1) Ethernet,
 768		 * however, to be more robust, we'll accept both 1 (Ethernet)
 769		 * or 6 (IEEE 802.2)
 770		 */
 771		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
 772		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
 773		    arp->ar_pro != htons(ETH_P_IP))
 774			goto out;
 775		break;
 776	case ARPHRD_AX25:
 777		if (arp->ar_pro != htons(AX25_P_IP) ||
 778		    arp->ar_hrd != htons(ARPHRD_AX25))
 779			goto out;
 780		break;
 781	case ARPHRD_NETROM:
 782		if (arp->ar_pro != htons(AX25_P_IP) ||
 783		    arp->ar_hrd != htons(ARPHRD_NETROM))
 784			goto out;
 785		break;
 786	}
 787
 788	/* Understand only these message types */
 789
 790	if (arp->ar_op != htons(ARPOP_REPLY) &&
 791	    arp->ar_op != htons(ARPOP_REQUEST))
 792		goto out;
 793
 794/*
 795 *	Extract fields
 796 */
 797	arp_ptr = (unsigned char *)(arp + 1);
 798	sha	= arp_ptr;
 799	arp_ptr += dev->addr_len;
 800	memcpy(&sip, arp_ptr, 4);
 801	arp_ptr += 4;
 802	arp_ptr += dev->addr_len;
 
 
 
 
 
 
 
 
 803	memcpy(&tip, arp_ptr, 4);
 804/*
 805 *	Check for bad requests for 127.x.x.x and requests for multicast
 806 *	addresses.  If this is one such, delete it.
 807 */
 808	if (ipv4_is_loopback(tip) || ipv4_is_multicast(tip))
 809		goto out;
 
 
 
 
 
 
 
 
 
 810
 811/*
 812 *     Special case: We must set Frame Relay source Q.922 address
 813 */
 814	if (dev_type == ARPHRD_DLCI)
 815		sha = dev->broadcast;
 816
 817/*
 818 *  Process entry.  The idea here is we want to send a reply if it is a
 819 *  request for us or if it is a request for someone else that we hold
 820 *  a proxy for.  We want to add an entry to our cache if it is a reply
 821 *  to us or if it is a request for our address.
 822 *  (The assumption for this last is that if someone is requesting our
 823 *  address, they are probably intending to talk to us, so it saves time
 824 *  if we cache their address.  Their address is also probably not in
 825 *  our cache, since ours is not in their cache.)
 826 *
 827 *  Putting this another way, we only care about replies if they are to
 828 *  us, in which case we add them to the cache.  For requests, we care
 829 *  about those for us and those for our proxies.  We reply to both,
 830 *  and in the case of requests for us we add the requester to the arp
 831 *  cache.
 832 */
 833
 
 
 
 
 
 834	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
 835	if (sip == 0) {
 836		if (arp->ar_op == htons(ARPOP_REQUEST) &&
 837		    inet_addr_type(net, tip) == RTN_LOCAL &&
 838		    !arp_ignore(in_dev, sip, tip))
 839			arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
 840				 dev->dev_addr, sha);
 841		goto out;
 842	}
 843
 844	if (arp->ar_op == htons(ARPOP_REQUEST) &&
 845	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
 846
 847		rt = skb_rtable(skb);
 848		addr_type = rt->rt_type;
 849
 850		if (addr_type == RTN_LOCAL) {
 851			int dont_send;
 852
 853			dont_send = arp_ignore(in_dev, sip, tip);
 854			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
 855				dont_send = arp_filter(sip, tip, dev);
 856			if (!dont_send) {
 857				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 858				if (n) {
 859					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
 860						 dev, tip, sha, dev->dev_addr,
 861						 sha);
 
 862					neigh_release(n);
 863				}
 864			}
 865			goto out;
 866		} else if (IN_DEV_FORWARD(in_dev)) {
 867			if (addr_type == RTN_UNICAST  &&
 868			    (arp_fwd_proxy(in_dev, dev, rt) ||
 869			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
 870			     pneigh_lookup(&arp_tbl, net, &tip, dev, 0))) {
 
 871				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 872				if (n)
 873					neigh_release(n);
 874
 875				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
 876				    skb->pkt_type == PACKET_HOST ||
 877				    in_dev->arp_parms->proxy_delay == 0) {
 878					arp_send(ARPOP_REPLY, ETH_P_ARP, sip,
 879						 dev, tip, sha, dev->dev_addr,
 880						 sha);
 
 881				} else {
 882					pneigh_enqueue(&arp_tbl,
 883						       in_dev->arp_parms, skb);
 884					return 0;
 885				}
 886				goto out;
 887			}
 888		}
 889	}
 890
 891	/* Update our ARP tables */
 892
 893	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
 894
 895	if (IPV4_DEVCONF_ALL(dev_net(dev), ARP_ACCEPT)) {
 
 
 
 
 
 
 896		/* Unsolicited ARP is not accepted by default.
 897		   It is possible, that this option should be enabled for some
 898		   devices (strip is candidate)
 899		 */
 900		if (n == NULL &&
 901		    (arp->ar_op == htons(ARPOP_REPLY) ||
 902		     (arp->ar_op == htons(ARPOP_REQUEST) && tip == sip)) &&
 903		    inet_addr_type(net, sip) == RTN_UNICAST)
 
 
 
 
 904			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
 905	}
 906
 907	if (n) {
 908		int state = NUD_REACHABLE;
 909		int override;
 910
 911		/* If several different ARP replies follows back-to-back,
 912		   use the FIRST one. It is possible, if several proxy
 913		   agents are active. Taking the first reply prevents
 914		   arp trashing and chooses the fastest router.
 915		 */
 916		override = time_after(jiffies, n->updated + n->parms->locktime);
 
 
 
 917
 918		/* Broadcast replies and request packets
 919		   do not assert neighbour reachability.
 920		 */
 921		if (arp->ar_op != htons(ARPOP_REPLY) ||
 922		    skb->pkt_type != PACKET_HOST)
 923			state = NUD_STALE;
 924		neigh_update(n, sha, state,
 925			     override ? NEIGH_UPDATE_F_OVERRIDE : 0);
 926		neigh_release(n);
 927	}
 928
 929out:
 930	consume_skb(skb);
 931	return 0;
 
 
 
 
 
 
 
 932}
 933
 934static void parp_redo(struct sk_buff *skb)
 935{
 936	arp_process(skb);
 937}
 938
 939
 940/*
 941 *	Receive an arp request from the device layer.
 942 */
 943
 944static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
 945		   struct packet_type *pt, struct net_device *orig_dev)
 946{
 947	struct arphdr *arp;
 
 
 
 
 
 
 
 
 
 
 948
 949	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
 950	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
 951		goto freeskb;
 952
 953	arp = arp_hdr(skb);
 954	if (arp->ar_hln != dev->addr_len ||
 955	    dev->flags & IFF_NOARP ||
 956	    skb->pkt_type == PACKET_OTHERHOST ||
 957	    skb->pkt_type == PACKET_LOOPBACK ||
 958	    arp->ar_pln != 4)
 959		goto freeskb;
 960
 961	skb = skb_share_check(skb, GFP_ATOMIC);
 962	if (skb == NULL)
 963		goto out_of_mem;
 964
 965	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
 966
 967	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN, skb, dev, NULL, arp_process);
 
 
 968
 
 
 
 969freeskb:
 970	kfree_skb(skb);
 971out_of_mem:
 972	return 0;
 973}
 974
 975/*
 976 *	User level interface (ioctl)
 977 */
 978
 979/*
 980 *	Set (create) an ARP cache entry.
 981 */
 982
 983static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
 984{
 985	if (dev == NULL) {
 986		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
 987		return 0;
 988	}
 989	if (__in_dev_get_rtnl(dev)) {
 990		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
 991		return 0;
 992	}
 993	return -ENXIO;
 994}
 995
 996static int arp_req_set_public(struct net *net, struct arpreq *r,
 997		struct net_device *dev)
 998{
 999	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1000	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1001
1002	if (mask && mask != htonl(0xFFFFFFFF))
1003		return -EINVAL;
1004	if (!dev && (r->arp_flags & ATF_COM)) {
1005		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1006				      r->arp_ha.sa_data);
1007		if (!dev)
1008			return -ENODEV;
1009	}
1010	if (mask) {
1011		if (pneigh_lookup(&arp_tbl, net, &ip, dev, 1) == NULL)
1012			return -ENOBUFS;
1013		return 0;
1014	}
1015
1016	return arp_req_set_proxy(net, dev, 1);
1017}
1018
1019static int arp_req_set(struct net *net, struct arpreq *r,
1020		       struct net_device *dev)
1021{
1022	__be32 ip;
1023	struct neighbour *neigh;
1024	int err;
1025
1026	if (r->arp_flags & ATF_PUBL)
1027		return arp_req_set_public(net, r, dev);
1028
1029	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1030	if (r->arp_flags & ATF_PERM)
1031		r->arp_flags |= ATF_COM;
1032	if (dev == NULL) {
1033		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1034
1035		if (IS_ERR(rt))
1036			return PTR_ERR(rt);
1037		dev = rt->dst.dev;
1038		ip_rt_put(rt);
1039		if (!dev)
1040			return -EINVAL;
1041	}
1042	switch (dev->type) {
1043#if defined(CONFIG_FDDI) || defined(CONFIG_FDDI_MODULE)
1044	case ARPHRD_FDDI:
1045		/*
1046		 * According to RFC 1390, FDDI devices should accept ARP
1047		 * hardware types of 1 (Ethernet).  However, to be more
1048		 * robust, we'll accept hardware types of either 1 (Ethernet)
1049		 * or 6 (IEEE 802.2).
1050		 */
1051		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1052		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1053		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1054			return -EINVAL;
1055		break;
1056#endif
1057	default:
1058		if (r->arp_ha.sa_family != dev->type)
1059			return -EINVAL;
1060		break;
1061	}
1062
1063	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1064	err = PTR_ERR(neigh);
1065	if (!IS_ERR(neigh)) {
1066		unsigned state = NUD_STALE;
1067		if (r->arp_flags & ATF_PERM)
1068			state = NUD_PERMANENT;
1069		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1070				   r->arp_ha.sa_data : NULL, state,
1071				   NEIGH_UPDATE_F_OVERRIDE |
1072				   NEIGH_UPDATE_F_ADMIN);
1073		neigh_release(neigh);
1074	}
1075	return err;
1076}
1077
1078static unsigned arp_state_to_flags(struct neighbour *neigh)
1079{
1080	if (neigh->nud_state&NUD_PERMANENT)
1081		return ATF_PERM | ATF_COM;
1082	else if (neigh->nud_state&NUD_VALID)
1083		return ATF_COM;
1084	else
1085		return 0;
1086}
1087
1088/*
1089 *	Get an ARP cache entry.
1090 */
1091
1092static int arp_req_get(struct arpreq *r, struct net_device *dev)
1093{
1094	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1095	struct neighbour *neigh;
1096	int err = -ENXIO;
1097
1098	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1099	if (neigh) {
1100		read_lock_bh(&neigh->lock);
1101		memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1102		r->arp_flags = arp_state_to_flags(neigh);
1103		read_unlock_bh(&neigh->lock);
1104		r->arp_ha.sa_family = dev->type;
1105		strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
 
 
 
1106		neigh_release(neigh);
1107		err = 0;
1108	}
1109	return err;
1110}
1111
1112int arp_invalidate(struct net_device *dev, __be32 ip)
1113{
1114	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1115	int err = -ENXIO;
 
1116
1117	if (neigh) {
1118		if (neigh->nud_state & ~NUD_NOARP)
1119			err = neigh_update(neigh, NULL, NUD_FAILED,
1120					   NEIGH_UPDATE_F_OVERRIDE|
1121					   NEIGH_UPDATE_F_ADMIN);
 
1122		neigh_release(neigh);
 
 
1123	}
1124
1125	return err;
1126}
1127EXPORT_SYMBOL(arp_invalidate);
1128
1129static int arp_req_delete_public(struct net *net, struct arpreq *r,
1130		struct net_device *dev)
1131{
1132	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1133	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1134
1135	if (mask == htonl(0xFFFFFFFF))
1136		return pneigh_delete(&arp_tbl, net, &ip, dev);
1137
1138	if (mask)
1139		return -EINVAL;
1140
1141	return arp_req_set_proxy(net, dev, 0);
1142}
1143
1144static int arp_req_delete(struct net *net, struct arpreq *r,
1145			  struct net_device *dev)
1146{
1147	__be32 ip;
1148
1149	if (r->arp_flags & ATF_PUBL)
1150		return arp_req_delete_public(net, r, dev);
1151
1152	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1153	if (dev == NULL) {
1154		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1155		if (IS_ERR(rt))
1156			return PTR_ERR(rt);
1157		dev = rt->dst.dev;
1158		ip_rt_put(rt);
1159		if (!dev)
1160			return -EINVAL;
1161	}
1162	return arp_invalidate(dev, ip);
1163}
1164
1165/*
1166 *	Handle an ARP layer I/O control request.
1167 */
1168
1169int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1170{
1171	int err;
1172	struct arpreq r;
1173	struct net_device *dev = NULL;
1174
1175	switch (cmd) {
1176	case SIOCDARP:
1177	case SIOCSARP:
1178		if (!capable(CAP_NET_ADMIN))
1179			return -EPERM;
 
1180	case SIOCGARP:
1181		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1182		if (err)
1183			return -EFAULT;
1184		break;
1185	default:
1186		return -EINVAL;
1187	}
1188
1189	if (r.arp_pa.sa_family != AF_INET)
1190		return -EPFNOSUPPORT;
1191
1192	if (!(r.arp_flags & ATF_PUBL) &&
1193	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1194		return -EINVAL;
1195	if (!(r.arp_flags & ATF_NETMASK))
1196		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1197							   htonl(0xFFFFFFFFUL);
1198	rtnl_lock();
1199	if (r.arp_dev[0]) {
1200		err = -ENODEV;
1201		dev = __dev_get_by_name(net, r.arp_dev);
1202		if (dev == NULL)
1203			goto out;
1204
1205		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1206		if (!r.arp_ha.sa_family)
1207			r.arp_ha.sa_family = dev->type;
1208		err = -EINVAL;
1209		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1210			goto out;
1211	} else if (cmd == SIOCGARP) {
1212		err = -ENODEV;
1213		goto out;
1214	}
1215
1216	switch (cmd) {
1217	case SIOCDARP:
1218		err = arp_req_delete(net, &r, dev);
1219		break;
1220	case SIOCSARP:
1221		err = arp_req_set(net, &r, dev);
1222		break;
1223	case SIOCGARP:
1224		err = arp_req_get(&r, dev);
1225		break;
1226	}
1227out:
1228	rtnl_unlock();
1229	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1230		err = -EFAULT;
1231	return err;
1232}
1233
1234static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1235			    void *ptr)
1236{
1237	struct net_device *dev = ptr;
 
1238
1239	switch (event) {
1240	case NETDEV_CHANGEADDR:
1241		neigh_changeaddr(&arp_tbl, dev);
1242		rt_cache_flush(dev_net(dev), 0);
 
 
 
 
 
1243		break;
1244	default:
1245		break;
1246	}
1247
1248	return NOTIFY_DONE;
1249}
1250
1251static struct notifier_block arp_netdev_notifier = {
1252	.notifier_call = arp_netdev_event,
1253};
1254
1255/* Note, that it is not on notifier chain.
1256   It is necessary, that this routine was called after route cache will be
1257   flushed.
1258 */
1259void arp_ifdown(struct net_device *dev)
1260{
1261	neigh_ifdown(&arp_tbl, dev);
1262}
1263
1264
1265/*
1266 *	Called once on startup.
1267 */
1268
1269static struct packet_type arp_packet_type __read_mostly = {
1270	.type =	cpu_to_be16(ETH_P_ARP),
1271	.func =	arp_rcv,
1272};
1273
1274static int arp_proc_init(void);
1275
1276void __init arp_init(void)
1277{
1278	neigh_table_init(&arp_tbl);
1279
1280	dev_add_pack(&arp_packet_type);
1281	arp_proc_init();
1282#ifdef CONFIG_SYSCTL
1283	neigh_sysctl_register(NULL, &arp_tbl.parms, "ipv4", NULL);
1284#endif
1285	register_netdevice_notifier(&arp_netdev_notifier);
1286}
1287
1288#ifdef CONFIG_PROC_FS
1289#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1290
1291/* ------------------------------------------------------------------------ */
1292/*
1293 *	ax25 -> ASCII conversion
1294 */
1295static char *ax2asc2(ax25_address *a, char *buf)
1296{
1297	char c, *s;
1298	int n;
1299
1300	for (n = 0, s = buf; n < 6; n++) {
1301		c = (a->ax25_call[n] >> 1) & 0x7F;
1302
1303		if (c != ' ')
1304			*s++ = c;
1305	}
1306
1307	*s++ = '-';
1308	n = (a->ax25_call[6] >> 1) & 0x0F;
1309	if (n > 9) {
1310		*s++ = '1';
1311		n -= 10;
1312	}
1313
1314	*s++ = n + '0';
1315	*s++ = '\0';
1316
1317	if (*buf == '\0' || *buf == '-')
1318		return "*";
1319
1320	return buf;
1321}
1322#endif /* CONFIG_AX25 */
1323
1324#define HBUFFERLEN 30
1325
1326static void arp_format_neigh_entry(struct seq_file *seq,
1327				   struct neighbour *n)
1328{
1329	char hbuffer[HBUFFERLEN];
1330	int k, j;
1331	char tbuf[16];
1332	struct net_device *dev = n->dev;
1333	int hatype = dev->type;
1334
1335	read_lock(&n->lock);
1336	/* Convert hardware address to XX:XX:XX:XX ... form. */
1337#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1338	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1339		ax2asc2((ax25_address *)n->ha, hbuffer);
1340	else {
1341#endif
1342	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1343		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1344		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1345		hbuffer[k++] = ':';
1346	}
1347	if (k != 0)
1348		--k;
1349	hbuffer[k] = 0;
1350#if defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
1351	}
1352#endif
1353	sprintf(tbuf, "%pI4", n->primary_key);
1354	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1355		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1356	read_unlock(&n->lock);
1357}
1358
1359static void arp_format_pneigh_entry(struct seq_file *seq,
1360				    struct pneigh_entry *n)
1361{
1362	struct net_device *dev = n->dev;
1363	int hatype = dev ? dev->type : 0;
1364	char tbuf[16];
1365
1366	sprintf(tbuf, "%pI4", n->key);
1367	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1368		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1369		   dev ? dev->name : "*");
1370}
1371
1372static int arp_seq_show(struct seq_file *seq, void *v)
1373{
1374	if (v == SEQ_START_TOKEN) {
1375		seq_puts(seq, "IP address       HW type     Flags       "
1376			      "HW address            Mask     Device\n");
1377	} else {
1378		struct neigh_seq_state *state = seq->private;
1379
1380		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1381			arp_format_pneigh_entry(seq, v);
1382		else
1383			arp_format_neigh_entry(seq, v);
1384	}
1385
1386	return 0;
1387}
1388
1389static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1390{
1391	/* Don't want to confuse "arp -a" w/ magic entries,
1392	 * so we tell the generic iterator to skip NUD_NOARP.
1393	 */
1394	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1395}
1396
1397/* ------------------------------------------------------------------------ */
1398
1399static const struct seq_operations arp_seq_ops = {
1400	.start	= arp_seq_start,
1401	.next	= neigh_seq_next,
1402	.stop	= neigh_seq_stop,
1403	.show	= arp_seq_show,
1404};
1405
1406static int arp_seq_open(struct inode *inode, struct file *file)
1407{
1408	return seq_open_net(inode, file, &arp_seq_ops,
1409			    sizeof(struct neigh_seq_state));
1410}
1411
1412static const struct file_operations arp_seq_fops = {
1413	.owner		= THIS_MODULE,
1414	.open           = arp_seq_open,
1415	.read           = seq_read,
1416	.llseek         = seq_lseek,
1417	.release	= seq_release_net,
1418};
1419
1420
1421static int __net_init arp_net_init(struct net *net)
1422{
1423	if (!proc_net_fops_create(net, "arp", S_IRUGO, &arp_seq_fops))
1424		return -ENOMEM;
1425	return 0;
1426}
1427
1428static void __net_exit arp_net_exit(struct net *net)
1429{
1430	proc_net_remove(net, "arp");
1431}
1432
1433static struct pernet_operations arp_net_ops = {
1434	.init = arp_net_init,
1435	.exit = arp_net_exit,
1436};
1437
1438static int __init arp_proc_init(void)
1439{
1440	return register_pernet_subsys(&arp_net_ops);
1441}
1442
1443#else /* CONFIG_PROC_FS */
1444
1445static int __init arp_proc_init(void)
1446{
1447	return 0;
1448}
1449
1450#endif /* CONFIG_PROC_FS */
v4.17
   1/* linux/net/ipv4/arp.c
   2 *
   3 * Copyright (C) 1994 by Florian  La Roche
   4 *
   5 * This module implements the Address Resolution Protocol ARP (RFC 826),
   6 * which is used to convert IP addresses (or in the future maybe other
   7 * high-level addresses) into a low-level hardware address (like an Ethernet
   8 * address).
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License
  12 * as published by the Free Software Foundation; either version
  13 * 2 of the License, or (at your option) any later version.
  14 *
  15 * Fixes:
  16 *		Alan Cox	:	Removed the Ethernet assumptions in
  17 *					Florian's code
  18 *		Alan Cox	:	Fixed some small errors in the ARP
  19 *					logic
  20 *		Alan Cox	:	Allow >4K in /proc
  21 *		Alan Cox	:	Make ARP add its own protocol entry
  22 *		Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
  23 *		Stephen Henson	:	Add AX25 support to arp_get_info()
  24 *		Alan Cox	:	Drop data when a device is downed.
  25 *		Alan Cox	:	Use init_timer().
  26 *		Alan Cox	:	Double lock fixes.
  27 *		Martin Seine	:	Move the arphdr structure
  28 *					to if_arp.h for compatibility.
  29 *					with BSD based programs.
  30 *		Andrew Tridgell :       Added ARP netmask code and
  31 *					re-arranged proxy handling.
  32 *		Alan Cox	:	Changed to use notifiers.
  33 *		Niibe Yutaka	:	Reply for this device or proxies only.
  34 *		Alan Cox	:	Don't proxy across hardware types!
  35 *		Jonathan Naylor :	Added support for NET/ROM.
  36 *		Mike Shaver     :       RFC1122 checks.
  37 *		Jonathan Naylor :	Only lookup the hardware address for
  38 *					the correct hardware type.
  39 *		Germano Caronni	:	Assorted subtle races.
  40 *		Craig Schlenter :	Don't modify permanent entry
  41 *					during arp_rcv.
  42 *		Russ Nelson	:	Tidied up a few bits.
  43 *		Alexey Kuznetsov:	Major changes to caching and behaviour,
  44 *					eg intelligent arp probing and
  45 *					generation
  46 *					of host down events.
  47 *		Alan Cox	:	Missing unlock in device events.
  48 *		Eckes		:	ARP ioctl control errors.
  49 *		Alexey Kuznetsov:	Arp free fix.
  50 *		Manuel Rodriguez:	Gratuitous ARP.
  51 *              Jonathan Layes  :       Added arpd support through kerneld
  52 *                                      message queue (960314)
  53 *		Mike Shaver	:	/proc/sys/net/ipv4/arp_* support
  54 *		Mike McLagan    :	Routing by source
  55 *		Stuart Cheshire	:	Metricom and grat arp fixes
  56 *					*** FOR 2.1 clean this up ***
  57 *		Lawrence V. Stefani: (08/12/96) Added FDDI support.
  58 *		Alan Cox	:	Took the AP1000 nasty FDDI hack and
  59 *					folded into the mainstream FDDI code.
  60 *					Ack spit, Linus how did you allow that
  61 *					one in...
  62 *		Jes Sorensen	:	Make FDDI work again in 2.1.x and
  63 *					clean up the APFDDI & gen. FDDI bits.
  64 *		Alexey Kuznetsov:	new arp state machine;
  65 *					now it is in net/core/neighbour.c.
  66 *		Krzysztof Halasa:	Added Frame Relay ARP support.
  67 *		Arnaldo C. Melo :	convert /proc/net/arp to seq_file
  68 *		Shmulik Hen:		Split arp_send to arp_create and
  69 *					arp_xmit so intermediate drivers like
  70 *					bonding can change the skb before
  71 *					sending (e.g. insert 8021q tag).
  72 *		Harald Welte	:	convert to make use of jenkins hash
  73 *		Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
  74 */
  75
  76#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  77
  78#include <linux/module.h>
  79#include <linux/types.h>
  80#include <linux/string.h>
  81#include <linux/kernel.h>
  82#include <linux/capability.h>
  83#include <linux/socket.h>
  84#include <linux/sockios.h>
  85#include <linux/errno.h>
  86#include <linux/in.h>
  87#include <linux/mm.h>
  88#include <linux/inet.h>
  89#include <linux/inetdevice.h>
  90#include <linux/netdevice.h>
  91#include <linux/etherdevice.h>
  92#include <linux/fddidevice.h>
  93#include <linux/if_arp.h>
 
  94#include <linux/skbuff.h>
  95#include <linux/proc_fs.h>
  96#include <linux/seq_file.h>
  97#include <linux/stat.h>
  98#include <linux/init.h>
  99#include <linux/net.h>
 100#include <linux/rcupdate.h>
 101#include <linux/slab.h>
 102#ifdef CONFIG_SYSCTL
 103#include <linux/sysctl.h>
 104#endif
 105
 106#include <net/net_namespace.h>
 107#include <net/ip.h>
 108#include <net/icmp.h>
 109#include <net/route.h>
 110#include <net/protocol.h>
 111#include <net/tcp.h>
 112#include <net/sock.h>
 113#include <net/arp.h>
 114#include <net/ax25.h>
 115#include <net/netrom.h>
 116#include <net/dst_metadata.h>
 117#include <net/ip_tunnels.h>
 
 
 
 118
 
 119#include <linux/uaccess.h>
 120
 121#include <linux/netfilter_arp.h>
 122
 123/*
 124 *	Interface to generic neighbour cache.
 125 */
 126static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
 127static bool arp_key_eq(const struct neighbour *n, const void *pkey);
 128static int arp_constructor(struct neighbour *neigh);
 129static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
 130static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
 131static void parp_redo(struct sk_buff *skb);
 132
 133static const struct neigh_ops arp_generic_ops = {
 134	.family =		AF_INET,
 135	.solicit =		arp_solicit,
 136	.error_report =		arp_error_report,
 137	.output =		neigh_resolve_output,
 138	.connected_output =	neigh_connected_output,
 139};
 140
 141static const struct neigh_ops arp_hh_ops = {
 142	.family =		AF_INET,
 143	.solicit =		arp_solicit,
 144	.error_report =		arp_error_report,
 145	.output =		neigh_resolve_output,
 146	.connected_output =	neigh_resolve_output,
 147};
 148
 149static const struct neigh_ops arp_direct_ops = {
 150	.family =		AF_INET,
 151	.output =		neigh_direct_output,
 152	.connected_output =	neigh_direct_output,
 153};
 154
 
 
 
 
 
 
 
 
 155struct neigh_table arp_tbl = {
 156	.family		= AF_INET,
 
 157	.key_len	= 4,
 158	.protocol	= cpu_to_be16(ETH_P_IP),
 159	.hash		= arp_hash,
 160	.key_eq		= arp_key_eq,
 161	.constructor	= arp_constructor,
 162	.proxy_redo	= parp_redo,
 163	.id		= "arp_cache",
 164	.parms		= {
 165		.tbl			= &arp_tbl,
 
 
 
 166		.reachable_time		= 30 * HZ,
 167		.data	= {
 168			[NEIGH_VAR_MCAST_PROBES] = 3,
 169			[NEIGH_VAR_UCAST_PROBES] = 3,
 170			[NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
 171			[NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
 172			[NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
 173			[NEIGH_VAR_GC_STALETIME] = 60 * HZ,
 174			[NEIGH_VAR_QUEUE_LEN_BYTES] = SK_WMEM_MAX,
 175			[NEIGH_VAR_PROXY_QLEN] = 64,
 176			[NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
 177			[NEIGH_VAR_PROXY_DELAY]	= (8 * HZ) / 10,
 178			[NEIGH_VAR_LOCKTIME] = 1 * HZ,
 179		},
 180	},
 181	.gc_interval	= 30 * HZ,
 182	.gc_thresh1	= 128,
 183	.gc_thresh2	= 512,
 184	.gc_thresh3	= 1024,
 185};
 186EXPORT_SYMBOL(arp_tbl);
 187
 188int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
 189{
 190	switch (dev->type) {
 191	case ARPHRD_ETHER:
 192	case ARPHRD_FDDI:
 193	case ARPHRD_IEEE802:
 194		ip_eth_mc_map(addr, haddr);
 195		return 0;
 
 
 
 196	case ARPHRD_INFINIBAND:
 197		ip_ib_mc_map(addr, dev->broadcast, haddr);
 198		return 0;
 199	case ARPHRD_IPGRE:
 200		ip_ipgre_mc_map(addr, dev->broadcast, haddr);
 201		return 0;
 202	default:
 203		if (dir) {
 204			memcpy(haddr, dev->broadcast, dev->addr_len);
 205			return 0;
 206		}
 207	}
 208	return -EINVAL;
 209}
 210
 211
 212static u32 arp_hash(const void *pkey,
 213		    const struct net_device *dev,
 214		    __u32 *hash_rnd)
 215{
 216	return arp_hashfn(pkey, dev, hash_rnd);
 217}
 218
 219static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
 220{
 221	return neigh_key_eq32(neigh, pkey);
 222}
 223
 224static int arp_constructor(struct neighbour *neigh)
 225{
 226	__be32 addr;
 227	struct net_device *dev = neigh->dev;
 228	struct in_device *in_dev;
 229	struct neigh_parms *parms;
 230	u32 inaddr_any = INADDR_ANY;
 231
 232	if (dev->flags & (IFF_LOOPBACK | IFF_POINTOPOINT))
 233		memcpy(neigh->primary_key, &inaddr_any, arp_tbl.key_len);
 234
 235	addr = *(__be32 *)neigh->primary_key;
 236	rcu_read_lock();
 237	in_dev = __in_dev_get_rcu(dev);
 238	if (!in_dev) {
 239		rcu_read_unlock();
 240		return -EINVAL;
 241	}
 242
 243	neigh->type = inet_addr_type_dev_table(dev_net(dev), dev, addr);
 244
 245	parms = in_dev->arp_parms;
 246	__neigh_parms_put(neigh->parms);
 247	neigh->parms = neigh_parms_clone(parms);
 248	rcu_read_unlock();
 249
 250	if (!dev->header_ops) {
 251		neigh->nud_state = NUD_NOARP;
 252		neigh->ops = &arp_direct_ops;
 253		neigh->output = neigh_direct_output;
 254	} else {
 255		/* Good devices (checked by reading texts, but only Ethernet is
 256		   tested)
 257
 258		   ARPHRD_ETHER: (ethernet, apfddi)
 259		   ARPHRD_FDDI: (fddi)
 260		   ARPHRD_IEEE802: (tr)
 261		   ARPHRD_METRICOM: (strip)
 262		   ARPHRD_ARCNET:
 263		   etc. etc. etc.
 264
 265		   ARPHRD_IPDDP will also work, if author repairs it.
 266		   I did not it, because this driver does not work even
 267		   in old paradigm.
 268		 */
 269
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 270		if (neigh->type == RTN_MULTICAST) {
 271			neigh->nud_state = NUD_NOARP;
 272			arp_mc_map(addr, neigh->ha, dev, 1);
 273		} else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
 274			neigh->nud_state = NUD_NOARP;
 275			memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
 276		} else if (neigh->type == RTN_BROADCAST ||
 277			   (dev->flags & IFF_POINTOPOINT)) {
 278			neigh->nud_state = NUD_NOARP;
 279			memcpy(neigh->ha, dev->broadcast, dev->addr_len);
 280		}
 281
 282		if (dev->header_ops->cache)
 283			neigh->ops = &arp_hh_ops;
 284		else
 285			neigh->ops = &arp_generic_ops;
 286
 287		if (neigh->nud_state & NUD_VALID)
 288			neigh->output = neigh->ops->connected_output;
 289		else
 290			neigh->output = neigh->ops->output;
 291	}
 292	return 0;
 293}
 294
 295static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
 296{
 297	dst_link_failure(skb);
 298	kfree_skb(skb);
 299}
 300
 301/* Create and send an arp packet. */
 302static void arp_send_dst(int type, int ptype, __be32 dest_ip,
 303			 struct net_device *dev, __be32 src_ip,
 304			 const unsigned char *dest_hw,
 305			 const unsigned char *src_hw,
 306			 const unsigned char *target_hw,
 307			 struct dst_entry *dst)
 308{
 309	struct sk_buff *skb;
 310
 311	/* arp on this interface. */
 312	if (dev->flags & IFF_NOARP)
 313		return;
 314
 315	skb = arp_create(type, ptype, dest_ip, dev, src_ip,
 316			 dest_hw, src_hw, target_hw);
 317	if (!skb)
 318		return;
 319
 320	skb_dst_set(skb, dst_clone(dst));
 321	arp_xmit(skb);
 322}
 323
 324void arp_send(int type, int ptype, __be32 dest_ip,
 325	      struct net_device *dev, __be32 src_ip,
 326	      const unsigned char *dest_hw, const unsigned char *src_hw,
 327	      const unsigned char *target_hw)
 328{
 329	arp_send_dst(type, ptype, dest_ip, dev, src_ip, dest_hw, src_hw,
 330		     target_hw, NULL);
 331}
 332EXPORT_SYMBOL(arp_send);
 333
 334static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
 335{
 336	__be32 saddr = 0;
 337	u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
 338	struct net_device *dev = neigh->dev;
 339	__be32 target = *(__be32 *)neigh->primary_key;
 340	int probes = atomic_read(&neigh->probes);
 341	struct in_device *in_dev;
 342	struct dst_entry *dst = NULL;
 343
 344	rcu_read_lock();
 345	in_dev = __in_dev_get_rcu(dev);
 346	if (!in_dev) {
 347		rcu_read_unlock();
 348		return;
 349	}
 350	switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
 351	default:
 352	case 0:		/* By default announce any local IP */
 353		if (skb && inet_addr_type_dev_table(dev_net(dev), dev,
 354					  ip_hdr(skb)->saddr) == RTN_LOCAL)
 355			saddr = ip_hdr(skb)->saddr;
 356		break;
 357	case 1:		/* Restrict announcements of saddr in same subnet */
 358		if (!skb)
 359			break;
 360		saddr = ip_hdr(skb)->saddr;
 361		if (inet_addr_type_dev_table(dev_net(dev), dev,
 362					     saddr) == RTN_LOCAL) {
 363			/* saddr should be known to target */
 364			if (inet_addr_onlink(in_dev, target, saddr))
 365				break;
 366		}
 367		saddr = 0;
 368		break;
 369	case 2:		/* Avoid secondary IPs, get a primary/preferred one */
 370		break;
 371	}
 372	rcu_read_unlock();
 373
 374	if (!saddr)
 375		saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
 376
 377	probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
 378	if (probes < 0) {
 379		if (!(neigh->nud_state & NUD_VALID))
 380			pr_debug("trying to ucast probe in NUD_INVALID\n");
 381		neigh_ha_snapshot(dst_ha, neigh, dev);
 382		dst_hw = dst_ha;
 
 383	} else {
 384		probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
 385		if (probes < 0) {
 
 386			neigh_app_ns(neigh);
 
 387			return;
 388		}
 389	}
 390
 391	if (skb && !(dev->priv_flags & IFF_XMIT_DST_RELEASE))
 392		dst = skb_dst(skb);
 393	arp_send_dst(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
 394		     dst_hw, dev->dev_addr, NULL, dst);
 395}
 396
 397static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
 398{
 399	struct net *net = dev_net(in_dev->dev);
 400	int scope;
 401
 402	switch (IN_DEV_ARP_IGNORE(in_dev)) {
 403	case 0:	/* Reply, the tip is already validated */
 404		return 0;
 405	case 1:	/* Reply only if tip is configured on the incoming interface */
 406		sip = 0;
 407		scope = RT_SCOPE_HOST;
 408		break;
 409	case 2:	/*
 410		 * Reply only if tip is configured on the incoming interface
 411		 * and is in same subnet as sip
 412		 */
 413		scope = RT_SCOPE_HOST;
 414		break;
 415	case 3:	/* Do not reply for scope host addresses */
 416		sip = 0;
 417		scope = RT_SCOPE_LINK;
 418		in_dev = NULL;
 419		break;
 420	case 4:	/* Reserved */
 421	case 5:
 422	case 6:
 423	case 7:
 424		return 0;
 425	case 8:	/* Do not reply */
 426		return 1;
 427	default:
 428		return 0;
 429	}
 430	return !inet_confirm_addr(net, in_dev, sip, tip, scope);
 431}
 432
 433static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
 434{
 435	struct rtable *rt;
 436	int flag = 0;
 437	/*unsigned long now; */
 438	struct net *net = dev_net(dev);
 439
 440	rt = ip_route_output(net, sip, tip, 0, l3mdev_master_ifindex_rcu(dev));
 441	if (IS_ERR(rt))
 442		return 1;
 443	if (rt->dst.dev != dev) {
 444		__NET_INC_STATS(net, LINUX_MIB_ARPFILTER);
 445		flag = 1;
 446	}
 447	ip_rt_put(rt);
 448	return flag;
 449}
 450
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 451/*
 452 * Check if we can use proxy ARP for this path
 453 */
 454static inline int arp_fwd_proxy(struct in_device *in_dev,
 455				struct net_device *dev,	struct rtable *rt)
 456{
 457	struct in_device *out_dev;
 458	int imi, omi = -1;
 459
 460	if (rt->dst.dev == dev)
 461		return 0;
 462
 463	if (!IN_DEV_PROXY_ARP(in_dev))
 464		return 0;
 465	imi = IN_DEV_MEDIUM_ID(in_dev);
 466	if (imi == 0)
 467		return 1;
 468	if (imi == -1)
 469		return 0;
 470
 471	/* place to check for proxy_arp for routes */
 472
 473	out_dev = __in_dev_get_rcu(rt->dst.dev);
 474	if (out_dev)
 475		omi = IN_DEV_MEDIUM_ID(out_dev);
 476
 477	return omi != imi && omi != -1;
 478}
 479
 480/*
 481 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
 482 *
 483 * RFC3069 supports proxy arp replies back to the same interface.  This
 484 * is done to support (ethernet) switch features, like RFC 3069, where
 485 * the individual ports are not allowed to communicate with each
 486 * other, BUT they are allowed to talk to the upstream router.  As
 487 * described in RFC 3069, it is possible to allow these hosts to
 488 * communicate through the upstream router, by proxy_arp'ing.
 489 *
 490 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
 491 *
 492 *  This technology is known by different names:
 493 *    In RFC 3069 it is called VLAN Aggregation.
 494 *    Cisco and Allied Telesyn call it Private VLAN.
 495 *    Hewlett-Packard call it Source-Port filtering or port-isolation.
 496 *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
 497 *
 498 */
 499static inline int arp_fwd_pvlan(struct in_device *in_dev,
 500				struct net_device *dev,	struct rtable *rt,
 501				__be32 sip, __be32 tip)
 502{
 503	/* Private VLAN is only concerned about the same ethernet segment */
 504	if (rt->dst.dev != dev)
 505		return 0;
 506
 507	/* Don't reply on self probes (often done by windowz boxes)*/
 508	if (sip == tip)
 509		return 0;
 510
 511	if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
 512		return 1;
 513	else
 514		return 0;
 515}
 516
 517/*
 518 *	Interface to link layer: send routine and receive handler.
 519 */
 520
 521/*
 522 *	Create an arp packet. If dest_hw is not set, we create a broadcast
 523 *	message.
 524 */
 525struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
 526			   struct net_device *dev, __be32 src_ip,
 527			   const unsigned char *dest_hw,
 528			   const unsigned char *src_hw,
 529			   const unsigned char *target_hw)
 530{
 531	struct sk_buff *skb;
 532	struct arphdr *arp;
 533	unsigned char *arp_ptr;
 534	int hlen = LL_RESERVED_SPACE(dev);
 535	int tlen = dev->needed_tailroom;
 536
 537	/*
 538	 *	Allocate a buffer
 539	 */
 540
 541	skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
 542	if (!skb)
 543		return NULL;
 544
 545	skb_reserve(skb, hlen);
 546	skb_reset_network_header(skb);
 547	arp = skb_put(skb, arp_hdr_len(dev));
 548	skb->dev = dev;
 549	skb->protocol = htons(ETH_P_ARP);
 550	if (!src_hw)
 551		src_hw = dev->dev_addr;
 552	if (!dest_hw)
 553		dest_hw = dev->broadcast;
 554
 555	/*
 556	 *	Fill the device header for the ARP frame
 557	 */
 558	if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
 559		goto out;
 560
 561	/*
 562	 * Fill out the arp protocol part.
 563	 *
 564	 * The arp hardware type should match the device type, except for FDDI,
 565	 * which (according to RFC 1390) should always equal 1 (Ethernet).
 566	 */
 567	/*
 568	 *	Exceptions everywhere. AX.25 uses the AX.25 PID value not the
 569	 *	DIX code for the protocol. Make these device structure fields.
 570	 */
 571	switch (dev->type) {
 572	default:
 573		arp->ar_hrd = htons(dev->type);
 574		arp->ar_pro = htons(ETH_P_IP);
 575		break;
 576
 577#if IS_ENABLED(CONFIG_AX25)
 578	case ARPHRD_AX25:
 579		arp->ar_hrd = htons(ARPHRD_AX25);
 580		arp->ar_pro = htons(AX25_P_IP);
 581		break;
 582
 583#if IS_ENABLED(CONFIG_NETROM)
 584	case ARPHRD_NETROM:
 585		arp->ar_hrd = htons(ARPHRD_NETROM);
 586		arp->ar_pro = htons(AX25_P_IP);
 587		break;
 588#endif
 589#endif
 590
 591#if IS_ENABLED(CONFIG_FDDI)
 592	case ARPHRD_FDDI:
 593		arp->ar_hrd = htons(ARPHRD_ETHER);
 594		arp->ar_pro = htons(ETH_P_IP);
 595		break;
 596#endif
 
 
 
 
 
 
 597	}
 598
 599	arp->ar_hln = dev->addr_len;
 600	arp->ar_pln = 4;
 601	arp->ar_op = htons(type);
 602
 603	arp_ptr = (unsigned char *)(arp + 1);
 604
 605	memcpy(arp_ptr, src_hw, dev->addr_len);
 606	arp_ptr += dev->addr_len;
 607	memcpy(arp_ptr, &src_ip, 4);
 608	arp_ptr += 4;
 609
 610	switch (dev->type) {
 611#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 612	case ARPHRD_IEEE1394:
 613		break;
 614#endif
 615	default:
 616		if (target_hw)
 617			memcpy(arp_ptr, target_hw, dev->addr_len);
 618		else
 619			memset(arp_ptr, 0, dev->addr_len);
 620		arp_ptr += dev->addr_len;
 621	}
 622	memcpy(arp_ptr, &dest_ip, 4);
 623
 624	return skb;
 625
 626out:
 627	kfree_skb(skb);
 628	return NULL;
 629}
 630EXPORT_SYMBOL(arp_create);
 631
 632static int arp_xmit_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
 633{
 634	return dev_queue_xmit(skb);
 635}
 636
 637/*
 638 *	Send an arp packet.
 639 */
 640void arp_xmit(struct sk_buff *skb)
 641{
 642	/* Send it off, maybe filter it using firewalling first.  */
 643	NF_HOOK(NFPROTO_ARP, NF_ARP_OUT,
 644		dev_net(skb->dev), NULL, skb, NULL, skb->dev,
 645		arp_xmit_finish);
 646}
 647EXPORT_SYMBOL(arp_xmit);
 648
 649static bool arp_is_garp(struct net *net, struct net_device *dev,
 650			int *addr_type, __be16 ar_op,
 651			__be32 sip, __be32 tip,
 652			unsigned char *sha, unsigned char *tha)
 
 
 
 653{
 654	bool is_garp = tip == sip;
 655
 656	/* Gratuitous ARP _replies_ also require target hwaddr to be
 657	 * the same as source.
 658	 */
 659	if (is_garp && ar_op == htons(ARPOP_REPLY))
 660		is_garp =
 661			/* IPv4 over IEEE 1394 doesn't provide target
 662			 * hardware address field in its ARP payload.
 663			 */
 664			tha &&
 665			!memcmp(tha, sha, dev->addr_len);
 666
 667	if (is_garp) {
 668		*addr_type = inet_addr_type_dev_table(net, dev, sip);
 669		if (*addr_type != RTN_UNICAST)
 670			is_garp = false;
 671	}
 672	return is_garp;
 673}
 
 674
 675/*
 676 *	Process an arp request.
 677 */
 678
 679static int arp_process(struct net *net, struct sock *sk, struct sk_buff *skb)
 680{
 681	struct net_device *dev = skb->dev;
 682	struct in_device *in_dev = __in_dev_get_rcu(dev);
 683	struct arphdr *arp;
 684	unsigned char *arp_ptr;
 685	struct rtable *rt;
 686	unsigned char *sha;
 687	unsigned char *tha = NULL;
 688	__be32 sip, tip;
 689	u16 dev_type = dev->type;
 690	int addr_type;
 691	struct neighbour *n;
 692	struct dst_entry *reply_dst = NULL;
 693	bool is_garp = false;
 694
 695	/* arp_rcv below verifies the ARP header and verifies the device
 696	 * is ARP'able.
 697	 */
 698
 699	if (!in_dev)
 700		goto out_free_skb;
 701
 702	arp = arp_hdr(skb);
 703
 704	switch (dev_type) {
 705	default:
 706		if (arp->ar_pro != htons(ETH_P_IP) ||
 707		    htons(dev_type) != arp->ar_hrd)
 708			goto out_free_skb;
 709		break;
 710	case ARPHRD_ETHER:
 
 711	case ARPHRD_FDDI:
 712	case ARPHRD_IEEE802:
 713		/*
 714		 * ETHERNET, and Fibre Channel (which are IEEE 802
 715		 * devices, according to RFC 2625) devices will accept ARP
 716		 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
 717		 * This is the case also of FDDI, where the RFC 1390 says that
 718		 * FDDI devices should accept ARP hardware of (1) Ethernet,
 719		 * however, to be more robust, we'll accept both 1 (Ethernet)
 720		 * or 6 (IEEE 802.2)
 721		 */
 722		if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
 723		     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
 724		    arp->ar_pro != htons(ETH_P_IP))
 725			goto out_free_skb;
 726		break;
 727	case ARPHRD_AX25:
 728		if (arp->ar_pro != htons(AX25_P_IP) ||
 729		    arp->ar_hrd != htons(ARPHRD_AX25))
 730			goto out_free_skb;
 731		break;
 732	case ARPHRD_NETROM:
 733		if (arp->ar_pro != htons(AX25_P_IP) ||
 734		    arp->ar_hrd != htons(ARPHRD_NETROM))
 735			goto out_free_skb;
 736		break;
 737	}
 738
 739	/* Understand only these message types */
 740
 741	if (arp->ar_op != htons(ARPOP_REPLY) &&
 742	    arp->ar_op != htons(ARPOP_REQUEST))
 743		goto out_free_skb;
 744
 745/*
 746 *	Extract fields
 747 */
 748	arp_ptr = (unsigned char *)(arp + 1);
 749	sha	= arp_ptr;
 750	arp_ptr += dev->addr_len;
 751	memcpy(&sip, arp_ptr, 4);
 752	arp_ptr += 4;
 753	switch (dev_type) {
 754#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 755	case ARPHRD_IEEE1394:
 756		break;
 757#endif
 758	default:
 759		tha = arp_ptr;
 760		arp_ptr += dev->addr_len;
 761	}
 762	memcpy(&tip, arp_ptr, 4);
 763/*
 764 *	Check for bad requests for 127.x.x.x and requests for multicast
 765 *	addresses.  If this is one such, delete it.
 766 */
 767	if (ipv4_is_multicast(tip) ||
 768	    (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
 769		goto out_free_skb;
 770
 771 /*
 772  *	For some 802.11 wireless deployments (and possibly other networks),
 773  *	there will be an ARP proxy and gratuitous ARP frames are attacks
 774  *	and thus should not be accepted.
 775  */
 776	if (sip == tip && IN_DEV_ORCONF(in_dev, DROP_GRATUITOUS_ARP))
 777		goto out_free_skb;
 778
 779/*
 780 *     Special case: We must set Frame Relay source Q.922 address
 781 */
 782	if (dev_type == ARPHRD_DLCI)
 783		sha = dev->broadcast;
 784
 785/*
 786 *  Process entry.  The idea here is we want to send a reply if it is a
 787 *  request for us or if it is a request for someone else that we hold
 788 *  a proxy for.  We want to add an entry to our cache if it is a reply
 789 *  to us or if it is a request for our address.
 790 *  (The assumption for this last is that if someone is requesting our
 791 *  address, they are probably intending to talk to us, so it saves time
 792 *  if we cache their address.  Their address is also probably not in
 793 *  our cache, since ours is not in their cache.)
 794 *
 795 *  Putting this another way, we only care about replies if they are to
 796 *  us, in which case we add them to the cache.  For requests, we care
 797 *  about those for us and those for our proxies.  We reply to both,
 798 *  and in the case of requests for us we add the requester to the arp
 799 *  cache.
 800 */
 801
 802	if (arp->ar_op == htons(ARPOP_REQUEST) && skb_metadata_dst(skb))
 803		reply_dst = (struct dst_entry *)
 804			    iptunnel_metadata_reply(skb_metadata_dst(skb),
 805						    GFP_ATOMIC);
 806
 807	/* Special case: IPv4 duplicate address detection packet (RFC2131) */
 808	if (sip == 0) {
 809		if (arp->ar_op == htons(ARPOP_REQUEST) &&
 810		    inet_addr_type_dev_table(net, dev, tip) == RTN_LOCAL &&
 811		    !arp_ignore(in_dev, sip, tip))
 812			arp_send_dst(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip,
 813				     sha, dev->dev_addr, sha, reply_dst);
 814		goto out_consume_skb;
 815	}
 816
 817	if (arp->ar_op == htons(ARPOP_REQUEST) &&
 818	    ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
 819
 820		rt = skb_rtable(skb);
 821		addr_type = rt->rt_type;
 822
 823		if (addr_type == RTN_LOCAL) {
 824			int dont_send;
 825
 826			dont_send = arp_ignore(in_dev, sip, tip);
 827			if (!dont_send && IN_DEV_ARPFILTER(in_dev))
 828				dont_send = arp_filter(sip, tip, dev);
 829			if (!dont_send) {
 830				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 831				if (n) {
 832					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
 833						     sip, dev, tip, sha,
 834						     dev->dev_addr, sha,
 835						     reply_dst);
 836					neigh_release(n);
 837				}
 838			}
 839			goto out_consume_skb;
 840		} else if (IN_DEV_FORWARD(in_dev)) {
 841			if (addr_type == RTN_UNICAST  &&
 842			    (arp_fwd_proxy(in_dev, dev, rt) ||
 843			     arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
 844			     (rt->dst.dev != dev &&
 845			      pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
 846				n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 847				if (n)
 848					neigh_release(n);
 849
 850				if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
 851				    skb->pkt_type == PACKET_HOST ||
 852				    NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
 853					arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
 854						     sip, dev, tip, sha,
 855						     dev->dev_addr, sha,
 856						     reply_dst);
 857				} else {
 858					pneigh_enqueue(&arp_tbl,
 859						       in_dev->arp_parms, skb);
 860					goto out_free_dst;
 861				}
 862				goto out_consume_skb;
 863			}
 864		}
 865	}
 866
 867	/* Update our ARP tables */
 868
 869	n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
 870
 871	addr_type = -1;
 872	if (n || IN_DEV_ARP_ACCEPT(in_dev)) {
 873		is_garp = arp_is_garp(net, dev, &addr_type, arp->ar_op,
 874				      sip, tip, sha, tha);
 875	}
 876
 877	if (IN_DEV_ARP_ACCEPT(in_dev)) {
 878		/* Unsolicited ARP is not accepted by default.
 879		   It is possible, that this option should be enabled for some
 880		   devices (strip is candidate)
 881		 */
 882		if (!n &&
 883		    (is_garp ||
 884		     (arp->ar_op == htons(ARPOP_REPLY) &&
 885		      (addr_type == RTN_UNICAST ||
 886		       (addr_type < 0 &&
 887			/* postpone calculation to as late as possible */
 888			inet_addr_type_dev_table(net, dev, sip) ==
 889				RTN_UNICAST)))))
 890			n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
 891	}
 892
 893	if (n) {
 894		int state = NUD_REACHABLE;
 895		int override;
 896
 897		/* If several different ARP replies follows back-to-back,
 898		   use the FIRST one. It is possible, if several proxy
 899		   agents are active. Taking the first reply prevents
 900		   arp trashing and chooses the fastest router.
 901		 */
 902		override = time_after(jiffies,
 903				      n->updated +
 904				      NEIGH_VAR(n->parms, LOCKTIME)) ||
 905			   is_garp;
 906
 907		/* Broadcast replies and request packets
 908		   do not assert neighbour reachability.
 909		 */
 910		if (arp->ar_op != htons(ARPOP_REPLY) ||
 911		    skb->pkt_type != PACKET_HOST)
 912			state = NUD_STALE;
 913		neigh_update(n, sha, state,
 914			     override ? NEIGH_UPDATE_F_OVERRIDE : 0, 0);
 915		neigh_release(n);
 916	}
 917
 918out_consume_skb:
 919	consume_skb(skb);
 920
 921out_free_dst:
 922	dst_release(reply_dst);
 923	return NET_RX_SUCCESS;
 924
 925out_free_skb:
 926	kfree_skb(skb);
 927	return NET_RX_DROP;
 928}
 929
 930static void parp_redo(struct sk_buff *skb)
 931{
 932	arp_process(dev_net(skb->dev), NULL, skb);
 933}
 934
 935
 936/*
 937 *	Receive an arp request from the device layer.
 938 */
 939
 940static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
 941		   struct packet_type *pt, struct net_device *orig_dev)
 942{
 943	const struct arphdr *arp;
 944
 945	/* do not tweak dropwatch on an ARP we will ignore */
 946	if (dev->flags & IFF_NOARP ||
 947	    skb->pkt_type == PACKET_OTHERHOST ||
 948	    skb->pkt_type == PACKET_LOOPBACK)
 949		goto consumeskb;
 950
 951	skb = skb_share_check(skb, GFP_ATOMIC);
 952	if (!skb)
 953		goto out_of_mem;
 954
 955	/* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
 956	if (!pskb_may_pull(skb, arp_hdr_len(dev)))
 957		goto freeskb;
 958
 959	arp = arp_hdr(skb);
 960	if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
 
 
 
 
 961		goto freeskb;
 962
 
 
 
 
 963	memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
 964
 965	return NF_HOOK(NFPROTO_ARP, NF_ARP_IN,
 966		       dev_net(dev), NULL, skb, dev, NULL,
 967		       arp_process);
 968
 969consumeskb:
 970	consume_skb(skb);
 971	return NET_RX_SUCCESS;
 972freeskb:
 973	kfree_skb(skb);
 974out_of_mem:
 975	return NET_RX_DROP;
 976}
 977
 978/*
 979 *	User level interface (ioctl)
 980 */
 981
 982/*
 983 *	Set (create) an ARP cache entry.
 984 */
 985
 986static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
 987{
 988	if (!dev) {
 989		IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
 990		return 0;
 991	}
 992	if (__in_dev_get_rtnl(dev)) {
 993		IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
 994		return 0;
 995	}
 996	return -ENXIO;
 997}
 998
 999static int arp_req_set_public(struct net *net, struct arpreq *r,
1000		struct net_device *dev)
1001{
1002	__be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1003	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1004
1005	if (mask && mask != htonl(0xFFFFFFFF))
1006		return -EINVAL;
1007	if (!dev && (r->arp_flags & ATF_COM)) {
1008		dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1009				      r->arp_ha.sa_data);
1010		if (!dev)
1011			return -ENODEV;
1012	}
1013	if (mask) {
1014		if (!pneigh_lookup(&arp_tbl, net, &ip, dev, 1))
1015			return -ENOBUFS;
1016		return 0;
1017	}
1018
1019	return arp_req_set_proxy(net, dev, 1);
1020}
1021
1022static int arp_req_set(struct net *net, struct arpreq *r,
1023		       struct net_device *dev)
1024{
1025	__be32 ip;
1026	struct neighbour *neigh;
1027	int err;
1028
1029	if (r->arp_flags & ATF_PUBL)
1030		return arp_req_set_public(net, r, dev);
1031
1032	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1033	if (r->arp_flags & ATF_PERM)
1034		r->arp_flags |= ATF_COM;
1035	if (!dev) {
1036		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1037
1038		if (IS_ERR(rt))
1039			return PTR_ERR(rt);
1040		dev = rt->dst.dev;
1041		ip_rt_put(rt);
1042		if (!dev)
1043			return -EINVAL;
1044	}
1045	switch (dev->type) {
1046#if IS_ENABLED(CONFIG_FDDI)
1047	case ARPHRD_FDDI:
1048		/*
1049		 * According to RFC 1390, FDDI devices should accept ARP
1050		 * hardware types of 1 (Ethernet).  However, to be more
1051		 * robust, we'll accept hardware types of either 1 (Ethernet)
1052		 * or 6 (IEEE 802.2).
1053		 */
1054		if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1055		    r->arp_ha.sa_family != ARPHRD_ETHER &&
1056		    r->arp_ha.sa_family != ARPHRD_IEEE802)
1057			return -EINVAL;
1058		break;
1059#endif
1060	default:
1061		if (r->arp_ha.sa_family != dev->type)
1062			return -EINVAL;
1063		break;
1064	}
1065
1066	neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1067	err = PTR_ERR(neigh);
1068	if (!IS_ERR(neigh)) {
1069		unsigned int state = NUD_STALE;
1070		if (r->arp_flags & ATF_PERM)
1071			state = NUD_PERMANENT;
1072		err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1073				   r->arp_ha.sa_data : NULL, state,
1074				   NEIGH_UPDATE_F_OVERRIDE |
1075				   NEIGH_UPDATE_F_ADMIN, 0);
1076		neigh_release(neigh);
1077	}
1078	return err;
1079}
1080
1081static unsigned int arp_state_to_flags(struct neighbour *neigh)
1082{
1083	if (neigh->nud_state&NUD_PERMANENT)
1084		return ATF_PERM | ATF_COM;
1085	else if (neigh->nud_state&NUD_VALID)
1086		return ATF_COM;
1087	else
1088		return 0;
1089}
1090
1091/*
1092 *	Get an ARP cache entry.
1093 */
1094
1095static int arp_req_get(struct arpreq *r, struct net_device *dev)
1096{
1097	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1098	struct neighbour *neigh;
1099	int err = -ENXIO;
1100
1101	neigh = neigh_lookup(&arp_tbl, &ip, dev);
1102	if (neigh) {
1103		if (!(neigh->nud_state & NUD_NOARP)) {
1104			read_lock_bh(&neigh->lock);
1105			memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1106			r->arp_flags = arp_state_to_flags(neigh);
1107			read_unlock_bh(&neigh->lock);
1108			r->arp_ha.sa_family = dev->type;
1109			strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1110			err = 0;
1111		}
1112		neigh_release(neigh);
 
1113	}
1114	return err;
1115}
1116
1117static int arp_invalidate(struct net_device *dev, __be32 ip)
1118{
1119	struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1120	int err = -ENXIO;
1121	struct neigh_table *tbl = &arp_tbl;
1122
1123	if (neigh) {
1124		if (neigh->nud_state & ~NUD_NOARP)
1125			err = neigh_update(neigh, NULL, NUD_FAILED,
1126					   NEIGH_UPDATE_F_OVERRIDE|
1127					   NEIGH_UPDATE_F_ADMIN, 0);
1128		write_lock_bh(&tbl->lock);
1129		neigh_release(neigh);
1130		neigh_remove_one(neigh, tbl);
1131		write_unlock_bh(&tbl->lock);
1132	}
1133
1134	return err;
1135}
 
1136
1137static int arp_req_delete_public(struct net *net, struct arpreq *r,
1138		struct net_device *dev)
1139{
1140	__be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1141	__be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1142
1143	if (mask == htonl(0xFFFFFFFF))
1144		return pneigh_delete(&arp_tbl, net, &ip, dev);
1145
1146	if (mask)
1147		return -EINVAL;
1148
1149	return arp_req_set_proxy(net, dev, 0);
1150}
1151
1152static int arp_req_delete(struct net *net, struct arpreq *r,
1153			  struct net_device *dev)
1154{
1155	__be32 ip;
1156
1157	if (r->arp_flags & ATF_PUBL)
1158		return arp_req_delete_public(net, r, dev);
1159
1160	ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1161	if (!dev) {
1162		struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1163		if (IS_ERR(rt))
1164			return PTR_ERR(rt);
1165		dev = rt->dst.dev;
1166		ip_rt_put(rt);
1167		if (!dev)
1168			return -EINVAL;
1169	}
1170	return arp_invalidate(dev, ip);
1171}
1172
1173/*
1174 *	Handle an ARP layer I/O control request.
1175 */
1176
1177int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1178{
1179	int err;
1180	struct arpreq r;
1181	struct net_device *dev = NULL;
1182
1183	switch (cmd) {
1184	case SIOCDARP:
1185	case SIOCSARP:
1186		if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1187			return -EPERM;
1188		/* fall through */
1189	case SIOCGARP:
1190		err = copy_from_user(&r, arg, sizeof(struct arpreq));
1191		if (err)
1192			return -EFAULT;
1193		break;
1194	default:
1195		return -EINVAL;
1196	}
1197
1198	if (r.arp_pa.sa_family != AF_INET)
1199		return -EPFNOSUPPORT;
1200
1201	if (!(r.arp_flags & ATF_PUBL) &&
1202	    (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1203		return -EINVAL;
1204	if (!(r.arp_flags & ATF_NETMASK))
1205		((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1206							   htonl(0xFFFFFFFFUL);
1207	rtnl_lock();
1208	if (r.arp_dev[0]) {
1209		err = -ENODEV;
1210		dev = __dev_get_by_name(net, r.arp_dev);
1211		if (!dev)
1212			goto out;
1213
1214		/* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1215		if (!r.arp_ha.sa_family)
1216			r.arp_ha.sa_family = dev->type;
1217		err = -EINVAL;
1218		if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1219			goto out;
1220	} else if (cmd == SIOCGARP) {
1221		err = -ENODEV;
1222		goto out;
1223	}
1224
1225	switch (cmd) {
1226	case SIOCDARP:
1227		err = arp_req_delete(net, &r, dev);
1228		break;
1229	case SIOCSARP:
1230		err = arp_req_set(net, &r, dev);
1231		break;
1232	case SIOCGARP:
1233		err = arp_req_get(&r, dev);
1234		break;
1235	}
1236out:
1237	rtnl_unlock();
1238	if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1239		err = -EFAULT;
1240	return err;
1241}
1242
1243static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1244			    void *ptr)
1245{
1246	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1247	struct netdev_notifier_change_info *change_info;
1248
1249	switch (event) {
1250	case NETDEV_CHANGEADDR:
1251		neigh_changeaddr(&arp_tbl, dev);
1252		rt_cache_flush(dev_net(dev));
1253		break;
1254	case NETDEV_CHANGE:
1255		change_info = ptr;
1256		if (change_info->flags_changed & IFF_NOARP)
1257			neigh_changeaddr(&arp_tbl, dev);
1258		break;
1259	default:
1260		break;
1261	}
1262
1263	return NOTIFY_DONE;
1264}
1265
1266static struct notifier_block arp_netdev_notifier = {
1267	.notifier_call = arp_netdev_event,
1268};
1269
1270/* Note, that it is not on notifier chain.
1271   It is necessary, that this routine was called after route cache will be
1272   flushed.
1273 */
1274void arp_ifdown(struct net_device *dev)
1275{
1276	neigh_ifdown(&arp_tbl, dev);
1277}
1278
1279
1280/*
1281 *	Called once on startup.
1282 */
1283
1284static struct packet_type arp_packet_type __read_mostly = {
1285	.type =	cpu_to_be16(ETH_P_ARP),
1286	.func =	arp_rcv,
1287};
1288
1289static int arp_proc_init(void);
1290
1291void __init arp_init(void)
1292{
1293	neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
1294
1295	dev_add_pack(&arp_packet_type);
1296	arp_proc_init();
1297#ifdef CONFIG_SYSCTL
1298	neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1299#endif
1300	register_netdevice_notifier(&arp_netdev_notifier);
1301}
1302
1303#ifdef CONFIG_PROC_FS
1304#if IS_ENABLED(CONFIG_AX25)
1305
1306/* ------------------------------------------------------------------------ */
1307/*
1308 *	ax25 -> ASCII conversion
1309 */
1310static void ax2asc2(ax25_address *a, char *buf)
1311{
1312	char c, *s;
1313	int n;
1314
1315	for (n = 0, s = buf; n < 6; n++) {
1316		c = (a->ax25_call[n] >> 1) & 0x7F;
1317
1318		if (c != ' ')
1319			*s++ = c;
1320	}
1321
1322	*s++ = '-';
1323	n = (a->ax25_call[6] >> 1) & 0x0F;
1324	if (n > 9) {
1325		*s++ = '1';
1326		n -= 10;
1327	}
1328
1329	*s++ = n + '0';
1330	*s++ = '\0';
1331
1332	if (*buf == '\0' || *buf == '-') {
1333		buf[0] = '*';
1334		buf[1] = '\0';
1335	}
1336}
1337#endif /* CONFIG_AX25 */
1338
1339#define HBUFFERLEN 30
1340
1341static void arp_format_neigh_entry(struct seq_file *seq,
1342				   struct neighbour *n)
1343{
1344	char hbuffer[HBUFFERLEN];
1345	int k, j;
1346	char tbuf[16];
1347	struct net_device *dev = n->dev;
1348	int hatype = dev->type;
1349
1350	read_lock(&n->lock);
1351	/* Convert hardware address to XX:XX:XX:XX ... form. */
1352#if IS_ENABLED(CONFIG_AX25)
1353	if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1354		ax2asc2((ax25_address *)n->ha, hbuffer);
1355	else {
1356#endif
1357	for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1358		hbuffer[k++] = hex_asc_hi(n->ha[j]);
1359		hbuffer[k++] = hex_asc_lo(n->ha[j]);
1360		hbuffer[k++] = ':';
1361	}
1362	if (k != 0)
1363		--k;
1364	hbuffer[k] = 0;
1365#if IS_ENABLED(CONFIG_AX25)
1366	}
1367#endif
1368	sprintf(tbuf, "%pI4", n->primary_key);
1369	seq_printf(seq, "%-16s 0x%-10x0x%-10x%-17s     *        %s\n",
1370		   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1371	read_unlock(&n->lock);
1372}
1373
1374static void arp_format_pneigh_entry(struct seq_file *seq,
1375				    struct pneigh_entry *n)
1376{
1377	struct net_device *dev = n->dev;
1378	int hatype = dev ? dev->type : 0;
1379	char tbuf[16];
1380
1381	sprintf(tbuf, "%pI4", n->key);
1382	seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1383		   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1384		   dev ? dev->name : "*");
1385}
1386
1387static int arp_seq_show(struct seq_file *seq, void *v)
1388{
1389	if (v == SEQ_START_TOKEN) {
1390		seq_puts(seq, "IP address       HW type     Flags       "
1391			      "HW address            Mask     Device\n");
1392	} else {
1393		struct neigh_seq_state *state = seq->private;
1394
1395		if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1396			arp_format_pneigh_entry(seq, v);
1397		else
1398			arp_format_neigh_entry(seq, v);
1399	}
1400
1401	return 0;
1402}
1403
1404static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1405{
1406	/* Don't want to confuse "arp -a" w/ magic entries,
1407	 * so we tell the generic iterator to skip NUD_NOARP.
1408	 */
1409	return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1410}
1411
1412/* ------------------------------------------------------------------------ */
1413
1414static const struct seq_operations arp_seq_ops = {
1415	.start	= arp_seq_start,
1416	.next	= neigh_seq_next,
1417	.stop	= neigh_seq_stop,
1418	.show	= arp_seq_show,
1419};
1420
1421static int arp_seq_open(struct inode *inode, struct file *file)
1422{
1423	return seq_open_net(inode, file, &arp_seq_ops,
1424			    sizeof(struct neigh_seq_state));
1425}
1426
1427static const struct file_operations arp_seq_fops = {
 
1428	.open           = arp_seq_open,
1429	.read           = seq_read,
1430	.llseek         = seq_lseek,
1431	.release	= seq_release_net,
1432};
1433
1434
1435static int __net_init arp_net_init(struct net *net)
1436{
1437	if (!proc_create("arp", 0444, net->proc_net, &arp_seq_fops))
1438		return -ENOMEM;
1439	return 0;
1440}
1441
1442static void __net_exit arp_net_exit(struct net *net)
1443{
1444	remove_proc_entry("arp", net->proc_net);
1445}
1446
1447static struct pernet_operations arp_net_ops = {
1448	.init = arp_net_init,
1449	.exit = arp_net_exit,
1450};
1451
1452static int __init arp_proc_init(void)
1453{
1454	return register_pernet_subsys(&arp_net_ops);
1455}
1456
1457#else /* CONFIG_PROC_FS */
1458
1459static int __init arp_proc_init(void)
1460{
1461	return 0;
1462}
1463
1464#endif /* CONFIG_PROC_FS */