Loading...
1/*
2 * Virtual Memory Map support
3 *
4 * (C) 2007 sgi. Christoph Lameter.
5 *
6 * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
7 * virt_to_page, page_address() to be implemented as a base offset
8 * calculation without memory access.
9 *
10 * However, virtual mappings need a page table and TLBs. Many Linux
11 * architectures already map their physical space using 1-1 mappings
12 * via TLBs. For those arches the virtual memory map is essentially
13 * for free if we use the same page size as the 1-1 mappings. In that
14 * case the overhead consists of a few additional pages that are
15 * allocated to create a view of memory for vmemmap.
16 *
17 * The architecture is expected to provide a vmemmap_populate() function
18 * to instantiate the mapping.
19 */
20#include <linux/mm.h>
21#include <linux/mmzone.h>
22#include <linux/bootmem.h>
23#include <linux/highmem.h>
24#include <linux/module.h>
25#include <linux/slab.h>
26#include <linux/spinlock.h>
27#include <linux/vmalloc.h>
28#include <linux/sched.h>
29#include <asm/dma.h>
30#include <asm/pgalloc.h>
31#include <asm/pgtable.h>
32
33/*
34 * Allocate a block of memory to be used to back the virtual memory map
35 * or to back the page tables that are used to create the mapping.
36 * Uses the main allocators if they are available, else bootmem.
37 */
38
39static void * __init_refok __earlyonly_bootmem_alloc(int node,
40 unsigned long size,
41 unsigned long align,
42 unsigned long goal)
43{
44 return __alloc_bootmem_node_high(NODE_DATA(node), size, align, goal);
45}
46
47static void *vmemmap_buf;
48static void *vmemmap_buf_end;
49
50void * __meminit vmemmap_alloc_block(unsigned long size, int node)
51{
52 /* If the main allocator is up use that, fallback to bootmem. */
53 if (slab_is_available()) {
54 struct page *page;
55
56 if (node_state(node, N_HIGH_MEMORY))
57 page = alloc_pages_node(node,
58 GFP_KERNEL | __GFP_ZERO, get_order(size));
59 else
60 page = alloc_pages(GFP_KERNEL | __GFP_ZERO,
61 get_order(size));
62 if (page)
63 return page_address(page);
64 return NULL;
65 } else
66 return __earlyonly_bootmem_alloc(node, size, size,
67 __pa(MAX_DMA_ADDRESS));
68}
69
70/* need to make sure size is all the same during early stage */
71void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node)
72{
73 void *ptr;
74
75 if (!vmemmap_buf)
76 return vmemmap_alloc_block(size, node);
77
78 /* take the from buf */
79 ptr = (void *)ALIGN((unsigned long)vmemmap_buf, size);
80 if (ptr + size > vmemmap_buf_end)
81 return vmemmap_alloc_block(size, node);
82
83 vmemmap_buf = ptr + size;
84
85 return ptr;
86}
87
88void __meminit vmemmap_verify(pte_t *pte, int node,
89 unsigned long start, unsigned long end)
90{
91 unsigned long pfn = pte_pfn(*pte);
92 int actual_node = early_pfn_to_nid(pfn);
93
94 if (node_distance(actual_node, node) > LOCAL_DISTANCE)
95 printk(KERN_WARNING "[%lx-%lx] potential offnode "
96 "page_structs\n", start, end - 1);
97}
98
99pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node)
100{
101 pte_t *pte = pte_offset_kernel(pmd, addr);
102 if (pte_none(*pte)) {
103 pte_t entry;
104 void *p = vmemmap_alloc_block_buf(PAGE_SIZE, node);
105 if (!p)
106 return NULL;
107 entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
108 set_pte_at(&init_mm, addr, pte, entry);
109 }
110 return pte;
111}
112
113pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
114{
115 pmd_t *pmd = pmd_offset(pud, addr);
116 if (pmd_none(*pmd)) {
117 void *p = vmemmap_alloc_block(PAGE_SIZE, node);
118 if (!p)
119 return NULL;
120 pmd_populate_kernel(&init_mm, pmd, p);
121 }
122 return pmd;
123}
124
125pud_t * __meminit vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node)
126{
127 pud_t *pud = pud_offset(pgd, addr);
128 if (pud_none(*pud)) {
129 void *p = vmemmap_alloc_block(PAGE_SIZE, node);
130 if (!p)
131 return NULL;
132 pud_populate(&init_mm, pud, p);
133 }
134 return pud;
135}
136
137pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
138{
139 pgd_t *pgd = pgd_offset_k(addr);
140 if (pgd_none(*pgd)) {
141 void *p = vmemmap_alloc_block(PAGE_SIZE, node);
142 if (!p)
143 return NULL;
144 pgd_populate(&init_mm, pgd, p);
145 }
146 return pgd;
147}
148
149int __meminit vmemmap_populate_basepages(struct page *start_page,
150 unsigned long size, int node)
151{
152 unsigned long addr = (unsigned long)start_page;
153 unsigned long end = (unsigned long)(start_page + size);
154 pgd_t *pgd;
155 pud_t *pud;
156 pmd_t *pmd;
157 pte_t *pte;
158
159 for (; addr < end; addr += PAGE_SIZE) {
160 pgd = vmemmap_pgd_populate(addr, node);
161 if (!pgd)
162 return -ENOMEM;
163 pud = vmemmap_pud_populate(pgd, addr, node);
164 if (!pud)
165 return -ENOMEM;
166 pmd = vmemmap_pmd_populate(pud, addr, node);
167 if (!pmd)
168 return -ENOMEM;
169 pte = vmemmap_pte_populate(pmd, addr, node);
170 if (!pte)
171 return -ENOMEM;
172 vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
173 }
174
175 return 0;
176}
177
178struct page * __meminit sparse_mem_map_populate(unsigned long pnum, int nid)
179{
180 struct page *map = pfn_to_page(pnum * PAGES_PER_SECTION);
181 int error = vmemmap_populate(map, PAGES_PER_SECTION, nid);
182 if (error)
183 return NULL;
184
185 return map;
186}
187
188void __init sparse_mem_maps_populate_node(struct page **map_map,
189 unsigned long pnum_begin,
190 unsigned long pnum_end,
191 unsigned long map_count, int nodeid)
192{
193 unsigned long pnum;
194 unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
195 void *vmemmap_buf_start;
196
197 size = ALIGN(size, PMD_SIZE);
198 vmemmap_buf_start = __earlyonly_bootmem_alloc(nodeid, size * map_count,
199 PMD_SIZE, __pa(MAX_DMA_ADDRESS));
200
201 if (vmemmap_buf_start) {
202 vmemmap_buf = vmemmap_buf_start;
203 vmemmap_buf_end = vmemmap_buf_start + size * map_count;
204 }
205
206 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
207 struct mem_section *ms;
208
209 if (!present_section_nr(pnum))
210 continue;
211
212 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
213 if (map_map[pnum])
214 continue;
215 ms = __nr_to_section(pnum);
216 printk(KERN_ERR "%s: sparsemem memory map backing failed "
217 "some memory will not be available.\n", __func__);
218 ms->section_mem_map = 0;
219 }
220
221 if (vmemmap_buf_start) {
222 /* need to free left buf */
223 free_bootmem(__pa(vmemmap_buf), vmemmap_buf_end - vmemmap_buf);
224 vmemmap_buf = NULL;
225 vmemmap_buf_end = NULL;
226 }
227}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Virtual Memory Map support
4 *
5 * (C) 2007 sgi. Christoph Lameter.
6 *
7 * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
8 * virt_to_page, page_address() to be implemented as a base offset
9 * calculation without memory access.
10 *
11 * However, virtual mappings need a page table and TLBs. Many Linux
12 * architectures already map their physical space using 1-1 mappings
13 * via TLBs. For those arches the virtual memory map is essentially
14 * for free if we use the same page size as the 1-1 mappings. In that
15 * case the overhead consists of a few additional pages that are
16 * allocated to create a view of memory for vmemmap.
17 *
18 * The architecture is expected to provide a vmemmap_populate() function
19 * to instantiate the mapping.
20 */
21#include <linux/mm.h>
22#include <linux/mmzone.h>
23#include <linux/bootmem.h>
24#include <linux/memremap.h>
25#include <linux/highmem.h>
26#include <linux/slab.h>
27#include <linux/spinlock.h>
28#include <linux/vmalloc.h>
29#include <linux/sched.h>
30#include <asm/dma.h>
31#include <asm/pgalloc.h>
32#include <asm/pgtable.h>
33
34/*
35 * Allocate a block of memory to be used to back the virtual memory map
36 * or to back the page tables that are used to create the mapping.
37 * Uses the main allocators if they are available, else bootmem.
38 */
39
40static void * __ref __earlyonly_bootmem_alloc(int node,
41 unsigned long size,
42 unsigned long align,
43 unsigned long goal)
44{
45 return memblock_virt_alloc_try_nid_raw(size, align, goal,
46 BOOTMEM_ALLOC_ACCESSIBLE, node);
47}
48
49static void *vmemmap_buf;
50static void *vmemmap_buf_end;
51
52void * __meminit vmemmap_alloc_block(unsigned long size, int node)
53{
54 /* If the main allocator is up use that, fallback to bootmem. */
55 if (slab_is_available()) {
56 gfp_t gfp_mask = GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
57 int order = get_order(size);
58 static bool warned;
59 struct page *page;
60
61 page = alloc_pages_node(node, gfp_mask, order);
62 if (page)
63 return page_address(page);
64
65 if (!warned) {
66 warn_alloc(gfp_mask & ~__GFP_NOWARN, NULL,
67 "vmemmap alloc failure: order:%u", order);
68 warned = true;
69 }
70 return NULL;
71 } else
72 return __earlyonly_bootmem_alloc(node, size, size,
73 __pa(MAX_DMA_ADDRESS));
74}
75
76/* need to make sure size is all the same during early stage */
77void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node)
78{
79 void *ptr;
80
81 if (!vmemmap_buf)
82 return vmemmap_alloc_block(size, node);
83
84 /* take the from buf */
85 ptr = (void *)ALIGN((unsigned long)vmemmap_buf, size);
86 if (ptr + size > vmemmap_buf_end)
87 return vmemmap_alloc_block(size, node);
88
89 vmemmap_buf = ptr + size;
90
91 return ptr;
92}
93
94static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap)
95{
96 return altmap->base_pfn + altmap->reserve + altmap->alloc
97 + altmap->align;
98}
99
100static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap)
101{
102 unsigned long allocated = altmap->alloc + altmap->align;
103
104 if (altmap->free > allocated)
105 return altmap->free - allocated;
106 return 0;
107}
108
109/**
110 * altmap_alloc_block_buf - allocate pages from the device page map
111 * @altmap: device page map
112 * @size: size (in bytes) of the allocation
113 *
114 * Allocations are aligned to the size of the request.
115 */
116void * __meminit altmap_alloc_block_buf(unsigned long size,
117 struct vmem_altmap *altmap)
118{
119 unsigned long pfn, nr_pfns, nr_align;
120
121 if (size & ~PAGE_MASK) {
122 pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n",
123 __func__, size);
124 return NULL;
125 }
126
127 pfn = vmem_altmap_next_pfn(altmap);
128 nr_pfns = size >> PAGE_SHIFT;
129 nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG);
130 nr_align = ALIGN(pfn, nr_align) - pfn;
131 if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap))
132 return NULL;
133
134 altmap->alloc += nr_pfns;
135 altmap->align += nr_align;
136 pfn += nr_align;
137
138 pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n",
139 __func__, pfn, altmap->alloc, altmap->align, nr_pfns);
140 return __va(__pfn_to_phys(pfn));
141}
142
143void __meminit vmemmap_verify(pte_t *pte, int node,
144 unsigned long start, unsigned long end)
145{
146 unsigned long pfn = pte_pfn(*pte);
147 int actual_node = early_pfn_to_nid(pfn);
148
149 if (node_distance(actual_node, node) > LOCAL_DISTANCE)
150 pr_warn("[%lx-%lx] potential offnode page_structs\n",
151 start, end - 1);
152}
153
154pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node)
155{
156 pte_t *pte = pte_offset_kernel(pmd, addr);
157 if (pte_none(*pte)) {
158 pte_t entry;
159 void *p = vmemmap_alloc_block_buf(PAGE_SIZE, node);
160 if (!p)
161 return NULL;
162 entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
163 set_pte_at(&init_mm, addr, pte, entry);
164 }
165 return pte;
166}
167
168static void * __meminit vmemmap_alloc_block_zero(unsigned long size, int node)
169{
170 void *p = vmemmap_alloc_block(size, node);
171
172 if (!p)
173 return NULL;
174 memset(p, 0, size);
175
176 return p;
177}
178
179pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
180{
181 pmd_t *pmd = pmd_offset(pud, addr);
182 if (pmd_none(*pmd)) {
183 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
184 if (!p)
185 return NULL;
186 pmd_populate_kernel(&init_mm, pmd, p);
187 }
188 return pmd;
189}
190
191pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node)
192{
193 pud_t *pud = pud_offset(p4d, addr);
194 if (pud_none(*pud)) {
195 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
196 if (!p)
197 return NULL;
198 pud_populate(&init_mm, pud, p);
199 }
200 return pud;
201}
202
203p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node)
204{
205 p4d_t *p4d = p4d_offset(pgd, addr);
206 if (p4d_none(*p4d)) {
207 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
208 if (!p)
209 return NULL;
210 p4d_populate(&init_mm, p4d, p);
211 }
212 return p4d;
213}
214
215pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
216{
217 pgd_t *pgd = pgd_offset_k(addr);
218 if (pgd_none(*pgd)) {
219 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
220 if (!p)
221 return NULL;
222 pgd_populate(&init_mm, pgd, p);
223 }
224 return pgd;
225}
226
227int __meminit vmemmap_populate_basepages(unsigned long start,
228 unsigned long end, int node)
229{
230 unsigned long addr = start;
231 pgd_t *pgd;
232 p4d_t *p4d;
233 pud_t *pud;
234 pmd_t *pmd;
235 pte_t *pte;
236
237 for (; addr < end; addr += PAGE_SIZE) {
238 pgd = vmemmap_pgd_populate(addr, node);
239 if (!pgd)
240 return -ENOMEM;
241 p4d = vmemmap_p4d_populate(pgd, addr, node);
242 if (!p4d)
243 return -ENOMEM;
244 pud = vmemmap_pud_populate(p4d, addr, node);
245 if (!pud)
246 return -ENOMEM;
247 pmd = vmemmap_pmd_populate(pud, addr, node);
248 if (!pmd)
249 return -ENOMEM;
250 pte = vmemmap_pte_populate(pmd, addr, node);
251 if (!pte)
252 return -ENOMEM;
253 vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
254 }
255
256 return 0;
257}
258
259struct page * __meminit sparse_mem_map_populate(unsigned long pnum, int nid,
260 struct vmem_altmap *altmap)
261{
262 unsigned long start;
263 unsigned long end;
264 struct page *map;
265
266 map = pfn_to_page(pnum * PAGES_PER_SECTION);
267 start = (unsigned long)map;
268 end = (unsigned long)(map + PAGES_PER_SECTION);
269
270 if (vmemmap_populate(start, end, nid, altmap))
271 return NULL;
272
273 return map;
274}
275
276void __init sparse_mem_maps_populate_node(struct page **map_map,
277 unsigned long pnum_begin,
278 unsigned long pnum_end,
279 unsigned long map_count, int nodeid)
280{
281 unsigned long pnum;
282 unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
283 void *vmemmap_buf_start;
284
285 size = ALIGN(size, PMD_SIZE);
286 vmemmap_buf_start = __earlyonly_bootmem_alloc(nodeid, size * map_count,
287 PMD_SIZE, __pa(MAX_DMA_ADDRESS));
288
289 if (vmemmap_buf_start) {
290 vmemmap_buf = vmemmap_buf_start;
291 vmemmap_buf_end = vmemmap_buf_start + size * map_count;
292 }
293
294 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
295 struct mem_section *ms;
296
297 if (!present_section_nr(pnum))
298 continue;
299
300 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid, NULL);
301 if (map_map[pnum])
302 continue;
303 ms = __nr_to_section(pnum);
304 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
305 __func__);
306 ms->section_mem_map = 0;
307 }
308
309 if (vmemmap_buf_start) {
310 /* need to free left buf */
311 memblock_free_early(__pa(vmemmap_buf),
312 vmemmap_buf_end - vmemmap_buf);
313 vmemmap_buf = NULL;
314 vmemmap_buf_end = NULL;
315 }
316}