Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * Virtual Memory Map support
  3 *
  4 * (C) 2007 sgi. Christoph Lameter.
  5 *
  6 * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
  7 * virt_to_page, page_address() to be implemented as a base offset
  8 * calculation without memory access.
  9 *
 10 * However, virtual mappings need a page table and TLBs. Many Linux
 11 * architectures already map their physical space using 1-1 mappings
 12 * via TLBs. For those arches the virtual memory map is essentially
 13 * for free if we use the same page size as the 1-1 mappings. In that
 14 * case the overhead consists of a few additional pages that are
 15 * allocated to create a view of memory for vmemmap.
 16 *
 17 * The architecture is expected to provide a vmemmap_populate() function
 18 * to instantiate the mapping.
 19 */
 20#include <linux/mm.h>
 21#include <linux/mmzone.h>
 22#include <linux/bootmem.h>
 
 23#include <linux/highmem.h>
 24#include <linux/module.h>
 25#include <linux/slab.h>
 26#include <linux/spinlock.h>
 27#include <linux/vmalloc.h>
 28#include <linux/sched.h>
 29#include <asm/dma.h>
 30#include <asm/pgalloc.h>
 31#include <asm/pgtable.h>
 32
 33/*
 34 * Allocate a block of memory to be used to back the virtual memory map
 35 * or to back the page tables that are used to create the mapping.
 36 * Uses the main allocators if they are available, else bootmem.
 37 */
 38
 39static void * __init_refok __earlyonly_bootmem_alloc(int node,
 40				unsigned long size,
 41				unsigned long align,
 42				unsigned long goal)
 43{
 44	return __alloc_bootmem_node_high(NODE_DATA(node), size, align, goal);
 
 45}
 46
 47static void *vmemmap_buf;
 48static void *vmemmap_buf_end;
 49
 50void * __meminit vmemmap_alloc_block(unsigned long size, int node)
 51{
 52	/* If the main allocator is up use that, fallback to bootmem. */
 53	if (slab_is_available()) {
 
 
 
 54		struct page *page;
 55
 56		if (node_state(node, N_HIGH_MEMORY))
 57			page = alloc_pages_node(node,
 58				GFP_KERNEL | __GFP_ZERO, get_order(size));
 59		else
 60			page = alloc_pages(GFP_KERNEL | __GFP_ZERO,
 61				get_order(size));
 62		if (page)
 63			return page_address(page);
 
 
 
 
 
 
 64		return NULL;
 65	} else
 66		return __earlyonly_bootmem_alloc(node, size, size,
 67				__pa(MAX_DMA_ADDRESS));
 68}
 69
 70/* need to make sure size is all the same during early stage */
 71void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node)
 72{
 73	void *ptr;
 74
 75	if (!vmemmap_buf)
 76		return vmemmap_alloc_block(size, node);
 77
 78	/* take the from buf */
 79	ptr = (void *)ALIGN((unsigned long)vmemmap_buf, size);
 80	if (ptr + size > vmemmap_buf_end)
 81		return vmemmap_alloc_block(size, node);
 82
 83	vmemmap_buf = ptr + size;
 84
 85	return ptr;
 86}
 87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 88void __meminit vmemmap_verify(pte_t *pte, int node,
 89				unsigned long start, unsigned long end)
 90{
 91	unsigned long pfn = pte_pfn(*pte);
 92	int actual_node = early_pfn_to_nid(pfn);
 93
 94	if (node_distance(actual_node, node) > LOCAL_DISTANCE)
 95		printk(KERN_WARNING "[%lx-%lx] potential offnode "
 96			"page_structs\n", start, end - 1);
 97}
 98
 99pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node)
100{
101	pte_t *pte = pte_offset_kernel(pmd, addr);
102	if (pte_none(*pte)) {
103		pte_t entry;
104		void *p = vmemmap_alloc_block_buf(PAGE_SIZE, node);
105		if (!p)
106			return NULL;
107		entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
108		set_pte_at(&init_mm, addr, pte, entry);
109	}
110	return pte;
111}
112
 
 
 
 
 
 
 
 
 
 
 
113pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
114{
115	pmd_t *pmd = pmd_offset(pud, addr);
116	if (pmd_none(*pmd)) {
117		void *p = vmemmap_alloc_block(PAGE_SIZE, node);
118		if (!p)
119			return NULL;
120		pmd_populate_kernel(&init_mm, pmd, p);
121	}
122	return pmd;
123}
124
125pud_t * __meminit vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node)
126{
127	pud_t *pud = pud_offset(pgd, addr);
128	if (pud_none(*pud)) {
129		void *p = vmemmap_alloc_block(PAGE_SIZE, node);
130		if (!p)
131			return NULL;
132		pud_populate(&init_mm, pud, p);
133	}
134	return pud;
135}
136
 
 
 
 
 
 
 
 
 
 
 
 
137pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
138{
139	pgd_t *pgd = pgd_offset_k(addr);
140	if (pgd_none(*pgd)) {
141		void *p = vmemmap_alloc_block(PAGE_SIZE, node);
142		if (!p)
143			return NULL;
144		pgd_populate(&init_mm, pgd, p);
145	}
146	return pgd;
147}
148
149int __meminit vmemmap_populate_basepages(struct page *start_page,
150						unsigned long size, int node)
151{
152	unsigned long addr = (unsigned long)start_page;
153	unsigned long end = (unsigned long)(start_page + size);
154	pgd_t *pgd;
 
155	pud_t *pud;
156	pmd_t *pmd;
157	pte_t *pte;
158
159	for (; addr < end; addr += PAGE_SIZE) {
160		pgd = vmemmap_pgd_populate(addr, node);
161		if (!pgd)
162			return -ENOMEM;
163		pud = vmemmap_pud_populate(pgd, addr, node);
 
 
 
164		if (!pud)
165			return -ENOMEM;
166		pmd = vmemmap_pmd_populate(pud, addr, node);
167		if (!pmd)
168			return -ENOMEM;
169		pte = vmemmap_pte_populate(pmd, addr, node);
170		if (!pte)
171			return -ENOMEM;
172		vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
173	}
174
175	return 0;
176}
177
178struct page * __meminit sparse_mem_map_populate(unsigned long pnum, int nid)
 
179{
180	struct page *map = pfn_to_page(pnum * PAGES_PER_SECTION);
181	int error = vmemmap_populate(map, PAGES_PER_SECTION, nid);
182	if (error)
 
 
 
 
 
 
183		return NULL;
184
185	return map;
186}
187
188void __init sparse_mem_maps_populate_node(struct page **map_map,
189					  unsigned long pnum_begin,
190					  unsigned long pnum_end,
191					  unsigned long map_count, int nodeid)
192{
193	unsigned long pnum;
194	unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
195	void *vmemmap_buf_start;
196
197	size = ALIGN(size, PMD_SIZE);
198	vmemmap_buf_start = __earlyonly_bootmem_alloc(nodeid, size * map_count,
199			 PMD_SIZE, __pa(MAX_DMA_ADDRESS));
200
201	if (vmemmap_buf_start) {
202		vmemmap_buf = vmemmap_buf_start;
203		vmemmap_buf_end = vmemmap_buf_start + size * map_count;
204	}
205
206	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
207		struct mem_section *ms;
208
209		if (!present_section_nr(pnum))
210			continue;
211
212		map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
213		if (map_map[pnum])
214			continue;
215		ms = __nr_to_section(pnum);
216		printk(KERN_ERR "%s: sparsemem memory map backing failed "
217			"some memory will not be available.\n", __func__);
218		ms->section_mem_map = 0;
219	}
220
221	if (vmemmap_buf_start) {
222		/* need to free left buf */
223		free_bootmem(__pa(vmemmap_buf), vmemmap_buf_end - vmemmap_buf);
 
224		vmemmap_buf = NULL;
225		vmemmap_buf_end = NULL;
226	}
227}
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Virtual Memory Map support
  4 *
  5 * (C) 2007 sgi. Christoph Lameter.
  6 *
  7 * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
  8 * virt_to_page, page_address() to be implemented as a base offset
  9 * calculation without memory access.
 10 *
 11 * However, virtual mappings need a page table and TLBs. Many Linux
 12 * architectures already map their physical space using 1-1 mappings
 13 * via TLBs. For those arches the virtual memory map is essentially
 14 * for free if we use the same page size as the 1-1 mappings. In that
 15 * case the overhead consists of a few additional pages that are
 16 * allocated to create a view of memory for vmemmap.
 17 *
 18 * The architecture is expected to provide a vmemmap_populate() function
 19 * to instantiate the mapping.
 20 */
 21#include <linux/mm.h>
 22#include <linux/mmzone.h>
 23#include <linux/bootmem.h>
 24#include <linux/memremap.h>
 25#include <linux/highmem.h>
 
 26#include <linux/slab.h>
 27#include <linux/spinlock.h>
 28#include <linux/vmalloc.h>
 29#include <linux/sched.h>
 30#include <asm/dma.h>
 31#include <asm/pgalloc.h>
 32#include <asm/pgtable.h>
 33
 34/*
 35 * Allocate a block of memory to be used to back the virtual memory map
 36 * or to back the page tables that are used to create the mapping.
 37 * Uses the main allocators if they are available, else bootmem.
 38 */
 39
 40static void * __ref __earlyonly_bootmem_alloc(int node,
 41				unsigned long size,
 42				unsigned long align,
 43				unsigned long goal)
 44{
 45	return memblock_virt_alloc_try_nid_raw(size, align, goal,
 46					    BOOTMEM_ALLOC_ACCESSIBLE, node);
 47}
 48
 49static void *vmemmap_buf;
 50static void *vmemmap_buf_end;
 51
 52void * __meminit vmemmap_alloc_block(unsigned long size, int node)
 53{
 54	/* If the main allocator is up use that, fallback to bootmem. */
 55	if (slab_is_available()) {
 56		gfp_t gfp_mask = GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
 57		int order = get_order(size);
 58		static bool warned;
 59		struct page *page;
 60
 61		page = alloc_pages_node(node, gfp_mask, order);
 
 
 
 
 
 62		if (page)
 63			return page_address(page);
 64
 65		if (!warned) {
 66			warn_alloc(gfp_mask & ~__GFP_NOWARN, NULL,
 67				   "vmemmap alloc failure: order:%u", order);
 68			warned = true;
 69		}
 70		return NULL;
 71	} else
 72		return __earlyonly_bootmem_alloc(node, size, size,
 73				__pa(MAX_DMA_ADDRESS));
 74}
 75
 76/* need to make sure size is all the same during early stage */
 77void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node)
 78{
 79	void *ptr;
 80
 81	if (!vmemmap_buf)
 82		return vmemmap_alloc_block(size, node);
 83
 84	/* take the from buf */
 85	ptr = (void *)ALIGN((unsigned long)vmemmap_buf, size);
 86	if (ptr + size > vmemmap_buf_end)
 87		return vmemmap_alloc_block(size, node);
 88
 89	vmemmap_buf = ptr + size;
 90
 91	return ptr;
 92}
 93
 94static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap)
 95{
 96	return altmap->base_pfn + altmap->reserve + altmap->alloc
 97		+ altmap->align;
 98}
 99
100static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap)
101{
102	unsigned long allocated = altmap->alloc + altmap->align;
103
104	if (altmap->free > allocated)
105		return altmap->free - allocated;
106	return 0;
107}
108
109/**
110 * altmap_alloc_block_buf - allocate pages from the device page map
111 * @altmap:	device page map
112 * @size:	size (in bytes) of the allocation
113 *
114 * Allocations are aligned to the size of the request.
115 */
116void * __meminit altmap_alloc_block_buf(unsigned long size,
117		struct vmem_altmap *altmap)
118{
119	unsigned long pfn, nr_pfns, nr_align;
120
121	if (size & ~PAGE_MASK) {
122		pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n",
123				__func__, size);
124		return NULL;
125	}
126
127	pfn = vmem_altmap_next_pfn(altmap);
128	nr_pfns = size >> PAGE_SHIFT;
129	nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG);
130	nr_align = ALIGN(pfn, nr_align) - pfn;
131	if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap))
132		return NULL;
133
134	altmap->alloc += nr_pfns;
135	altmap->align += nr_align;
136	pfn += nr_align;
137
138	pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n",
139			__func__, pfn, altmap->alloc, altmap->align, nr_pfns);
140	return __va(__pfn_to_phys(pfn));
141}
142
143void __meminit vmemmap_verify(pte_t *pte, int node,
144				unsigned long start, unsigned long end)
145{
146	unsigned long pfn = pte_pfn(*pte);
147	int actual_node = early_pfn_to_nid(pfn);
148
149	if (node_distance(actual_node, node) > LOCAL_DISTANCE)
150		pr_warn("[%lx-%lx] potential offnode page_structs\n",
151			start, end - 1);
152}
153
154pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node)
155{
156	pte_t *pte = pte_offset_kernel(pmd, addr);
157	if (pte_none(*pte)) {
158		pte_t entry;
159		void *p = vmemmap_alloc_block_buf(PAGE_SIZE, node);
160		if (!p)
161			return NULL;
162		entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
163		set_pte_at(&init_mm, addr, pte, entry);
164	}
165	return pte;
166}
167
168static void * __meminit vmemmap_alloc_block_zero(unsigned long size, int node)
169{
170	void *p = vmemmap_alloc_block(size, node);
171
172	if (!p)
173		return NULL;
174	memset(p, 0, size);
175
176	return p;
177}
178
179pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
180{
181	pmd_t *pmd = pmd_offset(pud, addr);
182	if (pmd_none(*pmd)) {
183		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
184		if (!p)
185			return NULL;
186		pmd_populate_kernel(&init_mm, pmd, p);
187	}
188	return pmd;
189}
190
191pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node)
192{
193	pud_t *pud = pud_offset(p4d, addr);
194	if (pud_none(*pud)) {
195		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
196		if (!p)
197			return NULL;
198		pud_populate(&init_mm, pud, p);
199	}
200	return pud;
201}
202
203p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node)
204{
205	p4d_t *p4d = p4d_offset(pgd, addr);
206	if (p4d_none(*p4d)) {
207		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
208		if (!p)
209			return NULL;
210		p4d_populate(&init_mm, p4d, p);
211	}
212	return p4d;
213}
214
215pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
216{
217	pgd_t *pgd = pgd_offset_k(addr);
218	if (pgd_none(*pgd)) {
219		void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
220		if (!p)
221			return NULL;
222		pgd_populate(&init_mm, pgd, p);
223	}
224	return pgd;
225}
226
227int __meminit vmemmap_populate_basepages(unsigned long start,
228					 unsigned long end, int node)
229{
230	unsigned long addr = start;
 
231	pgd_t *pgd;
232	p4d_t *p4d;
233	pud_t *pud;
234	pmd_t *pmd;
235	pte_t *pte;
236
237	for (; addr < end; addr += PAGE_SIZE) {
238		pgd = vmemmap_pgd_populate(addr, node);
239		if (!pgd)
240			return -ENOMEM;
241		p4d = vmemmap_p4d_populate(pgd, addr, node);
242		if (!p4d)
243			return -ENOMEM;
244		pud = vmemmap_pud_populate(p4d, addr, node);
245		if (!pud)
246			return -ENOMEM;
247		pmd = vmemmap_pmd_populate(pud, addr, node);
248		if (!pmd)
249			return -ENOMEM;
250		pte = vmemmap_pte_populate(pmd, addr, node);
251		if (!pte)
252			return -ENOMEM;
253		vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
254	}
255
256	return 0;
257}
258
259struct page * __meminit sparse_mem_map_populate(unsigned long pnum, int nid,
260		struct vmem_altmap *altmap)
261{
262	unsigned long start;
263	unsigned long end;
264	struct page *map;
265
266	map = pfn_to_page(pnum * PAGES_PER_SECTION);
267	start = (unsigned long)map;
268	end = (unsigned long)(map + PAGES_PER_SECTION);
269
270	if (vmemmap_populate(start, end, nid, altmap))
271		return NULL;
272
273	return map;
274}
275
276void __init sparse_mem_maps_populate_node(struct page **map_map,
277					  unsigned long pnum_begin,
278					  unsigned long pnum_end,
279					  unsigned long map_count, int nodeid)
280{
281	unsigned long pnum;
282	unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
283	void *vmemmap_buf_start;
284
285	size = ALIGN(size, PMD_SIZE);
286	vmemmap_buf_start = __earlyonly_bootmem_alloc(nodeid, size * map_count,
287			 PMD_SIZE, __pa(MAX_DMA_ADDRESS));
288
289	if (vmemmap_buf_start) {
290		vmemmap_buf = vmemmap_buf_start;
291		vmemmap_buf_end = vmemmap_buf_start + size * map_count;
292	}
293
294	for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
295		struct mem_section *ms;
296
297		if (!present_section_nr(pnum))
298			continue;
299
300		map_map[pnum] = sparse_mem_map_populate(pnum, nodeid, NULL);
301		if (map_map[pnum])
302			continue;
303		ms = __nr_to_section(pnum);
304		pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
305		       __func__);
306		ms->section_mem_map = 0;
307	}
308
309	if (vmemmap_buf_start) {
310		/* need to free left buf */
311		memblock_free_early(__pa(vmemmap_buf),
312				    vmemmap_buf_end - vmemmap_buf);
313		vmemmap_buf = NULL;
314		vmemmap_buf_end = NULL;
315	}
316}