Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * mm/percpu.c - percpu memory allocator
   3 *
   4 * Copyright (C) 2009		SUSE Linux Products GmbH
   5 * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
   6 *
   7 * This file is released under the GPLv2.
 
   8 *
   9 * This is percpu allocator which can handle both static and dynamic
  10 * areas.  Percpu areas are allocated in chunks.  Each chunk is
  11 * consisted of boot-time determined number of units and the first
  12 * chunk is used for static percpu variables in the kernel image
  13 * (special boot time alloc/init handling necessary as these areas
  14 * need to be brought up before allocation services are running).
  15 * Unit grows as necessary and all units grow or shrink in unison.
  16 * When a chunk is filled up, another chunk is allocated.
  17 *
  18 *  c0                           c1                         c2
  19 *  -------------------          -------------------        ------------
  20 * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
  21 *  -------------------  ......  -------------------  ....  ------------
  22 *
  23 * Allocation is done in offset-size areas of single unit space.  Ie,
  24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
  25 * c1:u1, c1:u2 and c1:u3.  On UMA, units corresponds directly to
  26 * cpus.  On NUMA, the mapping can be non-linear and even sparse.
  27 * Percpu access can be done by configuring percpu base registers
  28 * according to cpu to unit mapping and pcpu_unit_size.
  29 *
  30 * There are usually many small percpu allocations many of them being
  31 * as small as 4 bytes.  The allocator organizes chunks into lists
  32 * according to free size and tries to allocate from the fullest one.
  33 * Each chunk keeps the maximum contiguous area size hint which is
  34 * guaranteed to be equal to or larger than the maximum contiguous
  35 * area in the chunk.  This helps the allocator not to iterate the
  36 * chunk maps unnecessarily.
  37 *
  38 * Allocation state in each chunk is kept using an array of integers
  39 * on chunk->map.  A positive value in the map represents a free
  40 * region and negative allocated.  Allocation inside a chunk is done
  41 * by scanning this map sequentially and serving the first matching
  42 * entry.  This is mostly copied from the percpu_modalloc() allocator.
  43 * Chunks can be determined from the address using the index field
  44 * in the page struct. The index field contains a pointer to the chunk.
 
 
 
 
 
 
 
 
 
 
  45 *
  46 * To use this allocator, arch code should do the followings.
  47 *
  48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
  49 *   regular address to percpu pointer and back if they need to be
  50 *   different from the default
  51 *
  52 * - use pcpu_setup_first_chunk() during percpu area initialization to
  53 *   setup the first chunk containing the kernel static percpu area
  54 */
  55
 
 
  56#include <linux/bitmap.h>
  57#include <linux/bootmem.h>
  58#include <linux/err.h>
 
  59#include <linux/list.h>
  60#include <linux/log2.h>
  61#include <linux/mm.h>
  62#include <linux/module.h>
  63#include <linux/mutex.h>
  64#include <linux/percpu.h>
  65#include <linux/pfn.h>
  66#include <linux/slab.h>
  67#include <linux/spinlock.h>
  68#include <linux/vmalloc.h>
  69#include <linux/workqueue.h>
 
 
  70
  71#include <asm/cacheflush.h>
  72#include <asm/sections.h>
  73#include <asm/tlbflush.h>
  74#include <asm/io.h>
  75
  76#define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
  77#define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */
 
 
 
 
 
 
 
 
  78
  79#ifdef CONFIG_SMP
  80/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
  81#ifndef __addr_to_pcpu_ptr
  82#define __addr_to_pcpu_ptr(addr)					\
  83	(void __percpu *)((unsigned long)(addr) -			\
  84			  (unsigned long)pcpu_base_addr	+		\
  85			  (unsigned long)__per_cpu_start)
  86#endif
  87#ifndef __pcpu_ptr_to_addr
  88#define __pcpu_ptr_to_addr(ptr)						\
  89	(void __force *)((unsigned long)(ptr) +				\
  90			 (unsigned long)pcpu_base_addr -		\
  91			 (unsigned long)__per_cpu_start)
  92#endif
  93#else	/* CONFIG_SMP */
  94/* on UP, it's always identity mapped */
  95#define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
  96#define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
  97#endif	/* CONFIG_SMP */
  98
  99struct pcpu_chunk {
 100	struct list_head	list;		/* linked to pcpu_slot lists */
 101	int			free_size;	/* free bytes in the chunk */
 102	int			contig_hint;	/* max contiguous size hint */
 103	void			*base_addr;	/* base address of this chunk */
 104	int			map_used;	/* # of map entries used */
 105	int			map_alloc;	/* # of map entries allocated */
 106	int			*map;		/* allocation map */
 107	void			*data;		/* chunk data */
 108	bool			immutable;	/* no [de]population allowed */
 109	unsigned long		populated[];	/* populated bitmap */
 110};
 111
 112static int pcpu_unit_pages __read_mostly;
 113static int pcpu_unit_size __read_mostly;
 114static int pcpu_nr_units __read_mostly;
 115static int pcpu_atom_size __read_mostly;
 116static int pcpu_nr_slots __read_mostly;
 117static size_t pcpu_chunk_struct_size __read_mostly;
 118
 119/* cpus with the lowest and highest unit numbers */
 120static unsigned int pcpu_first_unit_cpu __read_mostly;
 121static unsigned int pcpu_last_unit_cpu __read_mostly;
 122
 123/* the address of the first chunk which starts with the kernel static area */
 124void *pcpu_base_addr __read_mostly;
 125EXPORT_SYMBOL_GPL(pcpu_base_addr);
 126
 127static const int *pcpu_unit_map __read_mostly;		/* cpu -> unit */
 128const unsigned long *pcpu_unit_offsets __read_mostly;	/* cpu -> unit offset */
 129
 130/* group information, used for vm allocation */
 131static int pcpu_nr_groups __read_mostly;
 132static const unsigned long *pcpu_group_offsets __read_mostly;
 133static const size_t *pcpu_group_sizes __read_mostly;
 134
 135/*
 136 * The first chunk which always exists.  Note that unlike other
 137 * chunks, this one can be allocated and mapped in several different
 138 * ways and thus often doesn't live in the vmalloc area.
 139 */
 140static struct pcpu_chunk *pcpu_first_chunk;
 141
 142/*
 143 * Optional reserved chunk.  This chunk reserves part of the first
 144 * chunk and serves it for reserved allocations.  The amount of
 145 * reserved offset is in pcpu_reserved_chunk_limit.  When reserved
 146 * area doesn't exist, the following variables contain NULL and 0
 147 * respectively.
 148 */
 149static struct pcpu_chunk *pcpu_reserved_chunk;
 150static int pcpu_reserved_chunk_limit;
 
 
 
 
 
 
 
 151
 152/*
 153 * Synchronization rules.
 154 *
 155 * There are two locks - pcpu_alloc_mutex and pcpu_lock.  The former
 156 * protects allocation/reclaim paths, chunks, populated bitmap and
 157 * vmalloc mapping.  The latter is a spinlock and protects the index
 158 * data structures - chunk slots, chunks and area maps in chunks.
 159 *
 160 * During allocation, pcpu_alloc_mutex is kept locked all the time and
 161 * pcpu_lock is grabbed and released as necessary.  All actual memory
 162 * allocations are done using GFP_KERNEL with pcpu_lock released.  In
 163 * general, percpu memory can't be allocated with irq off but
 164 * irqsave/restore are still used in alloc path so that it can be used
 165 * from early init path - sched_init() specifically.
 166 *
 167 * Free path accesses and alters only the index data structures, so it
 168 * can be safely called from atomic context.  When memory needs to be
 169 * returned to the system, free path schedules reclaim_work which
 170 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
 171 * reclaimed, release both locks and frees the chunks.  Note that it's
 172 * necessary to grab both locks to remove a chunk from circulation as
 173 * allocation path might be referencing the chunk with only
 174 * pcpu_alloc_mutex locked.
 175 */
 176static DEFINE_MUTEX(pcpu_alloc_mutex);	/* protects whole alloc and reclaim */
 177static DEFINE_SPINLOCK(pcpu_lock);	/* protects index data structures */
 178
 179static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
 180
 181/* reclaim work to release fully free chunks, scheduled from free path */
 182static void pcpu_reclaim(struct work_struct *work);
 183static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
 
 
 
 
 
 
 
 184
 185static bool pcpu_addr_in_first_chunk(void *addr)
 186{
 187	void *first_start = pcpu_first_chunk->base_addr;
 188
 189	return addr >= first_start && addr < first_start + pcpu_unit_size;
 190}
 191
 192static bool pcpu_addr_in_reserved_chunk(void *addr)
 
 
 
 
 
 
 
 
 193{
 194	void *first_start = pcpu_first_chunk->base_addr;
 
 
 
 
 
 
 
 195
 196	return addr >= first_start &&
 197		addr < first_start + pcpu_reserved_chunk_limit;
 198}
 199
 200static int __pcpu_size_to_slot(int size)
 201{
 202	int highbit = fls(size);	/* size is in bytes */
 203	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
 204}
 205
 206static int pcpu_size_to_slot(int size)
 207{
 208	if (size == pcpu_unit_size)
 209		return pcpu_nr_slots - 1;
 210	return __pcpu_size_to_slot(size);
 211}
 212
 213static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
 214{
 215	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
 216		return 0;
 217
 218	return pcpu_size_to_slot(chunk->free_size);
 219}
 220
 221/* set the pointer to a chunk in a page struct */
 222static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
 223{
 224	page->index = (unsigned long)pcpu;
 225}
 226
 227/* obtain pointer to a chunk from a page struct */
 228static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
 229{
 230	return (struct pcpu_chunk *)page->index;
 231}
 232
 233static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
 234{
 235	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
 236}
 237
 
 
 
 
 
 238static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
 239				     unsigned int cpu, int page_idx)
 240{
 241	return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
 242		(page_idx << PAGE_SHIFT);
 243}
 244
 245static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
 246					   int *rs, int *re, int end)
 247{
 248	*rs = find_next_zero_bit(chunk->populated, end, *rs);
 249	*re = find_next_bit(chunk->populated, end, *rs + 1);
 250}
 251
 252static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
 253					 int *rs, int *re, int end)
 254{
 255	*rs = find_next_bit(chunk->populated, end, *rs);
 256	*re = find_next_zero_bit(chunk->populated, end, *rs + 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 257}
 258
 259/*
 260 * (Un)populated page region iterators.  Iterate over (un)populated
 261 * page regions between @start and @end in @chunk.  @rs and @re should
 262 * be integer variables and will be set to start and end page index of
 263 * the current region.
 264 */
 265#define pcpu_for_each_unpop_region(chunk, rs, re, start, end)		    \
 266	for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
 267	     (rs) < (re);						    \
 268	     (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
 269
 270#define pcpu_for_each_pop_region(chunk, rs, re, start, end)		    \
 271	for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end));   \
 272	     (rs) < (re);						    \
 273	     (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
 
 
 
 
 274
 275/**
 276 * pcpu_mem_alloc - allocate memory
 277 * @size: bytes to allocate
 
 278 *
 279 * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
 280 * kzalloc() is used; otherwise, vmalloc() is used.  The returned
 281 * memory is always zeroed.
 282 *
 283 * CONTEXT:
 284 * Does GFP_KERNEL allocation.
 285 *
 286 * RETURNS:
 287 * Pointer to the allocated area on success, NULL on failure.
 288 */
 289static void *pcpu_mem_alloc(size_t size)
 290{
 291	if (WARN_ON_ONCE(!slab_is_available()))
 292		return NULL;
 293
 294	if (size <= PAGE_SIZE)
 295		return kzalloc(size, GFP_KERNEL);
 296	else
 297		return vzalloc(size);
 298}
 299
 300/**
 301 * pcpu_mem_free - free memory
 302 * @ptr: memory to free
 303 * @size: size of the area
 304 *
 305 * Free @ptr.  @ptr should have been allocated using pcpu_mem_alloc().
 306 */
 307static void pcpu_mem_free(void *ptr, size_t size)
 308{
 309	if (size <= PAGE_SIZE)
 310		kfree(ptr);
 311	else
 312		vfree(ptr);
 313}
 314
 315/**
 316 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
 317 * @chunk: chunk of interest
 318 * @oslot: the previous slot it was on
 319 *
 320 * This function is called after an allocation or free changed @chunk.
 321 * New slot according to the changed state is determined and @chunk is
 322 * moved to the slot.  Note that the reserved chunk is never put on
 323 * chunk slots.
 324 *
 325 * CONTEXT:
 326 * pcpu_lock.
 327 */
 328static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
 329{
 330	int nslot = pcpu_chunk_slot(chunk);
 331
 332	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
 333		if (oslot < nslot)
 334			list_move(&chunk->list, &pcpu_slot[nslot]);
 335		else
 336			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
 337	}
 338}
 339
 340/**
 341 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
 342 * @chunk: chunk of interest
 
 
 343 *
 344 * Determine whether area map of @chunk needs to be extended to
 345 * accommodate a new allocation.
 346 *
 347 * CONTEXT:
 348 * pcpu_lock.
 349 *
 350 * RETURNS:
 351 * New target map allocation length if extension is necessary, 0
 352 * otherwise.
 353 */
 354static int pcpu_need_to_extend(struct pcpu_chunk *chunk)
 
 355{
 356	int new_alloc;
 
 357
 358	if (chunk->map_alloc >= chunk->map_used + 2)
 359		return 0;
 360
 361	new_alloc = PCPU_DFL_MAP_ALLOC;
 362	while (new_alloc < chunk->map_used + 2)
 363		new_alloc *= 2;
 364
 365	return new_alloc;
 
 
 
 
 366}
 367
 368/**
 369 * pcpu_extend_area_map - extend area map of a chunk
 370 * @chunk: chunk of interest
 371 * @new_alloc: new target allocation length of the area map
 
 372 *
 373 * Extend area map of @chunk to have @new_alloc entries.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 374 *
 375 * CONTEXT:
 376 * Does GFP_KERNEL allocation.  Grabs and releases pcpu_lock.
 
 377 *
 378 * RETURNS:
 379 * 0 on success, -errno on failure.
 
 
 380 */
 381static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
 382{
 383	int *old = NULL, *new = NULL;
 384	size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
 385	unsigned long flags;
 386
 387	new = pcpu_mem_alloc(new_size);
 388	if (!new)
 389		return -ENOMEM;
 390
 391	/* acquire pcpu_lock and switch to new area map */
 392	spin_lock_irqsave(&pcpu_lock, flags);
 
 
 393
 394	if (new_alloc <= chunk->map_alloc)
 395		goto out_unlock;
 396
 397	old_size = chunk->map_alloc * sizeof(chunk->map[0]);
 398	old = chunk->map;
 
 
 
 
 
 
 
 
 
 399
 400	memcpy(new, old, old_size);
 
 401
 402	chunk->map_alloc = new_alloc;
 403	chunk->map = new;
 404	new = NULL;
 
 
 
 
 
 
 
 
 
 
 405
 406out_unlock:
 407	spin_unlock_irqrestore(&pcpu_lock, flags);
 
 408
 409	/*
 410	 * pcpu_mem_free() might end up calling vfree() which uses
 411	 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
 412	 */
 413	pcpu_mem_free(old, old_size);
 414	pcpu_mem_free(new, new_size);
 415
 416	return 0;
 
 
 
 
 
 
 
 417}
 418
 419/**
 420 * pcpu_split_block - split a map block
 421 * @chunk: chunk of interest
 422 * @i: index of map block to split
 423 * @head: head size in bytes (can be 0)
 424 * @tail: tail size in bytes (can be 0)
 425 *
 426 * Split the @i'th map block into two or three blocks.  If @head is
 427 * non-zero, @head bytes block is inserted before block @i moving it
 428 * to @i+1 and reducing its size by @head bytes.
 429 *
 430 * If @tail is non-zero, the target block, which can be @i or @i+1
 431 * depending on @head, is reduced by @tail bytes and @tail byte block
 432 * is inserted after the target block.
 433 *
 434 * @chunk->map must have enough free slots to accommodate the split.
 435 *
 436 * CONTEXT:
 437 * pcpu_lock.
 438 */
 439static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
 440			     int head, int tail)
 441{
 442	int nr_extra = !!head + !!tail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 443
 444	BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
 
 
 
 
 
 
 
 
 
 445
 446	/* insert new subblocks */
 447	memmove(&chunk->map[i + nr_extra], &chunk->map[i],
 448		sizeof(chunk->map[0]) * (chunk->map_used - i));
 449	chunk->map_used += nr_extra;
 450
 451	if (head) {
 452		chunk->map[i + 1] = chunk->map[i] - head;
 453		chunk->map[i++] = head;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 454	}
 455	if (tail) {
 456		chunk->map[i++] -= tail;
 457		chunk->map[i] = tail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 458	}
 
 
 
 
 
 
 
 
 
 459}
 460
 461/**
 462 * pcpu_alloc_area - allocate area from a pcpu_chunk
 463 * @chunk: chunk of interest
 464 * @size: wanted size in bytes
 465 * @align: wanted align
 466 *
 467 * Try to allocate @size bytes area aligned at @align from @chunk.
 468 * Note that this function only allocates the offset.  It doesn't
 469 * populate or map the area.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 470 *
 471 * @chunk->map must have at least two free slots.
 472 *
 473 * CONTEXT:
 474 * pcpu_lock.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 475 *
 476 * RETURNS:
 477 * Allocated offset in @chunk on success, -1 if no matching area is
 478 * found.
 479 */
 480static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
 
 481{
 482	int oslot = pcpu_chunk_slot(chunk);
 483	int max_contig = 0;
 484	int i, off;
 485
 486	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
 487		bool is_last = i + 1 == chunk->map_used;
 488		int head, tail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 489
 490		/* extra for alignment requirement */
 491		head = ALIGN(off, align) - off;
 492		BUG_ON(i == 0 && head != 0);
 493
 494		if (chunk->map[i] < 0)
 495			continue;
 496		if (chunk->map[i] < head + size) {
 497			max_contig = max(chunk->map[i], max_contig);
 498			continue;
 499		}
 500
 501		/*
 502		 * If head is small or the previous block is free,
 503		 * merge'em.  Note that 'small' is defined as smaller
 504		 * than sizeof(int), which is very small but isn't too
 505		 * uncommon for percpu allocations.
 506		 */
 507		if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
 508			if (chunk->map[i - 1] > 0)
 509				chunk->map[i - 1] += head;
 510			else {
 511				chunk->map[i - 1] -= head;
 512				chunk->free_size -= head;
 513			}
 514			chunk->map[i] -= head;
 515			off += head;
 516			head = 0;
 517		}
 518
 519		/* if tail is small, just keep it around */
 520		tail = chunk->map[i] - head - size;
 521		if (tail < sizeof(int))
 522			tail = 0;
 523
 524		/* split if warranted */
 525		if (head || tail) {
 526			pcpu_split_block(chunk, i, head, tail);
 527			if (head) {
 528				i++;
 529				off += head;
 530				max_contig = max(chunk->map[i - 1], max_contig);
 531			}
 532			if (tail)
 533				max_contig = max(chunk->map[i + 1], max_contig);
 534		}
 535
 536		/* update hint and mark allocated */
 537		if (is_last)
 538			chunk->contig_hint = max_contig; /* fully scanned */
 539		else
 540			chunk->contig_hint = max(chunk->contig_hint,
 541						 max_contig);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 542
 543		chunk->free_size -= chunk->map[i];
 544		chunk->map[i] = -chunk->map[i];
 545
 546		pcpu_chunk_relocate(chunk, oslot);
 547		return off;
 548	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 549
 550	chunk->contig_hint = max_contig;	/* fully scanned */
 551	pcpu_chunk_relocate(chunk, oslot);
 552
 553	/* tell the upper layer that this chunk has no matching area */
 554	return -1;
 555}
 556
 557/**
 558 * pcpu_free_area - free area to a pcpu_chunk
 559 * @chunk: chunk of interest
 560 * @freeme: offset of area to free
 561 *
 562 * Free area starting from @freeme to @chunk.  Note that this function
 563 * only modifies the allocation map.  It doesn't depopulate or unmap
 564 * the area.
 565 *
 566 * CONTEXT:
 567 * pcpu_lock.
 568 */
 569static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
 570{
 571	int oslot = pcpu_chunk_slot(chunk);
 572	int i, off;
 573
 574	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
 575		if (off == freeme)
 576			break;
 577	BUG_ON(off != freeme);
 578	BUG_ON(chunk->map[i] > 0);
 579
 580	chunk->map[i] = -chunk->map[i];
 581	chunk->free_size += chunk->map[i];
 582
 583	/* merge with previous? */
 584	if (i > 0 && chunk->map[i - 1] >= 0) {
 585		chunk->map[i - 1] += chunk->map[i];
 586		chunk->map_used--;
 587		memmove(&chunk->map[i], &chunk->map[i + 1],
 588			(chunk->map_used - i) * sizeof(chunk->map[0]));
 589		i--;
 590	}
 591	/* merge with next? */
 592	if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
 593		chunk->map[i] += chunk->map[i + 1];
 594		chunk->map_used--;
 595		memmove(&chunk->map[i + 1], &chunk->map[i + 2],
 596			(chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
 597	}
 598
 599	chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
 600	pcpu_chunk_relocate(chunk, oslot);
 601}
 602
 603static struct pcpu_chunk *pcpu_alloc_chunk(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 604{
 605	struct pcpu_chunk *chunk;
 
 
 606
 607	chunk = pcpu_mem_alloc(pcpu_chunk_struct_size);
 608	if (!chunk)
 609		return NULL;
 610
 611	chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
 612	if (!chunk->map) {
 613		kfree(chunk);
 614		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 615	}
 616
 617	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
 618	chunk->map[chunk->map_used++] = pcpu_unit_size;
 
 
 
 
 
 
 
 
 
 619
 620	INIT_LIST_HEAD(&chunk->list);
 621	chunk->free_size = pcpu_unit_size;
 622	chunk->contig_hint = pcpu_unit_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 623
 624	return chunk;
 
 
 
 
 
 
 
 
 
 625}
 626
 627static void pcpu_free_chunk(struct pcpu_chunk *chunk)
 628{
 629	if (!chunk)
 630		return;
 631	pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
 632	kfree(chunk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 633}
 634
 635/*
 636 * Chunk management implementation.
 637 *
 638 * To allow different implementations, chunk alloc/free and
 639 * [de]population are implemented in a separate file which is pulled
 640 * into this file and compiled together.  The following functions
 641 * should be implemented.
 642 *
 643 * pcpu_populate_chunk		- populate the specified range of a chunk
 644 * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
 645 * pcpu_create_chunk		- create a new chunk
 646 * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
 647 * pcpu_addr_to_page		- translate address to physical address
 648 * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
 649 */
 650static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
 651static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
 652static struct pcpu_chunk *pcpu_create_chunk(void);
 
 
 653static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
 654static struct page *pcpu_addr_to_page(void *addr);
 655static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
 656
 657#ifdef CONFIG_NEED_PER_CPU_KM
 658#include "percpu-km.c"
 659#else
 660#include "percpu-vm.c"
 661#endif
 662
 663/**
 664 * pcpu_chunk_addr_search - determine chunk containing specified address
 665 * @addr: address for which the chunk needs to be determined.
 666 *
 
 
 
 667 * RETURNS:
 668 * The address of the found chunk.
 669 */
 670static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
 671{
 672	/* is it in the first chunk? */
 673	if (pcpu_addr_in_first_chunk(addr)) {
 674		/* is it in the reserved area? */
 675		if (pcpu_addr_in_reserved_chunk(addr))
 676			return pcpu_reserved_chunk;
 677		return pcpu_first_chunk;
 678	}
 
 
 
 679
 680	/*
 681	 * The address is relative to unit0 which might be unused and
 682	 * thus unmapped.  Offset the address to the unit space of the
 683	 * current processor before looking it up in the vmalloc
 684	 * space.  Note that any possible cpu id can be used here, so
 685	 * there's no need to worry about preemption or cpu hotplug.
 686	 */
 687	addr += pcpu_unit_offsets[raw_smp_processor_id()];
 688	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
 689}
 690
 691/**
 692 * pcpu_alloc - the percpu allocator
 693 * @size: size of area to allocate in bytes
 694 * @align: alignment of area (max PAGE_SIZE)
 695 * @reserved: allocate from the reserved chunk if available
 
 696 *
 697 * Allocate percpu area of @size bytes aligned at @align.
 698 *
 699 * CONTEXT:
 700 * Does GFP_KERNEL allocation.
 701 *
 702 * RETURNS:
 703 * Percpu pointer to the allocated area on success, NULL on failure.
 704 */
 705static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved)
 
 706{
 
 
 
 
 707	static int warn_limit = 10;
 708	struct pcpu_chunk *chunk;
 709	const char *err;
 710	int slot, off, new_alloc;
 711	unsigned long flags;
 
 
 712
 713	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
 714		WARN(true, "illegal size (%zu) or align (%zu) for "
 715		     "percpu allocation\n", size, align);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 716		return NULL;
 717	}
 718
 719	mutex_lock(&pcpu_alloc_mutex);
 
 
 
 
 
 
 
 
 
 
 
 720	spin_lock_irqsave(&pcpu_lock, flags);
 721
 722	/* serve reserved allocations from the reserved chunk if available */
 723	if (reserved && pcpu_reserved_chunk) {
 724		chunk = pcpu_reserved_chunk;
 725
 726		if (size > chunk->contig_hint) {
 
 727			err = "alloc from reserved chunk failed";
 728			goto fail_unlock;
 729		}
 730
 731		while ((new_alloc = pcpu_need_to_extend(chunk))) {
 732			spin_unlock_irqrestore(&pcpu_lock, flags);
 733			if (pcpu_extend_area_map(chunk, new_alloc) < 0) {
 734				err = "failed to extend area map of reserved chunk";
 735				goto fail_unlock_mutex;
 736			}
 737			spin_lock_irqsave(&pcpu_lock, flags);
 738		}
 739
 740		off = pcpu_alloc_area(chunk, size, align);
 741		if (off >= 0)
 742			goto area_found;
 743
 744		err = "alloc from reserved chunk failed";
 745		goto fail_unlock;
 746	}
 747
 748restart:
 749	/* search through normal chunks */
 750	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
 751		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
 752			if (size > chunk->contig_hint)
 
 
 753				continue;
 754
 755			new_alloc = pcpu_need_to_extend(chunk);
 756			if (new_alloc) {
 757				spin_unlock_irqrestore(&pcpu_lock, flags);
 758				if (pcpu_extend_area_map(chunk,
 759							 new_alloc) < 0) {
 760					err = "failed to extend area map";
 761					goto fail_unlock_mutex;
 762				}
 763				spin_lock_irqsave(&pcpu_lock, flags);
 764				/*
 765				 * pcpu_lock has been dropped, need to
 766				 * restart cpu_slot list walking.
 767				 */
 768				goto restart;
 769			}
 770
 771			off = pcpu_alloc_area(chunk, size, align);
 772			if (off >= 0)
 773				goto area_found;
 
 774		}
 775	}
 776
 777	/* hmmm... no space left, create a new chunk */
 778	spin_unlock_irqrestore(&pcpu_lock, flags);
 779
 780	chunk = pcpu_create_chunk();
 781	if (!chunk) {
 782		err = "failed to allocate new chunk";
 783		goto fail_unlock_mutex;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 784	}
 785
 786	spin_lock_irqsave(&pcpu_lock, flags);
 787	pcpu_chunk_relocate(chunk, -1);
 788	goto restart;
 789
 790area_found:
 
 791	spin_unlock_irqrestore(&pcpu_lock, flags);
 792
 793	/* populate, map and clear the area */
 794	if (pcpu_populate_chunk(chunk, off, size)) {
 795		spin_lock_irqsave(&pcpu_lock, flags);
 796		pcpu_free_area(chunk, off);
 797		err = "failed to populate";
 798		goto fail_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 799	}
 800
 801	mutex_unlock(&pcpu_alloc_mutex);
 
 
 
 
 
 802
 803	/* return address relative to base address */
 804	return __addr_to_pcpu_ptr(chunk->base_addr + off);
 
 
 
 
 
 805
 806fail_unlock:
 807	spin_unlock_irqrestore(&pcpu_lock, flags);
 808fail_unlock_mutex:
 809	mutex_unlock(&pcpu_alloc_mutex);
 810	if (warn_limit) {
 811		pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
 812			   "%s\n", size, align, err);
 
 813		dump_stack();
 814		if (!--warn_limit)
 815			pr_info("PERCPU: limit reached, disable warning\n");
 
 
 
 
 
 
 
 816	}
 817	return NULL;
 818}
 819
 820/**
 821 * __alloc_percpu - allocate dynamic percpu area
 822 * @size: size of area to allocate in bytes
 823 * @align: alignment of area (max PAGE_SIZE)
 
 824 *
 825 * Allocate zero-filled percpu area of @size bytes aligned at @align.
 826 * Might sleep.  Might trigger writeouts.
 827 *
 828 * CONTEXT:
 829 * Does GFP_KERNEL allocation.
 830 *
 831 * RETURNS:
 832 * Percpu pointer to the allocated area on success, NULL on failure.
 833 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 834void __percpu *__alloc_percpu(size_t size, size_t align)
 835{
 836	return pcpu_alloc(size, align, false);
 837}
 838EXPORT_SYMBOL_GPL(__alloc_percpu);
 839
 840/**
 841 * __alloc_reserved_percpu - allocate reserved percpu area
 842 * @size: size of area to allocate in bytes
 843 * @align: alignment of area (max PAGE_SIZE)
 844 *
 845 * Allocate zero-filled percpu area of @size bytes aligned at @align
 846 * from reserved percpu area if arch has set it up; otherwise,
 847 * allocation is served from the same dynamic area.  Might sleep.
 848 * Might trigger writeouts.
 849 *
 850 * CONTEXT:
 851 * Does GFP_KERNEL allocation.
 852 *
 853 * RETURNS:
 854 * Percpu pointer to the allocated area on success, NULL on failure.
 855 */
 856void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
 857{
 858	return pcpu_alloc(size, align, true);
 859}
 860
 861/**
 862 * pcpu_reclaim - reclaim fully free chunks, workqueue function
 863 * @work: unused
 864 *
 865 * Reclaim all fully free chunks except for the first one.
 866 *
 867 * CONTEXT:
 868 * workqueue context.
 869 */
 870static void pcpu_reclaim(struct work_struct *work)
 871{
 872	LIST_HEAD(todo);
 873	struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
 
 
 
 
 874	struct pcpu_chunk *chunk, *next;
 
 875
 
 
 
 
 876	mutex_lock(&pcpu_alloc_mutex);
 877	spin_lock_irq(&pcpu_lock);
 878
 879	list_for_each_entry_safe(chunk, next, head, list) {
 880		WARN_ON(chunk->immutable);
 881
 882		/* spare the first one */
 883		if (chunk == list_first_entry(head, struct pcpu_chunk, list))
 884			continue;
 885
 886		list_move(&chunk->list, &todo);
 887	}
 888
 889	spin_unlock_irq(&pcpu_lock);
 890
 891	list_for_each_entry_safe(chunk, next, &todo, list) {
 892		pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
 
 
 
 
 
 
 
 
 893		pcpu_destroy_chunk(chunk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 894	}
 895
 896	mutex_unlock(&pcpu_alloc_mutex);
 897}
 898
 899/**
 900 * free_percpu - free percpu area
 901 * @ptr: pointer to area to free
 902 *
 903 * Free percpu area @ptr.
 904 *
 905 * CONTEXT:
 906 * Can be called from atomic context.
 907 */
 908void free_percpu(void __percpu *ptr)
 909{
 910	void *addr;
 911	struct pcpu_chunk *chunk;
 912	unsigned long flags;
 913	int off;
 914
 915	if (!ptr)
 916		return;
 917
 
 
 918	addr = __pcpu_ptr_to_addr(ptr);
 919
 920	spin_lock_irqsave(&pcpu_lock, flags);
 921
 922	chunk = pcpu_chunk_addr_search(addr);
 923	off = addr - chunk->base_addr;
 924
 925	pcpu_free_area(chunk, off);
 926
 927	/* if there are more than one fully free chunks, wake up grim reaper */
 928	if (chunk->free_size == pcpu_unit_size) {
 929		struct pcpu_chunk *pos;
 930
 931		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
 932			if (pos != chunk) {
 933				schedule_work(&pcpu_reclaim_work);
 934				break;
 935			}
 936	}
 937
 
 
 938	spin_unlock_irqrestore(&pcpu_lock, flags);
 939}
 940EXPORT_SYMBOL_GPL(free_percpu);
 941
 942/**
 943 * is_kernel_percpu_address - test whether address is from static percpu area
 944 * @addr: address to test
 945 *
 946 * Test whether @addr belongs to in-kernel static percpu area.  Module
 947 * static percpu areas are not considered.  For those, use
 948 * is_module_percpu_address().
 949 *
 950 * RETURNS:
 951 * %true if @addr is from in-kernel static percpu area, %false otherwise.
 952 */
 953bool is_kernel_percpu_address(unsigned long addr)
 954{
 955#ifdef CONFIG_SMP
 956	const size_t static_size = __per_cpu_end - __per_cpu_start;
 957	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
 958	unsigned int cpu;
 959
 960	for_each_possible_cpu(cpu) {
 961		void *start = per_cpu_ptr(base, cpu);
 
 962
 963		if ((void *)addr >= start && (void *)addr < start + static_size)
 
 
 
 
 
 964			return true;
 965        }
 
 966#endif
 967	/* on UP, can't distinguish from other static vars, always false */
 968	return false;
 969}
 970
 971/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 972 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
 973 * @addr: the address to be converted to physical address
 974 *
 975 * Given @addr which is dereferenceable address obtained via one of
 976 * percpu access macros, this function translates it into its physical
 977 * address.  The caller is responsible for ensuring @addr stays valid
 978 * until this function finishes.
 979 *
 
 
 
 
 
 
 
 
 
 
 
 980 * RETURNS:
 981 * The physical address for @addr.
 982 */
 983phys_addr_t per_cpu_ptr_to_phys(void *addr)
 984{
 985	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
 986	bool in_first_chunk = false;
 987	unsigned long first_start, first_end;
 988	unsigned int cpu;
 989
 990	/*
 991	 * The following test on first_start/end isn't strictly
 992	 * necessary but will speed up lookups of addresses which
 993	 * aren't in the first chunk.
 
 
 
 
 
 994	 */
 995	first_start = pcpu_chunk_addr(pcpu_first_chunk, pcpu_first_unit_cpu, 0);
 996	first_end = pcpu_chunk_addr(pcpu_first_chunk, pcpu_last_unit_cpu,
 997				    pcpu_unit_pages);
 998	if ((unsigned long)addr >= first_start &&
 999	    (unsigned long)addr < first_end) {
 
1000		for_each_possible_cpu(cpu) {
1001			void *start = per_cpu_ptr(base, cpu);
1002
1003			if (addr >= start && addr < start + pcpu_unit_size) {
1004				in_first_chunk = true;
1005				break;
1006			}
1007		}
1008	}
1009
1010	if (in_first_chunk) {
1011		if (!is_vmalloc_addr(addr))
1012			return __pa(addr);
1013		else
1014			return page_to_phys(vmalloc_to_page(addr));
 
1015	} else
1016		return page_to_phys(pcpu_addr_to_page(addr));
 
1017}
1018
1019/**
1020 * pcpu_alloc_alloc_info - allocate percpu allocation info
1021 * @nr_groups: the number of groups
1022 * @nr_units: the number of units
1023 *
1024 * Allocate ai which is large enough for @nr_groups groups containing
1025 * @nr_units units.  The returned ai's groups[0].cpu_map points to the
1026 * cpu_map array which is long enough for @nr_units and filled with
1027 * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
1028 * pointer of other groups.
1029 *
1030 * RETURNS:
1031 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1032 * failure.
1033 */
1034struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1035						      int nr_units)
1036{
1037	struct pcpu_alloc_info *ai;
1038	size_t base_size, ai_size;
1039	void *ptr;
1040	int unit;
1041
1042	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1043			  __alignof__(ai->groups[0].cpu_map[0]));
1044	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1045
1046	ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size));
1047	if (!ptr)
1048		return NULL;
1049	ai = ptr;
1050	ptr += base_size;
1051
1052	ai->groups[0].cpu_map = ptr;
1053
1054	for (unit = 0; unit < nr_units; unit++)
1055		ai->groups[0].cpu_map[unit] = NR_CPUS;
1056
1057	ai->nr_groups = nr_groups;
1058	ai->__ai_size = PFN_ALIGN(ai_size);
1059
1060	return ai;
1061}
1062
1063/**
1064 * pcpu_free_alloc_info - free percpu allocation info
1065 * @ai: pcpu_alloc_info to free
1066 *
1067 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1068 */
1069void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1070{
1071	free_bootmem(__pa(ai), ai->__ai_size);
1072}
1073
1074/**
1075 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1076 * @lvl: loglevel
1077 * @ai: allocation info to dump
1078 *
1079 * Print out information about @ai using loglevel @lvl.
1080 */
1081static void pcpu_dump_alloc_info(const char *lvl,
1082				 const struct pcpu_alloc_info *ai)
1083{
1084	int group_width = 1, cpu_width = 1, width;
1085	char empty_str[] = "--------";
1086	int alloc = 0, alloc_end = 0;
1087	int group, v;
1088	int upa, apl;	/* units per alloc, allocs per line */
1089
1090	v = ai->nr_groups;
1091	while (v /= 10)
1092		group_width++;
1093
1094	v = num_possible_cpus();
1095	while (v /= 10)
1096		cpu_width++;
1097	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1098
1099	upa = ai->alloc_size / ai->unit_size;
1100	width = upa * (cpu_width + 1) + group_width + 3;
1101	apl = rounddown_pow_of_two(max(60 / width, 1));
1102
1103	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1104	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1105	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1106
1107	for (group = 0; group < ai->nr_groups; group++) {
1108		const struct pcpu_group_info *gi = &ai->groups[group];
1109		int unit = 0, unit_end = 0;
1110
1111		BUG_ON(gi->nr_units % upa);
1112		for (alloc_end += gi->nr_units / upa;
1113		     alloc < alloc_end; alloc++) {
1114			if (!(alloc % apl)) {
1115				printk("\n");
1116				printk("%spcpu-alloc: ", lvl);
1117			}
1118			printk("[%0*d] ", group_width, group);
1119
1120			for (unit_end += upa; unit < unit_end; unit++)
1121				if (gi->cpu_map[unit] != NR_CPUS)
1122					printk("%0*d ", cpu_width,
1123					       gi->cpu_map[unit]);
1124				else
1125					printk("%s ", empty_str);
1126		}
1127	}
1128	printk("\n");
1129}
1130
1131/**
1132 * pcpu_setup_first_chunk - initialize the first percpu chunk
1133 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1134 * @base_addr: mapped address
1135 *
1136 * Initialize the first percpu chunk which contains the kernel static
1137 * perpcu area.  This function is to be called from arch percpu area
1138 * setup path.
1139 *
1140 * @ai contains all information necessary to initialize the first
1141 * chunk and prime the dynamic percpu allocator.
1142 *
1143 * @ai->static_size is the size of static percpu area.
1144 *
1145 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1146 * reserve after the static area in the first chunk.  This reserves
1147 * the first chunk such that it's available only through reserved
1148 * percpu allocation.  This is primarily used to serve module percpu
1149 * static areas on architectures where the addressing model has
1150 * limited offset range for symbol relocations to guarantee module
1151 * percpu symbols fall inside the relocatable range.
1152 *
1153 * @ai->dyn_size determines the number of bytes available for dynamic
1154 * allocation in the first chunk.  The area between @ai->static_size +
1155 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1156 *
1157 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1158 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1159 * @ai->dyn_size.
1160 *
1161 * @ai->atom_size is the allocation atom size and used as alignment
1162 * for vm areas.
1163 *
1164 * @ai->alloc_size is the allocation size and always multiple of
1165 * @ai->atom_size.  This is larger than @ai->atom_size if
1166 * @ai->unit_size is larger than @ai->atom_size.
1167 *
1168 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1169 * percpu areas.  Units which should be colocated are put into the
1170 * same group.  Dynamic VM areas will be allocated according to these
1171 * groupings.  If @ai->nr_groups is zero, a single group containing
1172 * all units is assumed.
1173 *
1174 * The caller should have mapped the first chunk at @base_addr and
1175 * copied static data to each unit.
1176 *
1177 * If the first chunk ends up with both reserved and dynamic areas, it
1178 * is served by two chunks - one to serve the core static and reserved
1179 * areas and the other for the dynamic area.  They share the same vm
1180 * and page map but uses different area allocation map to stay away
1181 * from each other.  The latter chunk is circulated in the chunk slots
1182 * and available for dynamic allocation like any other chunks.
 
1183 *
1184 * RETURNS:
1185 * 0 on success, -errno on failure.
1186 */
1187int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1188				  void *base_addr)
1189{
1190	static char cpus_buf[4096] __initdata;
1191	static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1192	static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1193	size_t dyn_size = ai->dyn_size;
1194	size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1195	struct pcpu_chunk *schunk, *dchunk = NULL;
1196	unsigned long *group_offsets;
1197	size_t *group_sizes;
1198	unsigned long *unit_off;
1199	unsigned int cpu;
1200	int *unit_map;
1201	int group, unit, i;
1202
1203	cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);
1204
1205#define PCPU_SETUP_BUG_ON(cond)	do {					\
1206	if (unlikely(cond)) {						\
1207		pr_emerg("PERCPU: failed to initialize, %s", #cond);	\
1208		pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf);	\
 
1209		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
1210		BUG();							\
1211	}								\
1212} while (0)
1213
1214	/* sanity checks */
1215	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1216#ifdef CONFIG_SMP
1217	PCPU_SETUP_BUG_ON(!ai->static_size);
1218	PCPU_SETUP_BUG_ON((unsigned long)__per_cpu_start & ~PAGE_MASK);
1219#endif
1220	PCPU_SETUP_BUG_ON(!base_addr);
1221	PCPU_SETUP_BUG_ON((unsigned long)base_addr & ~PAGE_MASK);
1222	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1223	PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
1224	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
 
1225	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
 
 
 
 
1226	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
1227
1228	/* process group information and build config tables accordingly */
1229	group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0]));
1230	group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0]));
1231	unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0]));
1232	unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0]));
 
 
1233
1234	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1235		unit_map[cpu] = UINT_MAX;
1236	pcpu_first_unit_cpu = NR_CPUS;
 
 
1237
1238	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1239		const struct pcpu_group_info *gi = &ai->groups[group];
1240
1241		group_offsets[group] = gi->base_offset;
1242		group_sizes[group] = gi->nr_units * ai->unit_size;
1243
1244		for (i = 0; i < gi->nr_units; i++) {
1245			cpu = gi->cpu_map[i];
1246			if (cpu == NR_CPUS)
1247				continue;
1248
1249			PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
1250			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1251			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1252
1253			unit_map[cpu] = unit + i;
1254			unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1255
1256			if (pcpu_first_unit_cpu == NR_CPUS)
1257				pcpu_first_unit_cpu = cpu;
1258			pcpu_last_unit_cpu = cpu;
 
 
 
 
1259		}
1260	}
1261	pcpu_nr_units = unit;
1262
1263	for_each_possible_cpu(cpu)
1264		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1265
1266	/* we're done parsing the input, undefine BUG macro and dump config */
1267#undef PCPU_SETUP_BUG_ON
1268	pcpu_dump_alloc_info(KERN_DEBUG, ai);
1269
1270	pcpu_nr_groups = ai->nr_groups;
1271	pcpu_group_offsets = group_offsets;
1272	pcpu_group_sizes = group_sizes;
1273	pcpu_unit_map = unit_map;
1274	pcpu_unit_offsets = unit_off;
1275
1276	/* determine basic parameters */
1277	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1278	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1279	pcpu_atom_size = ai->atom_size;
1280	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1281		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1282
 
 
1283	/*
1284	 * Allocate chunk slots.  The additional last slot is for
1285	 * empty chunks.
1286	 */
1287	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1288	pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
 
1289	for (i = 0; i < pcpu_nr_slots; i++)
1290		INIT_LIST_HEAD(&pcpu_slot[i]);
1291
1292	/*
1293	 * Initialize static chunk.  If reserved_size is zero, the
1294	 * static chunk covers static area + dynamic allocation area
1295	 * in the first chunk.  If reserved_size is not zero, it
1296	 * covers static area + reserved area (mostly used for module
1297	 * static percpu allocation).
1298	 */
1299	schunk = alloc_bootmem(pcpu_chunk_struct_size);
1300	INIT_LIST_HEAD(&schunk->list);
1301	schunk->base_addr = base_addr;
1302	schunk->map = smap;
1303	schunk->map_alloc = ARRAY_SIZE(smap);
1304	schunk->immutable = true;
1305	bitmap_fill(schunk->populated, pcpu_unit_pages);
1306
1307	if (ai->reserved_size) {
1308		schunk->free_size = ai->reserved_size;
1309		pcpu_reserved_chunk = schunk;
1310		pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1311	} else {
1312		schunk->free_size = dyn_size;
1313		dyn_size = 0;			/* dynamic area covered */
1314	}
1315	schunk->contig_hint = schunk->free_size;
1316
1317	schunk->map[schunk->map_used++] = -ai->static_size;
1318	if (schunk->free_size)
1319		schunk->map[schunk->map_used++] = schunk->free_size;
 
 
 
 
 
 
 
 
1320
1321	/* init dynamic chunk if necessary */
1322	if (dyn_size) {
1323		dchunk = alloc_bootmem(pcpu_chunk_struct_size);
1324		INIT_LIST_HEAD(&dchunk->list);
1325		dchunk->base_addr = base_addr;
1326		dchunk->map = dmap;
1327		dchunk->map_alloc = ARRAY_SIZE(dmap);
1328		dchunk->immutable = true;
1329		bitmap_fill(dchunk->populated, pcpu_unit_pages);
1330
1331		dchunk->contig_hint = dchunk->free_size = dyn_size;
1332		dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
1333		dchunk->map[dchunk->map_used++] = dchunk->free_size;
1334	}
1335
1336	/* link the first chunk in */
1337	pcpu_first_chunk = dchunk ?: schunk;
 
1338	pcpu_chunk_relocate(pcpu_first_chunk, -1);
1339
 
 
 
1340	/* we're done */
1341	pcpu_base_addr = base_addr;
1342	return 0;
1343}
1344
1345#ifdef CONFIG_SMP
1346
1347const char *pcpu_fc_names[PCPU_FC_NR] __initdata = {
1348	[PCPU_FC_AUTO]	= "auto",
1349	[PCPU_FC_EMBED]	= "embed",
1350	[PCPU_FC_PAGE]	= "page",
1351};
1352
1353enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1354
1355static int __init percpu_alloc_setup(char *str)
1356{
 
 
 
1357	if (0)
1358		/* nada */;
1359#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1360	else if (!strcmp(str, "embed"))
1361		pcpu_chosen_fc = PCPU_FC_EMBED;
1362#endif
1363#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1364	else if (!strcmp(str, "page"))
1365		pcpu_chosen_fc = PCPU_FC_PAGE;
1366#endif
1367	else
1368		pr_warning("PERCPU: unknown allocator %s specified\n", str);
1369
1370	return 0;
1371}
1372early_param("percpu_alloc", percpu_alloc_setup);
1373
1374/*
1375 * pcpu_embed_first_chunk() is used by the generic percpu setup.
1376 * Build it if needed by the arch config or the generic setup is going
1377 * to be used.
1378 */
1379#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1380	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1381#define BUILD_EMBED_FIRST_CHUNK
1382#endif
1383
1384/* build pcpu_page_first_chunk() iff needed by the arch config */
1385#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1386#define BUILD_PAGE_FIRST_CHUNK
1387#endif
1388
1389/* pcpu_build_alloc_info() is used by both embed and page first chunk */
1390#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1391/**
1392 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1393 * @reserved_size: the size of reserved percpu area in bytes
1394 * @dyn_size: minimum free size for dynamic allocation in bytes
1395 * @atom_size: allocation atom size
1396 * @cpu_distance_fn: callback to determine distance between cpus, optional
1397 *
1398 * This function determines grouping of units, their mappings to cpus
1399 * and other parameters considering needed percpu size, allocation
1400 * atom size and distances between CPUs.
1401 *
1402 * Groups are always mutliples of atom size and CPUs which are of
1403 * LOCAL_DISTANCE both ways are grouped together and share space for
1404 * units in the same group.  The returned configuration is guaranteed
1405 * to have CPUs on different nodes on different groups and >=75% usage
1406 * of allocated virtual address space.
1407 *
1408 * RETURNS:
1409 * On success, pointer to the new allocation_info is returned.  On
1410 * failure, ERR_PTR value is returned.
1411 */
1412static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1413				size_t reserved_size, size_t dyn_size,
1414				size_t atom_size,
1415				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1416{
1417	static int group_map[NR_CPUS] __initdata;
1418	static int group_cnt[NR_CPUS] __initdata;
1419	const size_t static_size = __per_cpu_end - __per_cpu_start;
1420	int nr_groups = 1, nr_units = 0;
1421	size_t size_sum, min_unit_size, alloc_size;
1422	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
1423	int last_allocs, group, unit;
1424	unsigned int cpu, tcpu;
1425	struct pcpu_alloc_info *ai;
1426	unsigned int *cpu_map;
1427
1428	/* this function may be called multiple times */
1429	memset(group_map, 0, sizeof(group_map));
1430	memset(group_cnt, 0, sizeof(group_cnt));
1431
1432	/* calculate size_sum and ensure dyn_size is enough for early alloc */
1433	size_sum = PFN_ALIGN(static_size + reserved_size +
1434			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
1435	dyn_size = size_sum - static_size - reserved_size;
1436
1437	/*
1438	 * Determine min_unit_size, alloc_size and max_upa such that
1439	 * alloc_size is multiple of atom_size and is the smallest
1440	 * which can accommodate 4k aligned segments which are equal to
1441	 * or larger than min_unit_size.
1442	 */
1443	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1444
 
1445	alloc_size = roundup(min_unit_size, atom_size);
1446	upa = alloc_size / min_unit_size;
1447	while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1448		upa--;
1449	max_upa = upa;
1450
1451	/* group cpus according to their proximity */
1452	for_each_possible_cpu(cpu) {
1453		group = 0;
1454	next_group:
1455		for_each_possible_cpu(tcpu) {
1456			if (cpu == tcpu)
1457				break;
1458			if (group_map[tcpu] == group && cpu_distance_fn &&
1459			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1460			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1461				group++;
1462				nr_groups = max(nr_groups, group + 1);
1463				goto next_group;
1464			}
1465		}
1466		group_map[cpu] = group;
1467		group_cnt[group]++;
1468	}
1469
1470	/*
1471	 * Expand unit size until address space usage goes over 75%
1472	 * and then as much as possible without using more address
1473	 * space.
1474	 */
1475	last_allocs = INT_MAX;
1476	for (upa = max_upa; upa; upa--) {
1477		int allocs = 0, wasted = 0;
1478
1479		if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1480			continue;
1481
1482		for (group = 0; group < nr_groups; group++) {
1483			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1484			allocs += this_allocs;
1485			wasted += this_allocs * upa - group_cnt[group];
1486		}
1487
1488		/*
1489		 * Don't accept if wastage is over 1/3.  The
1490		 * greater-than comparison ensures upa==1 always
1491		 * passes the following check.
1492		 */
1493		if (wasted > num_possible_cpus() / 3)
1494			continue;
1495
1496		/* and then don't consume more memory */
1497		if (allocs > last_allocs)
1498			break;
1499		last_allocs = allocs;
1500		best_upa = upa;
1501	}
1502	upa = best_upa;
1503
1504	/* allocate and fill alloc_info */
1505	for (group = 0; group < nr_groups; group++)
1506		nr_units += roundup(group_cnt[group], upa);
1507
1508	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1509	if (!ai)
1510		return ERR_PTR(-ENOMEM);
1511	cpu_map = ai->groups[0].cpu_map;
1512
1513	for (group = 0; group < nr_groups; group++) {
1514		ai->groups[group].cpu_map = cpu_map;
1515		cpu_map += roundup(group_cnt[group], upa);
1516	}
1517
1518	ai->static_size = static_size;
1519	ai->reserved_size = reserved_size;
1520	ai->dyn_size = dyn_size;
1521	ai->unit_size = alloc_size / upa;
1522	ai->atom_size = atom_size;
1523	ai->alloc_size = alloc_size;
1524
1525	for (group = 0, unit = 0; group_cnt[group]; group++) {
1526		struct pcpu_group_info *gi = &ai->groups[group];
1527
1528		/*
1529		 * Initialize base_offset as if all groups are located
1530		 * back-to-back.  The caller should update this to
1531		 * reflect actual allocation.
1532		 */
1533		gi->base_offset = unit * ai->unit_size;
1534
1535		for_each_possible_cpu(cpu)
1536			if (group_map[cpu] == group)
1537				gi->cpu_map[gi->nr_units++] = cpu;
1538		gi->nr_units = roundup(gi->nr_units, upa);
1539		unit += gi->nr_units;
1540	}
1541	BUG_ON(unit != nr_units);
1542
1543	return ai;
1544}
1545#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1546
1547#if defined(BUILD_EMBED_FIRST_CHUNK)
1548/**
1549 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1550 * @reserved_size: the size of reserved percpu area in bytes
1551 * @dyn_size: minimum free size for dynamic allocation in bytes
1552 * @atom_size: allocation atom size
1553 * @cpu_distance_fn: callback to determine distance between cpus, optional
1554 * @alloc_fn: function to allocate percpu page
1555 * @free_fn: function to free percpu page
1556 *
1557 * This is a helper to ease setting up embedded first percpu chunk and
1558 * can be called where pcpu_setup_first_chunk() is expected.
1559 *
1560 * If this function is used to setup the first chunk, it is allocated
1561 * by calling @alloc_fn and used as-is without being mapped into
1562 * vmalloc area.  Allocations are always whole multiples of @atom_size
1563 * aligned to @atom_size.
1564 *
1565 * This enables the first chunk to piggy back on the linear physical
1566 * mapping which often uses larger page size.  Please note that this
1567 * can result in very sparse cpu->unit mapping on NUMA machines thus
1568 * requiring large vmalloc address space.  Don't use this allocator if
1569 * vmalloc space is not orders of magnitude larger than distances
1570 * between node memory addresses (ie. 32bit NUMA machines).
1571 *
1572 * @dyn_size specifies the minimum dynamic area size.
1573 *
1574 * If the needed size is smaller than the minimum or specified unit
1575 * size, the leftover is returned using @free_fn.
1576 *
1577 * RETURNS:
1578 * 0 on success, -errno on failure.
1579 */
1580int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
1581				  size_t atom_size,
1582				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1583				  pcpu_fc_alloc_fn_t alloc_fn,
1584				  pcpu_fc_free_fn_t free_fn)
1585{
1586	void *base = (void *)ULONG_MAX;
1587	void **areas = NULL;
1588	struct pcpu_alloc_info *ai;
1589	size_t size_sum, areas_size, max_distance;
1590	int group, i, rc;
 
1591
1592	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1593				   cpu_distance_fn);
1594	if (IS_ERR(ai))
1595		return PTR_ERR(ai);
1596
1597	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1598	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1599
1600	areas = alloc_bootmem_nopanic(areas_size);
1601	if (!areas) {
1602		rc = -ENOMEM;
1603		goto out_free;
1604	}
1605
1606	/* allocate, copy and determine base address */
 
1607	for (group = 0; group < ai->nr_groups; group++) {
1608		struct pcpu_group_info *gi = &ai->groups[group];
1609		unsigned int cpu = NR_CPUS;
1610		void *ptr;
1611
1612		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1613			cpu = gi->cpu_map[i];
1614		BUG_ON(cpu == NR_CPUS);
1615
1616		/* allocate space for the whole group */
1617		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1618		if (!ptr) {
1619			rc = -ENOMEM;
1620			goto out_free_areas;
1621		}
 
 
1622		areas[group] = ptr;
1623
1624		base = min(ptr, base);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1625
1626		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
1627			if (gi->cpu_map[i] == NR_CPUS) {
1628				/* unused unit, free whole */
1629				free_fn(ptr, ai->unit_size);
1630				continue;
1631			}
1632			/* copy and return the unused part */
1633			memcpy(ptr, __per_cpu_load, ai->static_size);
1634			free_fn(ptr + size_sum, ai->unit_size - size_sum);
1635		}
1636	}
1637
1638	/* base address is now known, determine group base offsets */
1639	max_distance = 0;
1640	for (group = 0; group < ai->nr_groups; group++) {
1641		ai->groups[group].base_offset = areas[group] - base;
1642		max_distance = max_t(size_t, max_distance,
1643				     ai->groups[group].base_offset);
1644	}
1645	max_distance += ai->unit_size;
1646
1647	/* warn if maximum distance is further than 75% of vmalloc space */
1648	if (max_distance > (VMALLOC_END - VMALLOC_START) * 3 / 4) {
1649		pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
1650			   "space 0x%lx\n", max_distance,
1651			   (unsigned long)(VMALLOC_END - VMALLOC_START));
1652#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1653		/* and fail if we have fallback */
1654		rc = -EINVAL;
1655		goto out_free;
1656#endif
1657	}
1658
1659	pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
1660		PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
1661		ai->dyn_size, ai->unit_size);
1662
1663	rc = pcpu_setup_first_chunk(ai, base);
1664	goto out_free;
1665
1666out_free_areas:
1667	for (group = 0; group < ai->nr_groups; group++)
1668		free_fn(areas[group],
1669			ai->groups[group].nr_units * ai->unit_size);
 
1670out_free:
1671	pcpu_free_alloc_info(ai);
1672	if (areas)
1673		free_bootmem(__pa(areas), areas_size);
1674	return rc;
1675}
1676#endif /* BUILD_EMBED_FIRST_CHUNK */
1677
1678#ifdef BUILD_PAGE_FIRST_CHUNK
1679/**
1680 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
1681 * @reserved_size: the size of reserved percpu area in bytes
1682 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
1683 * @free_fn: function to free percpu page, always called with PAGE_SIZE
1684 * @populate_pte_fn: function to populate pte
1685 *
1686 * This is a helper to ease setting up page-remapped first percpu
1687 * chunk and can be called where pcpu_setup_first_chunk() is expected.
1688 *
1689 * This is the basic allocator.  Static percpu area is allocated
1690 * page-by-page into vmalloc area.
1691 *
1692 * RETURNS:
1693 * 0 on success, -errno on failure.
1694 */
1695int __init pcpu_page_first_chunk(size_t reserved_size,
1696				 pcpu_fc_alloc_fn_t alloc_fn,
1697				 pcpu_fc_free_fn_t free_fn,
1698				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
1699{
1700	static struct vm_struct vm;
1701	struct pcpu_alloc_info *ai;
1702	char psize_str[16];
1703	int unit_pages;
1704	size_t pages_size;
1705	struct page **pages;
1706	int unit, i, j, rc;
 
 
1707
1708	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
1709
1710	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
1711	if (IS_ERR(ai))
1712		return PTR_ERR(ai);
1713	BUG_ON(ai->nr_groups != 1);
1714	BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
 
 
 
 
 
1715
1716	unit_pages = ai->unit_size >> PAGE_SHIFT;
1717
1718	/* unaligned allocations can't be freed, round up to page size */
1719	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
1720			       sizeof(pages[0]));
1721	pages = alloc_bootmem(pages_size);
1722
1723	/* allocate pages */
1724	j = 0;
1725	for (unit = 0; unit < num_possible_cpus(); unit++)
 
1726		for (i = 0; i < unit_pages; i++) {
1727			unsigned int cpu = ai->groups[0].cpu_map[unit];
1728			void *ptr;
1729
1730			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
1731			if (!ptr) {
1732				pr_warning("PERCPU: failed to allocate %s page "
1733					   "for cpu%u\n", psize_str, cpu);
1734				goto enomem;
1735			}
 
 
1736			pages[j++] = virt_to_page(ptr);
1737		}
 
1738
1739	/* allocate vm area, map the pages and copy static data */
1740	vm.flags = VM_ALLOC;
1741	vm.size = num_possible_cpus() * ai->unit_size;
1742	vm_area_register_early(&vm, PAGE_SIZE);
1743
1744	for (unit = 0; unit < num_possible_cpus(); unit++) {
1745		unsigned long unit_addr =
1746			(unsigned long)vm.addr + unit * ai->unit_size;
1747
1748		for (i = 0; i < unit_pages; i++)
1749			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
1750
1751		/* pte already populated, the following shouldn't fail */
1752		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
1753				      unit_pages);
1754		if (rc < 0)
1755			panic("failed to map percpu area, err=%d\n", rc);
1756
1757		/*
1758		 * FIXME: Archs with virtual cache should flush local
1759		 * cache for the linear mapping here - something
1760		 * equivalent to flush_cache_vmap() on the local cpu.
1761		 * flush_cache_vmap() can't be used as most supporting
1762		 * data structures are not set up yet.
1763		 */
1764
1765		/* copy static data */
1766		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
1767	}
1768
1769	/* we're ready, commit */
1770	pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
1771		unit_pages, psize_str, vm.addr, ai->static_size,
1772		ai->reserved_size, ai->dyn_size);
1773
1774	rc = pcpu_setup_first_chunk(ai, vm.addr);
1775	goto out_free_ar;
1776
1777enomem:
1778	while (--j >= 0)
1779		free_fn(page_address(pages[j]), PAGE_SIZE);
1780	rc = -ENOMEM;
1781out_free_ar:
1782	free_bootmem(__pa(pages), pages_size);
1783	pcpu_free_alloc_info(ai);
1784	return rc;
1785}
1786#endif /* BUILD_PAGE_FIRST_CHUNK */
1787
1788#ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA
1789/*
1790 * Generic SMP percpu area setup.
1791 *
1792 * The embedding helper is used because its behavior closely resembles
1793 * the original non-dynamic generic percpu area setup.  This is
1794 * important because many archs have addressing restrictions and might
1795 * fail if the percpu area is located far away from the previous
1796 * location.  As an added bonus, in non-NUMA cases, embedding is
1797 * generally a good idea TLB-wise because percpu area can piggy back
1798 * on the physical linear memory mapping which uses large page
1799 * mappings on applicable archs.
1800 */
1801unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
1802EXPORT_SYMBOL(__per_cpu_offset);
1803
1804static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
1805				       size_t align)
1806{
1807	return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS));
 
1808}
1809
1810static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
1811{
1812	free_bootmem(__pa(ptr), size);
1813}
1814
1815void __init setup_per_cpu_areas(void)
1816{
1817	unsigned long delta;
1818	unsigned int cpu;
1819	int rc;
1820
1821	/*
1822	 * Always reserve area for module percpu variables.  That's
1823	 * what the legacy allocator did.
1824	 */
1825	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1826				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
1827				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
1828	if (rc < 0)
1829		panic("Failed to initialize percpu areas.");
1830
1831	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1832	for_each_possible_cpu(cpu)
1833		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
1834}
1835#endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */
1836
1837#else	/* CONFIG_SMP */
1838
1839/*
1840 * UP percpu area setup.
1841 *
1842 * UP always uses km-based percpu allocator with identity mapping.
1843 * Static percpu variables are indistinguishable from the usual static
1844 * variables and don't require any special preparation.
1845 */
1846void __init setup_per_cpu_areas(void)
1847{
1848	const size_t unit_size =
1849		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
1850					 PERCPU_DYNAMIC_RESERVE));
1851	struct pcpu_alloc_info *ai;
1852	void *fc;
1853
1854	ai = pcpu_alloc_alloc_info(1, 1);
1855	fc = __alloc_bootmem(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
 
 
1856	if (!ai || !fc)
1857		panic("Failed to allocate memory for percpu areas.");
 
 
1858
1859	ai->dyn_size = unit_size;
1860	ai->unit_size = unit_size;
1861	ai->atom_size = unit_size;
1862	ai->alloc_size = unit_size;
1863	ai->groups[0].nr_units = 1;
1864	ai->groups[0].cpu_map[0] = 0;
1865
1866	if (pcpu_setup_first_chunk(ai, fc) < 0)
1867		panic("Failed to initialize percpu areas.");
 
1868}
1869
1870#endif	/* CONFIG_SMP */
1871
1872/*
1873 * First and reserved chunks are initialized with temporary allocation
1874 * map in initdata so that they can be used before slab is online.
1875 * This function is called after slab is brought up and replaces those
1876 * with properly allocated maps.
1877 */
1878void __init percpu_init_late(void)
1879{
1880	struct pcpu_chunk *target_chunks[] =
1881		{ pcpu_first_chunk, pcpu_reserved_chunk, NULL };
1882	struct pcpu_chunk *chunk;
1883	unsigned long flags;
1884	int i;
1885
1886	for (i = 0; (chunk = target_chunks[i]); i++) {
1887		int *map;
1888		const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);
1889
1890		BUILD_BUG_ON(size > PAGE_SIZE);
1891
1892		map = pcpu_mem_alloc(size);
1893		BUG_ON(!map);
1894
1895		spin_lock_irqsave(&pcpu_lock, flags);
1896		memcpy(map, chunk->map, size);
1897		chunk->map = map;
1898		spin_unlock_irqrestore(&pcpu_lock, flags);
1899	}
1900}
v4.17
   1/*
   2 * mm/percpu.c - percpu memory allocator
   3 *
   4 * Copyright (C) 2009		SUSE Linux Products GmbH
   5 * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
   6 *
   7 * Copyright (C) 2017		Facebook Inc.
   8 * Copyright (C) 2017		Dennis Zhou <dennisszhou@gmail.com>
   9 *
  10 * This file is released under the GPLv2 license.
  11 *
  12 * The percpu allocator handles both static and dynamic areas.  Percpu
  13 * areas are allocated in chunks which are divided into units.  There is
  14 * a 1-to-1 mapping for units to possible cpus.  These units are grouped
  15 * based on NUMA properties of the machine.
 
 
  16 *
  17 *  c0                           c1                         c2
  18 *  -------------------          -------------------        ------------
  19 * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
  20 *  -------------------  ......  -------------------  ....  ------------
  21 *
  22 * Allocation is done by offsets into a unit's address space.  Ie., an
  23 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
  24 * c1:u1, c1:u2, etc.  On NUMA machines, the mapping may be non-linear
  25 * and even sparse.  Access is handled by configuring percpu base
  26 * registers according to the cpu to unit mappings and offsetting the
  27 * base address using pcpu_unit_size.
  28 *
  29 * There is special consideration for the first chunk which must handle
  30 * the static percpu variables in the kernel image as allocation services
  31 * are not online yet.  In short, the first chunk is structured like so:
  32 *
  33 *                  <Static | [Reserved] | Dynamic>
  34 *
  35 * The static data is copied from the original section managed by the
  36 * linker.  The reserved section, if non-zero, primarily manages static
  37 * percpu variables from kernel modules.  Finally, the dynamic section
  38 * takes care of normal allocations.
  39 *
  40 * The allocator organizes chunks into lists according to free size and
  41 * tries to allocate from the fullest chunk first.  Each chunk is managed
  42 * by a bitmap with metadata blocks.  The allocation map is updated on
  43 * every allocation and free to reflect the current state while the boundary
  44 * map is only updated on allocation.  Each metadata block contains
  45 * information to help mitigate the need to iterate over large portions
  46 * of the bitmap.  The reverse mapping from page to chunk is stored in
  47 * the page's index.  Lastly, units are lazily backed and grow in unison.
  48 *
  49 * There is a unique conversion that goes on here between bytes and bits.
  50 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE.  The chunk
  51 * tracks the number of pages it is responsible for in nr_pages.  Helper
  52 * functions are used to convert from between the bytes, bits, and blocks.
  53 * All hints are managed in bits unless explicitly stated.
  54 *
  55 * To use this allocator, arch code should do the following:
  56 *
  57 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
  58 *   regular address to percpu pointer and back if they need to be
  59 *   different from the default
  60 *
  61 * - use pcpu_setup_first_chunk() during percpu area initialization to
  62 *   setup the first chunk containing the kernel static percpu area
  63 */
  64
  65#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  66
  67#include <linux/bitmap.h>
  68#include <linux/bootmem.h>
  69#include <linux/err.h>
  70#include <linux/lcm.h>
  71#include <linux/list.h>
  72#include <linux/log2.h>
  73#include <linux/mm.h>
  74#include <linux/module.h>
  75#include <linux/mutex.h>
  76#include <linux/percpu.h>
  77#include <linux/pfn.h>
  78#include <linux/slab.h>
  79#include <linux/spinlock.h>
  80#include <linux/vmalloc.h>
  81#include <linux/workqueue.h>
  82#include <linux/kmemleak.h>
  83#include <linux/sched.h>
  84
  85#include <asm/cacheflush.h>
  86#include <asm/sections.h>
  87#include <asm/tlbflush.h>
  88#include <asm/io.h>
  89
  90#define CREATE_TRACE_POINTS
  91#include <trace/events/percpu.h>
  92
  93#include "percpu-internal.h"
  94
  95/* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
  96#define PCPU_SLOT_BASE_SHIFT		5
  97
  98#define PCPU_EMPTY_POP_PAGES_LOW	2
  99#define PCPU_EMPTY_POP_PAGES_HIGH	4
 100
 101#ifdef CONFIG_SMP
 102/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
 103#ifndef __addr_to_pcpu_ptr
 104#define __addr_to_pcpu_ptr(addr)					\
 105	(void __percpu *)((unsigned long)(addr) -			\
 106			  (unsigned long)pcpu_base_addr	+		\
 107			  (unsigned long)__per_cpu_start)
 108#endif
 109#ifndef __pcpu_ptr_to_addr
 110#define __pcpu_ptr_to_addr(ptr)						\
 111	(void __force *)((unsigned long)(ptr) +				\
 112			 (unsigned long)pcpu_base_addr -		\
 113			 (unsigned long)__per_cpu_start)
 114#endif
 115#else	/* CONFIG_SMP */
 116/* on UP, it's always identity mapped */
 117#define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
 118#define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
 119#endif	/* CONFIG_SMP */
 120
 121static int pcpu_unit_pages __ro_after_init;
 122static int pcpu_unit_size __ro_after_init;
 123static int pcpu_nr_units __ro_after_init;
 124static int pcpu_atom_size __ro_after_init;
 125int pcpu_nr_slots __ro_after_init;
 126static size_t pcpu_chunk_struct_size __ro_after_init;
 127
 128/* cpus with the lowest and highest unit addresses */
 129static unsigned int pcpu_low_unit_cpu __ro_after_init;
 130static unsigned int pcpu_high_unit_cpu __ro_after_init;
 
 
 
 
 
 
 
 
 
 
 
 
 
 131
 132/* the address of the first chunk which starts with the kernel static area */
 133void *pcpu_base_addr __ro_after_init;
 134EXPORT_SYMBOL_GPL(pcpu_base_addr);
 135
 136static const int *pcpu_unit_map __ro_after_init;		/* cpu -> unit */
 137const unsigned long *pcpu_unit_offsets __ro_after_init;	/* cpu -> unit offset */
 138
 139/* group information, used for vm allocation */
 140static int pcpu_nr_groups __ro_after_init;
 141static const unsigned long *pcpu_group_offsets __ro_after_init;
 142static const size_t *pcpu_group_sizes __ro_after_init;
 143
 144/*
 145 * The first chunk which always exists.  Note that unlike other
 146 * chunks, this one can be allocated and mapped in several different
 147 * ways and thus often doesn't live in the vmalloc area.
 148 */
 149struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
 150
 151/*
 152 * Optional reserved chunk.  This chunk reserves part of the first
 153 * chunk and serves it for reserved allocations.  When the reserved
 154 * region doesn't exist, the following variable is NULL.
 
 
 155 */
 156struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
 157
 158DEFINE_SPINLOCK(pcpu_lock);	/* all internal data structures */
 159static DEFINE_MUTEX(pcpu_alloc_mutex);	/* chunk create/destroy, [de]pop, map ext */
 160
 161struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
 162
 163/* chunks which need their map areas extended, protected by pcpu_lock */
 164static LIST_HEAD(pcpu_map_extend_chunks);
 165
 166/*
 167 * The number of empty populated pages, protected by pcpu_lock.  The
 168 * reserved chunk doesn't contribute to the count.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 169 */
 170int pcpu_nr_empty_pop_pages;
 
 
 
 171
 172/*
 173 * Balance work is used to populate or destroy chunks asynchronously.  We
 174 * try to keep the number of populated free pages between
 175 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
 176 * empty chunk.
 177 */
 178static void pcpu_balance_workfn(struct work_struct *work);
 179static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
 180static bool pcpu_async_enabled __read_mostly;
 181static bool pcpu_atomic_alloc_failed;
 182
 183static void pcpu_schedule_balance_work(void)
 184{
 185	if (pcpu_async_enabled)
 186		schedule_work(&pcpu_balance_work);
 
 187}
 188
 189/**
 190 * pcpu_addr_in_chunk - check if the address is served from this chunk
 191 * @chunk: chunk of interest
 192 * @addr: percpu address
 193 *
 194 * RETURNS:
 195 * True if the address is served from this chunk.
 196 */
 197static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
 198{
 199	void *start_addr, *end_addr;
 200
 201	if (!chunk)
 202		return false;
 203
 204	start_addr = chunk->base_addr + chunk->start_offset;
 205	end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
 206		   chunk->end_offset;
 207
 208	return addr >= start_addr && addr < end_addr;
 
 209}
 210
 211static int __pcpu_size_to_slot(int size)
 212{
 213	int highbit = fls(size);	/* size is in bytes */
 214	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
 215}
 216
 217static int pcpu_size_to_slot(int size)
 218{
 219	if (size == pcpu_unit_size)
 220		return pcpu_nr_slots - 1;
 221	return __pcpu_size_to_slot(size);
 222}
 223
 224static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
 225{
 226	if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || chunk->contig_bits == 0)
 227		return 0;
 228
 229	return pcpu_size_to_slot(chunk->free_bytes);
 230}
 231
 232/* set the pointer to a chunk in a page struct */
 233static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
 234{
 235	page->index = (unsigned long)pcpu;
 236}
 237
 238/* obtain pointer to a chunk from a page struct */
 239static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
 240{
 241	return (struct pcpu_chunk *)page->index;
 242}
 243
 244static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
 245{
 246	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
 247}
 248
 249static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
 250{
 251	return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
 252}
 253
 254static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
 255				     unsigned int cpu, int page_idx)
 256{
 257	return (unsigned long)chunk->base_addr +
 258	       pcpu_unit_page_offset(cpu, page_idx);
 259}
 260
 261static void pcpu_next_unpop(unsigned long *bitmap, int *rs, int *re, int end)
 
 262{
 263	*rs = find_next_zero_bit(bitmap, end, *rs);
 264	*re = find_next_bit(bitmap, end, *rs + 1);
 265}
 266
 267static void pcpu_next_pop(unsigned long *bitmap, int *rs, int *re, int end)
 
 268{
 269	*rs = find_next_bit(bitmap, end, *rs);
 270	*re = find_next_zero_bit(bitmap, end, *rs + 1);
 271}
 272
 273/*
 274 * Bitmap region iterators.  Iterates over the bitmap between
 275 * [@start, @end) in @chunk.  @rs and @re should be integer variables
 276 * and will be set to start and end index of the current free region.
 277 */
 278#define pcpu_for_each_unpop_region(bitmap, rs, re, start, end)		     \
 279	for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \
 280	     (rs) < (re);						     \
 281	     (rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end)))
 282
 283#define pcpu_for_each_pop_region(bitmap, rs, re, start, end)		     \
 284	for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end));   \
 285	     (rs) < (re);						     \
 286	     (rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end)))
 287
 288/*
 289 * The following are helper functions to help access bitmaps and convert
 290 * between bitmap offsets to address offsets.
 291 */
 292static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
 293{
 294	return chunk->alloc_map +
 295	       (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
 296}
 297
 298static unsigned long pcpu_off_to_block_index(int off)
 299{
 300	return off / PCPU_BITMAP_BLOCK_BITS;
 301}
 302
 303static unsigned long pcpu_off_to_block_off(int off)
 304{
 305	return off & (PCPU_BITMAP_BLOCK_BITS - 1);
 306}
 307
 308static unsigned long pcpu_block_off_to_off(int index, int off)
 309{
 310	return index * PCPU_BITMAP_BLOCK_BITS + off;
 311}
 312
 313/**
 314 * pcpu_next_md_free_region - finds the next hint free area
 315 * @chunk: chunk of interest
 316 * @bit_off: chunk offset
 317 * @bits: size of free area
 318 *
 319 * Helper function for pcpu_for_each_md_free_region.  It checks
 320 * block->contig_hint and performs aggregation across blocks to find the
 321 * next hint.  It modifies bit_off and bits in-place to be consumed in the
 322 * loop.
 323 */
 324static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
 325				     int *bits)
 326{
 327	int i = pcpu_off_to_block_index(*bit_off);
 328	int block_off = pcpu_off_to_block_off(*bit_off);
 329	struct pcpu_block_md *block;
 330
 331	*bits = 0;
 332	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
 333	     block++, i++) {
 334		/* handles contig area across blocks */
 335		if (*bits) {
 336			*bits += block->left_free;
 337			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
 338				continue;
 339			return;
 340		}
 341
 342		/*
 343		 * This checks three things.  First is there a contig_hint to
 344		 * check.  Second, have we checked this hint before by
 345		 * comparing the block_off.  Third, is this the same as the
 346		 * right contig hint.  In the last case, it spills over into
 347		 * the next block and should be handled by the contig area
 348		 * across blocks code.
 349		 */
 350		*bits = block->contig_hint;
 351		if (*bits && block->contig_hint_start >= block_off &&
 352		    *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
 353			*bit_off = pcpu_block_off_to_off(i,
 354					block->contig_hint_start);
 355			return;
 356		}
 357		/* reset to satisfy the second predicate above */
 358		block_off = 0;
 359
 360		*bits = block->right_free;
 361		*bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
 362	}
 363}
 364
 365/**
 366 * pcpu_next_fit_region - finds fit areas for a given allocation request
 367 * @chunk: chunk of interest
 368 * @alloc_bits: size of allocation
 369 * @align: alignment of area (max PAGE_SIZE)
 370 * @bit_off: chunk offset
 371 * @bits: size of free area
 372 *
 373 * Finds the next free region that is viable for use with a given size and
 374 * alignment.  This only returns if there is a valid area to be used for this
 375 * allocation.  block->first_free is returned if the allocation request fits
 376 * within the block to see if the request can be fulfilled prior to the contig
 377 * hint.
 378 */
 379static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
 380				 int align, int *bit_off, int *bits)
 381{
 382	int i = pcpu_off_to_block_index(*bit_off);
 383	int block_off = pcpu_off_to_block_off(*bit_off);
 384	struct pcpu_block_md *block;
 385
 386	*bits = 0;
 387	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
 388	     block++, i++) {
 389		/* handles contig area across blocks */
 390		if (*bits) {
 391			*bits += block->left_free;
 392			if (*bits >= alloc_bits)
 393				return;
 394			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
 395				continue;
 396		}
 397
 398		/* check block->contig_hint */
 399		*bits = ALIGN(block->contig_hint_start, align) -
 400			block->contig_hint_start;
 401		/*
 402		 * This uses the block offset to determine if this has been
 403		 * checked in the prior iteration.
 404		 */
 405		if (block->contig_hint &&
 406		    block->contig_hint_start >= block_off &&
 407		    block->contig_hint >= *bits + alloc_bits) {
 408			*bits += alloc_bits + block->contig_hint_start -
 409				 block->first_free;
 410			*bit_off = pcpu_block_off_to_off(i, block->first_free);
 411			return;
 412		}
 413		/* reset to satisfy the second predicate above */
 414		block_off = 0;
 415
 416		*bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
 417				 align);
 418		*bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
 419		*bit_off = pcpu_block_off_to_off(i, *bit_off);
 420		if (*bits >= alloc_bits)
 421			return;
 422	}
 423
 424	/* no valid offsets were found - fail condition */
 425	*bit_off = pcpu_chunk_map_bits(chunk);
 426}
 427
 428/*
 429 * Metadata free area iterators.  These perform aggregation of free areas
 430 * based on the metadata blocks and return the offset @bit_off and size in
 431 * bits of the free area @bits.  pcpu_for_each_fit_region only returns when
 432 * a fit is found for the allocation request.
 433 */
 434#define pcpu_for_each_md_free_region(chunk, bit_off, bits)		\
 435	for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits));	\
 436	     (bit_off) < pcpu_chunk_map_bits((chunk));			\
 437	     (bit_off) += (bits) + 1,					\
 438	     pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
 439
 440#define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits)     \
 441	for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
 442				  &(bits));				      \
 443	     (bit_off) < pcpu_chunk_map_bits((chunk));			      \
 444	     (bit_off) += (bits),					      \
 445	     pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
 446				  &(bits)))
 447
 448/**
 449 * pcpu_mem_zalloc - allocate memory
 450 * @size: bytes to allocate
 451 * @gfp: allocation flags
 452 *
 453 * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
 454 * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
 455 * This is to facilitate passing through whitelisted flags.  The
 456 * returned memory is always zeroed.
 
 
 457 *
 458 * RETURNS:
 459 * Pointer to the allocated area on success, NULL on failure.
 460 */
 461static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
 462{
 463	if (WARN_ON_ONCE(!slab_is_available()))
 464		return NULL;
 465
 466	if (size <= PAGE_SIZE)
 467		return kzalloc(size, gfp);
 468	else
 469		return __vmalloc(size, gfp | __GFP_ZERO, PAGE_KERNEL);
 470}
 471
 472/**
 473 * pcpu_mem_free - free memory
 474 * @ptr: memory to free
 
 475 *
 476 * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
 477 */
 478static void pcpu_mem_free(void *ptr)
 479{
 480	kvfree(ptr);
 
 
 
 481}
 482
 483/**
 484 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
 485 * @chunk: chunk of interest
 486 * @oslot: the previous slot it was on
 487 *
 488 * This function is called after an allocation or free changed @chunk.
 489 * New slot according to the changed state is determined and @chunk is
 490 * moved to the slot.  Note that the reserved chunk is never put on
 491 * chunk slots.
 492 *
 493 * CONTEXT:
 494 * pcpu_lock.
 495 */
 496static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
 497{
 498	int nslot = pcpu_chunk_slot(chunk);
 499
 500	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
 501		if (oslot < nslot)
 502			list_move(&chunk->list, &pcpu_slot[nslot]);
 503		else
 504			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
 505	}
 506}
 507
 508/**
 509 * pcpu_cnt_pop_pages- counts populated backing pages in range
 510 * @chunk: chunk of interest
 511 * @bit_off: start offset
 512 * @bits: size of area to check
 513 *
 514 * Calculates the number of populated pages in the region
 515 * [page_start, page_end).  This keeps track of how many empty populated
 516 * pages are available and decide if async work should be scheduled.
 
 
 517 *
 518 * RETURNS:
 519 * The nr of populated pages.
 
 520 */
 521static inline int pcpu_cnt_pop_pages(struct pcpu_chunk *chunk, int bit_off,
 522				     int bits)
 523{
 524	int page_start = PFN_UP(bit_off * PCPU_MIN_ALLOC_SIZE);
 525	int page_end = PFN_DOWN((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
 526
 527	if (page_start >= page_end)
 528		return 0;
 529
 530	/*
 531	 * bitmap_weight counts the number of bits set in a bitmap up to
 532	 * the specified number of bits.  This is counting the populated
 533	 * pages up to page_end and then subtracting the populated pages
 534	 * up to page_start to count the populated pages in
 535	 * [page_start, page_end).
 536	 */
 537	return bitmap_weight(chunk->populated, page_end) -
 538	       bitmap_weight(chunk->populated, page_start);
 539}
 540
 541/**
 542 * pcpu_chunk_update - updates the chunk metadata given a free area
 543 * @chunk: chunk of interest
 544 * @bit_off: chunk offset
 545 * @bits: size of free area
 546 *
 547 * This updates the chunk's contig hint and starting offset given a free area.
 548 * Choose the best starting offset if the contig hint is equal.
 549 */
 550static void pcpu_chunk_update(struct pcpu_chunk *chunk, int bit_off, int bits)
 551{
 552	if (bits > chunk->contig_bits) {
 553		chunk->contig_bits_start = bit_off;
 554		chunk->contig_bits = bits;
 555	} else if (bits == chunk->contig_bits && chunk->contig_bits_start &&
 556		   (!bit_off ||
 557		    __ffs(bit_off) > __ffs(chunk->contig_bits_start))) {
 558		/* use the start with the best alignment */
 559		chunk->contig_bits_start = bit_off;
 560	}
 561}
 562
 563/**
 564 * pcpu_chunk_refresh_hint - updates metadata about a chunk
 565 * @chunk: chunk of interest
 566 *
 567 * Iterates over the metadata blocks to find the largest contig area.
 568 * It also counts the populated pages and uses the delta to update the
 569 * global count.
 570 *
 571 * Updates:
 572 *      chunk->contig_bits
 573 *      chunk->contig_bits_start
 574 *      nr_empty_pop_pages (chunk and global)
 575 */
 576static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk)
 577{
 578	int bit_off, bits, nr_empty_pop_pages;
 
 
 579
 580	/* clear metadata */
 581	chunk->contig_bits = 0;
 
 582
 583	bit_off = chunk->first_bit;
 584	bits = nr_empty_pop_pages = 0;
 585	pcpu_for_each_md_free_region(chunk, bit_off, bits) {
 586		pcpu_chunk_update(chunk, bit_off, bits);
 587
 588		nr_empty_pop_pages += pcpu_cnt_pop_pages(chunk, bit_off, bits);
 589	}
 590
 591	/*
 592	 * Keep track of nr_empty_pop_pages.
 593	 *
 594	 * The chunk maintains the previous number of free pages it held,
 595	 * so the delta is used to update the global counter.  The reserved
 596	 * chunk is not part of the free page count as they are populated
 597	 * at init and are special to serving reserved allocations.
 598	 */
 599	if (chunk != pcpu_reserved_chunk)
 600		pcpu_nr_empty_pop_pages +=
 601			(nr_empty_pop_pages - chunk->nr_empty_pop_pages);
 602
 603	chunk->nr_empty_pop_pages = nr_empty_pop_pages;
 604}
 605
 606/**
 607 * pcpu_block_update - updates a block given a free area
 608 * @block: block of interest
 609 * @start: start offset in block
 610 * @end: end offset in block
 611 *
 612 * Updates a block given a known free area.  The region [start, end) is
 613 * expected to be the entirety of the free area within a block.  Chooses
 614 * the best starting offset if the contig hints are equal.
 615 */
 616static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
 617{
 618	int contig = end - start;
 619
 620	block->first_free = min(block->first_free, start);
 621	if (start == 0)
 622		block->left_free = contig;
 623
 624	if (end == PCPU_BITMAP_BLOCK_BITS)
 625		block->right_free = contig;
 
 
 
 
 626
 627	if (contig > block->contig_hint) {
 628		block->contig_hint_start = start;
 629		block->contig_hint = contig;
 630	} else if (block->contig_hint_start && contig == block->contig_hint &&
 631		   (!start || __ffs(start) > __ffs(block->contig_hint_start))) {
 632		/* use the start with the best alignment */
 633		block->contig_hint_start = start;
 634	}
 635}
 636
 637/**
 638 * pcpu_block_refresh_hint
 639 * @chunk: chunk of interest
 640 * @index: index of the metadata block
 
 
 
 
 
 
 
 
 
 
 
 
 641 *
 642 * Scans over the block beginning at first_free and updates the block
 643 * metadata accordingly.
 644 */
 645static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
 
 646{
 647	struct pcpu_block_md *block = chunk->md_blocks + index;
 648	unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
 649	int rs, re;	/* region start, region end */
 650
 651	/* clear hints */
 652	block->contig_hint = 0;
 653	block->left_free = block->right_free = 0;
 654
 655	/* iterate over free areas and update the contig hints */
 656	pcpu_for_each_unpop_region(alloc_map, rs, re, block->first_free,
 657				   PCPU_BITMAP_BLOCK_BITS) {
 658		pcpu_block_update(block, rs, re);
 659	}
 660}
 661
 662/**
 663 * pcpu_block_update_hint_alloc - update hint on allocation path
 664 * @chunk: chunk of interest
 665 * @bit_off: chunk offset
 666 * @bits: size of request
 667 *
 668 * Updates metadata for the allocation path.  The metadata only has to be
 669 * refreshed by a full scan iff the chunk's contig hint is broken.  Block level
 670 * scans are required if the block's contig hint is broken.
 671 */
 672static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
 673					 int bits)
 674{
 675	struct pcpu_block_md *s_block, *e_block, *block;
 676	int s_index, e_index;	/* block indexes of the freed allocation */
 677	int s_off, e_off;	/* block offsets of the freed allocation */
 678
 679	/*
 680	 * Calculate per block offsets.
 681	 * The calculation uses an inclusive range, but the resulting offsets
 682	 * are [start, end).  e_index always points to the last block in the
 683	 * range.
 684	 */
 685	s_index = pcpu_off_to_block_index(bit_off);
 686	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
 687	s_off = pcpu_off_to_block_off(bit_off);
 688	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
 689
 690	s_block = chunk->md_blocks + s_index;
 691	e_block = chunk->md_blocks + e_index;
 
 
 692
 693	/*
 694	 * Update s_block.
 695	 * block->first_free must be updated if the allocation takes its place.
 696	 * If the allocation breaks the contig_hint, a scan is required to
 697	 * restore this hint.
 698	 */
 699	if (s_off == s_block->first_free)
 700		s_block->first_free = find_next_zero_bit(
 701					pcpu_index_alloc_map(chunk, s_index),
 702					PCPU_BITMAP_BLOCK_BITS,
 703					s_off + bits);
 704
 705	if (s_off >= s_block->contig_hint_start &&
 706	    s_off < s_block->contig_hint_start + s_block->contig_hint) {
 707		/* block contig hint is broken - scan to fix it */
 708		pcpu_block_refresh_hint(chunk, s_index);
 709	} else {
 710		/* update left and right contig manually */
 711		s_block->left_free = min(s_block->left_free, s_off);
 712		if (s_index == e_index)
 713			s_block->right_free = min_t(int, s_block->right_free,
 714					PCPU_BITMAP_BLOCK_BITS - e_off);
 715		else
 716			s_block->right_free = 0;
 717	}
 718
 719	/*
 720	 * Update e_block.
 721	 */
 722	if (s_index != e_index) {
 723		/*
 724		 * When the allocation is across blocks, the end is along
 725		 * the left part of the e_block.
 726		 */
 727		e_block->first_free = find_next_zero_bit(
 728				pcpu_index_alloc_map(chunk, e_index),
 729				PCPU_BITMAP_BLOCK_BITS, e_off);
 730
 731		if (e_off == PCPU_BITMAP_BLOCK_BITS) {
 732			/* reset the block */
 733			e_block++;
 734		} else {
 735			if (e_off > e_block->contig_hint_start) {
 736				/* contig hint is broken - scan to fix it */
 737				pcpu_block_refresh_hint(chunk, e_index);
 738			} else {
 739				e_block->left_free = 0;
 740				e_block->right_free =
 741					min_t(int, e_block->right_free,
 742					      PCPU_BITMAP_BLOCK_BITS - e_off);
 743			}
 744		}
 745
 746		/* update in-between md_blocks */
 747		for (block = s_block + 1; block < e_block; block++) {
 748			block->contig_hint = 0;
 749			block->left_free = 0;
 750			block->right_free = 0;
 751		}
 752	}
 753
 754	/*
 755	 * The only time a full chunk scan is required is if the chunk
 756	 * contig hint is broken.  Otherwise, it means a smaller space
 757	 * was used and therefore the chunk contig hint is still correct.
 758	 */
 759	if (bit_off >= chunk->contig_bits_start  &&
 760	    bit_off < chunk->contig_bits_start + chunk->contig_bits)
 761		pcpu_chunk_refresh_hint(chunk);
 762}
 763
 764/**
 765 * pcpu_block_update_hint_free - updates the block hints on the free path
 766 * @chunk: chunk of interest
 767 * @bit_off: chunk offset
 768 * @bits: size of request
 769 *
 770 * Updates metadata for the allocation path.  This avoids a blind block
 771 * refresh by making use of the block contig hints.  If this fails, it scans
 772 * forward and backward to determine the extent of the free area.  This is
 773 * capped at the boundary of blocks.
 774 *
 775 * A chunk update is triggered if a page becomes free, a block becomes free,
 776 * or the free spans across blocks.  This tradeoff is to minimize iterating
 777 * over the block metadata to update chunk->contig_bits.  chunk->contig_bits
 778 * may be off by up to a page, but it will never be more than the available
 779 * space.  If the contig hint is contained in one block, it will be accurate.
 780 */
 781static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
 782					int bits)
 783{
 784	struct pcpu_block_md *s_block, *e_block, *block;
 785	int s_index, e_index;	/* block indexes of the freed allocation */
 786	int s_off, e_off;	/* block offsets of the freed allocation */
 787	int start, end;		/* start and end of the whole free area */
 788
 789	/*
 790	 * Calculate per block offsets.
 791	 * The calculation uses an inclusive range, but the resulting offsets
 792	 * are [start, end).  e_index always points to the last block in the
 793	 * range.
 794	 */
 795	s_index = pcpu_off_to_block_index(bit_off);
 796	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
 797	s_off = pcpu_off_to_block_off(bit_off);
 798	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
 799
 800	s_block = chunk->md_blocks + s_index;
 801	e_block = chunk->md_blocks + e_index;
 802
 803	/*
 804	 * Check if the freed area aligns with the block->contig_hint.
 805	 * If it does, then the scan to find the beginning/end of the
 806	 * larger free area can be avoided.
 807	 *
 808	 * start and end refer to beginning and end of the free area
 809	 * within each their respective blocks.  This is not necessarily
 810	 * the entire free area as it may span blocks past the beginning
 811	 * or end of the block.
 812	 */
 813	start = s_off;
 814	if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
 815		start = s_block->contig_hint_start;
 816	} else {
 817		/*
 818		 * Scan backwards to find the extent of the free area.
 819		 * find_last_bit returns the starting bit, so if the start bit
 820		 * is returned, that means there was no last bit and the
 821		 * remainder of the chunk is free.
 822		 */
 823		int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
 824					  start);
 825		start = (start == l_bit) ? 0 : l_bit + 1;
 826	}
 827
 828	end = e_off;
 829	if (e_off == e_block->contig_hint_start)
 830		end = e_block->contig_hint_start + e_block->contig_hint;
 831	else
 832		end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
 833				    PCPU_BITMAP_BLOCK_BITS, end);
 834
 835	/* update s_block */
 836	e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
 837	pcpu_block_update(s_block, start, e_off);
 838
 839	/* freeing in the same block */
 840	if (s_index != e_index) {
 841		/* update e_block */
 842		pcpu_block_update(e_block, 0, end);
 843
 844		/* reset md_blocks in the middle */
 845		for (block = s_block + 1; block < e_block; block++) {
 846			block->first_free = 0;
 847			block->contig_hint_start = 0;
 848			block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
 849			block->left_free = PCPU_BITMAP_BLOCK_BITS;
 850			block->right_free = PCPU_BITMAP_BLOCK_BITS;
 851		}
 852	}
 853
 854	/*
 855	 * Refresh chunk metadata when the free makes a page free, a block
 856	 * free, or spans across blocks.  The contig hint may be off by up to
 857	 * a page, but if the hint is contained in a block, it will be accurate
 858	 * with the else condition below.
 859	 */
 860	if ((ALIGN_DOWN(end, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS)) >
 861	     ALIGN(start, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS))) ||
 862	    s_index != e_index)
 863		pcpu_chunk_refresh_hint(chunk);
 864	else
 865		pcpu_chunk_update(chunk, pcpu_block_off_to_off(s_index, start),
 866				  s_block->contig_hint);
 867}
 868
 869/**
 870 * pcpu_is_populated - determines if the region is populated
 871 * @chunk: chunk of interest
 872 * @bit_off: chunk offset
 873 * @bits: size of area
 874 * @next_off: return value for the next offset to start searching
 875 *
 876 * For atomic allocations, check if the backing pages are populated.
 877 *
 878 * RETURNS:
 879 * Bool if the backing pages are populated.
 880 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
 881 */
 882static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
 883			      int *next_off)
 884{
 885	int page_start, page_end, rs, re;
 886
 887	page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
 888	page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
 889
 890	rs = page_start;
 891	pcpu_next_unpop(chunk->populated, &rs, &re, page_end);
 892	if (rs >= page_end)
 893		return true;
 894
 895	*next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
 896	return false;
 897}
 898
 899/**
 900 * pcpu_find_block_fit - finds the block index to start searching
 901 * @chunk: chunk of interest
 902 * @alloc_bits: size of request in allocation units
 903 * @align: alignment of area (max PAGE_SIZE bytes)
 904 * @pop_only: use populated regions only
 905 *
 906 * Given a chunk and an allocation spec, find the offset to begin searching
 907 * for a free region.  This iterates over the bitmap metadata blocks to
 908 * find an offset that will be guaranteed to fit the requirements.  It is
 909 * not quite first fit as if the allocation does not fit in the contig hint
 910 * of a block or chunk, it is skipped.  This errs on the side of caution
 911 * to prevent excess iteration.  Poor alignment can cause the allocator to
 912 * skip over blocks and chunks that have valid free areas.
 913 *
 914 * RETURNS:
 915 * The offset in the bitmap to begin searching.
 916 * -1 if no offset is found.
 917 */
 918static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
 919			       size_t align, bool pop_only)
 920{
 921	int bit_off, bits, next_off;
 
 
 922
 923	/*
 924	 * Check to see if the allocation can fit in the chunk's contig hint.
 925	 * This is an optimization to prevent scanning by assuming if it
 926	 * cannot fit in the global hint, there is memory pressure and creating
 927	 * a new chunk would happen soon.
 928	 */
 929	bit_off = ALIGN(chunk->contig_bits_start, align) -
 930		  chunk->contig_bits_start;
 931	if (bit_off + alloc_bits > chunk->contig_bits)
 932		return -1;
 933
 934	bit_off = chunk->first_bit;
 935	bits = 0;
 936	pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
 937		if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
 938						   &next_off))
 939			break;
 940
 941		bit_off = next_off;
 942		bits = 0;
 943	}
 944
 945	if (bit_off == pcpu_chunk_map_bits(chunk))
 946		return -1;
 
 
 
 
 947
 948	return bit_off;
 949}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 950
 951/**
 952 * pcpu_alloc_area - allocates an area from a pcpu_chunk
 953 * @chunk: chunk of interest
 954 * @alloc_bits: size of request in allocation units
 955 * @align: alignment of area (max PAGE_SIZE)
 956 * @start: bit_off to start searching
 957 *
 958 * This function takes in a @start offset to begin searching to fit an
 959 * allocation of @alloc_bits with alignment @align.  It needs to scan
 960 * the allocation map because if it fits within the block's contig hint,
 961 * @start will be block->first_free. This is an attempt to fill the
 962 * allocation prior to breaking the contig hint.  The allocation and
 963 * boundary maps are updated accordingly if it confirms a valid
 964 * free area.
 965 *
 966 * RETURNS:
 967 * Allocated addr offset in @chunk on success.
 968 * -1 if no matching area is found.
 969 */
 970static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
 971			   size_t align, int start)
 972{
 973	size_t align_mask = (align) ? (align - 1) : 0;
 974	int bit_off, end, oslot;
 975
 976	lockdep_assert_held(&pcpu_lock);
 
 977
 978	oslot = pcpu_chunk_slot(chunk);
 979
 980	/*
 981	 * Search to find a fit.
 982	 */
 983	end = start + alloc_bits + PCPU_BITMAP_BLOCK_BITS;
 984	bit_off = bitmap_find_next_zero_area(chunk->alloc_map, end, start,
 985					     alloc_bits, align_mask);
 986	if (bit_off >= end)
 987		return -1;
 988
 989	/* update alloc map */
 990	bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
 991
 992	/* update boundary map */
 993	set_bit(bit_off, chunk->bound_map);
 994	bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
 995	set_bit(bit_off + alloc_bits, chunk->bound_map);
 996
 997	chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
 998
 999	/* update first free bit */
1000	if (bit_off == chunk->first_bit)
1001		chunk->first_bit = find_next_zero_bit(
1002					chunk->alloc_map,
1003					pcpu_chunk_map_bits(chunk),
1004					bit_off + alloc_bits);
1005
1006	pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
1007
 
1008	pcpu_chunk_relocate(chunk, oslot);
1009
1010	return bit_off * PCPU_MIN_ALLOC_SIZE;
 
1011}
1012
1013/**
1014 * pcpu_free_area - frees the corresponding offset
1015 * @chunk: chunk of interest
1016 * @off: addr offset into chunk
1017 *
1018 * This function determines the size of an allocation to free using
1019 * the boundary bitmap and clears the allocation map.
 
 
 
 
1020 */
1021static void pcpu_free_area(struct pcpu_chunk *chunk, int off)
1022{
1023	int bit_off, bits, end, oslot;
 
1024
1025	lockdep_assert_held(&pcpu_lock);
1026	pcpu_stats_area_dealloc(chunk);
 
 
 
1027
1028	oslot = pcpu_chunk_slot(chunk);
 
1029
1030	bit_off = off / PCPU_MIN_ALLOC_SIZE;
1031
1032	/* find end index */
1033	end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1034			    bit_off + 1);
1035	bits = end - bit_off;
1036	bitmap_clear(chunk->alloc_map, bit_off, bits);
1037
1038	/* update metadata */
1039	chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE;
1040
1041	/* update first free bit */
1042	chunk->first_bit = min(chunk->first_bit, bit_off);
1043
1044	pcpu_block_update_hint_free(chunk, bit_off, bits);
1045
 
1046	pcpu_chunk_relocate(chunk, oslot);
1047}
1048
1049static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1050{
1051	struct pcpu_block_md *md_block;
1052
1053	for (md_block = chunk->md_blocks;
1054	     md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
1055	     md_block++) {
1056		md_block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
1057		md_block->left_free = PCPU_BITMAP_BLOCK_BITS;
1058		md_block->right_free = PCPU_BITMAP_BLOCK_BITS;
1059	}
1060}
1061
1062/**
1063 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1064 * @tmp_addr: the start of the region served
1065 * @map_size: size of the region served
1066 *
1067 * This is responsible for creating the chunks that serve the first chunk.  The
1068 * base_addr is page aligned down of @tmp_addr while the region end is page
1069 * aligned up.  Offsets are kept track of to determine the region served. All
1070 * this is done to appease the bitmap allocator in avoiding partial blocks.
1071 *
1072 * RETURNS:
1073 * Chunk serving the region at @tmp_addr of @map_size.
1074 */
1075static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
1076							 int map_size)
1077{
1078	struct pcpu_chunk *chunk;
1079	unsigned long aligned_addr, lcm_align;
1080	int start_offset, offset_bits, region_size, region_bits;
1081
1082	/* region calculations */
1083	aligned_addr = tmp_addr & PAGE_MASK;
 
1084
1085	start_offset = tmp_addr - aligned_addr;
1086
1087	/*
1088	 * Align the end of the region with the LCM of PAGE_SIZE and
1089	 * PCPU_BITMAP_BLOCK_SIZE.  One of these constants is a multiple of
1090	 * the other.
1091	 */
1092	lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
1093	region_size = ALIGN(start_offset + map_size, lcm_align);
1094
1095	/* allocate chunk */
1096	chunk = memblock_virt_alloc(sizeof(struct pcpu_chunk) +
1097				    BITS_TO_LONGS(region_size >> PAGE_SHIFT),
1098				    0);
1099
1100	INIT_LIST_HEAD(&chunk->list);
1101
1102	chunk->base_addr = (void *)aligned_addr;
1103	chunk->start_offset = start_offset;
1104	chunk->end_offset = region_size - chunk->start_offset - map_size;
1105
1106	chunk->nr_pages = region_size >> PAGE_SHIFT;
1107	region_bits = pcpu_chunk_map_bits(chunk);
1108
1109	chunk->alloc_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits) *
1110					       sizeof(chunk->alloc_map[0]), 0);
1111	chunk->bound_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits + 1) *
1112					       sizeof(chunk->bound_map[0]), 0);
1113	chunk->md_blocks = memblock_virt_alloc(pcpu_chunk_nr_blocks(chunk) *
1114					       sizeof(chunk->md_blocks[0]), 0);
1115	pcpu_init_md_blocks(chunk);
1116
1117	/* manage populated page bitmap */
1118	chunk->immutable = true;
1119	bitmap_fill(chunk->populated, chunk->nr_pages);
1120	chunk->nr_populated = chunk->nr_pages;
1121	chunk->nr_empty_pop_pages =
1122		pcpu_cnt_pop_pages(chunk, start_offset / PCPU_MIN_ALLOC_SIZE,
1123				   map_size / PCPU_MIN_ALLOC_SIZE);
1124
1125	chunk->contig_bits = map_size / PCPU_MIN_ALLOC_SIZE;
1126	chunk->free_bytes = map_size;
1127
1128	if (chunk->start_offset) {
1129		/* hide the beginning of the bitmap */
1130		offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1131		bitmap_set(chunk->alloc_map, 0, offset_bits);
1132		set_bit(0, chunk->bound_map);
1133		set_bit(offset_bits, chunk->bound_map);
1134
1135		chunk->first_bit = offset_bits;
1136
1137		pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
1138	}
1139
1140	if (chunk->end_offset) {
1141		/* hide the end of the bitmap */
1142		offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1143		bitmap_set(chunk->alloc_map,
1144			   pcpu_chunk_map_bits(chunk) - offset_bits,
1145			   offset_bits);
1146		set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1147			chunk->bound_map);
1148		set_bit(region_bits, chunk->bound_map);
1149
1150		pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1151					     - offset_bits, offset_bits);
1152	}
1153
1154	return chunk;
1155}
1156
1157static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp)
1158{
1159	struct pcpu_chunk *chunk;
1160	int region_bits;
1161
1162	chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
1163	if (!chunk)
1164		return NULL;
1165
1166	INIT_LIST_HEAD(&chunk->list);
1167	chunk->nr_pages = pcpu_unit_pages;
1168	region_bits = pcpu_chunk_map_bits(chunk);
1169
1170	chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
1171					   sizeof(chunk->alloc_map[0]), gfp);
1172	if (!chunk->alloc_map)
1173		goto alloc_map_fail;
1174
1175	chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
1176					   sizeof(chunk->bound_map[0]), gfp);
1177	if (!chunk->bound_map)
1178		goto bound_map_fail;
1179
1180	chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
1181					   sizeof(chunk->md_blocks[0]), gfp);
1182	if (!chunk->md_blocks)
1183		goto md_blocks_fail;
1184
1185	pcpu_init_md_blocks(chunk);
1186
1187	/* init metadata */
1188	chunk->contig_bits = region_bits;
1189	chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
1190
1191	return chunk;
1192
1193md_blocks_fail:
1194	pcpu_mem_free(chunk->bound_map);
1195bound_map_fail:
1196	pcpu_mem_free(chunk->alloc_map);
1197alloc_map_fail:
1198	pcpu_mem_free(chunk);
1199
1200	return NULL;
1201}
1202
1203static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1204{
1205	if (!chunk)
1206		return;
1207	pcpu_mem_free(chunk->bound_map);
1208	pcpu_mem_free(chunk->alloc_map);
1209	pcpu_mem_free(chunk);
1210}
1211
1212/**
1213 * pcpu_chunk_populated - post-population bookkeeping
1214 * @chunk: pcpu_chunk which got populated
1215 * @page_start: the start page
1216 * @page_end: the end page
1217 * @for_alloc: if this is to populate for allocation
1218 *
1219 * Pages in [@page_start,@page_end) have been populated to @chunk.  Update
1220 * the bookkeeping information accordingly.  Must be called after each
1221 * successful population.
1222 *
1223 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
1224 * is to serve an allocation in that area.
1225 */
1226static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
1227				 int page_end, bool for_alloc)
1228{
1229	int nr = page_end - page_start;
1230
1231	lockdep_assert_held(&pcpu_lock);
1232
1233	bitmap_set(chunk->populated, page_start, nr);
1234	chunk->nr_populated += nr;
1235
1236	if (!for_alloc) {
1237		chunk->nr_empty_pop_pages += nr;
1238		pcpu_nr_empty_pop_pages += nr;
1239	}
1240}
1241
1242/**
1243 * pcpu_chunk_depopulated - post-depopulation bookkeeping
1244 * @chunk: pcpu_chunk which got depopulated
1245 * @page_start: the start page
1246 * @page_end: the end page
1247 *
1248 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1249 * Update the bookkeeping information accordingly.  Must be called after
1250 * each successful depopulation.
1251 */
1252static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1253				   int page_start, int page_end)
1254{
1255	int nr = page_end - page_start;
1256
1257	lockdep_assert_held(&pcpu_lock);
1258
1259	bitmap_clear(chunk->populated, page_start, nr);
1260	chunk->nr_populated -= nr;
1261	chunk->nr_empty_pop_pages -= nr;
1262	pcpu_nr_empty_pop_pages -= nr;
1263}
1264
1265/*
1266 * Chunk management implementation.
1267 *
1268 * To allow different implementations, chunk alloc/free and
1269 * [de]population are implemented in a separate file which is pulled
1270 * into this file and compiled together.  The following functions
1271 * should be implemented.
1272 *
1273 * pcpu_populate_chunk		- populate the specified range of a chunk
1274 * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
1275 * pcpu_create_chunk		- create a new chunk
1276 * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
1277 * pcpu_addr_to_page		- translate address to physical address
1278 * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
1279 */
1280static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
1281			       int page_start, int page_end, gfp_t gfp);
1282static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
1283				  int page_start, int page_end);
1284static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp);
1285static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1286static struct page *pcpu_addr_to_page(void *addr);
1287static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
1288
1289#ifdef CONFIG_NEED_PER_CPU_KM
1290#include "percpu-km.c"
1291#else
1292#include "percpu-vm.c"
1293#endif
1294
1295/**
1296 * pcpu_chunk_addr_search - determine chunk containing specified address
1297 * @addr: address for which the chunk needs to be determined.
1298 *
1299 * This is an internal function that handles all but static allocations.
1300 * Static percpu address values should never be passed into the allocator.
1301 *
1302 * RETURNS:
1303 * The address of the found chunk.
1304 */
1305static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1306{
1307	/* is it in the dynamic region (first chunk)? */
1308	if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
 
 
 
1309		return pcpu_first_chunk;
1310
1311	/* is it in the reserved region? */
1312	if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
1313		return pcpu_reserved_chunk;
1314
1315	/*
1316	 * The address is relative to unit0 which might be unused and
1317	 * thus unmapped.  Offset the address to the unit space of the
1318	 * current processor before looking it up in the vmalloc
1319	 * space.  Note that any possible cpu id can be used here, so
1320	 * there's no need to worry about preemption or cpu hotplug.
1321	 */
1322	addr += pcpu_unit_offsets[raw_smp_processor_id()];
1323	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
1324}
1325
1326/**
1327 * pcpu_alloc - the percpu allocator
1328 * @size: size of area to allocate in bytes
1329 * @align: alignment of area (max PAGE_SIZE)
1330 * @reserved: allocate from the reserved chunk if available
1331 * @gfp: allocation flags
1332 *
1333 * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't
1334 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1335 * then no warning will be triggered on invalid or failed allocation
1336 * requests.
1337 *
1338 * RETURNS:
1339 * Percpu pointer to the allocated area on success, NULL on failure.
1340 */
1341static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1342				 gfp_t gfp)
1343{
1344	/* whitelisted flags that can be passed to the backing allocators */
1345	gfp_t pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
1346	bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
1347	bool do_warn = !(gfp & __GFP_NOWARN);
1348	static int warn_limit = 10;
1349	struct pcpu_chunk *chunk;
1350	const char *err;
1351	int slot, off, cpu, ret;
1352	unsigned long flags;
1353	void __percpu *ptr;
1354	size_t bits, bit_align;
1355
1356	/*
1357	 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1358	 * therefore alignment must be a minimum of that many bytes.
1359	 * An allocation may have internal fragmentation from rounding up
1360	 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1361	 */
1362	if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1363		align = PCPU_MIN_ALLOC_SIZE;
1364
1365	size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
1366	bits = size >> PCPU_MIN_ALLOC_SHIFT;
1367	bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
1368
1369	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1370		     !is_power_of_2(align))) {
1371		WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1372		     size, align);
1373		return NULL;
1374	}
1375
1376	if (!is_atomic) {
1377		/*
1378		 * pcpu_balance_workfn() allocates memory under this mutex,
1379		 * and it may wait for memory reclaim. Allow current task
1380		 * to become OOM victim, in case of memory pressure.
1381		 */
1382		if (gfp & __GFP_NOFAIL)
1383			mutex_lock(&pcpu_alloc_mutex);
1384		else if (mutex_lock_killable(&pcpu_alloc_mutex))
1385			return NULL;
1386	}
1387
1388	spin_lock_irqsave(&pcpu_lock, flags);
1389
1390	/* serve reserved allocations from the reserved chunk if available */
1391	if (reserved && pcpu_reserved_chunk) {
1392		chunk = pcpu_reserved_chunk;
1393
1394		off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1395		if (off < 0) {
1396			err = "alloc from reserved chunk failed";
1397			goto fail_unlock;
1398		}
1399
1400		off = pcpu_alloc_area(chunk, bits, bit_align, off);
 
 
 
 
 
 
 
 
 
1401		if (off >= 0)
1402			goto area_found;
1403
1404		err = "alloc from reserved chunk failed";
1405		goto fail_unlock;
1406	}
1407
1408restart:
1409	/* search through normal chunks */
1410	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1411		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1412			off = pcpu_find_block_fit(chunk, bits, bit_align,
1413						  is_atomic);
1414			if (off < 0)
1415				continue;
1416
1417			off = pcpu_alloc_area(chunk, bits, bit_align, off);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1418			if (off >= 0)
1419				goto area_found;
1420
1421		}
1422	}
1423
 
1424	spin_unlock_irqrestore(&pcpu_lock, flags);
1425
1426	/*
1427	 * No space left.  Create a new chunk.  We don't want multiple
1428	 * tasks to create chunks simultaneously.  Serialize and create iff
1429	 * there's still no empty chunk after grabbing the mutex.
1430	 */
1431	if (is_atomic) {
1432		err = "atomic alloc failed, no space left";
1433		goto fail;
1434	}
1435
1436	if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
1437		chunk = pcpu_create_chunk(pcpu_gfp);
1438		if (!chunk) {
1439			err = "failed to allocate new chunk";
1440			goto fail;
1441		}
1442
1443		spin_lock_irqsave(&pcpu_lock, flags);
1444		pcpu_chunk_relocate(chunk, -1);
1445	} else {
1446		spin_lock_irqsave(&pcpu_lock, flags);
1447	}
1448
 
 
1449	goto restart;
1450
1451area_found:
1452	pcpu_stats_area_alloc(chunk, size);
1453	spin_unlock_irqrestore(&pcpu_lock, flags);
1454
1455	/* populate if not all pages are already there */
1456	if (!is_atomic) {
1457		int page_start, page_end, rs, re;
1458
1459		page_start = PFN_DOWN(off);
1460		page_end = PFN_UP(off + size);
1461
1462		pcpu_for_each_unpop_region(chunk->populated, rs, re,
1463					   page_start, page_end) {
1464			WARN_ON(chunk->immutable);
1465
1466			ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
1467
1468			spin_lock_irqsave(&pcpu_lock, flags);
1469			if (ret) {
1470				pcpu_free_area(chunk, off);
1471				err = "failed to populate";
1472				goto fail_unlock;
1473			}
1474			pcpu_chunk_populated(chunk, rs, re, true);
1475			spin_unlock_irqrestore(&pcpu_lock, flags);
1476		}
1477
1478		mutex_unlock(&pcpu_alloc_mutex);
1479	}
1480
1481	if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1482		pcpu_schedule_balance_work();
1483
1484	/* clear the areas and return address relative to base address */
1485	for_each_possible_cpu(cpu)
1486		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1487
1488	ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1489	kmemleak_alloc_percpu(ptr, size, gfp);
1490
1491	trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1492			chunk->base_addr, off, ptr);
1493
1494	return ptr;
1495
1496fail_unlock:
1497	spin_unlock_irqrestore(&pcpu_lock, flags);
1498fail:
1499	trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1500
1501	if (!is_atomic && do_warn && warn_limit) {
1502		pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1503			size, align, is_atomic, err);
1504		dump_stack();
1505		if (!--warn_limit)
1506			pr_info("limit reached, disable warning\n");
1507	}
1508	if (is_atomic) {
1509		/* see the flag handling in pcpu_blance_workfn() */
1510		pcpu_atomic_alloc_failed = true;
1511		pcpu_schedule_balance_work();
1512	} else {
1513		mutex_unlock(&pcpu_alloc_mutex);
1514	}
1515	return NULL;
1516}
1517
1518/**
1519 * __alloc_percpu_gfp - allocate dynamic percpu area
1520 * @size: size of area to allocate in bytes
1521 * @align: alignment of area (max PAGE_SIZE)
1522 * @gfp: allocation flags
1523 *
1524 * Allocate zero-filled percpu area of @size bytes aligned at @align.  If
1525 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1526 * be called from any context but is a lot more likely to fail. If @gfp
1527 * has __GFP_NOWARN then no warning will be triggered on invalid or failed
1528 * allocation requests.
1529 *
1530 * RETURNS:
1531 * Percpu pointer to the allocated area on success, NULL on failure.
1532 */
1533void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1534{
1535	return pcpu_alloc(size, align, false, gfp);
1536}
1537EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1538
1539/**
1540 * __alloc_percpu - allocate dynamic percpu area
1541 * @size: size of area to allocate in bytes
1542 * @align: alignment of area (max PAGE_SIZE)
1543 *
1544 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1545 */
1546void __percpu *__alloc_percpu(size_t size, size_t align)
1547{
1548	return pcpu_alloc(size, align, false, GFP_KERNEL);
1549}
1550EXPORT_SYMBOL_GPL(__alloc_percpu);
1551
1552/**
1553 * __alloc_reserved_percpu - allocate reserved percpu area
1554 * @size: size of area to allocate in bytes
1555 * @align: alignment of area (max PAGE_SIZE)
1556 *
1557 * Allocate zero-filled percpu area of @size bytes aligned at @align
1558 * from reserved percpu area if arch has set it up; otherwise,
1559 * allocation is served from the same dynamic area.  Might sleep.
1560 * Might trigger writeouts.
1561 *
1562 * CONTEXT:
1563 * Does GFP_KERNEL allocation.
1564 *
1565 * RETURNS:
1566 * Percpu pointer to the allocated area on success, NULL on failure.
1567 */
1568void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1569{
1570	return pcpu_alloc(size, align, true, GFP_KERNEL);
1571}
1572
1573/**
1574 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1575 * @work: unused
1576 *
1577 * Reclaim all fully free chunks except for the first one.  This is also
1578 * responsible for maintaining the pool of empty populated pages.  However,
1579 * it is possible that this is called when physical memory is scarce causing
1580 * OOM killer to be triggered.  We should avoid doing so until an actual
1581 * allocation causes the failure as it is possible that requests can be
1582 * serviced from already backed regions.
1583 */
1584static void pcpu_balance_workfn(struct work_struct *work)
1585{
1586	/* gfp flags passed to underlying allocators */
1587	const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
1588	LIST_HEAD(to_free);
1589	struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1590	struct pcpu_chunk *chunk, *next;
1591	int slot, nr_to_pop, ret;
1592
1593	/*
1594	 * There's no reason to keep around multiple unused chunks and VM
1595	 * areas can be scarce.  Destroy all free chunks except for one.
1596	 */
1597	mutex_lock(&pcpu_alloc_mutex);
1598	spin_lock_irq(&pcpu_lock);
1599
1600	list_for_each_entry_safe(chunk, next, free_head, list) {
1601		WARN_ON(chunk->immutable);
1602
1603		/* spare the first one */
1604		if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1605			continue;
1606
1607		list_move(&chunk->list, &to_free);
1608	}
1609
1610	spin_unlock_irq(&pcpu_lock);
1611
1612	list_for_each_entry_safe(chunk, next, &to_free, list) {
1613		int rs, re;
1614
1615		pcpu_for_each_pop_region(chunk->populated, rs, re, 0,
1616					 chunk->nr_pages) {
1617			pcpu_depopulate_chunk(chunk, rs, re);
1618			spin_lock_irq(&pcpu_lock);
1619			pcpu_chunk_depopulated(chunk, rs, re);
1620			spin_unlock_irq(&pcpu_lock);
1621		}
1622		pcpu_destroy_chunk(chunk);
1623		cond_resched();
1624	}
1625
1626	/*
1627	 * Ensure there are certain number of free populated pages for
1628	 * atomic allocs.  Fill up from the most packed so that atomic
1629	 * allocs don't increase fragmentation.  If atomic allocation
1630	 * failed previously, always populate the maximum amount.  This
1631	 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1632	 * failing indefinitely; however, large atomic allocs are not
1633	 * something we support properly and can be highly unreliable and
1634	 * inefficient.
1635	 */
1636retry_pop:
1637	if (pcpu_atomic_alloc_failed) {
1638		nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1639		/* best effort anyway, don't worry about synchronization */
1640		pcpu_atomic_alloc_failed = false;
1641	} else {
1642		nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1643				  pcpu_nr_empty_pop_pages,
1644				  0, PCPU_EMPTY_POP_PAGES_HIGH);
1645	}
1646
1647	for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1648		int nr_unpop = 0, rs, re;
1649
1650		if (!nr_to_pop)
1651			break;
1652
1653		spin_lock_irq(&pcpu_lock);
1654		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1655			nr_unpop = chunk->nr_pages - chunk->nr_populated;
1656			if (nr_unpop)
1657				break;
1658		}
1659		spin_unlock_irq(&pcpu_lock);
1660
1661		if (!nr_unpop)
1662			continue;
1663
1664		/* @chunk can't go away while pcpu_alloc_mutex is held */
1665		pcpu_for_each_unpop_region(chunk->populated, rs, re, 0,
1666					   chunk->nr_pages) {
1667			int nr = min(re - rs, nr_to_pop);
1668
1669			ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
1670			if (!ret) {
1671				nr_to_pop -= nr;
1672				spin_lock_irq(&pcpu_lock);
1673				pcpu_chunk_populated(chunk, rs, rs + nr, false);
1674				spin_unlock_irq(&pcpu_lock);
1675			} else {
1676				nr_to_pop = 0;
1677			}
1678
1679			if (!nr_to_pop)
1680				break;
1681		}
1682	}
1683
1684	if (nr_to_pop) {
1685		/* ran out of chunks to populate, create a new one and retry */
1686		chunk = pcpu_create_chunk(gfp);
1687		if (chunk) {
1688			spin_lock_irq(&pcpu_lock);
1689			pcpu_chunk_relocate(chunk, -1);
1690			spin_unlock_irq(&pcpu_lock);
1691			goto retry_pop;
1692		}
1693	}
1694
1695	mutex_unlock(&pcpu_alloc_mutex);
1696}
1697
1698/**
1699 * free_percpu - free percpu area
1700 * @ptr: pointer to area to free
1701 *
1702 * Free percpu area @ptr.
1703 *
1704 * CONTEXT:
1705 * Can be called from atomic context.
1706 */
1707void free_percpu(void __percpu *ptr)
1708{
1709	void *addr;
1710	struct pcpu_chunk *chunk;
1711	unsigned long flags;
1712	int off;
1713
1714	if (!ptr)
1715		return;
1716
1717	kmemleak_free_percpu(ptr);
1718
1719	addr = __pcpu_ptr_to_addr(ptr);
1720
1721	spin_lock_irqsave(&pcpu_lock, flags);
1722
1723	chunk = pcpu_chunk_addr_search(addr);
1724	off = addr - chunk->base_addr;
1725
1726	pcpu_free_area(chunk, off);
1727
1728	/* if there are more than one fully free chunks, wake up grim reaper */
1729	if (chunk->free_bytes == pcpu_unit_size) {
1730		struct pcpu_chunk *pos;
1731
1732		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1733			if (pos != chunk) {
1734				pcpu_schedule_balance_work();
1735				break;
1736			}
1737	}
1738
1739	trace_percpu_free_percpu(chunk->base_addr, off, ptr);
1740
1741	spin_unlock_irqrestore(&pcpu_lock, flags);
1742}
1743EXPORT_SYMBOL_GPL(free_percpu);
1744
1745bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
 
 
 
 
 
 
 
 
 
 
 
1746{
1747#ifdef CONFIG_SMP
1748	const size_t static_size = __per_cpu_end - __per_cpu_start;
1749	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1750	unsigned int cpu;
1751
1752	for_each_possible_cpu(cpu) {
1753		void *start = per_cpu_ptr(base, cpu);
1754		void *va = (void *)addr;
1755
1756		if (va >= start && va < start + static_size) {
1757			if (can_addr) {
1758				*can_addr = (unsigned long) (va - start);
1759				*can_addr += (unsigned long)
1760					per_cpu_ptr(base, get_boot_cpu_id());
1761			}
1762			return true;
1763		}
1764	}
1765#endif
1766	/* on UP, can't distinguish from other static vars, always false */
1767	return false;
1768}
1769
1770/**
1771 * is_kernel_percpu_address - test whether address is from static percpu area
1772 * @addr: address to test
1773 *
1774 * Test whether @addr belongs to in-kernel static percpu area.  Module
1775 * static percpu areas are not considered.  For those, use
1776 * is_module_percpu_address().
1777 *
1778 * RETURNS:
1779 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1780 */
1781bool is_kernel_percpu_address(unsigned long addr)
1782{
1783	return __is_kernel_percpu_address(addr, NULL);
1784}
1785
1786/**
1787 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1788 * @addr: the address to be converted to physical address
1789 *
1790 * Given @addr which is dereferenceable address obtained via one of
1791 * percpu access macros, this function translates it into its physical
1792 * address.  The caller is responsible for ensuring @addr stays valid
1793 * until this function finishes.
1794 *
1795 * percpu allocator has special setup for the first chunk, which currently
1796 * supports either embedding in linear address space or vmalloc mapping,
1797 * and, from the second one, the backing allocator (currently either vm or
1798 * km) provides translation.
1799 *
1800 * The addr can be translated simply without checking if it falls into the
1801 * first chunk. But the current code reflects better how percpu allocator
1802 * actually works, and the verification can discover both bugs in percpu
1803 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1804 * code.
1805 *
1806 * RETURNS:
1807 * The physical address for @addr.
1808 */
1809phys_addr_t per_cpu_ptr_to_phys(void *addr)
1810{
1811	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1812	bool in_first_chunk = false;
1813	unsigned long first_low, first_high;
1814	unsigned int cpu;
1815
1816	/*
1817	 * The following test on unit_low/high isn't strictly
1818	 * necessary but will speed up lookups of addresses which
1819	 * aren't in the first chunk.
1820	 *
1821	 * The address check is against full chunk sizes.  pcpu_base_addr
1822	 * points to the beginning of the first chunk including the
1823	 * static region.  Assumes good intent as the first chunk may
1824	 * not be full (ie. < pcpu_unit_pages in size).
1825	 */
1826	first_low = (unsigned long)pcpu_base_addr +
1827		    pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
1828	first_high = (unsigned long)pcpu_base_addr +
1829		     pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
1830	if ((unsigned long)addr >= first_low &&
1831	    (unsigned long)addr < first_high) {
1832		for_each_possible_cpu(cpu) {
1833			void *start = per_cpu_ptr(base, cpu);
1834
1835			if (addr >= start && addr < start + pcpu_unit_size) {
1836				in_first_chunk = true;
1837				break;
1838			}
1839		}
1840	}
1841
1842	if (in_first_chunk) {
1843		if (!is_vmalloc_addr(addr))
1844			return __pa(addr);
1845		else
1846			return page_to_phys(vmalloc_to_page(addr)) +
1847			       offset_in_page(addr);
1848	} else
1849		return page_to_phys(pcpu_addr_to_page(addr)) +
1850		       offset_in_page(addr);
1851}
1852
1853/**
1854 * pcpu_alloc_alloc_info - allocate percpu allocation info
1855 * @nr_groups: the number of groups
1856 * @nr_units: the number of units
1857 *
1858 * Allocate ai which is large enough for @nr_groups groups containing
1859 * @nr_units units.  The returned ai's groups[0].cpu_map points to the
1860 * cpu_map array which is long enough for @nr_units and filled with
1861 * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
1862 * pointer of other groups.
1863 *
1864 * RETURNS:
1865 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1866 * failure.
1867 */
1868struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1869						      int nr_units)
1870{
1871	struct pcpu_alloc_info *ai;
1872	size_t base_size, ai_size;
1873	void *ptr;
1874	int unit;
1875
1876	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1877			  __alignof__(ai->groups[0].cpu_map[0]));
1878	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1879
1880	ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), PAGE_SIZE);
1881	if (!ptr)
1882		return NULL;
1883	ai = ptr;
1884	ptr += base_size;
1885
1886	ai->groups[0].cpu_map = ptr;
1887
1888	for (unit = 0; unit < nr_units; unit++)
1889		ai->groups[0].cpu_map[unit] = NR_CPUS;
1890
1891	ai->nr_groups = nr_groups;
1892	ai->__ai_size = PFN_ALIGN(ai_size);
1893
1894	return ai;
1895}
1896
1897/**
1898 * pcpu_free_alloc_info - free percpu allocation info
1899 * @ai: pcpu_alloc_info to free
1900 *
1901 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1902 */
1903void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1904{
1905	memblock_free_early(__pa(ai), ai->__ai_size);
1906}
1907
1908/**
1909 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1910 * @lvl: loglevel
1911 * @ai: allocation info to dump
1912 *
1913 * Print out information about @ai using loglevel @lvl.
1914 */
1915static void pcpu_dump_alloc_info(const char *lvl,
1916				 const struct pcpu_alloc_info *ai)
1917{
1918	int group_width = 1, cpu_width = 1, width;
1919	char empty_str[] = "--------";
1920	int alloc = 0, alloc_end = 0;
1921	int group, v;
1922	int upa, apl;	/* units per alloc, allocs per line */
1923
1924	v = ai->nr_groups;
1925	while (v /= 10)
1926		group_width++;
1927
1928	v = num_possible_cpus();
1929	while (v /= 10)
1930		cpu_width++;
1931	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1932
1933	upa = ai->alloc_size / ai->unit_size;
1934	width = upa * (cpu_width + 1) + group_width + 3;
1935	apl = rounddown_pow_of_two(max(60 / width, 1));
1936
1937	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1938	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1939	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1940
1941	for (group = 0; group < ai->nr_groups; group++) {
1942		const struct pcpu_group_info *gi = &ai->groups[group];
1943		int unit = 0, unit_end = 0;
1944
1945		BUG_ON(gi->nr_units % upa);
1946		for (alloc_end += gi->nr_units / upa;
1947		     alloc < alloc_end; alloc++) {
1948			if (!(alloc % apl)) {
1949				pr_cont("\n");
1950				printk("%spcpu-alloc: ", lvl);
1951			}
1952			pr_cont("[%0*d] ", group_width, group);
1953
1954			for (unit_end += upa; unit < unit_end; unit++)
1955				if (gi->cpu_map[unit] != NR_CPUS)
1956					pr_cont("%0*d ",
1957						cpu_width, gi->cpu_map[unit]);
1958				else
1959					pr_cont("%s ", empty_str);
1960		}
1961	}
1962	pr_cont("\n");
1963}
1964
1965/**
1966 * pcpu_setup_first_chunk - initialize the first percpu chunk
1967 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1968 * @base_addr: mapped address
1969 *
1970 * Initialize the first percpu chunk which contains the kernel static
1971 * perpcu area.  This function is to be called from arch percpu area
1972 * setup path.
1973 *
1974 * @ai contains all information necessary to initialize the first
1975 * chunk and prime the dynamic percpu allocator.
1976 *
1977 * @ai->static_size is the size of static percpu area.
1978 *
1979 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1980 * reserve after the static area in the first chunk.  This reserves
1981 * the first chunk such that it's available only through reserved
1982 * percpu allocation.  This is primarily used to serve module percpu
1983 * static areas on architectures where the addressing model has
1984 * limited offset range for symbol relocations to guarantee module
1985 * percpu symbols fall inside the relocatable range.
1986 *
1987 * @ai->dyn_size determines the number of bytes available for dynamic
1988 * allocation in the first chunk.  The area between @ai->static_size +
1989 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1990 *
1991 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1992 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1993 * @ai->dyn_size.
1994 *
1995 * @ai->atom_size is the allocation atom size and used as alignment
1996 * for vm areas.
1997 *
1998 * @ai->alloc_size is the allocation size and always multiple of
1999 * @ai->atom_size.  This is larger than @ai->atom_size if
2000 * @ai->unit_size is larger than @ai->atom_size.
2001 *
2002 * @ai->nr_groups and @ai->groups describe virtual memory layout of
2003 * percpu areas.  Units which should be colocated are put into the
2004 * same group.  Dynamic VM areas will be allocated according to these
2005 * groupings.  If @ai->nr_groups is zero, a single group containing
2006 * all units is assumed.
2007 *
2008 * The caller should have mapped the first chunk at @base_addr and
2009 * copied static data to each unit.
2010 *
2011 * The first chunk will always contain a static and a dynamic region.
2012 * However, the static region is not managed by any chunk.  If the first
2013 * chunk also contains a reserved region, it is served by two chunks -
2014 * one for the reserved region and one for the dynamic region.  They
2015 * share the same vm, but use offset regions in the area allocation map.
2016 * The chunk serving the dynamic region is circulated in the chunk slots
2017 * and available for dynamic allocation like any other chunk.
2018 *
2019 * RETURNS:
2020 * 0 on success, -errno on failure.
2021 */
2022int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
2023				  void *base_addr)
2024{
2025	size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2026	size_t static_size, dyn_size;
2027	struct pcpu_chunk *chunk;
 
 
 
2028	unsigned long *group_offsets;
2029	size_t *group_sizes;
2030	unsigned long *unit_off;
2031	unsigned int cpu;
2032	int *unit_map;
2033	int group, unit, i;
2034	int map_size;
2035	unsigned long tmp_addr;
2036
2037#define PCPU_SETUP_BUG_ON(cond)	do {					\
2038	if (unlikely(cond)) {						\
2039		pr_emerg("failed to initialize, %s\n", #cond);		\
2040		pr_emerg("cpu_possible_mask=%*pb\n",			\
2041			 cpumask_pr_args(cpu_possible_mask));		\
2042		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
2043		BUG();							\
2044	}								\
2045} while (0)
2046
2047	/* sanity checks */
2048	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
2049#ifdef CONFIG_SMP
2050	PCPU_SETUP_BUG_ON(!ai->static_size);
2051	PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
2052#endif
2053	PCPU_SETUP_BUG_ON(!base_addr);
2054	PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
2055	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
2056	PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
2057	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
2058	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
2059	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
2060	PCPU_SETUP_BUG_ON(!ai->dyn_size);
2061	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
2062	PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2063			    IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
2064	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
2065
2066	/* process group information and build config tables accordingly */
2067	group_offsets = memblock_virt_alloc(ai->nr_groups *
2068					     sizeof(group_offsets[0]), 0);
2069	group_sizes = memblock_virt_alloc(ai->nr_groups *
2070					   sizeof(group_sizes[0]), 0);
2071	unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
2072	unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
2073
2074	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
2075		unit_map[cpu] = UINT_MAX;
2076
2077	pcpu_low_unit_cpu = NR_CPUS;
2078	pcpu_high_unit_cpu = NR_CPUS;
2079
2080	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2081		const struct pcpu_group_info *gi = &ai->groups[group];
2082
2083		group_offsets[group] = gi->base_offset;
2084		group_sizes[group] = gi->nr_units * ai->unit_size;
2085
2086		for (i = 0; i < gi->nr_units; i++) {
2087			cpu = gi->cpu_map[i];
2088			if (cpu == NR_CPUS)
2089				continue;
2090
2091			PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
2092			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2093			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
2094
2095			unit_map[cpu] = unit + i;
2096			unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2097
2098			/* determine low/high unit_cpu */
2099			if (pcpu_low_unit_cpu == NR_CPUS ||
2100			    unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2101				pcpu_low_unit_cpu = cpu;
2102			if (pcpu_high_unit_cpu == NR_CPUS ||
2103			    unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2104				pcpu_high_unit_cpu = cpu;
2105		}
2106	}
2107	pcpu_nr_units = unit;
2108
2109	for_each_possible_cpu(cpu)
2110		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2111
2112	/* we're done parsing the input, undefine BUG macro and dump config */
2113#undef PCPU_SETUP_BUG_ON
2114	pcpu_dump_alloc_info(KERN_DEBUG, ai);
2115
2116	pcpu_nr_groups = ai->nr_groups;
2117	pcpu_group_offsets = group_offsets;
2118	pcpu_group_sizes = group_sizes;
2119	pcpu_unit_map = unit_map;
2120	pcpu_unit_offsets = unit_off;
2121
2122	/* determine basic parameters */
2123	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
2124	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
2125	pcpu_atom_size = ai->atom_size;
2126	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
2127		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
2128
2129	pcpu_stats_save_ai(ai);
2130
2131	/*
2132	 * Allocate chunk slots.  The additional last slot is for
2133	 * empty chunks.
2134	 */
2135	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
2136	pcpu_slot = memblock_virt_alloc(
2137			pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
2138	for (i = 0; i < pcpu_nr_slots; i++)
2139		INIT_LIST_HEAD(&pcpu_slot[i]);
2140
2141	/*
2142	 * The end of the static region needs to be aligned with the
2143	 * minimum allocation size as this offsets the reserved and
2144	 * dynamic region.  The first chunk ends page aligned by
2145	 * expanding the dynamic region, therefore the dynamic region
2146	 * can be shrunk to compensate while still staying above the
2147	 * configured sizes.
2148	 */
2149	static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2150	dyn_size = ai->dyn_size - (static_size - ai->static_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2151
2152	/*
2153	 * Initialize first chunk.
2154	 * If the reserved_size is non-zero, this initializes the reserved
2155	 * chunk.  If the reserved_size is zero, the reserved chunk is NULL
2156	 * and the dynamic region is initialized here.  The first chunk,
2157	 * pcpu_first_chunk, will always point to the chunk that serves
2158	 * the dynamic region.
2159	 */
2160	tmp_addr = (unsigned long)base_addr + static_size;
2161	map_size = ai->reserved_size ?: dyn_size;
2162	chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2163
2164	/* init dynamic chunk if necessary */
2165	if (ai->reserved_size) {
2166		pcpu_reserved_chunk = chunk;
2167
2168		tmp_addr = (unsigned long)base_addr + static_size +
2169			   ai->reserved_size;
2170		map_size = dyn_size;
2171		chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
 
 
 
 
 
2172	}
2173
2174	/* link the first chunk in */
2175	pcpu_first_chunk = chunk;
2176	pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
2177	pcpu_chunk_relocate(pcpu_first_chunk, -1);
2178
2179	pcpu_stats_chunk_alloc();
2180	trace_percpu_create_chunk(base_addr);
2181
2182	/* we're done */
2183	pcpu_base_addr = base_addr;
2184	return 0;
2185}
2186
2187#ifdef CONFIG_SMP
2188
2189const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
2190	[PCPU_FC_AUTO]	= "auto",
2191	[PCPU_FC_EMBED]	= "embed",
2192	[PCPU_FC_PAGE]	= "page",
2193};
2194
2195enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
2196
2197static int __init percpu_alloc_setup(char *str)
2198{
2199	if (!str)
2200		return -EINVAL;
2201
2202	if (0)
2203		/* nada */;
2204#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2205	else if (!strcmp(str, "embed"))
2206		pcpu_chosen_fc = PCPU_FC_EMBED;
2207#endif
2208#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2209	else if (!strcmp(str, "page"))
2210		pcpu_chosen_fc = PCPU_FC_PAGE;
2211#endif
2212	else
2213		pr_warn("unknown allocator %s specified\n", str);
2214
2215	return 0;
2216}
2217early_param("percpu_alloc", percpu_alloc_setup);
2218
2219/*
2220 * pcpu_embed_first_chunk() is used by the generic percpu setup.
2221 * Build it if needed by the arch config or the generic setup is going
2222 * to be used.
2223 */
2224#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2225	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2226#define BUILD_EMBED_FIRST_CHUNK
2227#endif
2228
2229/* build pcpu_page_first_chunk() iff needed by the arch config */
2230#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2231#define BUILD_PAGE_FIRST_CHUNK
2232#endif
2233
2234/* pcpu_build_alloc_info() is used by both embed and page first chunk */
2235#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2236/**
2237 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2238 * @reserved_size: the size of reserved percpu area in bytes
2239 * @dyn_size: minimum free size for dynamic allocation in bytes
2240 * @atom_size: allocation atom size
2241 * @cpu_distance_fn: callback to determine distance between cpus, optional
2242 *
2243 * This function determines grouping of units, their mappings to cpus
2244 * and other parameters considering needed percpu size, allocation
2245 * atom size and distances between CPUs.
2246 *
2247 * Groups are always multiples of atom size and CPUs which are of
2248 * LOCAL_DISTANCE both ways are grouped together and share space for
2249 * units in the same group.  The returned configuration is guaranteed
2250 * to have CPUs on different nodes on different groups and >=75% usage
2251 * of allocated virtual address space.
2252 *
2253 * RETURNS:
2254 * On success, pointer to the new allocation_info is returned.  On
2255 * failure, ERR_PTR value is returned.
2256 */
2257static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
2258				size_t reserved_size, size_t dyn_size,
2259				size_t atom_size,
2260				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2261{
2262	static int group_map[NR_CPUS] __initdata;
2263	static int group_cnt[NR_CPUS] __initdata;
2264	const size_t static_size = __per_cpu_end - __per_cpu_start;
2265	int nr_groups = 1, nr_units = 0;
2266	size_t size_sum, min_unit_size, alloc_size;
2267	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
2268	int last_allocs, group, unit;
2269	unsigned int cpu, tcpu;
2270	struct pcpu_alloc_info *ai;
2271	unsigned int *cpu_map;
2272
2273	/* this function may be called multiple times */
2274	memset(group_map, 0, sizeof(group_map));
2275	memset(group_cnt, 0, sizeof(group_cnt));
2276
2277	/* calculate size_sum and ensure dyn_size is enough for early alloc */
2278	size_sum = PFN_ALIGN(static_size + reserved_size +
2279			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2280	dyn_size = size_sum - static_size - reserved_size;
2281
2282	/*
2283	 * Determine min_unit_size, alloc_size and max_upa such that
2284	 * alloc_size is multiple of atom_size and is the smallest
2285	 * which can accommodate 4k aligned segments which are equal to
2286	 * or larger than min_unit_size.
2287	 */
2288	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2289
2290	/* determine the maximum # of units that can fit in an allocation */
2291	alloc_size = roundup(min_unit_size, atom_size);
2292	upa = alloc_size / min_unit_size;
2293	while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2294		upa--;
2295	max_upa = upa;
2296
2297	/* group cpus according to their proximity */
2298	for_each_possible_cpu(cpu) {
2299		group = 0;
2300	next_group:
2301		for_each_possible_cpu(tcpu) {
2302			if (cpu == tcpu)
2303				break;
2304			if (group_map[tcpu] == group && cpu_distance_fn &&
2305			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
2306			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
2307				group++;
2308				nr_groups = max(nr_groups, group + 1);
2309				goto next_group;
2310			}
2311		}
2312		group_map[cpu] = group;
2313		group_cnt[group]++;
2314	}
2315
2316	/*
2317	 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2318	 * Expand the unit_size until we use >= 75% of the units allocated.
2319	 * Related to atom_size, which could be much larger than the unit_size.
2320	 */
2321	last_allocs = INT_MAX;
2322	for (upa = max_upa; upa; upa--) {
2323		int allocs = 0, wasted = 0;
2324
2325		if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2326			continue;
2327
2328		for (group = 0; group < nr_groups; group++) {
2329			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2330			allocs += this_allocs;
2331			wasted += this_allocs * upa - group_cnt[group];
2332		}
2333
2334		/*
2335		 * Don't accept if wastage is over 1/3.  The
2336		 * greater-than comparison ensures upa==1 always
2337		 * passes the following check.
2338		 */
2339		if (wasted > num_possible_cpus() / 3)
2340			continue;
2341
2342		/* and then don't consume more memory */
2343		if (allocs > last_allocs)
2344			break;
2345		last_allocs = allocs;
2346		best_upa = upa;
2347	}
2348	upa = best_upa;
2349
2350	/* allocate and fill alloc_info */
2351	for (group = 0; group < nr_groups; group++)
2352		nr_units += roundup(group_cnt[group], upa);
2353
2354	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2355	if (!ai)
2356		return ERR_PTR(-ENOMEM);
2357	cpu_map = ai->groups[0].cpu_map;
2358
2359	for (group = 0; group < nr_groups; group++) {
2360		ai->groups[group].cpu_map = cpu_map;
2361		cpu_map += roundup(group_cnt[group], upa);
2362	}
2363
2364	ai->static_size = static_size;
2365	ai->reserved_size = reserved_size;
2366	ai->dyn_size = dyn_size;
2367	ai->unit_size = alloc_size / upa;
2368	ai->atom_size = atom_size;
2369	ai->alloc_size = alloc_size;
2370
2371	for (group = 0, unit = 0; group_cnt[group]; group++) {
2372		struct pcpu_group_info *gi = &ai->groups[group];
2373
2374		/*
2375		 * Initialize base_offset as if all groups are located
2376		 * back-to-back.  The caller should update this to
2377		 * reflect actual allocation.
2378		 */
2379		gi->base_offset = unit * ai->unit_size;
2380
2381		for_each_possible_cpu(cpu)
2382			if (group_map[cpu] == group)
2383				gi->cpu_map[gi->nr_units++] = cpu;
2384		gi->nr_units = roundup(gi->nr_units, upa);
2385		unit += gi->nr_units;
2386	}
2387	BUG_ON(unit != nr_units);
2388
2389	return ai;
2390}
2391#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2392
2393#if defined(BUILD_EMBED_FIRST_CHUNK)
2394/**
2395 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
2396 * @reserved_size: the size of reserved percpu area in bytes
2397 * @dyn_size: minimum free size for dynamic allocation in bytes
2398 * @atom_size: allocation atom size
2399 * @cpu_distance_fn: callback to determine distance between cpus, optional
2400 * @alloc_fn: function to allocate percpu page
2401 * @free_fn: function to free percpu page
2402 *
2403 * This is a helper to ease setting up embedded first percpu chunk and
2404 * can be called where pcpu_setup_first_chunk() is expected.
2405 *
2406 * If this function is used to setup the first chunk, it is allocated
2407 * by calling @alloc_fn and used as-is without being mapped into
2408 * vmalloc area.  Allocations are always whole multiples of @atom_size
2409 * aligned to @atom_size.
2410 *
2411 * This enables the first chunk to piggy back on the linear physical
2412 * mapping which often uses larger page size.  Please note that this
2413 * can result in very sparse cpu->unit mapping on NUMA machines thus
2414 * requiring large vmalloc address space.  Don't use this allocator if
2415 * vmalloc space is not orders of magnitude larger than distances
2416 * between node memory addresses (ie. 32bit NUMA machines).
2417 *
2418 * @dyn_size specifies the minimum dynamic area size.
2419 *
2420 * If the needed size is smaller than the minimum or specified unit
2421 * size, the leftover is returned using @free_fn.
2422 *
2423 * RETURNS:
2424 * 0 on success, -errno on failure.
2425 */
2426int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
2427				  size_t atom_size,
2428				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
2429				  pcpu_fc_alloc_fn_t alloc_fn,
2430				  pcpu_fc_free_fn_t free_fn)
2431{
2432	void *base = (void *)ULONG_MAX;
2433	void **areas = NULL;
2434	struct pcpu_alloc_info *ai;
2435	size_t size_sum, areas_size;
2436	unsigned long max_distance;
2437	int group, i, highest_group, rc;
2438
2439	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
2440				   cpu_distance_fn);
2441	if (IS_ERR(ai))
2442		return PTR_ERR(ai);
2443
2444	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2445	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
2446
2447	areas = memblock_virt_alloc_nopanic(areas_size, 0);
2448	if (!areas) {
2449		rc = -ENOMEM;
2450		goto out_free;
2451	}
2452
2453	/* allocate, copy and determine base address & max_distance */
2454	highest_group = 0;
2455	for (group = 0; group < ai->nr_groups; group++) {
2456		struct pcpu_group_info *gi = &ai->groups[group];
2457		unsigned int cpu = NR_CPUS;
2458		void *ptr;
2459
2460		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2461			cpu = gi->cpu_map[i];
2462		BUG_ON(cpu == NR_CPUS);
2463
2464		/* allocate space for the whole group */
2465		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2466		if (!ptr) {
2467			rc = -ENOMEM;
2468			goto out_free_areas;
2469		}
2470		/* kmemleak tracks the percpu allocations separately */
2471		kmemleak_free(ptr);
2472		areas[group] = ptr;
2473
2474		base = min(ptr, base);
2475		if (ptr > areas[highest_group])
2476			highest_group = group;
2477	}
2478	max_distance = areas[highest_group] - base;
2479	max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2480
2481	/* warn if maximum distance is further than 75% of vmalloc space */
2482	if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2483		pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2484				max_distance, VMALLOC_TOTAL);
2485#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2486		/* and fail if we have fallback */
2487		rc = -EINVAL;
2488		goto out_free_areas;
2489#endif
2490	}
2491
2492	/*
2493	 * Copy data and free unused parts.  This should happen after all
2494	 * allocations are complete; otherwise, we may end up with
2495	 * overlapping groups.
2496	 */
2497	for (group = 0; group < ai->nr_groups; group++) {
2498		struct pcpu_group_info *gi = &ai->groups[group];
2499		void *ptr = areas[group];
2500
2501		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2502			if (gi->cpu_map[i] == NR_CPUS) {
2503				/* unused unit, free whole */
2504				free_fn(ptr, ai->unit_size);
2505				continue;
2506			}
2507			/* copy and return the unused part */
2508			memcpy(ptr, __per_cpu_load, ai->static_size);
2509			free_fn(ptr + size_sum, ai->unit_size - size_sum);
2510		}
2511	}
2512
2513	/* base address is now known, determine group base offsets */
 
2514	for (group = 0; group < ai->nr_groups; group++) {
2515		ai->groups[group].base_offset = areas[group] - base;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2516	}
2517
2518	pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2519		PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2520		ai->dyn_size, ai->unit_size);
2521
2522	rc = pcpu_setup_first_chunk(ai, base);
2523	goto out_free;
2524
2525out_free_areas:
2526	for (group = 0; group < ai->nr_groups; group++)
2527		if (areas[group])
2528			free_fn(areas[group],
2529				ai->groups[group].nr_units * ai->unit_size);
2530out_free:
2531	pcpu_free_alloc_info(ai);
2532	if (areas)
2533		memblock_free_early(__pa(areas), areas_size);
2534	return rc;
2535}
2536#endif /* BUILD_EMBED_FIRST_CHUNK */
2537
2538#ifdef BUILD_PAGE_FIRST_CHUNK
2539/**
2540 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2541 * @reserved_size: the size of reserved percpu area in bytes
2542 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2543 * @free_fn: function to free percpu page, always called with PAGE_SIZE
2544 * @populate_pte_fn: function to populate pte
2545 *
2546 * This is a helper to ease setting up page-remapped first percpu
2547 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2548 *
2549 * This is the basic allocator.  Static percpu area is allocated
2550 * page-by-page into vmalloc area.
2551 *
2552 * RETURNS:
2553 * 0 on success, -errno on failure.
2554 */
2555int __init pcpu_page_first_chunk(size_t reserved_size,
2556				 pcpu_fc_alloc_fn_t alloc_fn,
2557				 pcpu_fc_free_fn_t free_fn,
2558				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2559{
2560	static struct vm_struct vm;
2561	struct pcpu_alloc_info *ai;
2562	char psize_str[16];
2563	int unit_pages;
2564	size_t pages_size;
2565	struct page **pages;
2566	int unit, i, j, rc;
2567	int upa;
2568	int nr_g0_units;
2569
2570	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2571
2572	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2573	if (IS_ERR(ai))
2574		return PTR_ERR(ai);
2575	BUG_ON(ai->nr_groups != 1);
2576	upa = ai->alloc_size/ai->unit_size;
2577	nr_g0_units = roundup(num_possible_cpus(), upa);
2578	if (unlikely(WARN_ON(ai->groups[0].nr_units != nr_g0_units))) {
2579		pcpu_free_alloc_info(ai);
2580		return -EINVAL;
2581	}
2582
2583	unit_pages = ai->unit_size >> PAGE_SHIFT;
2584
2585	/* unaligned allocations can't be freed, round up to page size */
2586	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2587			       sizeof(pages[0]));
2588	pages = memblock_virt_alloc(pages_size, 0);
2589
2590	/* allocate pages */
2591	j = 0;
2592	for (unit = 0; unit < num_possible_cpus(); unit++) {
2593		unsigned int cpu = ai->groups[0].cpu_map[unit];
2594		for (i = 0; i < unit_pages; i++) {
 
2595			void *ptr;
2596
2597			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2598			if (!ptr) {
2599				pr_warn("failed to allocate %s page for cpu%u\n",
2600						psize_str, cpu);
2601				goto enomem;
2602			}
2603			/* kmemleak tracks the percpu allocations separately */
2604			kmemleak_free(ptr);
2605			pages[j++] = virt_to_page(ptr);
2606		}
2607	}
2608
2609	/* allocate vm area, map the pages and copy static data */
2610	vm.flags = VM_ALLOC;
2611	vm.size = num_possible_cpus() * ai->unit_size;
2612	vm_area_register_early(&vm, PAGE_SIZE);
2613
2614	for (unit = 0; unit < num_possible_cpus(); unit++) {
2615		unsigned long unit_addr =
2616			(unsigned long)vm.addr + unit * ai->unit_size;
2617
2618		for (i = 0; i < unit_pages; i++)
2619			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2620
2621		/* pte already populated, the following shouldn't fail */
2622		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2623				      unit_pages);
2624		if (rc < 0)
2625			panic("failed to map percpu area, err=%d\n", rc);
2626
2627		/*
2628		 * FIXME: Archs with virtual cache should flush local
2629		 * cache for the linear mapping here - something
2630		 * equivalent to flush_cache_vmap() on the local cpu.
2631		 * flush_cache_vmap() can't be used as most supporting
2632		 * data structures are not set up yet.
2633		 */
2634
2635		/* copy static data */
2636		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2637	}
2638
2639	/* we're ready, commit */
2640	pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
2641		unit_pages, psize_str, vm.addr, ai->static_size,
2642		ai->reserved_size, ai->dyn_size);
2643
2644	rc = pcpu_setup_first_chunk(ai, vm.addr);
2645	goto out_free_ar;
2646
2647enomem:
2648	while (--j >= 0)
2649		free_fn(page_address(pages[j]), PAGE_SIZE);
2650	rc = -ENOMEM;
2651out_free_ar:
2652	memblock_free_early(__pa(pages), pages_size);
2653	pcpu_free_alloc_info(ai);
2654	return rc;
2655}
2656#endif /* BUILD_PAGE_FIRST_CHUNK */
2657
2658#ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA
2659/*
2660 * Generic SMP percpu area setup.
2661 *
2662 * The embedding helper is used because its behavior closely resembles
2663 * the original non-dynamic generic percpu area setup.  This is
2664 * important because many archs have addressing restrictions and might
2665 * fail if the percpu area is located far away from the previous
2666 * location.  As an added bonus, in non-NUMA cases, embedding is
2667 * generally a good idea TLB-wise because percpu area can piggy back
2668 * on the physical linear memory mapping which uses large page
2669 * mappings on applicable archs.
2670 */
2671unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2672EXPORT_SYMBOL(__per_cpu_offset);
2673
2674static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2675				       size_t align)
2676{
2677	return  memblock_virt_alloc_from_nopanic(
2678			size, align, __pa(MAX_DMA_ADDRESS));
2679}
2680
2681static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2682{
2683	memblock_free_early(__pa(ptr), size);
2684}
2685
2686void __init setup_per_cpu_areas(void)
2687{
2688	unsigned long delta;
2689	unsigned int cpu;
2690	int rc;
2691
2692	/*
2693	 * Always reserve area for module percpu variables.  That's
2694	 * what the legacy allocator did.
2695	 */
2696	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2697				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2698				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2699	if (rc < 0)
2700		panic("Failed to initialize percpu areas.");
2701
2702	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2703	for_each_possible_cpu(cpu)
2704		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2705}
2706#endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2707
2708#else	/* CONFIG_SMP */
2709
2710/*
2711 * UP percpu area setup.
2712 *
2713 * UP always uses km-based percpu allocator with identity mapping.
2714 * Static percpu variables are indistinguishable from the usual static
2715 * variables and don't require any special preparation.
2716 */
2717void __init setup_per_cpu_areas(void)
2718{
2719	const size_t unit_size =
2720		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2721					 PERCPU_DYNAMIC_RESERVE));
2722	struct pcpu_alloc_info *ai;
2723	void *fc;
2724
2725	ai = pcpu_alloc_alloc_info(1, 1);
2726	fc = memblock_virt_alloc_from_nopanic(unit_size,
2727					      PAGE_SIZE,
2728					      __pa(MAX_DMA_ADDRESS));
2729	if (!ai || !fc)
2730		panic("Failed to allocate memory for percpu areas.");
2731	/* kmemleak tracks the percpu allocations separately */
2732	kmemleak_free(fc);
2733
2734	ai->dyn_size = unit_size;
2735	ai->unit_size = unit_size;
2736	ai->atom_size = unit_size;
2737	ai->alloc_size = unit_size;
2738	ai->groups[0].nr_units = 1;
2739	ai->groups[0].cpu_map[0] = 0;
2740
2741	if (pcpu_setup_first_chunk(ai, fc) < 0)
2742		panic("Failed to initialize percpu areas.");
2743	pcpu_free_alloc_info(ai);
2744}
2745
2746#endif	/* CONFIG_SMP */
2747
2748/*
2749 * Percpu allocator is initialized early during boot when neither slab or
2750 * workqueue is available.  Plug async management until everything is up
2751 * and running.
 
2752 */
2753static int __init percpu_enable_async(void)
2754{
2755	pcpu_async_enabled = true;
2756	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2757}
2758subsys_initcall(percpu_enable_async);