Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 * Implement the default iomap interfaces
  3 *
  4 * (C) Copyright 2004 Linus Torvalds
  5 */
  6#include <linux/pci.h>
  7#include <linux/io.h>
  8
  9#include <linux/module.h>
 10
 11/*
 12 * Read/write from/to an (offsettable) iomem cookie. It might be a PIO
 13 * access or a MMIO access, these functions don't care. The info is
 14 * encoded in the hardware mapping set up by the mapping functions
 15 * (or the cookie itself, depending on implementation and hw).
 16 *
 17 * The generic routines don't assume any hardware mappings, and just
 18 * encode the PIO/MMIO as part of the cookie. They coldly assume that
 19 * the MMIO IO mappings are not in the low address range.
 20 *
 21 * Architectures for which this is not true can't use this generic
 22 * implementation and should do their own copy.
 23 */
 24
 25#ifndef HAVE_ARCH_PIO_SIZE
 26/*
 27 * We encode the physical PIO addresses (0-0xffff) into the
 28 * pointer by offsetting them with a constant (0x10000) and
 29 * assuming that all the low addresses are always PIO. That means
 30 * we can do some sanity checks on the low bits, and don't
 31 * need to just take things for granted.
 32 */
 33#define PIO_OFFSET	0x10000UL
 34#define PIO_MASK	0x0ffffUL
 35#define PIO_RESERVED	0x40000UL
 36#endif
 37
 38static void bad_io_access(unsigned long port, const char *access)
 39{
 40	static int count = 10;
 41	if (count) {
 42		count--;
 43		WARN(1, KERN_ERR "Bad IO access at port %#lx (%s)\n", port, access);
 44	}
 45}
 46
 47/*
 48 * Ugly macros are a way of life.
 49 */
 50#define IO_COND(addr, is_pio, is_mmio) do {			\
 51	unsigned long port = (unsigned long __force)addr;	\
 52	if (port >= PIO_RESERVED) {				\
 53		is_mmio;					\
 54	} else if (port > PIO_OFFSET) {				\
 55		port &= PIO_MASK;				\
 56		is_pio;						\
 57	} else							\
 58		bad_io_access(port, #is_pio );			\
 59} while (0)
 60
 61#ifndef pio_read16be
 62#define pio_read16be(port) swab16(inw(port))
 63#define pio_read32be(port) swab32(inl(port))
 64#endif
 65
 66#ifndef mmio_read16be
 67#define mmio_read16be(addr) be16_to_cpu(__raw_readw(addr))
 68#define mmio_read32be(addr) be32_to_cpu(__raw_readl(addr))
 69#endif
 70
 71unsigned int ioread8(void __iomem *addr)
 72{
 73	IO_COND(addr, return inb(port), return readb(addr));
 74	return 0xff;
 75}
 76unsigned int ioread16(void __iomem *addr)
 77{
 78	IO_COND(addr, return inw(port), return readw(addr));
 79	return 0xffff;
 80}
 81unsigned int ioread16be(void __iomem *addr)
 82{
 83	IO_COND(addr, return pio_read16be(port), return mmio_read16be(addr));
 84	return 0xffff;
 85}
 86unsigned int ioread32(void __iomem *addr)
 87{
 88	IO_COND(addr, return inl(port), return readl(addr));
 89	return 0xffffffff;
 90}
 91unsigned int ioread32be(void __iomem *addr)
 92{
 93	IO_COND(addr, return pio_read32be(port), return mmio_read32be(addr));
 94	return 0xffffffff;
 95}
 96EXPORT_SYMBOL(ioread8);
 97EXPORT_SYMBOL(ioread16);
 98EXPORT_SYMBOL(ioread16be);
 99EXPORT_SYMBOL(ioread32);
100EXPORT_SYMBOL(ioread32be);
101
102#ifndef pio_write16be
103#define pio_write16be(val,port) outw(swab16(val),port)
104#define pio_write32be(val,port) outl(swab32(val),port)
105#endif
106
107#ifndef mmio_write16be
108#define mmio_write16be(val,port) __raw_writew(be16_to_cpu(val),port)
109#define mmio_write32be(val,port) __raw_writel(be32_to_cpu(val),port)
110#endif
111
112void iowrite8(u8 val, void __iomem *addr)
113{
114	IO_COND(addr, outb(val,port), writeb(val, addr));
115}
116void iowrite16(u16 val, void __iomem *addr)
117{
118	IO_COND(addr, outw(val,port), writew(val, addr));
119}
120void iowrite16be(u16 val, void __iomem *addr)
121{
122	IO_COND(addr, pio_write16be(val,port), mmio_write16be(val, addr));
123}
124void iowrite32(u32 val, void __iomem *addr)
125{
126	IO_COND(addr, outl(val,port), writel(val, addr));
127}
128void iowrite32be(u32 val, void __iomem *addr)
129{
130	IO_COND(addr, pio_write32be(val,port), mmio_write32be(val, addr));
131}
132EXPORT_SYMBOL(iowrite8);
133EXPORT_SYMBOL(iowrite16);
134EXPORT_SYMBOL(iowrite16be);
135EXPORT_SYMBOL(iowrite32);
136EXPORT_SYMBOL(iowrite32be);
137
138/*
139 * These are the "repeat MMIO read/write" functions.
140 * Note the "__raw" accesses, since we don't want to
141 * convert to CPU byte order. We write in "IO byte
142 * order" (we also don't have IO barriers).
143 */
144#ifndef mmio_insb
145static inline void mmio_insb(void __iomem *addr, u8 *dst, int count)
146{
147	while (--count >= 0) {
148		u8 data = __raw_readb(addr);
149		*dst = data;
150		dst++;
151	}
152}
153static inline void mmio_insw(void __iomem *addr, u16 *dst, int count)
154{
155	while (--count >= 0) {
156		u16 data = __raw_readw(addr);
157		*dst = data;
158		dst++;
159	}
160}
161static inline void mmio_insl(void __iomem *addr, u32 *dst, int count)
162{
163	while (--count >= 0) {
164		u32 data = __raw_readl(addr);
165		*dst = data;
166		dst++;
167	}
168}
169#endif
170
171#ifndef mmio_outsb
172static inline void mmio_outsb(void __iomem *addr, const u8 *src, int count)
173{
174	while (--count >= 0) {
175		__raw_writeb(*src, addr);
176		src++;
177	}
178}
179static inline void mmio_outsw(void __iomem *addr, const u16 *src, int count)
180{
181	while (--count >= 0) {
182		__raw_writew(*src, addr);
183		src++;
184	}
185}
186static inline void mmio_outsl(void __iomem *addr, const u32 *src, int count)
187{
188	while (--count >= 0) {
189		__raw_writel(*src, addr);
190		src++;
191	}
192}
193#endif
194
195void ioread8_rep(void __iomem *addr, void *dst, unsigned long count)
196{
197	IO_COND(addr, insb(port,dst,count), mmio_insb(addr, dst, count));
198}
199void ioread16_rep(void __iomem *addr, void *dst, unsigned long count)
200{
201	IO_COND(addr, insw(port,dst,count), mmio_insw(addr, dst, count));
202}
203void ioread32_rep(void __iomem *addr, void *dst, unsigned long count)
204{
205	IO_COND(addr, insl(port,dst,count), mmio_insl(addr, dst, count));
206}
207EXPORT_SYMBOL(ioread8_rep);
208EXPORT_SYMBOL(ioread16_rep);
209EXPORT_SYMBOL(ioread32_rep);
210
211void iowrite8_rep(void __iomem *addr, const void *src, unsigned long count)
212{
213	IO_COND(addr, outsb(port, src, count), mmio_outsb(addr, src, count));
214}
215void iowrite16_rep(void __iomem *addr, const void *src, unsigned long count)
216{
217	IO_COND(addr, outsw(port, src, count), mmio_outsw(addr, src, count));
218}
219void iowrite32_rep(void __iomem *addr, const void *src, unsigned long count)
220{
221	IO_COND(addr, outsl(port, src,count), mmio_outsl(addr, src, count));
222}
223EXPORT_SYMBOL(iowrite8_rep);
224EXPORT_SYMBOL(iowrite16_rep);
225EXPORT_SYMBOL(iowrite32_rep);
226
227#ifdef CONFIG_HAS_IOPORT
228/* Create a virtual mapping cookie for an IO port range */
229void __iomem *ioport_map(unsigned long port, unsigned int nr)
230{
231	if (port > PIO_MASK)
232		return NULL;
233	return (void __iomem *) (unsigned long) (port + PIO_OFFSET);
234}
235
236void ioport_unmap(void __iomem *addr)
237{
238	/* Nothing to do */
239}
240EXPORT_SYMBOL(ioport_map);
241EXPORT_SYMBOL(ioport_unmap);
242#endif /* CONFIG_HAS_IOPORT */
243
244#ifdef CONFIG_PCI
245/**
246 * pci_iomap - create a virtual mapping cookie for a PCI BAR
247 * @dev: PCI device that owns the BAR
248 * @bar: BAR number
249 * @maxlen: length of the memory to map
250 *
251 * Using this function you will get a __iomem address to your device BAR.
252 * You can access it using ioread*() and iowrite*(). These functions hide
253 * the details if this is a MMIO or PIO address space and will just do what
254 * you expect from them in the correct way.
255 *
256 * @maxlen specifies the maximum length to map. If you want to get access to
257 * the complete BAR without checking for its length first, pass %0 here.
258 * */
259void __iomem *pci_iomap(struct pci_dev *dev, int bar, unsigned long maxlen)
260{
261	resource_size_t start = pci_resource_start(dev, bar);
262	resource_size_t len = pci_resource_len(dev, bar);
263	unsigned long flags = pci_resource_flags(dev, bar);
264
265	if (!len || !start)
266		return NULL;
267	if (maxlen && len > maxlen)
268		len = maxlen;
269	if (flags & IORESOURCE_IO)
270		return ioport_map(start, len);
271	if (flags & IORESOURCE_MEM) {
272		if (flags & IORESOURCE_CACHEABLE)
273			return ioremap(start, len);
274		return ioremap_nocache(start, len);
275	}
276	/* What? */
277	return NULL;
278}
279
280void pci_iounmap(struct pci_dev *dev, void __iomem * addr)
281{
282	IO_COND(addr, /* nothing */, iounmap(addr));
283}
284EXPORT_SYMBOL(pci_iomap);
285EXPORT_SYMBOL(pci_iounmap);
286#endif /* CONFIG_PCI */
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Implement the default iomap interfaces
  4 *
  5 * (C) Copyright 2004 Linus Torvalds
  6 */
  7#include <linux/pci.h>
  8#include <linux/io.h>
  9
 10#include <linux/export.h>
 11
 12/*
 13 * Read/write from/to an (offsettable) iomem cookie. It might be a PIO
 14 * access or a MMIO access, these functions don't care. The info is
 15 * encoded in the hardware mapping set up by the mapping functions
 16 * (or the cookie itself, depending on implementation and hw).
 17 *
 18 * The generic routines don't assume any hardware mappings, and just
 19 * encode the PIO/MMIO as part of the cookie. They coldly assume that
 20 * the MMIO IO mappings are not in the low address range.
 21 *
 22 * Architectures for which this is not true can't use this generic
 23 * implementation and should do their own copy.
 24 */
 25
 26#ifndef HAVE_ARCH_PIO_SIZE
 27/*
 28 * We encode the physical PIO addresses (0-0xffff) into the
 29 * pointer by offsetting them with a constant (0x10000) and
 30 * assuming that all the low addresses are always PIO. That means
 31 * we can do some sanity checks on the low bits, and don't
 32 * need to just take things for granted.
 33 */
 34#define PIO_OFFSET	0x10000UL
 35#define PIO_MASK	0x0ffffUL
 36#define PIO_RESERVED	0x40000UL
 37#endif
 38
 39static void bad_io_access(unsigned long port, const char *access)
 40{
 41	static int count = 10;
 42	if (count) {
 43		count--;
 44		WARN(1, KERN_ERR "Bad IO access at port %#lx (%s)\n", port, access);
 45	}
 46}
 47
 48/*
 49 * Ugly macros are a way of life.
 50 */
 51#define IO_COND(addr, is_pio, is_mmio) do {			\
 52	unsigned long port = (unsigned long __force)addr;	\
 53	if (port >= PIO_RESERVED) {				\
 54		is_mmio;					\
 55	} else if (port > PIO_OFFSET) {				\
 56		port &= PIO_MASK;				\
 57		is_pio;						\
 58	} else							\
 59		bad_io_access(port, #is_pio );			\
 60} while (0)
 61
 62#ifndef pio_read16be
 63#define pio_read16be(port) swab16(inw(port))
 64#define pio_read32be(port) swab32(inl(port))
 65#endif
 66
 67#ifndef mmio_read16be
 68#define mmio_read16be(addr) be16_to_cpu(__raw_readw(addr))
 69#define mmio_read32be(addr) be32_to_cpu(__raw_readl(addr))
 70#endif
 71
 72unsigned int ioread8(void __iomem *addr)
 73{
 74	IO_COND(addr, return inb(port), return readb(addr));
 75	return 0xff;
 76}
 77unsigned int ioread16(void __iomem *addr)
 78{
 79	IO_COND(addr, return inw(port), return readw(addr));
 80	return 0xffff;
 81}
 82unsigned int ioread16be(void __iomem *addr)
 83{
 84	IO_COND(addr, return pio_read16be(port), return mmio_read16be(addr));
 85	return 0xffff;
 86}
 87unsigned int ioread32(void __iomem *addr)
 88{
 89	IO_COND(addr, return inl(port), return readl(addr));
 90	return 0xffffffff;
 91}
 92unsigned int ioread32be(void __iomem *addr)
 93{
 94	IO_COND(addr, return pio_read32be(port), return mmio_read32be(addr));
 95	return 0xffffffff;
 96}
 97EXPORT_SYMBOL(ioread8);
 98EXPORT_SYMBOL(ioread16);
 99EXPORT_SYMBOL(ioread16be);
100EXPORT_SYMBOL(ioread32);
101EXPORT_SYMBOL(ioread32be);
102
103#ifndef pio_write16be
104#define pio_write16be(val,port) outw(swab16(val),port)
105#define pio_write32be(val,port) outl(swab32(val),port)
106#endif
107
108#ifndef mmio_write16be
109#define mmio_write16be(val,port) __raw_writew(be16_to_cpu(val),port)
110#define mmio_write32be(val,port) __raw_writel(be32_to_cpu(val),port)
111#endif
112
113void iowrite8(u8 val, void __iomem *addr)
114{
115	IO_COND(addr, outb(val,port), writeb(val, addr));
116}
117void iowrite16(u16 val, void __iomem *addr)
118{
119	IO_COND(addr, outw(val,port), writew(val, addr));
120}
121void iowrite16be(u16 val, void __iomem *addr)
122{
123	IO_COND(addr, pio_write16be(val,port), mmio_write16be(val, addr));
124}
125void iowrite32(u32 val, void __iomem *addr)
126{
127	IO_COND(addr, outl(val,port), writel(val, addr));
128}
129void iowrite32be(u32 val, void __iomem *addr)
130{
131	IO_COND(addr, pio_write32be(val,port), mmio_write32be(val, addr));
132}
133EXPORT_SYMBOL(iowrite8);
134EXPORT_SYMBOL(iowrite16);
135EXPORT_SYMBOL(iowrite16be);
136EXPORT_SYMBOL(iowrite32);
137EXPORT_SYMBOL(iowrite32be);
138
139/*
140 * These are the "repeat MMIO read/write" functions.
141 * Note the "__raw" accesses, since we don't want to
142 * convert to CPU byte order. We write in "IO byte
143 * order" (we also don't have IO barriers).
144 */
145#ifndef mmio_insb
146static inline void mmio_insb(void __iomem *addr, u8 *dst, int count)
147{
148	while (--count >= 0) {
149		u8 data = __raw_readb(addr);
150		*dst = data;
151		dst++;
152	}
153}
154static inline void mmio_insw(void __iomem *addr, u16 *dst, int count)
155{
156	while (--count >= 0) {
157		u16 data = __raw_readw(addr);
158		*dst = data;
159		dst++;
160	}
161}
162static inline void mmio_insl(void __iomem *addr, u32 *dst, int count)
163{
164	while (--count >= 0) {
165		u32 data = __raw_readl(addr);
166		*dst = data;
167		dst++;
168	}
169}
170#endif
171
172#ifndef mmio_outsb
173static inline void mmio_outsb(void __iomem *addr, const u8 *src, int count)
174{
175	while (--count >= 0) {
176		__raw_writeb(*src, addr);
177		src++;
178	}
179}
180static inline void mmio_outsw(void __iomem *addr, const u16 *src, int count)
181{
182	while (--count >= 0) {
183		__raw_writew(*src, addr);
184		src++;
185	}
186}
187static inline void mmio_outsl(void __iomem *addr, const u32 *src, int count)
188{
189	while (--count >= 0) {
190		__raw_writel(*src, addr);
191		src++;
192	}
193}
194#endif
195
196void ioread8_rep(void __iomem *addr, void *dst, unsigned long count)
197{
198	IO_COND(addr, insb(port,dst,count), mmio_insb(addr, dst, count));
199}
200void ioread16_rep(void __iomem *addr, void *dst, unsigned long count)
201{
202	IO_COND(addr, insw(port,dst,count), mmio_insw(addr, dst, count));
203}
204void ioread32_rep(void __iomem *addr, void *dst, unsigned long count)
205{
206	IO_COND(addr, insl(port,dst,count), mmio_insl(addr, dst, count));
207}
208EXPORT_SYMBOL(ioread8_rep);
209EXPORT_SYMBOL(ioread16_rep);
210EXPORT_SYMBOL(ioread32_rep);
211
212void iowrite8_rep(void __iomem *addr, const void *src, unsigned long count)
213{
214	IO_COND(addr, outsb(port, src, count), mmio_outsb(addr, src, count));
215}
216void iowrite16_rep(void __iomem *addr, const void *src, unsigned long count)
217{
218	IO_COND(addr, outsw(port, src, count), mmio_outsw(addr, src, count));
219}
220void iowrite32_rep(void __iomem *addr, const void *src, unsigned long count)
221{
222	IO_COND(addr, outsl(port, src,count), mmio_outsl(addr, src, count));
223}
224EXPORT_SYMBOL(iowrite8_rep);
225EXPORT_SYMBOL(iowrite16_rep);
226EXPORT_SYMBOL(iowrite32_rep);
227
228#ifdef CONFIG_HAS_IOPORT_MAP
229/* Create a virtual mapping cookie for an IO port range */
230void __iomem *ioport_map(unsigned long port, unsigned int nr)
231{
232	if (port > PIO_MASK)
233		return NULL;
234	return (void __iomem *) (unsigned long) (port + PIO_OFFSET);
235}
236
237void ioport_unmap(void __iomem *addr)
238{
239	/* Nothing to do */
240}
241EXPORT_SYMBOL(ioport_map);
242EXPORT_SYMBOL(ioport_unmap);
243#endif /* CONFIG_HAS_IOPORT_MAP */
244
245#ifdef CONFIG_PCI
246/* Hide the details if this is a MMIO or PIO address space and just do what
247 * you expect in the correct way. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
248void pci_iounmap(struct pci_dev *dev, void __iomem * addr)
249{
250	IO_COND(addr, /* nothing */, iounmap(addr));
251}
 
252EXPORT_SYMBOL(pci_iounmap);
253#endif /* CONFIG_PCI */