Loading...
1#ifndef _ASM_GENERIC_BITOPS_ATOMIC_H_
2#define _ASM_GENERIC_BITOPS_ATOMIC_H_
3
4#include <asm/types.h>
5#include <asm/system.h>
6
7#ifdef CONFIG_SMP
8#include <asm/spinlock.h>
9#include <asm/cache.h> /* we use L1_CACHE_BYTES */
10
11/* Use an array of spinlocks for our atomic_ts.
12 * Hash function to index into a different SPINLOCK.
13 * Since "a" is usually an address, use one spinlock per cacheline.
14 */
15# define ATOMIC_HASH_SIZE 4
16# define ATOMIC_HASH(a) (&(__atomic_hash[ (((unsigned long) a)/L1_CACHE_BYTES) & (ATOMIC_HASH_SIZE-1) ]))
17
18extern arch_spinlock_t __atomic_hash[ATOMIC_HASH_SIZE] __lock_aligned;
19
20/* Can't use raw_spin_lock_irq because of #include problems, so
21 * this is the substitute */
22#define _atomic_spin_lock_irqsave(l,f) do { \
23 arch_spinlock_t *s = ATOMIC_HASH(l); \
24 local_irq_save(f); \
25 arch_spin_lock(s); \
26} while(0)
27
28#define _atomic_spin_unlock_irqrestore(l,f) do { \
29 arch_spinlock_t *s = ATOMIC_HASH(l); \
30 arch_spin_unlock(s); \
31 local_irq_restore(f); \
32} while(0)
33
34
35#else
36# define _atomic_spin_lock_irqsave(l,f) do { local_irq_save(f); } while (0)
37# define _atomic_spin_unlock_irqrestore(l,f) do { local_irq_restore(f); } while (0)
38#endif
39
40/*
41 * NMI events can occur at any time, including when interrupts have been
42 * disabled by *_irqsave(). So you can get NMI events occurring while a
43 * *_bit function is holding a spin lock. If the NMI handler also wants
44 * to do bit manipulation (and they do) then you can get a deadlock
45 * between the original caller of *_bit() and the NMI handler.
46 *
47 * by Keith Owens
48 */
49
50/**
51 * set_bit - Atomically set a bit in memory
52 * @nr: the bit to set
53 * @addr: the address to start counting from
54 *
55 * This function is atomic and may not be reordered. See __set_bit()
56 * if you do not require the atomic guarantees.
57 *
58 * Note: there are no guarantees that this function will not be reordered
59 * on non x86 architectures, so if you are writing portable code,
60 * make sure not to rely on its reordering guarantees.
61 *
62 * Note that @nr may be almost arbitrarily large; this function is not
63 * restricted to acting on a single-word quantity.
64 */
65static inline void set_bit(int nr, volatile unsigned long *addr)
66{
67 unsigned long mask = BIT_MASK(nr);
68 unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr);
69 unsigned long flags;
70
71 _atomic_spin_lock_irqsave(p, flags);
72 *p |= mask;
73 _atomic_spin_unlock_irqrestore(p, flags);
74}
75
76/**
77 * clear_bit - Clears a bit in memory
78 * @nr: Bit to clear
79 * @addr: Address to start counting from
80 *
81 * clear_bit() is atomic and may not be reordered. However, it does
82 * not contain a memory barrier, so if it is used for locking purposes,
83 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
84 * in order to ensure changes are visible on other processors.
85 */
86static inline void clear_bit(int nr, volatile unsigned long *addr)
87{
88 unsigned long mask = BIT_MASK(nr);
89 unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr);
90 unsigned long flags;
91
92 _atomic_spin_lock_irqsave(p, flags);
93 *p &= ~mask;
94 _atomic_spin_unlock_irqrestore(p, flags);
95}
96
97/**
98 * change_bit - Toggle a bit in memory
99 * @nr: Bit to change
100 * @addr: Address to start counting from
101 *
102 * change_bit() is atomic and may not be reordered. It may be
103 * reordered on other architectures than x86.
104 * Note that @nr may be almost arbitrarily large; this function is not
105 * restricted to acting on a single-word quantity.
106 */
107static inline void change_bit(int nr, volatile unsigned long *addr)
108{
109 unsigned long mask = BIT_MASK(nr);
110 unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr);
111 unsigned long flags;
112
113 _atomic_spin_lock_irqsave(p, flags);
114 *p ^= mask;
115 _atomic_spin_unlock_irqrestore(p, flags);
116}
117
118/**
119 * test_and_set_bit - Set a bit and return its old value
120 * @nr: Bit to set
121 * @addr: Address to count from
122 *
123 * This operation is atomic and cannot be reordered.
124 * It may be reordered on other architectures than x86.
125 * It also implies a memory barrier.
126 */
127static inline int test_and_set_bit(int nr, volatile unsigned long *addr)
128{
129 unsigned long mask = BIT_MASK(nr);
130 unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr);
131 unsigned long old;
132 unsigned long flags;
133
134 _atomic_spin_lock_irqsave(p, flags);
135 old = *p;
136 *p = old | mask;
137 _atomic_spin_unlock_irqrestore(p, flags);
138
139 return (old & mask) != 0;
140}
141
142/**
143 * test_and_clear_bit - Clear a bit and return its old value
144 * @nr: Bit to clear
145 * @addr: Address to count from
146 *
147 * This operation is atomic and cannot be reordered.
148 * It can be reorderdered on other architectures other than x86.
149 * It also implies a memory barrier.
150 */
151static inline int test_and_clear_bit(int nr, volatile unsigned long *addr)
152{
153 unsigned long mask = BIT_MASK(nr);
154 unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr);
155 unsigned long old;
156 unsigned long flags;
157
158 _atomic_spin_lock_irqsave(p, flags);
159 old = *p;
160 *p = old & ~mask;
161 _atomic_spin_unlock_irqrestore(p, flags);
162
163 return (old & mask) != 0;
164}
165
166/**
167 * test_and_change_bit - Change a bit and return its old value
168 * @nr: Bit to change
169 * @addr: Address to count from
170 *
171 * This operation is atomic and cannot be reordered.
172 * It also implies a memory barrier.
173 */
174static inline int test_and_change_bit(int nr, volatile unsigned long *addr)
175{
176 unsigned long mask = BIT_MASK(nr);
177 unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr);
178 unsigned long old;
179 unsigned long flags;
180
181 _atomic_spin_lock_irqsave(p, flags);
182 old = *p;
183 *p = old ^ mask;
184 _atomic_spin_unlock_irqrestore(p, flags);
185
186 return (old & mask) != 0;
187}
188
189#endif /* _ASM_GENERIC_BITOPS_ATOMIC_H */
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_GENERIC_BITOPS_ATOMIC_H_
3#define _ASM_GENERIC_BITOPS_ATOMIC_H_
4
5#include <asm/types.h>
6#include <linux/irqflags.h>
7
8#ifdef CONFIG_SMP
9#include <asm/spinlock.h>
10#include <asm/cache.h> /* we use L1_CACHE_BYTES */
11
12/* Use an array of spinlocks for our atomic_ts.
13 * Hash function to index into a different SPINLOCK.
14 * Since "a" is usually an address, use one spinlock per cacheline.
15 */
16# define ATOMIC_HASH_SIZE 4
17# define ATOMIC_HASH(a) (&(__atomic_hash[ (((unsigned long) a)/L1_CACHE_BYTES) & (ATOMIC_HASH_SIZE-1) ]))
18
19extern arch_spinlock_t __atomic_hash[ATOMIC_HASH_SIZE] __lock_aligned;
20
21/* Can't use raw_spin_lock_irq because of #include problems, so
22 * this is the substitute */
23#define _atomic_spin_lock_irqsave(l,f) do { \
24 arch_spinlock_t *s = ATOMIC_HASH(l); \
25 local_irq_save(f); \
26 arch_spin_lock(s); \
27} while(0)
28
29#define _atomic_spin_unlock_irqrestore(l,f) do { \
30 arch_spinlock_t *s = ATOMIC_HASH(l); \
31 arch_spin_unlock(s); \
32 local_irq_restore(f); \
33} while(0)
34
35
36#else
37# define _atomic_spin_lock_irqsave(l,f) do { local_irq_save(f); } while (0)
38# define _atomic_spin_unlock_irqrestore(l,f) do { local_irq_restore(f); } while (0)
39#endif
40
41/*
42 * NMI events can occur at any time, including when interrupts have been
43 * disabled by *_irqsave(). So you can get NMI events occurring while a
44 * *_bit function is holding a spin lock. If the NMI handler also wants
45 * to do bit manipulation (and they do) then you can get a deadlock
46 * between the original caller of *_bit() and the NMI handler.
47 *
48 * by Keith Owens
49 */
50
51/**
52 * set_bit - Atomically set a bit in memory
53 * @nr: the bit to set
54 * @addr: the address to start counting from
55 *
56 * This function is atomic and may not be reordered. See __set_bit()
57 * if you do not require the atomic guarantees.
58 *
59 * Note: there are no guarantees that this function will not be reordered
60 * on non x86 architectures, so if you are writing portable code,
61 * make sure not to rely on its reordering guarantees.
62 *
63 * Note that @nr may be almost arbitrarily large; this function is not
64 * restricted to acting on a single-word quantity.
65 */
66static inline void set_bit(int nr, volatile unsigned long *addr)
67{
68 unsigned long mask = BIT_MASK(nr);
69 unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr);
70 unsigned long flags;
71
72 _atomic_spin_lock_irqsave(p, flags);
73 *p |= mask;
74 _atomic_spin_unlock_irqrestore(p, flags);
75}
76
77/**
78 * clear_bit - Clears a bit in memory
79 * @nr: Bit to clear
80 * @addr: Address to start counting from
81 *
82 * clear_bit() is atomic and may not be reordered. However, it does
83 * not contain a memory barrier, so if it is used for locking purposes,
84 * you should call smp_mb__before_atomic() and/or smp_mb__after_atomic()
85 * in order to ensure changes are visible on other processors.
86 */
87static inline void clear_bit(int nr, volatile unsigned long *addr)
88{
89 unsigned long mask = BIT_MASK(nr);
90 unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr);
91 unsigned long flags;
92
93 _atomic_spin_lock_irqsave(p, flags);
94 *p &= ~mask;
95 _atomic_spin_unlock_irqrestore(p, flags);
96}
97
98/**
99 * change_bit - Toggle a bit in memory
100 * @nr: Bit to change
101 * @addr: Address to start counting from
102 *
103 * change_bit() is atomic and may not be reordered. It may be
104 * reordered on other architectures than x86.
105 * Note that @nr may be almost arbitrarily large; this function is not
106 * restricted to acting on a single-word quantity.
107 */
108static inline void change_bit(int nr, volatile unsigned long *addr)
109{
110 unsigned long mask = BIT_MASK(nr);
111 unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr);
112 unsigned long flags;
113
114 _atomic_spin_lock_irqsave(p, flags);
115 *p ^= mask;
116 _atomic_spin_unlock_irqrestore(p, flags);
117}
118
119/**
120 * test_and_set_bit - Set a bit and return its old value
121 * @nr: Bit to set
122 * @addr: Address to count from
123 *
124 * This operation is atomic and cannot be reordered.
125 * It may be reordered on other architectures than x86.
126 * It also implies a memory barrier.
127 */
128static inline int test_and_set_bit(int nr, volatile unsigned long *addr)
129{
130 unsigned long mask = BIT_MASK(nr);
131 unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr);
132 unsigned long old;
133 unsigned long flags;
134
135 _atomic_spin_lock_irqsave(p, flags);
136 old = *p;
137 *p = old | mask;
138 _atomic_spin_unlock_irqrestore(p, flags);
139
140 return (old & mask) != 0;
141}
142
143/**
144 * test_and_clear_bit - Clear a bit and return its old value
145 * @nr: Bit to clear
146 * @addr: Address to count from
147 *
148 * This operation is atomic and cannot be reordered.
149 * It can be reorderdered on other architectures other than x86.
150 * It also implies a memory barrier.
151 */
152static inline int test_and_clear_bit(int nr, volatile unsigned long *addr)
153{
154 unsigned long mask = BIT_MASK(nr);
155 unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr);
156 unsigned long old;
157 unsigned long flags;
158
159 _atomic_spin_lock_irqsave(p, flags);
160 old = *p;
161 *p = old & ~mask;
162 _atomic_spin_unlock_irqrestore(p, flags);
163
164 return (old & mask) != 0;
165}
166
167/**
168 * test_and_change_bit - Change a bit and return its old value
169 * @nr: Bit to change
170 * @addr: Address to count from
171 *
172 * This operation is atomic and cannot be reordered.
173 * It also implies a memory barrier.
174 */
175static inline int test_and_change_bit(int nr, volatile unsigned long *addr)
176{
177 unsigned long mask = BIT_MASK(nr);
178 unsigned long *p = ((unsigned long *)addr) + BIT_WORD(nr);
179 unsigned long old;
180 unsigned long flags;
181
182 _atomic_spin_lock_irqsave(p, flags);
183 old = *p;
184 *p = old ^ mask;
185 _atomic_spin_unlock_irqrestore(p, flags);
186
187 return (old & mask) != 0;
188}
189
190#endif /* _ASM_GENERIC_BITOPS_ATOMIC_H */