Linux Audio

Check our new training course

Loading...
v3.1
   1/**
   2 * inode.c - NTFS kernel inode handling. Part of the Linux-NTFS project.
   3 *
   4 * Copyright (c) 2001-2007 Anton Altaparmakov
   5 *
   6 * This program/include file is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License as published
   8 * by the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program/include file is distributed in the hope that it will be
  12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
  13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program (in the main directory of the Linux-NTFS
  18 * distribution in the file COPYING); if not, write to the Free Software
  19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  20 */
  21
  22#include <linux/buffer_head.h>
  23#include <linux/fs.h>
  24#include <linux/mm.h>
  25#include <linux/mount.h>
  26#include <linux/mutex.h>
  27#include <linux/pagemap.h>
  28#include <linux/quotaops.h>
  29#include <linux/slab.h>
  30#include <linux/log2.h>
  31
  32#include "aops.h"
  33#include "attrib.h"
  34#include "bitmap.h"
  35#include "dir.h"
  36#include "debug.h"
  37#include "inode.h"
  38#include "lcnalloc.h"
  39#include "malloc.h"
  40#include "mft.h"
  41#include "time.h"
  42#include "ntfs.h"
  43
  44/**
  45 * ntfs_test_inode - compare two (possibly fake) inodes for equality
  46 * @vi:		vfs inode which to test
  47 * @na:		ntfs attribute which is being tested with
  48 *
  49 * Compare the ntfs attribute embedded in the ntfs specific part of the vfs
  50 * inode @vi for equality with the ntfs attribute @na.
  51 *
  52 * If searching for the normal file/directory inode, set @na->type to AT_UNUSED.
  53 * @na->name and @na->name_len are then ignored.
  54 *
  55 * Return 1 if the attributes match and 0 if not.
  56 *
  57 * NOTE: This function runs with the inode->i_lock spin lock held so it is not
  58 * allowed to sleep.
  59 */
  60int ntfs_test_inode(struct inode *vi, ntfs_attr *na)
  61{
  62	ntfs_inode *ni;
  63
  64	if (vi->i_ino != na->mft_no)
  65		return 0;
  66	ni = NTFS_I(vi);
  67	/* If !NInoAttr(ni), @vi is a normal file or directory inode. */
  68	if (likely(!NInoAttr(ni))) {
  69		/* If not looking for a normal inode this is a mismatch. */
  70		if (unlikely(na->type != AT_UNUSED))
  71			return 0;
  72	} else {
  73		/* A fake inode describing an attribute. */
  74		if (ni->type != na->type)
  75			return 0;
  76		if (ni->name_len != na->name_len)
  77			return 0;
  78		if (na->name_len && memcmp(ni->name, na->name,
  79				na->name_len * sizeof(ntfschar)))
  80			return 0;
  81	}
  82	/* Match! */
  83	return 1;
  84}
  85
  86/**
  87 * ntfs_init_locked_inode - initialize an inode
  88 * @vi:		vfs inode to initialize
  89 * @na:		ntfs attribute which to initialize @vi to
  90 *
  91 * Initialize the vfs inode @vi with the values from the ntfs attribute @na in
  92 * order to enable ntfs_test_inode() to do its work.
  93 *
  94 * If initializing the normal file/directory inode, set @na->type to AT_UNUSED.
  95 * In that case, @na->name and @na->name_len should be set to NULL and 0,
  96 * respectively. Although that is not strictly necessary as
  97 * ntfs_read_locked_inode() will fill them in later.
  98 *
  99 * Return 0 on success and -errno on error.
 100 *
 101 * NOTE: This function runs with the inode->i_lock spin lock held so it is not
 102 * allowed to sleep. (Hence the GFP_ATOMIC allocation.)
 103 */
 104static int ntfs_init_locked_inode(struct inode *vi, ntfs_attr *na)
 105{
 106	ntfs_inode *ni = NTFS_I(vi);
 107
 108	vi->i_ino = na->mft_no;
 109
 110	ni->type = na->type;
 111	if (na->type == AT_INDEX_ALLOCATION)
 112		NInoSetMstProtected(ni);
 113
 114	ni->name = na->name;
 115	ni->name_len = na->name_len;
 116
 117	/* If initializing a normal inode, we are done. */
 118	if (likely(na->type == AT_UNUSED)) {
 119		BUG_ON(na->name);
 120		BUG_ON(na->name_len);
 121		return 0;
 122	}
 123
 124	/* It is a fake inode. */
 125	NInoSetAttr(ni);
 126
 127	/*
 128	 * We have I30 global constant as an optimization as it is the name
 129	 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC
 130	 * allocation but that is ok. And most attributes are unnamed anyway,
 131	 * thus the fraction of named attributes with name != I30 is actually
 132	 * absolutely tiny.
 133	 */
 134	if (na->name_len && na->name != I30) {
 135		unsigned int i;
 136
 137		BUG_ON(!na->name);
 138		i = na->name_len * sizeof(ntfschar);
 139		ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC);
 140		if (!ni->name)
 141			return -ENOMEM;
 142		memcpy(ni->name, na->name, i);
 143		ni->name[na->name_len] = 0;
 144	}
 145	return 0;
 146}
 147
 148typedef int (*set_t)(struct inode *, void *);
 149static int ntfs_read_locked_inode(struct inode *vi);
 150static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi);
 151static int ntfs_read_locked_index_inode(struct inode *base_vi,
 152		struct inode *vi);
 153
 154/**
 155 * ntfs_iget - obtain a struct inode corresponding to a specific normal inode
 156 * @sb:		super block of mounted volume
 157 * @mft_no:	mft record number / inode number to obtain
 158 *
 159 * Obtain the struct inode corresponding to a specific normal inode (i.e. a
 160 * file or directory).
 161 *
 162 * If the inode is in the cache, it is just returned with an increased
 163 * reference count. Otherwise, a new struct inode is allocated and initialized,
 164 * and finally ntfs_read_locked_inode() is called to read in the inode and
 165 * fill in the remainder of the inode structure.
 166 *
 167 * Return the struct inode on success. Check the return value with IS_ERR() and
 168 * if true, the function failed and the error code is obtained from PTR_ERR().
 169 */
 170struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no)
 171{
 172	struct inode *vi;
 173	int err;
 174	ntfs_attr na;
 175
 176	na.mft_no = mft_no;
 177	na.type = AT_UNUSED;
 178	na.name = NULL;
 179	na.name_len = 0;
 180
 181	vi = iget5_locked(sb, mft_no, (test_t)ntfs_test_inode,
 182			(set_t)ntfs_init_locked_inode, &na);
 183	if (unlikely(!vi))
 184		return ERR_PTR(-ENOMEM);
 185
 186	err = 0;
 187
 188	/* If this is a freshly allocated inode, need to read it now. */
 189	if (vi->i_state & I_NEW) {
 190		err = ntfs_read_locked_inode(vi);
 191		unlock_new_inode(vi);
 192	}
 193	/*
 194	 * There is no point in keeping bad inodes around if the failure was
 195	 * due to ENOMEM. We want to be able to retry again later.
 196	 */
 197	if (unlikely(err == -ENOMEM)) {
 198		iput(vi);
 199		vi = ERR_PTR(err);
 200	}
 201	return vi;
 202}
 203
 204/**
 205 * ntfs_attr_iget - obtain a struct inode corresponding to an attribute
 206 * @base_vi:	vfs base inode containing the attribute
 207 * @type:	attribute type
 208 * @name:	Unicode name of the attribute (NULL if unnamed)
 209 * @name_len:	length of @name in Unicode characters (0 if unnamed)
 210 *
 211 * Obtain the (fake) struct inode corresponding to the attribute specified by
 212 * @type, @name, and @name_len, which is present in the base mft record
 213 * specified by the vfs inode @base_vi.
 214 *
 215 * If the attribute inode is in the cache, it is just returned with an
 216 * increased reference count. Otherwise, a new struct inode is allocated and
 217 * initialized, and finally ntfs_read_locked_attr_inode() is called to read the
 218 * attribute and fill in the inode structure.
 219 *
 220 * Note, for index allocation attributes, you need to use ntfs_index_iget()
 221 * instead of ntfs_attr_iget() as working with indices is a lot more complex.
 222 *
 223 * Return the struct inode of the attribute inode on success. Check the return
 224 * value with IS_ERR() and if true, the function failed and the error code is
 225 * obtained from PTR_ERR().
 226 */
 227struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type,
 228		ntfschar *name, u32 name_len)
 229{
 230	struct inode *vi;
 231	int err;
 232	ntfs_attr na;
 233
 234	/* Make sure no one calls ntfs_attr_iget() for indices. */
 235	BUG_ON(type == AT_INDEX_ALLOCATION);
 236
 237	na.mft_no = base_vi->i_ino;
 238	na.type = type;
 239	na.name = name;
 240	na.name_len = name_len;
 241
 242	vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
 243			(set_t)ntfs_init_locked_inode, &na);
 244	if (unlikely(!vi))
 245		return ERR_PTR(-ENOMEM);
 246
 247	err = 0;
 248
 249	/* If this is a freshly allocated inode, need to read it now. */
 250	if (vi->i_state & I_NEW) {
 251		err = ntfs_read_locked_attr_inode(base_vi, vi);
 252		unlock_new_inode(vi);
 253	}
 254	/*
 255	 * There is no point in keeping bad attribute inodes around. This also
 256	 * simplifies things in that we never need to check for bad attribute
 257	 * inodes elsewhere.
 258	 */
 259	if (unlikely(err)) {
 260		iput(vi);
 261		vi = ERR_PTR(err);
 262	}
 263	return vi;
 264}
 265
 266/**
 267 * ntfs_index_iget - obtain a struct inode corresponding to an index
 268 * @base_vi:	vfs base inode containing the index related attributes
 269 * @name:	Unicode name of the index
 270 * @name_len:	length of @name in Unicode characters
 271 *
 272 * Obtain the (fake) struct inode corresponding to the index specified by @name
 273 * and @name_len, which is present in the base mft record specified by the vfs
 274 * inode @base_vi.
 275 *
 276 * If the index inode is in the cache, it is just returned with an increased
 277 * reference count.  Otherwise, a new struct inode is allocated and
 278 * initialized, and finally ntfs_read_locked_index_inode() is called to read
 279 * the index related attributes and fill in the inode structure.
 280 *
 281 * Return the struct inode of the index inode on success. Check the return
 282 * value with IS_ERR() and if true, the function failed and the error code is
 283 * obtained from PTR_ERR().
 284 */
 285struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name,
 286		u32 name_len)
 287{
 288	struct inode *vi;
 289	int err;
 290	ntfs_attr na;
 291
 292	na.mft_no = base_vi->i_ino;
 293	na.type = AT_INDEX_ALLOCATION;
 294	na.name = name;
 295	na.name_len = name_len;
 296
 297	vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
 298			(set_t)ntfs_init_locked_inode, &na);
 299	if (unlikely(!vi))
 300		return ERR_PTR(-ENOMEM);
 301
 302	err = 0;
 303
 304	/* If this is a freshly allocated inode, need to read it now. */
 305	if (vi->i_state & I_NEW) {
 306		err = ntfs_read_locked_index_inode(base_vi, vi);
 307		unlock_new_inode(vi);
 308	}
 309	/*
 310	 * There is no point in keeping bad index inodes around.  This also
 311	 * simplifies things in that we never need to check for bad index
 312	 * inodes elsewhere.
 313	 */
 314	if (unlikely(err)) {
 315		iput(vi);
 316		vi = ERR_PTR(err);
 317	}
 318	return vi;
 319}
 320
 321struct inode *ntfs_alloc_big_inode(struct super_block *sb)
 322{
 323	ntfs_inode *ni;
 324
 325	ntfs_debug("Entering.");
 326	ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS);
 327	if (likely(ni != NULL)) {
 328		ni->state = 0;
 329		return VFS_I(ni);
 330	}
 331	ntfs_error(sb, "Allocation of NTFS big inode structure failed.");
 332	return NULL;
 333}
 334
 335static void ntfs_i_callback(struct rcu_head *head)
 336{
 337	struct inode *inode = container_of(head, struct inode, i_rcu);
 338	INIT_LIST_HEAD(&inode->i_dentry);
 339	kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode));
 340}
 341
 342void ntfs_destroy_big_inode(struct inode *inode)
 343{
 344	ntfs_inode *ni = NTFS_I(inode);
 345
 346	ntfs_debug("Entering.");
 347	BUG_ON(ni->page);
 348	if (!atomic_dec_and_test(&ni->count))
 349		BUG();
 350	call_rcu(&inode->i_rcu, ntfs_i_callback);
 351}
 352
 353static inline ntfs_inode *ntfs_alloc_extent_inode(void)
 354{
 355	ntfs_inode *ni;
 356
 357	ntfs_debug("Entering.");
 358	ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS);
 359	if (likely(ni != NULL)) {
 360		ni->state = 0;
 361		return ni;
 362	}
 363	ntfs_error(NULL, "Allocation of NTFS inode structure failed.");
 364	return NULL;
 365}
 366
 367static void ntfs_destroy_extent_inode(ntfs_inode *ni)
 368{
 369	ntfs_debug("Entering.");
 370	BUG_ON(ni->page);
 371	if (!atomic_dec_and_test(&ni->count))
 372		BUG();
 373	kmem_cache_free(ntfs_inode_cache, ni);
 374}
 375
 376/*
 377 * The attribute runlist lock has separate locking rules from the
 378 * normal runlist lock, so split the two lock-classes:
 379 */
 380static struct lock_class_key attr_list_rl_lock_class;
 381
 382/**
 383 * __ntfs_init_inode - initialize ntfs specific part of an inode
 384 * @sb:		super block of mounted volume
 385 * @ni:		freshly allocated ntfs inode which to initialize
 386 *
 387 * Initialize an ntfs inode to defaults.
 388 *
 389 * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left
 390 * untouched. Make sure to initialize them elsewhere.
 391 *
 392 * Return zero on success and -ENOMEM on error.
 393 */
 394void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni)
 395{
 396	ntfs_debug("Entering.");
 397	rwlock_init(&ni->size_lock);
 398	ni->initialized_size = ni->allocated_size = 0;
 399	ni->seq_no = 0;
 400	atomic_set(&ni->count, 1);
 401	ni->vol = NTFS_SB(sb);
 402	ntfs_init_runlist(&ni->runlist);
 403	mutex_init(&ni->mrec_lock);
 404	ni->page = NULL;
 405	ni->page_ofs = 0;
 406	ni->attr_list_size = 0;
 407	ni->attr_list = NULL;
 408	ntfs_init_runlist(&ni->attr_list_rl);
 409	lockdep_set_class(&ni->attr_list_rl.lock,
 410				&attr_list_rl_lock_class);
 411	ni->itype.index.block_size = 0;
 412	ni->itype.index.vcn_size = 0;
 413	ni->itype.index.collation_rule = 0;
 414	ni->itype.index.block_size_bits = 0;
 415	ni->itype.index.vcn_size_bits = 0;
 416	mutex_init(&ni->extent_lock);
 417	ni->nr_extents = 0;
 418	ni->ext.base_ntfs_ino = NULL;
 419}
 420
 421/*
 422 * Extent inodes get MFT-mapped in a nested way, while the base inode
 423 * is still mapped. Teach this nesting to the lock validator by creating
 424 * a separate class for nested inode's mrec_lock's:
 425 */
 426static struct lock_class_key extent_inode_mrec_lock_key;
 427
 428inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb,
 429		unsigned long mft_no)
 430{
 431	ntfs_inode *ni = ntfs_alloc_extent_inode();
 432
 433	ntfs_debug("Entering.");
 434	if (likely(ni != NULL)) {
 435		__ntfs_init_inode(sb, ni);
 436		lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key);
 437		ni->mft_no = mft_no;
 438		ni->type = AT_UNUSED;
 439		ni->name = NULL;
 440		ni->name_len = 0;
 441	}
 442	return ni;
 443}
 444
 445/**
 446 * ntfs_is_extended_system_file - check if a file is in the $Extend directory
 447 * @ctx:	initialized attribute search context
 448 *
 449 * Search all file name attributes in the inode described by the attribute
 450 * search context @ctx and check if any of the names are in the $Extend system
 451 * directory.
 452 *
 453 * Return values:
 454 *	   1: file is in $Extend directory
 455 *	   0: file is not in $Extend directory
 456 *    -errno: failed to determine if the file is in the $Extend directory
 457 */
 458static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx)
 459{
 460	int nr_links, err;
 461
 462	/* Restart search. */
 463	ntfs_attr_reinit_search_ctx(ctx);
 464
 465	/* Get number of hard links. */
 466	nr_links = le16_to_cpu(ctx->mrec->link_count);
 467
 468	/* Loop through all hard links. */
 469	while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0,
 470			ctx))) {
 471		FILE_NAME_ATTR *file_name_attr;
 472		ATTR_RECORD *attr = ctx->attr;
 473		u8 *p, *p2;
 474
 475		nr_links--;
 476		/*
 477		 * Maximum sanity checking as we are called on an inode that
 478		 * we suspect might be corrupt.
 479		 */
 480		p = (u8*)attr + le32_to_cpu(attr->length);
 481		if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec +
 482				le32_to_cpu(ctx->mrec->bytes_in_use)) {
 483err_corrupt_attr:
 484			ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name "
 485					"attribute. You should run chkdsk.");
 486			return -EIO;
 487		}
 488		if (attr->non_resident) {
 489			ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file "
 490					"name. You should run chkdsk.");
 491			return -EIO;
 492		}
 493		if (attr->flags) {
 494			ntfs_error(ctx->ntfs_ino->vol->sb, "File name with "
 495					"invalid flags. You should run "
 496					"chkdsk.");
 497			return -EIO;
 498		}
 499		if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) {
 500			ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file "
 501					"name. You should run chkdsk.");
 502			return -EIO;
 503		}
 504		file_name_attr = (FILE_NAME_ATTR*)((u8*)attr +
 505				le16_to_cpu(attr->data.resident.value_offset));
 506		p2 = (u8*)attr + le32_to_cpu(attr->data.resident.value_length);
 507		if (p2 < (u8*)attr || p2 > p)
 508			goto err_corrupt_attr;
 509		/* This attribute is ok, but is it in the $Extend directory? */
 510		if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend)
 511			return 1;	/* YES, it's an extended system file. */
 512	}
 513	if (unlikely(err != -ENOENT))
 514		return err;
 515	if (unlikely(nr_links)) {
 516		ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count "
 517				"doesn't match number of name attributes. You "
 518				"should run chkdsk.");
 519		return -EIO;
 520	}
 521	return 0;	/* NO, it is not an extended system file. */
 522}
 523
 524/**
 525 * ntfs_read_locked_inode - read an inode from its device
 526 * @vi:		inode to read
 527 *
 528 * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode
 529 * described by @vi into memory from the device.
 530 *
 531 * The only fields in @vi that we need to/can look at when the function is
 532 * called are i_sb, pointing to the mounted device's super block, and i_ino,
 533 * the number of the inode to load.
 534 *
 535 * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino
 536 * for reading and sets up the necessary @vi fields as well as initializing
 537 * the ntfs inode.
 538 *
 539 * Q: What locks are held when the function is called?
 540 * A: i_state has I_NEW set, hence the inode is locked, also
 541 *    i_count is set to 1, so it is not going to go away
 542 *    i_flags is set to 0 and we have no business touching it.  Only an ioctl()
 543 *    is allowed to write to them. We should of course be honouring them but
 544 *    we need to do that using the IS_* macros defined in include/linux/fs.h.
 545 *    In any case ntfs_read_locked_inode() has nothing to do with i_flags.
 546 *
 547 * Return 0 on success and -errno on error.  In the error case, the inode will
 548 * have had make_bad_inode() executed on it.
 549 */
 550static int ntfs_read_locked_inode(struct inode *vi)
 551{
 552	ntfs_volume *vol = NTFS_SB(vi->i_sb);
 553	ntfs_inode *ni;
 554	struct inode *bvi;
 555	MFT_RECORD *m;
 556	ATTR_RECORD *a;
 557	STANDARD_INFORMATION *si;
 558	ntfs_attr_search_ctx *ctx;
 559	int err = 0;
 560
 561	ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
 562
 563	/* Setup the generic vfs inode parts now. */
 564
 565	/*
 566	 * This is for checking whether an inode has changed w.r.t. a file so
 567	 * that the file can be updated if necessary (compare with f_version).
 568	 */
 569	vi->i_version = 1;
 570
 571	vi->i_uid = vol->uid;
 572	vi->i_gid = vol->gid;
 573	vi->i_mode = 0;
 574
 575	/*
 576	 * Initialize the ntfs specific part of @vi special casing
 577	 * FILE_MFT which we need to do at mount time.
 578	 */
 579	if (vi->i_ino != FILE_MFT)
 580		ntfs_init_big_inode(vi);
 581	ni = NTFS_I(vi);
 582
 583	m = map_mft_record(ni);
 584	if (IS_ERR(m)) {
 585		err = PTR_ERR(m);
 586		goto err_out;
 587	}
 588	ctx = ntfs_attr_get_search_ctx(ni, m);
 589	if (!ctx) {
 590		err = -ENOMEM;
 591		goto unm_err_out;
 592	}
 593
 594	if (!(m->flags & MFT_RECORD_IN_USE)) {
 595		ntfs_error(vi->i_sb, "Inode is not in use!");
 596		goto unm_err_out;
 597	}
 598	if (m->base_mft_record) {
 599		ntfs_error(vi->i_sb, "Inode is an extent inode!");
 600		goto unm_err_out;
 601	}
 602
 603	/* Transfer information from mft record into vfs and ntfs inodes. */
 604	vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
 605
 606	/*
 607	 * FIXME: Keep in mind that link_count is two for files which have both
 608	 * a long file name and a short file name as separate entries, so if
 609	 * we are hiding short file names this will be too high. Either we need
 610	 * to account for the short file names by subtracting them or we need
 611	 * to make sure we delete files even though i_nlink is not zero which
 612	 * might be tricky due to vfs interactions. Need to think about this
 613	 * some more when implementing the unlink command.
 614	 */
 615	vi->i_nlink = le16_to_cpu(m->link_count);
 616	/*
 617	 * FIXME: Reparse points can have the directory bit set even though
 618	 * they would be S_IFLNK. Need to deal with this further below when we
 619	 * implement reparse points / symbolic links but it will do for now.
 620	 * Also if not a directory, it could be something else, rather than
 621	 * a regular file. But again, will do for now.
 622	 */
 623	/* Everyone gets all permissions. */
 624	vi->i_mode |= S_IRWXUGO;
 625	/* If read-only, no one gets write permissions. */
 626	if (IS_RDONLY(vi))
 627		vi->i_mode &= ~S_IWUGO;
 628	if (m->flags & MFT_RECORD_IS_DIRECTORY) {
 629		vi->i_mode |= S_IFDIR;
 630		/*
 631		 * Apply the directory permissions mask set in the mount
 632		 * options.
 633		 */
 634		vi->i_mode &= ~vol->dmask;
 635		/* Things break without this kludge! */
 636		if (vi->i_nlink > 1)
 637			vi->i_nlink = 1;
 638	} else {
 639		vi->i_mode |= S_IFREG;
 640		/* Apply the file permissions mask set in the mount options. */
 641		vi->i_mode &= ~vol->fmask;
 642	}
 643	/*
 644	 * Find the standard information attribute in the mft record. At this
 645	 * stage we haven't setup the attribute list stuff yet, so this could
 646	 * in fact fail if the standard information is in an extent record, but
 647	 * I don't think this actually ever happens.
 648	 */
 649	err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0,
 650			ctx);
 651	if (unlikely(err)) {
 652		if (err == -ENOENT) {
 653			/*
 654			 * TODO: We should be performing a hot fix here (if the
 655			 * recover mount option is set) by creating a new
 656			 * attribute.
 657			 */
 658			ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute "
 659					"is missing.");
 660		}
 661		goto unm_err_out;
 662	}
 663	a = ctx->attr;
 664	/* Get the standard information attribute value. */
 665	si = (STANDARD_INFORMATION*)((u8*)a +
 666			le16_to_cpu(a->data.resident.value_offset));
 667
 668	/* Transfer information from the standard information into vi. */
 669	/*
 670	 * Note: The i_?times do not quite map perfectly onto the NTFS times,
 671	 * but they are close enough, and in the end it doesn't really matter
 672	 * that much...
 673	 */
 674	/*
 675	 * mtime is the last change of the data within the file. Not changed
 676	 * when only metadata is changed, e.g. a rename doesn't affect mtime.
 677	 */
 678	vi->i_mtime = ntfs2utc(si->last_data_change_time);
 679	/*
 680	 * ctime is the last change of the metadata of the file. This obviously
 681	 * always changes, when mtime is changed. ctime can be changed on its
 682	 * own, mtime is then not changed, e.g. when a file is renamed.
 683	 */
 684	vi->i_ctime = ntfs2utc(si->last_mft_change_time);
 685	/*
 686	 * Last access to the data within the file. Not changed during a rename
 687	 * for example but changed whenever the file is written to.
 688	 */
 689	vi->i_atime = ntfs2utc(si->last_access_time);
 690
 691	/* Find the attribute list attribute if present. */
 692	ntfs_attr_reinit_search_ctx(ctx);
 693	err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
 694	if (err) {
 695		if (unlikely(err != -ENOENT)) {
 696			ntfs_error(vi->i_sb, "Failed to lookup attribute list "
 697					"attribute.");
 698			goto unm_err_out;
 699		}
 700	} else /* if (!err) */ {
 701		if (vi->i_ino == FILE_MFT)
 702			goto skip_attr_list_load;
 703		ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino);
 704		NInoSetAttrList(ni);
 705		a = ctx->attr;
 706		if (a->flags & ATTR_COMPRESSION_MASK) {
 707			ntfs_error(vi->i_sb, "Attribute list attribute is "
 708					"compressed.");
 709			goto unm_err_out;
 710		}
 711		if (a->flags & ATTR_IS_ENCRYPTED ||
 712				a->flags & ATTR_IS_SPARSE) {
 713			if (a->non_resident) {
 714				ntfs_error(vi->i_sb, "Non-resident attribute "
 715						"list attribute is encrypted/"
 716						"sparse.");
 717				goto unm_err_out;
 718			}
 719			ntfs_warning(vi->i_sb, "Resident attribute list "
 720					"attribute in inode 0x%lx is marked "
 721					"encrypted/sparse which is not true.  "
 722					"However, Windows allows this and "
 723					"chkdsk does not detect or correct it "
 724					"so we will just ignore the invalid "
 725					"flags and pretend they are not set.",
 726					vi->i_ino);
 727		}
 728		/* Now allocate memory for the attribute list. */
 729		ni->attr_list_size = (u32)ntfs_attr_size(a);
 730		ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
 731		if (!ni->attr_list) {
 732			ntfs_error(vi->i_sb, "Not enough memory to allocate "
 733					"buffer for attribute list.");
 734			err = -ENOMEM;
 735			goto unm_err_out;
 736		}
 737		if (a->non_resident) {
 738			NInoSetAttrListNonResident(ni);
 739			if (a->data.non_resident.lowest_vcn) {
 740				ntfs_error(vi->i_sb, "Attribute list has non "
 741						"zero lowest_vcn.");
 742				goto unm_err_out;
 743			}
 744			/*
 745			 * Setup the runlist. No need for locking as we have
 746			 * exclusive access to the inode at this time.
 747			 */
 748			ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
 749					a, NULL);
 750			if (IS_ERR(ni->attr_list_rl.rl)) {
 751				err = PTR_ERR(ni->attr_list_rl.rl);
 752				ni->attr_list_rl.rl = NULL;
 753				ntfs_error(vi->i_sb, "Mapping pairs "
 754						"decompression failed.");
 755				goto unm_err_out;
 756			}
 757			/* Now load the attribute list. */
 758			if ((err = load_attribute_list(vol, &ni->attr_list_rl,
 759					ni->attr_list, ni->attr_list_size,
 760					sle64_to_cpu(a->data.non_resident.
 761					initialized_size)))) {
 762				ntfs_error(vi->i_sb, "Failed to load "
 763						"attribute list attribute.");
 764				goto unm_err_out;
 765			}
 766		} else /* if (!a->non_resident) */ {
 767			if ((u8*)a + le16_to_cpu(a->data.resident.value_offset)
 768					+ le32_to_cpu(
 769					a->data.resident.value_length) >
 770					(u8*)ctx->mrec + vol->mft_record_size) {
 771				ntfs_error(vi->i_sb, "Corrupt attribute list "
 772						"in inode.");
 773				goto unm_err_out;
 774			}
 775			/* Now copy the attribute list. */
 776			memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
 777					a->data.resident.value_offset),
 778					le32_to_cpu(
 779					a->data.resident.value_length));
 780		}
 781	}
 782skip_attr_list_load:
 783	/*
 784	 * If an attribute list is present we now have the attribute list value
 785	 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes.
 786	 */
 787	if (S_ISDIR(vi->i_mode)) {
 788		loff_t bvi_size;
 789		ntfs_inode *bni;
 790		INDEX_ROOT *ir;
 791		u8 *ir_end, *index_end;
 792
 793		/* It is a directory, find index root attribute. */
 794		ntfs_attr_reinit_search_ctx(ctx);
 795		err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE,
 796				0, NULL, 0, ctx);
 797		if (unlikely(err)) {
 798			if (err == -ENOENT) {
 799				// FIXME: File is corrupt! Hot-fix with empty
 800				// index root attribute if recovery option is
 801				// set.
 802				ntfs_error(vi->i_sb, "$INDEX_ROOT attribute "
 803						"is missing.");
 804			}
 805			goto unm_err_out;
 806		}
 807		a = ctx->attr;
 808		/* Set up the state. */
 809		if (unlikely(a->non_resident)) {
 810			ntfs_error(vol->sb, "$INDEX_ROOT attribute is not "
 811					"resident.");
 812			goto unm_err_out;
 813		}
 814		/* Ensure the attribute name is placed before the value. */
 815		if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
 816				le16_to_cpu(a->data.resident.value_offset)))) {
 817			ntfs_error(vol->sb, "$INDEX_ROOT attribute name is "
 818					"placed after the attribute value.");
 819			goto unm_err_out;
 820		}
 821		/*
 822		 * Compressed/encrypted index root just means that the newly
 823		 * created files in that directory should be created compressed/
 824		 * encrypted. However index root cannot be both compressed and
 825		 * encrypted.
 826		 */
 827		if (a->flags & ATTR_COMPRESSION_MASK)
 828			NInoSetCompressed(ni);
 829		if (a->flags & ATTR_IS_ENCRYPTED) {
 830			if (a->flags & ATTR_COMPRESSION_MASK) {
 831				ntfs_error(vi->i_sb, "Found encrypted and "
 832						"compressed attribute.");
 833				goto unm_err_out;
 834			}
 835			NInoSetEncrypted(ni);
 836		}
 837		if (a->flags & ATTR_IS_SPARSE)
 838			NInoSetSparse(ni);
 839		ir = (INDEX_ROOT*)((u8*)a +
 840				le16_to_cpu(a->data.resident.value_offset));
 841		ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
 842		if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
 843			ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
 844					"corrupt.");
 845			goto unm_err_out;
 846		}
 847		index_end = (u8*)&ir->index +
 848				le32_to_cpu(ir->index.index_length);
 849		if (index_end > ir_end) {
 850			ntfs_error(vi->i_sb, "Directory index is corrupt.");
 851			goto unm_err_out;
 852		}
 853		if (ir->type != AT_FILE_NAME) {
 854			ntfs_error(vi->i_sb, "Indexed attribute is not "
 855					"$FILE_NAME.");
 856			goto unm_err_out;
 857		}
 858		if (ir->collation_rule != COLLATION_FILE_NAME) {
 859			ntfs_error(vi->i_sb, "Index collation rule is not "
 860					"COLLATION_FILE_NAME.");
 861			goto unm_err_out;
 862		}
 863		ni->itype.index.collation_rule = ir->collation_rule;
 864		ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
 865		if (ni->itype.index.block_size &
 866				(ni->itype.index.block_size - 1)) {
 867			ntfs_error(vi->i_sb, "Index block size (%u) is not a "
 868					"power of two.",
 869					ni->itype.index.block_size);
 870			goto unm_err_out;
 871		}
 872		if (ni->itype.index.block_size > PAGE_CACHE_SIZE) {
 873			ntfs_error(vi->i_sb, "Index block size (%u) > "
 874					"PAGE_CACHE_SIZE (%ld) is not "
 875					"supported.  Sorry.",
 876					ni->itype.index.block_size,
 877					PAGE_CACHE_SIZE);
 878			err = -EOPNOTSUPP;
 879			goto unm_err_out;
 880		}
 881		if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
 882			ntfs_error(vi->i_sb, "Index block size (%u) < "
 883					"NTFS_BLOCK_SIZE (%i) is not "
 884					"supported.  Sorry.",
 885					ni->itype.index.block_size,
 886					NTFS_BLOCK_SIZE);
 887			err = -EOPNOTSUPP;
 888			goto unm_err_out;
 889		}
 890		ni->itype.index.block_size_bits =
 891				ffs(ni->itype.index.block_size) - 1;
 892		/* Determine the size of a vcn in the directory index. */
 893		if (vol->cluster_size <= ni->itype.index.block_size) {
 894			ni->itype.index.vcn_size = vol->cluster_size;
 895			ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
 896		} else {
 897			ni->itype.index.vcn_size = vol->sector_size;
 898			ni->itype.index.vcn_size_bits = vol->sector_size_bits;
 899		}
 900
 901		/* Setup the index allocation attribute, even if not present. */
 902		NInoSetMstProtected(ni);
 903		ni->type = AT_INDEX_ALLOCATION;
 904		ni->name = I30;
 905		ni->name_len = 4;
 906
 907		if (!(ir->index.flags & LARGE_INDEX)) {
 908			/* No index allocation. */
 909			vi->i_size = ni->initialized_size =
 910					ni->allocated_size = 0;
 911			/* We are done with the mft record, so we release it. */
 912			ntfs_attr_put_search_ctx(ctx);
 913			unmap_mft_record(ni);
 914			m = NULL;
 915			ctx = NULL;
 916			goto skip_large_dir_stuff;
 917		} /* LARGE_INDEX: Index allocation present. Setup state. */
 918		NInoSetIndexAllocPresent(ni);
 919		/* Find index allocation attribute. */
 920		ntfs_attr_reinit_search_ctx(ctx);
 921		err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4,
 922				CASE_SENSITIVE, 0, NULL, 0, ctx);
 923		if (unlikely(err)) {
 924			if (err == -ENOENT)
 925				ntfs_error(vi->i_sb, "$INDEX_ALLOCATION "
 926						"attribute is not present but "
 927						"$INDEX_ROOT indicated it is.");
 928			else
 929				ntfs_error(vi->i_sb, "Failed to lookup "
 930						"$INDEX_ALLOCATION "
 931						"attribute.");
 932			goto unm_err_out;
 933		}
 934		a = ctx->attr;
 935		if (!a->non_resident) {
 936			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
 937					"is resident.");
 938			goto unm_err_out;
 939		}
 940		/*
 941		 * Ensure the attribute name is placed before the mapping pairs
 942		 * array.
 943		 */
 944		if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
 945				le16_to_cpu(
 946				a->data.non_resident.mapping_pairs_offset)))) {
 947			ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name "
 948					"is placed after the mapping pairs "
 949					"array.");
 950			goto unm_err_out;
 951		}
 952		if (a->flags & ATTR_IS_ENCRYPTED) {
 953			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
 954					"is encrypted.");
 955			goto unm_err_out;
 956		}
 957		if (a->flags & ATTR_IS_SPARSE) {
 958			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
 959					"is sparse.");
 960			goto unm_err_out;
 961		}
 962		if (a->flags & ATTR_COMPRESSION_MASK) {
 963			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
 964					"is compressed.");
 965			goto unm_err_out;
 966		}
 967		if (a->data.non_resident.lowest_vcn) {
 968			ntfs_error(vi->i_sb, "First extent of "
 969					"$INDEX_ALLOCATION attribute has non "
 970					"zero lowest_vcn.");
 971			goto unm_err_out;
 972		}
 973		vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
 974		ni->initialized_size = sle64_to_cpu(
 975				a->data.non_resident.initialized_size);
 976		ni->allocated_size = sle64_to_cpu(
 977				a->data.non_resident.allocated_size);
 978		/*
 979		 * We are done with the mft record, so we release it. Otherwise
 980		 * we would deadlock in ntfs_attr_iget().
 981		 */
 982		ntfs_attr_put_search_ctx(ctx);
 983		unmap_mft_record(ni);
 984		m = NULL;
 985		ctx = NULL;
 986		/* Get the index bitmap attribute inode. */
 987		bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4);
 988		if (IS_ERR(bvi)) {
 989			ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
 990			err = PTR_ERR(bvi);
 991			goto unm_err_out;
 992		}
 993		bni = NTFS_I(bvi);
 994		if (NInoCompressed(bni) || NInoEncrypted(bni) ||
 995				NInoSparse(bni)) {
 996			ntfs_error(vi->i_sb, "$BITMAP attribute is compressed "
 997					"and/or encrypted and/or sparse.");
 998			goto iput_unm_err_out;
 999		}
1000		/* Consistency check bitmap size vs. index allocation size. */
1001		bvi_size = i_size_read(bvi);
1002		if ((bvi_size << 3) < (vi->i_size >>
1003				ni->itype.index.block_size_bits)) {
1004			ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) "
1005					"for index allocation (0x%llx).",
1006					bvi_size << 3, vi->i_size);
1007			goto iput_unm_err_out;
1008		}
1009		/* No longer need the bitmap attribute inode. */
1010		iput(bvi);
1011skip_large_dir_stuff:
1012		/* Setup the operations for this inode. */
1013		vi->i_op = &ntfs_dir_inode_ops;
1014		vi->i_fop = &ntfs_dir_ops;
 
1015	} else {
1016		/* It is a file. */
1017		ntfs_attr_reinit_search_ctx(ctx);
1018
1019		/* Setup the data attribute, even if not present. */
1020		ni->type = AT_DATA;
1021		ni->name = NULL;
1022		ni->name_len = 0;
1023
1024		/* Find first extent of the unnamed data attribute. */
1025		err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx);
1026		if (unlikely(err)) {
1027			vi->i_size = ni->initialized_size =
1028					ni->allocated_size = 0;
1029			if (err != -ENOENT) {
1030				ntfs_error(vi->i_sb, "Failed to lookup $DATA "
1031						"attribute.");
1032				goto unm_err_out;
1033			}
1034			/*
1035			 * FILE_Secure does not have an unnamed $DATA
1036			 * attribute, so we special case it here.
1037			 */
1038			if (vi->i_ino == FILE_Secure)
1039				goto no_data_attr_special_case;
1040			/*
1041			 * Most if not all the system files in the $Extend
1042			 * system directory do not have unnamed data
1043			 * attributes so we need to check if the parent
1044			 * directory of the file is FILE_Extend and if it is
1045			 * ignore this error. To do this we need to get the
1046			 * name of this inode from the mft record as the name
1047			 * contains the back reference to the parent directory.
1048			 */
1049			if (ntfs_is_extended_system_file(ctx) > 0)
1050				goto no_data_attr_special_case;
1051			// FIXME: File is corrupt! Hot-fix with empty data
1052			// attribute if recovery option is set.
1053			ntfs_error(vi->i_sb, "$DATA attribute is missing.");
1054			goto unm_err_out;
1055		}
1056		a = ctx->attr;
1057		/* Setup the state. */
1058		if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1059			if (a->flags & ATTR_COMPRESSION_MASK) {
1060				NInoSetCompressed(ni);
1061				if (vol->cluster_size > 4096) {
1062					ntfs_error(vi->i_sb, "Found "
1063							"compressed data but "
1064							"compression is "
1065							"disabled due to "
1066							"cluster size (%i) > "
1067							"4kiB.",
1068							vol->cluster_size);
1069					goto unm_err_out;
1070				}
1071				if ((a->flags & ATTR_COMPRESSION_MASK)
1072						!= ATTR_IS_COMPRESSED) {
1073					ntfs_error(vi->i_sb, "Found unknown "
1074							"compression method "
1075							"or corrupt file.");
1076					goto unm_err_out;
1077				}
1078			}
1079			if (a->flags & ATTR_IS_SPARSE)
1080				NInoSetSparse(ni);
1081		}
1082		if (a->flags & ATTR_IS_ENCRYPTED) {
1083			if (NInoCompressed(ni)) {
1084				ntfs_error(vi->i_sb, "Found encrypted and "
1085						"compressed data.");
1086				goto unm_err_out;
1087			}
1088			NInoSetEncrypted(ni);
1089		}
1090		if (a->non_resident) {
1091			NInoSetNonResident(ni);
1092			if (NInoCompressed(ni) || NInoSparse(ni)) {
1093				if (NInoCompressed(ni) && a->data.non_resident.
1094						compression_unit != 4) {
1095					ntfs_error(vi->i_sb, "Found "
1096							"non-standard "
1097							"compression unit (%u "
1098							"instead of 4).  "
1099							"Cannot handle this.",
1100							a->data.non_resident.
1101							compression_unit);
1102					err = -EOPNOTSUPP;
1103					goto unm_err_out;
1104				}
1105				if (a->data.non_resident.compression_unit) {
1106					ni->itype.compressed.block_size = 1U <<
1107							(a->data.non_resident.
1108							compression_unit +
1109							vol->cluster_size_bits);
1110					ni->itype.compressed.block_size_bits =
1111							ffs(ni->itype.
1112							compressed.
1113							block_size) - 1;
1114					ni->itype.compressed.block_clusters =
1115							1U << a->data.
1116							non_resident.
1117							compression_unit;
1118				} else {
1119					ni->itype.compressed.block_size = 0;
1120					ni->itype.compressed.block_size_bits =
1121							0;
1122					ni->itype.compressed.block_clusters =
1123							0;
1124				}
1125				ni->itype.compressed.size = sle64_to_cpu(
1126						a->data.non_resident.
1127						compressed_size);
1128			}
1129			if (a->data.non_resident.lowest_vcn) {
1130				ntfs_error(vi->i_sb, "First extent of $DATA "
1131						"attribute has non zero "
1132						"lowest_vcn.");
1133				goto unm_err_out;
1134			}
1135			vi->i_size = sle64_to_cpu(
1136					a->data.non_resident.data_size);
1137			ni->initialized_size = sle64_to_cpu(
1138					a->data.non_resident.initialized_size);
1139			ni->allocated_size = sle64_to_cpu(
1140					a->data.non_resident.allocated_size);
1141		} else { /* Resident attribute. */
1142			vi->i_size = ni->initialized_size = le32_to_cpu(
1143					a->data.resident.value_length);
1144			ni->allocated_size = le32_to_cpu(a->length) -
1145					le16_to_cpu(
1146					a->data.resident.value_offset);
1147			if (vi->i_size > ni->allocated_size) {
1148				ntfs_error(vi->i_sb, "Resident data attribute "
1149						"is corrupt (size exceeds "
1150						"allocation).");
1151				goto unm_err_out;
1152			}
1153		}
1154no_data_attr_special_case:
1155		/* We are done with the mft record, so we release it. */
1156		ntfs_attr_put_search_ctx(ctx);
1157		unmap_mft_record(ni);
1158		m = NULL;
1159		ctx = NULL;
1160		/* Setup the operations for this inode. */
1161		vi->i_op = &ntfs_file_inode_ops;
1162		vi->i_fop = &ntfs_file_ops;
 
 
 
 
 
1163	}
1164	if (NInoMstProtected(ni))
1165		vi->i_mapping->a_ops = &ntfs_mst_aops;
1166	else
1167		vi->i_mapping->a_ops = &ntfs_aops;
1168	/*
1169	 * The number of 512-byte blocks used on disk (for stat). This is in so
1170	 * far inaccurate as it doesn't account for any named streams or other
1171	 * special non-resident attributes, but that is how Windows works, too,
1172	 * so we are at least consistent with Windows, if not entirely
1173	 * consistent with the Linux Way. Doing it the Linux Way would cause a
1174	 * significant slowdown as it would involve iterating over all
1175	 * attributes in the mft record and adding the allocated/compressed
1176	 * sizes of all non-resident attributes present to give us the Linux
1177	 * correct size that should go into i_blocks (after division by 512).
1178	 */
1179	if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni)))
1180		vi->i_blocks = ni->itype.compressed.size >> 9;
1181	else
1182		vi->i_blocks = ni->allocated_size >> 9;
1183	ntfs_debug("Done.");
1184	return 0;
1185iput_unm_err_out:
1186	iput(bvi);
1187unm_err_out:
1188	if (!err)
1189		err = -EIO;
1190	if (ctx)
1191		ntfs_attr_put_search_ctx(ctx);
1192	if (m)
1193		unmap_mft_record(ni);
1194err_out:
1195	ntfs_error(vol->sb, "Failed with error code %i.  Marking corrupt "
1196			"inode 0x%lx as bad.  Run chkdsk.", err, vi->i_ino);
1197	make_bad_inode(vi);
1198	if (err != -EOPNOTSUPP && err != -ENOMEM)
1199		NVolSetErrors(vol);
1200	return err;
1201}
1202
1203/**
1204 * ntfs_read_locked_attr_inode - read an attribute inode from its base inode
1205 * @base_vi:	base inode
1206 * @vi:		attribute inode to read
1207 *
1208 * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the
1209 * attribute inode described by @vi into memory from the base mft record
1210 * described by @base_ni.
1211 *
1212 * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for
1213 * reading and looks up the attribute described by @vi before setting up the
1214 * necessary fields in @vi as well as initializing the ntfs inode.
1215 *
1216 * Q: What locks are held when the function is called?
1217 * A: i_state has I_NEW set, hence the inode is locked, also
1218 *    i_count is set to 1, so it is not going to go away
1219 *
1220 * Return 0 on success and -errno on error.  In the error case, the inode will
1221 * have had make_bad_inode() executed on it.
1222 *
1223 * Note this cannot be called for AT_INDEX_ALLOCATION.
1224 */
1225static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi)
1226{
1227	ntfs_volume *vol = NTFS_SB(vi->i_sb);
1228	ntfs_inode *ni, *base_ni;
1229	MFT_RECORD *m;
1230	ATTR_RECORD *a;
1231	ntfs_attr_search_ctx *ctx;
1232	int err = 0;
1233
1234	ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1235
1236	ntfs_init_big_inode(vi);
1237
1238	ni	= NTFS_I(vi);
1239	base_ni = NTFS_I(base_vi);
1240
1241	/* Just mirror the values from the base inode. */
1242	vi->i_version	= base_vi->i_version;
1243	vi->i_uid	= base_vi->i_uid;
1244	vi->i_gid	= base_vi->i_gid;
1245	vi->i_nlink	= base_vi->i_nlink;
1246	vi->i_mtime	= base_vi->i_mtime;
1247	vi->i_ctime	= base_vi->i_ctime;
1248	vi->i_atime	= base_vi->i_atime;
1249	vi->i_generation = ni->seq_no = base_ni->seq_no;
1250
1251	/* Set inode type to zero but preserve permissions. */
1252	vi->i_mode	= base_vi->i_mode & ~S_IFMT;
1253
1254	m = map_mft_record(base_ni);
1255	if (IS_ERR(m)) {
1256		err = PTR_ERR(m);
1257		goto err_out;
1258	}
1259	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1260	if (!ctx) {
1261		err = -ENOMEM;
1262		goto unm_err_out;
1263	}
1264	/* Find the attribute. */
1265	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1266			CASE_SENSITIVE, 0, NULL, 0, ctx);
1267	if (unlikely(err))
1268		goto unm_err_out;
1269	a = ctx->attr;
1270	if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1271		if (a->flags & ATTR_COMPRESSION_MASK) {
1272			NInoSetCompressed(ni);
1273			if ((ni->type != AT_DATA) || (ni->type == AT_DATA &&
1274					ni->name_len)) {
1275				ntfs_error(vi->i_sb, "Found compressed "
1276						"non-data or named data "
1277						"attribute.  Please report "
1278						"you saw this message to "
1279						"linux-ntfs-dev@lists."
1280						"sourceforge.net");
1281				goto unm_err_out;
1282			}
1283			if (vol->cluster_size > 4096) {
1284				ntfs_error(vi->i_sb, "Found compressed "
1285						"attribute but compression is "
1286						"disabled due to cluster size "
1287						"(%i) > 4kiB.",
1288						vol->cluster_size);
1289				goto unm_err_out;
1290			}
1291			if ((a->flags & ATTR_COMPRESSION_MASK) !=
1292					ATTR_IS_COMPRESSED) {
1293				ntfs_error(vi->i_sb, "Found unknown "
1294						"compression method.");
1295				goto unm_err_out;
1296			}
1297		}
1298		/*
1299		 * The compressed/sparse flag set in an index root just means
1300		 * to compress all files.
1301		 */
1302		if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1303			ntfs_error(vi->i_sb, "Found mst protected attribute "
1304					"but the attribute is %s.  Please "
1305					"report you saw this message to "
1306					"linux-ntfs-dev@lists.sourceforge.net",
1307					NInoCompressed(ni) ? "compressed" :
1308					"sparse");
1309			goto unm_err_out;
1310		}
1311		if (a->flags & ATTR_IS_SPARSE)
1312			NInoSetSparse(ni);
1313	}
1314	if (a->flags & ATTR_IS_ENCRYPTED) {
1315		if (NInoCompressed(ni)) {
1316			ntfs_error(vi->i_sb, "Found encrypted and compressed "
1317					"data.");
1318			goto unm_err_out;
1319		}
1320		/*
1321		 * The encryption flag set in an index root just means to
1322		 * encrypt all files.
1323		 */
1324		if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1325			ntfs_error(vi->i_sb, "Found mst protected attribute "
1326					"but the attribute is encrypted.  "
1327					"Please report you saw this message "
1328					"to linux-ntfs-dev@lists.sourceforge."
1329					"net");
1330			goto unm_err_out;
1331		}
1332		if (ni->type != AT_DATA) {
1333			ntfs_error(vi->i_sb, "Found encrypted non-data "
1334					"attribute.");
1335			goto unm_err_out;
1336		}
1337		NInoSetEncrypted(ni);
1338	}
1339	if (!a->non_resident) {
1340		/* Ensure the attribute name is placed before the value. */
1341		if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1342				le16_to_cpu(a->data.resident.value_offset)))) {
1343			ntfs_error(vol->sb, "Attribute name is placed after "
1344					"the attribute value.");
1345			goto unm_err_out;
1346		}
1347		if (NInoMstProtected(ni)) {
1348			ntfs_error(vi->i_sb, "Found mst protected attribute "
1349					"but the attribute is resident.  "
1350					"Please report you saw this message to "
1351					"linux-ntfs-dev@lists.sourceforge.net");
1352			goto unm_err_out;
1353		}
1354		vi->i_size = ni->initialized_size = le32_to_cpu(
1355				a->data.resident.value_length);
1356		ni->allocated_size = le32_to_cpu(a->length) -
1357				le16_to_cpu(a->data.resident.value_offset);
1358		if (vi->i_size > ni->allocated_size) {
1359			ntfs_error(vi->i_sb, "Resident attribute is corrupt "
1360					"(size exceeds allocation).");
1361			goto unm_err_out;
1362		}
1363	} else {
1364		NInoSetNonResident(ni);
1365		/*
1366		 * Ensure the attribute name is placed before the mapping pairs
1367		 * array.
1368		 */
1369		if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1370				le16_to_cpu(
1371				a->data.non_resident.mapping_pairs_offset)))) {
1372			ntfs_error(vol->sb, "Attribute name is placed after "
1373					"the mapping pairs array.");
1374			goto unm_err_out;
1375		}
1376		if (NInoCompressed(ni) || NInoSparse(ni)) {
1377			if (NInoCompressed(ni) && a->data.non_resident.
1378					compression_unit != 4) {
1379				ntfs_error(vi->i_sb, "Found non-standard "
1380						"compression unit (%u instead "
1381						"of 4).  Cannot handle this.",
1382						a->data.non_resident.
1383						compression_unit);
1384				err = -EOPNOTSUPP;
1385				goto unm_err_out;
1386			}
1387			if (a->data.non_resident.compression_unit) {
1388				ni->itype.compressed.block_size = 1U <<
1389						(a->data.non_resident.
1390						compression_unit +
1391						vol->cluster_size_bits);
1392				ni->itype.compressed.block_size_bits =
1393						ffs(ni->itype.compressed.
1394						block_size) - 1;
1395				ni->itype.compressed.block_clusters = 1U <<
1396						a->data.non_resident.
1397						compression_unit;
1398			} else {
1399				ni->itype.compressed.block_size = 0;
1400				ni->itype.compressed.block_size_bits = 0;
1401				ni->itype.compressed.block_clusters = 0;
1402			}
1403			ni->itype.compressed.size = sle64_to_cpu(
1404					a->data.non_resident.compressed_size);
1405		}
1406		if (a->data.non_resident.lowest_vcn) {
1407			ntfs_error(vi->i_sb, "First extent of attribute has "
1408					"non-zero lowest_vcn.");
1409			goto unm_err_out;
1410		}
1411		vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1412		ni->initialized_size = sle64_to_cpu(
1413				a->data.non_resident.initialized_size);
1414		ni->allocated_size = sle64_to_cpu(
1415				a->data.non_resident.allocated_size);
1416	}
 
1417	if (NInoMstProtected(ni))
1418		vi->i_mapping->a_ops = &ntfs_mst_aops;
1419	else
1420		vi->i_mapping->a_ops = &ntfs_aops;
1421	if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT)
1422		vi->i_blocks = ni->itype.compressed.size >> 9;
1423	else
1424		vi->i_blocks = ni->allocated_size >> 9;
1425	/*
1426	 * Make sure the base inode does not go away and attach it to the
1427	 * attribute inode.
1428	 */
1429	igrab(base_vi);
1430	ni->ext.base_ntfs_ino = base_ni;
1431	ni->nr_extents = -1;
1432
1433	ntfs_attr_put_search_ctx(ctx);
1434	unmap_mft_record(base_ni);
1435
1436	ntfs_debug("Done.");
1437	return 0;
1438
1439unm_err_out:
1440	if (!err)
1441		err = -EIO;
1442	if (ctx)
1443		ntfs_attr_put_search_ctx(ctx);
1444	unmap_mft_record(base_ni);
1445err_out:
1446	ntfs_error(vol->sb, "Failed with error code %i while reading attribute "
1447			"inode (mft_no 0x%lx, type 0x%x, name_len %i).  "
1448			"Marking corrupt inode and base inode 0x%lx as bad.  "
1449			"Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len,
1450			base_vi->i_ino);
1451	make_bad_inode(vi);
1452	if (err != -ENOMEM)
1453		NVolSetErrors(vol);
1454	return err;
1455}
1456
1457/**
1458 * ntfs_read_locked_index_inode - read an index inode from its base inode
1459 * @base_vi:	base inode
1460 * @vi:		index inode to read
1461 *
1462 * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the
1463 * index inode described by @vi into memory from the base mft record described
1464 * by @base_ni.
1465 *
1466 * ntfs_read_locked_index_inode() maps, pins and locks the base inode for
1467 * reading and looks up the attributes relating to the index described by @vi
1468 * before setting up the necessary fields in @vi as well as initializing the
1469 * ntfs inode.
1470 *
1471 * Note, index inodes are essentially attribute inodes (NInoAttr() is true)
1472 * with the attribute type set to AT_INDEX_ALLOCATION.  Apart from that, they
1473 * are setup like directory inodes since directories are a special case of
1474 * indices ao they need to be treated in much the same way.  Most importantly,
1475 * for small indices the index allocation attribute might not actually exist.
1476 * However, the index root attribute always exists but this does not need to
1477 * have an inode associated with it and this is why we define a new inode type
1478 * index.  Also, like for directories, we need to have an attribute inode for
1479 * the bitmap attribute corresponding to the index allocation attribute and we
1480 * can store this in the appropriate field of the inode, just like we do for
1481 * normal directory inodes.
1482 *
1483 * Q: What locks are held when the function is called?
1484 * A: i_state has I_NEW set, hence the inode is locked, also
1485 *    i_count is set to 1, so it is not going to go away
1486 *
1487 * Return 0 on success and -errno on error.  In the error case, the inode will
1488 * have had make_bad_inode() executed on it.
1489 */
1490static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi)
1491{
1492	loff_t bvi_size;
1493	ntfs_volume *vol = NTFS_SB(vi->i_sb);
1494	ntfs_inode *ni, *base_ni, *bni;
1495	struct inode *bvi;
1496	MFT_RECORD *m;
1497	ATTR_RECORD *a;
1498	ntfs_attr_search_ctx *ctx;
1499	INDEX_ROOT *ir;
1500	u8 *ir_end, *index_end;
1501	int err = 0;
1502
1503	ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1504	ntfs_init_big_inode(vi);
1505	ni	= NTFS_I(vi);
1506	base_ni = NTFS_I(base_vi);
1507	/* Just mirror the values from the base inode. */
1508	vi->i_version	= base_vi->i_version;
1509	vi->i_uid	= base_vi->i_uid;
1510	vi->i_gid	= base_vi->i_gid;
1511	vi->i_nlink	= base_vi->i_nlink;
1512	vi->i_mtime	= base_vi->i_mtime;
1513	vi->i_ctime	= base_vi->i_ctime;
1514	vi->i_atime	= base_vi->i_atime;
1515	vi->i_generation = ni->seq_no = base_ni->seq_no;
1516	/* Set inode type to zero but preserve permissions. */
1517	vi->i_mode	= base_vi->i_mode & ~S_IFMT;
1518	/* Map the mft record for the base inode. */
1519	m = map_mft_record(base_ni);
1520	if (IS_ERR(m)) {
1521		err = PTR_ERR(m);
1522		goto err_out;
1523	}
1524	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1525	if (!ctx) {
1526		err = -ENOMEM;
1527		goto unm_err_out;
1528	}
1529	/* Find the index root attribute. */
1530	err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len,
1531			CASE_SENSITIVE, 0, NULL, 0, ctx);
1532	if (unlikely(err)) {
1533		if (err == -ENOENT)
1534			ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
1535					"missing.");
1536		goto unm_err_out;
1537	}
1538	a = ctx->attr;
1539	/* Set up the state. */
1540	if (unlikely(a->non_resident)) {
1541		ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident.");
1542		goto unm_err_out;
1543	}
1544	/* Ensure the attribute name is placed before the value. */
1545	if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1546			le16_to_cpu(a->data.resident.value_offset)))) {
1547		ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed "
1548				"after the attribute value.");
1549		goto unm_err_out;
1550	}
1551	/*
1552	 * Compressed/encrypted/sparse index root is not allowed, except for
1553	 * directories of course but those are not dealt with here.
1554	 */
1555	if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED |
1556			ATTR_IS_SPARSE)) {
1557		ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index "
1558				"root attribute.");
1559		goto unm_err_out;
1560	}
1561	ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset));
1562	ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
1563	if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
1564		ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt.");
1565		goto unm_err_out;
1566	}
1567	index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length);
1568	if (index_end > ir_end) {
1569		ntfs_error(vi->i_sb, "Index is corrupt.");
1570		goto unm_err_out;
1571	}
1572	if (ir->type) {
1573		ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).",
1574				le32_to_cpu(ir->type));
1575		goto unm_err_out;
1576	}
1577	ni->itype.index.collation_rule = ir->collation_rule;
1578	ntfs_debug("Index collation rule is 0x%x.",
1579			le32_to_cpu(ir->collation_rule));
1580	ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
1581	if (!is_power_of_2(ni->itype.index.block_size)) {
1582		ntfs_error(vi->i_sb, "Index block size (%u) is not a power of "
1583				"two.", ni->itype.index.block_size);
1584		goto unm_err_out;
1585	}
1586	if (ni->itype.index.block_size > PAGE_CACHE_SIZE) {
1587		ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_CACHE_SIZE "
1588				"(%ld) is not supported.  Sorry.",
1589				ni->itype.index.block_size, PAGE_CACHE_SIZE);
1590		err = -EOPNOTSUPP;
1591		goto unm_err_out;
1592	}
1593	if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
1594		ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE "
1595				"(%i) is not supported.  Sorry.",
1596				ni->itype.index.block_size, NTFS_BLOCK_SIZE);
1597		err = -EOPNOTSUPP;
1598		goto unm_err_out;
1599	}
1600	ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1;
1601	/* Determine the size of a vcn in the index. */
1602	if (vol->cluster_size <= ni->itype.index.block_size) {
1603		ni->itype.index.vcn_size = vol->cluster_size;
1604		ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
1605	} else {
1606		ni->itype.index.vcn_size = vol->sector_size;
1607		ni->itype.index.vcn_size_bits = vol->sector_size_bits;
1608	}
1609	/* Check for presence of index allocation attribute. */
1610	if (!(ir->index.flags & LARGE_INDEX)) {
1611		/* No index allocation. */
1612		vi->i_size = ni->initialized_size = ni->allocated_size = 0;
1613		/* We are done with the mft record, so we release it. */
1614		ntfs_attr_put_search_ctx(ctx);
1615		unmap_mft_record(base_ni);
1616		m = NULL;
1617		ctx = NULL;
1618		goto skip_large_index_stuff;
1619	} /* LARGE_INDEX:  Index allocation present.  Setup state. */
1620	NInoSetIndexAllocPresent(ni);
1621	/* Find index allocation attribute. */
1622	ntfs_attr_reinit_search_ctx(ctx);
1623	err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len,
1624			CASE_SENSITIVE, 0, NULL, 0, ctx);
1625	if (unlikely(err)) {
1626		if (err == -ENOENT)
1627			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1628					"not present but $INDEX_ROOT "
1629					"indicated it is.");
1630		else
1631			ntfs_error(vi->i_sb, "Failed to lookup "
1632					"$INDEX_ALLOCATION attribute.");
1633		goto unm_err_out;
1634	}
1635	a = ctx->attr;
1636	if (!a->non_resident) {
1637		ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1638				"resident.");
1639		goto unm_err_out;
1640	}
1641	/*
1642	 * Ensure the attribute name is placed before the mapping pairs array.
1643	 */
1644	if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1645			le16_to_cpu(
1646			a->data.non_resident.mapping_pairs_offset)))) {
1647		ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is "
1648				"placed after the mapping pairs array.");
1649		goto unm_err_out;
1650	}
1651	if (a->flags & ATTR_IS_ENCRYPTED) {
1652		ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1653				"encrypted.");
1654		goto unm_err_out;
1655	}
1656	if (a->flags & ATTR_IS_SPARSE) {
1657		ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse.");
1658		goto unm_err_out;
1659	}
1660	if (a->flags & ATTR_COMPRESSION_MASK) {
1661		ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1662				"compressed.");
1663		goto unm_err_out;
1664	}
1665	if (a->data.non_resident.lowest_vcn) {
1666		ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION "
1667				"attribute has non zero lowest_vcn.");
1668		goto unm_err_out;
1669	}
1670	vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1671	ni->initialized_size = sle64_to_cpu(
1672			a->data.non_resident.initialized_size);
1673	ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size);
1674	/*
1675	 * We are done with the mft record, so we release it.  Otherwise
1676	 * we would deadlock in ntfs_attr_iget().
1677	 */
1678	ntfs_attr_put_search_ctx(ctx);
1679	unmap_mft_record(base_ni);
1680	m = NULL;
1681	ctx = NULL;
1682	/* Get the index bitmap attribute inode. */
1683	bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len);
1684	if (IS_ERR(bvi)) {
1685		ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
1686		err = PTR_ERR(bvi);
1687		goto unm_err_out;
1688	}
1689	bni = NTFS_I(bvi);
1690	if (NInoCompressed(bni) || NInoEncrypted(bni) ||
1691			NInoSparse(bni)) {
1692		ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or "
1693				"encrypted and/or sparse.");
1694		goto iput_unm_err_out;
1695	}
1696	/* Consistency check bitmap size vs. index allocation size. */
1697	bvi_size = i_size_read(bvi);
1698	if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) {
1699		ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for "
1700				"index allocation (0x%llx).", bvi_size << 3,
1701				vi->i_size);
1702		goto iput_unm_err_out;
1703	}
1704	iput(bvi);
1705skip_large_index_stuff:
1706	/* Setup the operations for this index inode. */
1707	vi->i_op = NULL;
1708	vi->i_fop = NULL;
1709	vi->i_mapping->a_ops = &ntfs_mst_aops;
1710	vi->i_blocks = ni->allocated_size >> 9;
1711	/*
1712	 * Make sure the base inode doesn't go away and attach it to the
1713	 * index inode.
1714	 */
1715	igrab(base_vi);
1716	ni->ext.base_ntfs_ino = base_ni;
1717	ni->nr_extents = -1;
1718
1719	ntfs_debug("Done.");
1720	return 0;
1721iput_unm_err_out:
1722	iput(bvi);
1723unm_err_out:
1724	if (!err)
1725		err = -EIO;
1726	if (ctx)
1727		ntfs_attr_put_search_ctx(ctx);
1728	if (m)
1729		unmap_mft_record(base_ni);
1730err_out:
1731	ntfs_error(vi->i_sb, "Failed with error code %i while reading index "
1732			"inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino,
1733			ni->name_len);
1734	make_bad_inode(vi);
1735	if (err != -EOPNOTSUPP && err != -ENOMEM)
1736		NVolSetErrors(vol);
1737	return err;
1738}
1739
1740/*
1741 * The MFT inode has special locking, so teach the lock validator
1742 * about this by splitting off the locking rules of the MFT from
1743 * the locking rules of other inodes. The MFT inode can never be
1744 * accessed from the VFS side (or even internally), only by the
1745 * map_mft functions.
1746 */
1747static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key;
1748
1749/**
1750 * ntfs_read_inode_mount - special read_inode for mount time use only
1751 * @vi:		inode to read
1752 *
1753 * Read inode FILE_MFT at mount time, only called with super_block lock
1754 * held from within the read_super() code path.
1755 *
1756 * This function exists because when it is called the page cache for $MFT/$DATA
1757 * is not initialized and hence we cannot get at the contents of mft records
1758 * by calling map_mft_record*().
1759 *
1760 * Further it needs to cope with the circular references problem, i.e. cannot
1761 * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because
1762 * we do not know where the other extent mft records are yet and again, because
1763 * we cannot call map_mft_record*() yet.  Obviously this applies only when an
1764 * attribute list is actually present in $MFT inode.
1765 *
1766 * We solve these problems by starting with the $DATA attribute before anything
1767 * else and iterating using ntfs_attr_lookup($DATA) over all extents.  As each
1768 * extent is found, we ntfs_mapping_pairs_decompress() including the implied
1769 * ntfs_runlists_merge().  Each step of the iteration necessarily provides
1770 * sufficient information for the next step to complete.
1771 *
1772 * This should work but there are two possible pit falls (see inline comments
1773 * below), but only time will tell if they are real pits or just smoke...
1774 */
1775int ntfs_read_inode_mount(struct inode *vi)
1776{
1777	VCN next_vcn, last_vcn, highest_vcn;
1778	s64 block;
1779	struct super_block *sb = vi->i_sb;
1780	ntfs_volume *vol = NTFS_SB(sb);
1781	struct buffer_head *bh;
1782	ntfs_inode *ni;
1783	MFT_RECORD *m = NULL;
1784	ATTR_RECORD *a;
1785	ntfs_attr_search_ctx *ctx;
1786	unsigned int i, nr_blocks;
1787	int err;
1788
1789	ntfs_debug("Entering.");
1790
1791	/* Initialize the ntfs specific part of @vi. */
1792	ntfs_init_big_inode(vi);
1793
1794	ni = NTFS_I(vi);
1795
1796	/* Setup the data attribute. It is special as it is mst protected. */
1797	NInoSetNonResident(ni);
1798	NInoSetMstProtected(ni);
1799	NInoSetSparseDisabled(ni);
1800	ni->type = AT_DATA;
1801	ni->name = NULL;
1802	ni->name_len = 0;
1803	/*
1804	 * This sets up our little cheat allowing us to reuse the async read io
1805	 * completion handler for directories.
1806	 */
1807	ni->itype.index.block_size = vol->mft_record_size;
1808	ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1809
1810	/* Very important! Needed to be able to call map_mft_record*(). */
1811	vol->mft_ino = vi;
1812
1813	/* Allocate enough memory to read the first mft record. */
1814	if (vol->mft_record_size > 64 * 1024) {
1815		ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).",
1816				vol->mft_record_size);
1817		goto err_out;
1818	}
1819	i = vol->mft_record_size;
1820	if (i < sb->s_blocksize)
1821		i = sb->s_blocksize;
1822	m = (MFT_RECORD*)ntfs_malloc_nofs(i);
1823	if (!m) {
1824		ntfs_error(sb, "Failed to allocate buffer for $MFT record 0.");
1825		goto err_out;
1826	}
1827
1828	/* Determine the first block of the $MFT/$DATA attribute. */
1829	block = vol->mft_lcn << vol->cluster_size_bits >>
1830			sb->s_blocksize_bits;
1831	nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits;
1832	if (!nr_blocks)
1833		nr_blocks = 1;
1834
1835	/* Load $MFT/$DATA's first mft record. */
1836	for (i = 0; i < nr_blocks; i++) {
1837		bh = sb_bread(sb, block++);
1838		if (!bh) {
1839			ntfs_error(sb, "Device read failed.");
1840			goto err_out;
1841		}
1842		memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data,
1843				sb->s_blocksize);
1844		brelse(bh);
1845	}
1846
1847	/* Apply the mst fixups. */
1848	if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) {
1849		/* FIXME: Try to use the $MFTMirr now. */
1850		ntfs_error(sb, "MST fixup failed. $MFT is corrupt.");
1851		goto err_out;
1852	}
1853
1854	/* Need this to sanity check attribute list references to $MFT. */
1855	vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
1856
1857	/* Provides readpage() and sync_page() for map_mft_record(). */
1858	vi->i_mapping->a_ops = &ntfs_mst_aops;
1859
1860	ctx = ntfs_attr_get_search_ctx(ni, m);
1861	if (!ctx) {
1862		err = -ENOMEM;
1863		goto err_out;
1864	}
1865
1866	/* Find the attribute list attribute if present. */
1867	err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
1868	if (err) {
1869		if (unlikely(err != -ENOENT)) {
1870			ntfs_error(sb, "Failed to lookup attribute list "
1871					"attribute. You should run chkdsk.");
1872			goto put_err_out;
1873		}
1874	} else /* if (!err) */ {
1875		ATTR_LIST_ENTRY *al_entry, *next_al_entry;
1876		u8 *al_end;
1877		static const char *es = "  Not allowed.  $MFT is corrupt.  "
1878				"You should run chkdsk.";
1879
1880		ntfs_debug("Attribute list attribute found in $MFT.");
1881		NInoSetAttrList(ni);
1882		a = ctx->attr;
1883		if (a->flags & ATTR_COMPRESSION_MASK) {
1884			ntfs_error(sb, "Attribute list attribute is "
1885					"compressed.%s", es);
1886			goto put_err_out;
1887		}
1888		if (a->flags & ATTR_IS_ENCRYPTED ||
1889				a->flags & ATTR_IS_SPARSE) {
1890			if (a->non_resident) {
1891				ntfs_error(sb, "Non-resident attribute list "
1892						"attribute is encrypted/"
1893						"sparse.%s", es);
1894				goto put_err_out;
1895			}
1896			ntfs_warning(sb, "Resident attribute list attribute "
1897					"in $MFT system file is marked "
1898					"encrypted/sparse which is not true.  "
1899					"However, Windows allows this and "
1900					"chkdsk does not detect or correct it "
1901					"so we will just ignore the invalid "
1902					"flags and pretend they are not set.");
1903		}
1904		/* Now allocate memory for the attribute list. */
1905		ni->attr_list_size = (u32)ntfs_attr_size(a);
1906		ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
1907		if (!ni->attr_list) {
1908			ntfs_error(sb, "Not enough memory to allocate buffer "
1909					"for attribute list.");
1910			goto put_err_out;
1911		}
1912		if (a->non_resident) {
1913			NInoSetAttrListNonResident(ni);
1914			if (a->data.non_resident.lowest_vcn) {
1915				ntfs_error(sb, "Attribute list has non zero "
1916						"lowest_vcn. $MFT is corrupt. "
1917						"You should run chkdsk.");
1918				goto put_err_out;
1919			}
1920			/* Setup the runlist. */
1921			ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
1922					a, NULL);
1923			if (IS_ERR(ni->attr_list_rl.rl)) {
1924				err = PTR_ERR(ni->attr_list_rl.rl);
1925				ni->attr_list_rl.rl = NULL;
1926				ntfs_error(sb, "Mapping pairs decompression "
1927						"failed with error code %i.",
1928						-err);
1929				goto put_err_out;
1930			}
1931			/* Now load the attribute list. */
1932			if ((err = load_attribute_list(vol, &ni->attr_list_rl,
1933					ni->attr_list, ni->attr_list_size,
1934					sle64_to_cpu(a->data.
1935					non_resident.initialized_size)))) {
1936				ntfs_error(sb, "Failed to load attribute list "
1937						"attribute with error code %i.",
1938						-err);
1939				goto put_err_out;
1940			}
1941		} else /* if (!ctx.attr->non_resident) */ {
1942			if ((u8*)a + le16_to_cpu(
1943					a->data.resident.value_offset) +
1944					le32_to_cpu(
1945					a->data.resident.value_length) >
1946					(u8*)ctx->mrec + vol->mft_record_size) {
1947				ntfs_error(sb, "Corrupt attribute list "
1948						"attribute.");
1949				goto put_err_out;
1950			}
1951			/* Now copy the attribute list. */
1952			memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
1953					a->data.resident.value_offset),
1954					le32_to_cpu(
1955					a->data.resident.value_length));
1956		}
1957		/* The attribute list is now setup in memory. */
1958		/*
1959		 * FIXME: I don't know if this case is actually possible.
1960		 * According to logic it is not possible but I have seen too
1961		 * many weird things in MS software to rely on logic... Thus we
1962		 * perform a manual search and make sure the first $MFT/$DATA
1963		 * extent is in the base inode. If it is not we abort with an
1964		 * error and if we ever see a report of this error we will need
1965		 * to do some magic in order to have the necessary mft record
1966		 * loaded and in the right place in the page cache. But
1967		 * hopefully logic will prevail and this never happens...
1968		 */
1969		al_entry = (ATTR_LIST_ENTRY*)ni->attr_list;
1970		al_end = (u8*)al_entry + ni->attr_list_size;
1971		for (;; al_entry = next_al_entry) {
1972			/* Out of bounds check. */
1973			if ((u8*)al_entry < ni->attr_list ||
1974					(u8*)al_entry > al_end)
1975				goto em_put_err_out;
1976			/* Catch the end of the attribute list. */
1977			if ((u8*)al_entry == al_end)
1978				goto em_put_err_out;
1979			if (!al_entry->length)
1980				goto em_put_err_out;
1981			if ((u8*)al_entry + 6 > al_end || (u8*)al_entry +
1982					le16_to_cpu(al_entry->length) > al_end)
1983				goto em_put_err_out;
1984			next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry +
1985					le16_to_cpu(al_entry->length));
1986			if (le32_to_cpu(al_entry->type) > le32_to_cpu(AT_DATA))
1987				goto em_put_err_out;
1988			if (AT_DATA != al_entry->type)
1989				continue;
1990			/* We want an unnamed attribute. */
1991			if (al_entry->name_length)
1992				goto em_put_err_out;
1993			/* Want the first entry, i.e. lowest_vcn == 0. */
1994			if (al_entry->lowest_vcn)
1995				goto em_put_err_out;
1996			/* First entry has to be in the base mft record. */
1997			if (MREF_LE(al_entry->mft_reference) != vi->i_ino) {
1998				/* MFT references do not match, logic fails. */
1999				ntfs_error(sb, "BUG: The first $DATA extent "
2000						"of $MFT is not in the base "
2001						"mft record. Please report "
2002						"you saw this message to "
2003						"linux-ntfs-dev@lists."
2004						"sourceforge.net");
2005				goto put_err_out;
2006			} else {
2007				/* Sequence numbers must match. */
2008				if (MSEQNO_LE(al_entry->mft_reference) !=
2009						ni->seq_no)
2010					goto em_put_err_out;
2011				/* Got it. All is ok. We can stop now. */
2012				break;
2013			}
2014		}
2015	}
2016
2017	ntfs_attr_reinit_search_ctx(ctx);
2018
2019	/* Now load all attribute extents. */
2020	a = NULL;
2021	next_vcn = last_vcn = highest_vcn = 0;
2022	while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0,
2023			ctx))) {
2024		runlist_element *nrl;
2025
2026		/* Cache the current attribute. */
2027		a = ctx->attr;
2028		/* $MFT must be non-resident. */
2029		if (!a->non_resident) {
2030			ntfs_error(sb, "$MFT must be non-resident but a "
2031					"resident extent was found. $MFT is "
2032					"corrupt. Run chkdsk.");
2033			goto put_err_out;
2034		}
2035		/* $MFT must be uncompressed and unencrypted. */
2036		if (a->flags & ATTR_COMPRESSION_MASK ||
2037				a->flags & ATTR_IS_ENCRYPTED ||
2038				a->flags & ATTR_IS_SPARSE) {
2039			ntfs_error(sb, "$MFT must be uncompressed, "
2040					"non-sparse, and unencrypted but a "
2041					"compressed/sparse/encrypted extent "
2042					"was found. $MFT is corrupt. Run "
2043					"chkdsk.");
2044			goto put_err_out;
2045		}
2046		/*
2047		 * Decompress the mapping pairs array of this extent and merge
2048		 * the result into the existing runlist. No need for locking
2049		 * as we have exclusive access to the inode at this time and we
2050		 * are a mount in progress task, too.
2051		 */
2052		nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl);
2053		if (IS_ERR(nrl)) {
2054			ntfs_error(sb, "ntfs_mapping_pairs_decompress() "
2055					"failed with error code %ld.  $MFT is "
2056					"corrupt.", PTR_ERR(nrl));
2057			goto put_err_out;
2058		}
2059		ni->runlist.rl = nrl;
2060
2061		/* Are we in the first extent? */
2062		if (!next_vcn) {
2063			if (a->data.non_resident.lowest_vcn) {
2064				ntfs_error(sb, "First extent of $DATA "
2065						"attribute has non zero "
2066						"lowest_vcn. $MFT is corrupt. "
2067						"You should run chkdsk.");
2068				goto put_err_out;
2069			}
2070			/* Get the last vcn in the $DATA attribute. */
2071			last_vcn = sle64_to_cpu(
2072					a->data.non_resident.allocated_size)
2073					>> vol->cluster_size_bits;
2074			/* Fill in the inode size. */
2075			vi->i_size = sle64_to_cpu(
2076					a->data.non_resident.data_size);
2077			ni->initialized_size = sle64_to_cpu(
2078					a->data.non_resident.initialized_size);
2079			ni->allocated_size = sle64_to_cpu(
2080					a->data.non_resident.allocated_size);
2081			/*
2082			 * Verify the number of mft records does not exceed
2083			 * 2^32 - 1.
2084			 */
2085			if ((vi->i_size >> vol->mft_record_size_bits) >=
2086					(1ULL << 32)) {
2087				ntfs_error(sb, "$MFT is too big! Aborting.");
2088				goto put_err_out;
2089			}
2090			/*
2091			 * We have got the first extent of the runlist for
2092			 * $MFT which means it is now relatively safe to call
2093			 * the normal ntfs_read_inode() function.
2094			 * Complete reading the inode, this will actually
2095			 * re-read the mft record for $MFT, this time entering
2096			 * it into the page cache with which we complete the
2097			 * kick start of the volume. It should be safe to do
2098			 * this now as the first extent of $MFT/$DATA is
2099			 * already known and we would hope that we don't need
2100			 * further extents in order to find the other
2101			 * attributes belonging to $MFT. Only time will tell if
2102			 * this is really the case. If not we will have to play
2103			 * magic at this point, possibly duplicating a lot of
2104			 * ntfs_read_inode() at this point. We will need to
2105			 * ensure we do enough of its work to be able to call
2106			 * ntfs_read_inode() on extents of $MFT/$DATA. But lets
2107			 * hope this never happens...
2108			 */
2109			ntfs_read_locked_inode(vi);
2110			if (is_bad_inode(vi)) {
2111				ntfs_error(sb, "ntfs_read_inode() of $MFT "
2112						"failed. BUG or corrupt $MFT. "
2113						"Run chkdsk and if no errors "
2114						"are found, please report you "
2115						"saw this message to "
2116						"linux-ntfs-dev@lists."
2117						"sourceforge.net");
2118				ntfs_attr_put_search_ctx(ctx);
2119				/* Revert to the safe super operations. */
2120				ntfs_free(m);
2121				return -1;
2122			}
2123			/*
2124			 * Re-initialize some specifics about $MFT's inode as
2125			 * ntfs_read_inode() will have set up the default ones.
2126			 */
2127			/* Set uid and gid to root. */
2128			vi->i_uid = vi->i_gid = 0;
 
2129			/* Regular file. No access for anyone. */
2130			vi->i_mode = S_IFREG;
2131			/* No VFS initiated operations allowed for $MFT. */
2132			vi->i_op = &ntfs_empty_inode_ops;
2133			vi->i_fop = &ntfs_empty_file_ops;
2134		}
2135
2136		/* Get the lowest vcn for the next extent. */
2137		highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2138		next_vcn = highest_vcn + 1;
2139
2140		/* Only one extent or error, which we catch below. */
2141		if (next_vcn <= 0)
2142			break;
2143
2144		/* Avoid endless loops due to corruption. */
2145		if (next_vcn < sle64_to_cpu(
2146				a->data.non_resident.lowest_vcn)) {
2147			ntfs_error(sb, "$MFT has corrupt attribute list "
2148					"attribute. Run chkdsk.");
2149			goto put_err_out;
2150		}
2151	}
2152	if (err != -ENOENT) {
2153		ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. "
2154				"$MFT is corrupt. Run chkdsk.");
2155		goto put_err_out;
2156	}
2157	if (!a) {
2158		ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is "
2159				"corrupt. Run chkdsk.");
2160		goto put_err_out;
2161	}
2162	if (highest_vcn && highest_vcn != last_vcn - 1) {
2163		ntfs_error(sb, "Failed to load the complete runlist for "
2164				"$MFT/$DATA. Driver bug or corrupt $MFT. "
2165				"Run chkdsk.");
2166		ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx",
2167				(unsigned long long)highest_vcn,
2168				(unsigned long long)last_vcn - 1);
2169		goto put_err_out;
2170	}
2171	ntfs_attr_put_search_ctx(ctx);
2172	ntfs_debug("Done.");
2173	ntfs_free(m);
2174
2175	/*
2176	 * Split the locking rules of the MFT inode from the
2177	 * locking rules of other inodes:
2178	 */
2179	lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key);
2180	lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key);
2181
2182	return 0;
2183
2184em_put_err_out:
2185	ntfs_error(sb, "Couldn't find first extent of $DATA attribute in "
2186			"attribute list. $MFT is corrupt. Run chkdsk.");
2187put_err_out:
2188	ntfs_attr_put_search_ctx(ctx);
2189err_out:
2190	ntfs_error(sb, "Failed. Marking inode as bad.");
2191	make_bad_inode(vi);
2192	ntfs_free(m);
2193	return -1;
2194}
2195
2196static void __ntfs_clear_inode(ntfs_inode *ni)
2197{
2198	/* Free all alocated memory. */
2199	down_write(&ni->runlist.lock);
2200	if (ni->runlist.rl) {
2201		ntfs_free(ni->runlist.rl);
2202		ni->runlist.rl = NULL;
2203	}
2204	up_write(&ni->runlist.lock);
2205
2206	if (ni->attr_list) {
2207		ntfs_free(ni->attr_list);
2208		ni->attr_list = NULL;
2209	}
2210
2211	down_write(&ni->attr_list_rl.lock);
2212	if (ni->attr_list_rl.rl) {
2213		ntfs_free(ni->attr_list_rl.rl);
2214		ni->attr_list_rl.rl = NULL;
2215	}
2216	up_write(&ni->attr_list_rl.lock);
2217
2218	if (ni->name_len && ni->name != I30) {
2219		/* Catch bugs... */
2220		BUG_ON(!ni->name);
2221		kfree(ni->name);
2222	}
2223}
2224
2225void ntfs_clear_extent_inode(ntfs_inode *ni)
2226{
2227	ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
2228
2229	BUG_ON(NInoAttr(ni));
2230	BUG_ON(ni->nr_extents != -1);
2231
2232#ifdef NTFS_RW
2233	if (NInoDirty(ni)) {
2234		if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino)))
2235			ntfs_error(ni->vol->sb, "Clearing dirty extent inode!  "
2236					"Losing data!  This is a BUG!!!");
2237		// FIXME:  Do something!!!
2238	}
2239#endif /* NTFS_RW */
2240
2241	__ntfs_clear_inode(ni);
2242
2243	/* Bye, bye... */
2244	ntfs_destroy_extent_inode(ni);
2245}
2246
2247/**
2248 * ntfs_evict_big_inode - clean up the ntfs specific part of an inode
2249 * @vi:		vfs inode pending annihilation
2250 *
2251 * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode()
2252 * is called, which deallocates all memory belonging to the NTFS specific part
2253 * of the inode and returns.
2254 *
2255 * If the MFT record is dirty, we commit it before doing anything else.
2256 */
2257void ntfs_evict_big_inode(struct inode *vi)
2258{
2259	ntfs_inode *ni = NTFS_I(vi);
2260
2261	truncate_inode_pages(&vi->i_data, 0);
2262	end_writeback(vi);
2263
2264#ifdef NTFS_RW
2265	if (NInoDirty(ni)) {
2266		bool was_bad = (is_bad_inode(vi));
2267
2268		/* Committing the inode also commits all extent inodes. */
2269		ntfs_commit_inode(vi);
2270
2271		if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) {
2272			ntfs_error(vi->i_sb, "Failed to commit dirty inode "
2273					"0x%lx.  Losing data!", vi->i_ino);
2274			// FIXME:  Do something!!!
2275		}
2276	}
2277#endif /* NTFS_RW */
2278
2279	/* No need to lock at this stage as no one else has a reference. */
2280	if (ni->nr_extents > 0) {
2281		int i;
2282
2283		for (i = 0; i < ni->nr_extents; i++)
2284			ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]);
2285		kfree(ni->ext.extent_ntfs_inos);
2286	}
2287
2288	__ntfs_clear_inode(ni);
2289
2290	if (NInoAttr(ni)) {
2291		/* Release the base inode if we are holding it. */
2292		if (ni->nr_extents == -1) {
2293			iput(VFS_I(ni->ext.base_ntfs_ino));
2294			ni->nr_extents = 0;
2295			ni->ext.base_ntfs_ino = NULL;
2296		}
2297	}
2298	return;
2299}
2300
2301/**
2302 * ntfs_show_options - show mount options in /proc/mounts
2303 * @sf:		seq_file in which to write our mount options
2304 * @mnt:	vfs mount whose mount options to display
2305 *
2306 * Called by the VFS once for each mounted ntfs volume when someone reads
2307 * /proc/mounts in order to display the NTFS specific mount options of each
2308 * mount. The mount options of the vfs mount @mnt are written to the seq file
2309 * @sf and success is returned.
2310 */
2311int ntfs_show_options(struct seq_file *sf, struct vfsmount *mnt)
2312{
2313	ntfs_volume *vol = NTFS_SB(mnt->mnt_sb);
2314	int i;
2315
2316	seq_printf(sf, ",uid=%i", vol->uid);
2317	seq_printf(sf, ",gid=%i", vol->gid);
2318	if (vol->fmask == vol->dmask)
2319		seq_printf(sf, ",umask=0%o", vol->fmask);
2320	else {
2321		seq_printf(sf, ",fmask=0%o", vol->fmask);
2322		seq_printf(sf, ",dmask=0%o", vol->dmask);
2323	}
2324	seq_printf(sf, ",nls=%s", vol->nls_map->charset);
2325	if (NVolCaseSensitive(vol))
2326		seq_printf(sf, ",case_sensitive");
2327	if (NVolShowSystemFiles(vol))
2328		seq_printf(sf, ",show_sys_files");
2329	if (!NVolSparseEnabled(vol))
2330		seq_printf(sf, ",disable_sparse");
2331	for (i = 0; on_errors_arr[i].val; i++) {
2332		if (on_errors_arr[i].val & vol->on_errors)
2333			seq_printf(sf, ",errors=%s", on_errors_arr[i].str);
2334	}
2335	seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier);
2336	return 0;
2337}
2338
2339#ifdef NTFS_RW
2340
2341static const char *es = "  Leaving inconsistent metadata.  Unmount and run "
2342		"chkdsk.";
2343
2344/**
2345 * ntfs_truncate - called when the i_size of an ntfs inode is changed
2346 * @vi:		inode for which the i_size was changed
2347 *
2348 * We only support i_size changes for normal files at present, i.e. not
2349 * compressed and not encrypted.  This is enforced in ntfs_setattr(), see
2350 * below.
2351 *
2352 * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and
2353 * that the change is allowed.
2354 *
2355 * This implies for us that @vi is a file inode rather than a directory, index,
2356 * or attribute inode as well as that @vi is a base inode.
2357 *
2358 * Returns 0 on success or -errno on error.
2359 *
2360 * Called with ->i_mutex held.
2361 */
2362int ntfs_truncate(struct inode *vi)
2363{
2364	s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size;
2365	VCN highest_vcn;
2366	unsigned long flags;
2367	ntfs_inode *base_ni, *ni = NTFS_I(vi);
2368	ntfs_volume *vol = ni->vol;
2369	ntfs_attr_search_ctx *ctx;
2370	MFT_RECORD *m;
2371	ATTR_RECORD *a;
2372	const char *te = "  Leaving file length out of sync with i_size.";
2373	int err, mp_size, size_change, alloc_change;
2374	u32 attr_len;
2375
2376	ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2377	BUG_ON(NInoAttr(ni));
2378	BUG_ON(S_ISDIR(vi->i_mode));
2379	BUG_ON(NInoMstProtected(ni));
2380	BUG_ON(ni->nr_extents < 0);
2381retry_truncate:
2382	/*
2383	 * Lock the runlist for writing and map the mft record to ensure it is
2384	 * safe to mess with the attribute runlist and sizes.
2385	 */
2386	down_write(&ni->runlist.lock);
2387	if (!NInoAttr(ni))
2388		base_ni = ni;
2389	else
2390		base_ni = ni->ext.base_ntfs_ino;
2391	m = map_mft_record(base_ni);
2392	if (IS_ERR(m)) {
2393		err = PTR_ERR(m);
2394		ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx "
2395				"(error code %d).%s", vi->i_ino, err, te);
2396		ctx = NULL;
2397		m = NULL;
2398		goto old_bad_out;
2399	}
2400	ctx = ntfs_attr_get_search_ctx(base_ni, m);
2401	if (unlikely(!ctx)) {
2402		ntfs_error(vi->i_sb, "Failed to allocate a search context for "
2403				"inode 0x%lx (not enough memory).%s",
2404				vi->i_ino, te);
2405		err = -ENOMEM;
2406		goto old_bad_out;
2407	}
2408	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2409			CASE_SENSITIVE, 0, NULL, 0, ctx);
2410	if (unlikely(err)) {
2411		if (err == -ENOENT) {
2412			ntfs_error(vi->i_sb, "Open attribute is missing from "
2413					"mft record.  Inode 0x%lx is corrupt.  "
2414					"Run chkdsk.%s", vi->i_ino, te);
2415			err = -EIO;
2416		} else
2417			ntfs_error(vi->i_sb, "Failed to lookup attribute in "
2418					"inode 0x%lx (error code %d).%s",
2419					vi->i_ino, err, te);
2420		goto old_bad_out;
2421	}
2422	m = ctx->mrec;
2423	a = ctx->attr;
2424	/*
2425	 * The i_size of the vfs inode is the new size for the attribute value.
2426	 */
2427	new_size = i_size_read(vi);
2428	/* The current size of the attribute value is the old size. */
2429	old_size = ntfs_attr_size(a);
2430	/* Calculate the new allocated size. */
2431	if (NInoNonResident(ni))
2432		new_alloc_size = (new_size + vol->cluster_size - 1) &
2433				~(s64)vol->cluster_size_mask;
2434	else
2435		new_alloc_size = (new_size + 7) & ~7;
2436	/* The current allocated size is the old allocated size. */
2437	read_lock_irqsave(&ni->size_lock, flags);
2438	old_alloc_size = ni->allocated_size;
2439	read_unlock_irqrestore(&ni->size_lock, flags);
2440	/*
2441	 * The change in the file size.  This will be 0 if no change, >0 if the
2442	 * size is growing, and <0 if the size is shrinking.
2443	 */
2444	size_change = -1;
2445	if (new_size - old_size >= 0) {
2446		size_change = 1;
2447		if (new_size == old_size)
2448			size_change = 0;
2449	}
2450	/* As above for the allocated size. */
2451	alloc_change = -1;
2452	if (new_alloc_size - old_alloc_size >= 0) {
2453		alloc_change = 1;
2454		if (new_alloc_size == old_alloc_size)
2455			alloc_change = 0;
2456	}
2457	/*
2458	 * If neither the size nor the allocation are being changed there is
2459	 * nothing to do.
2460	 */
2461	if (!size_change && !alloc_change)
2462		goto unm_done;
2463	/* If the size is changing, check if new size is allowed in $AttrDef. */
2464	if (size_change) {
2465		err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
2466		if (unlikely(err)) {
2467			if (err == -ERANGE) {
2468				ntfs_error(vol->sb, "Truncate would cause the "
2469						"inode 0x%lx to %simum size "
2470						"for its attribute type "
2471						"(0x%x).  Aborting truncate.",
2472						vi->i_ino,
2473						new_size > old_size ? "exceed "
2474						"the max" : "go under the min",
2475						le32_to_cpu(ni->type));
2476				err = -EFBIG;
2477			} else {
2478				ntfs_error(vol->sb, "Inode 0x%lx has unknown "
2479						"attribute type 0x%x.  "
2480						"Aborting truncate.",
2481						vi->i_ino,
2482						le32_to_cpu(ni->type));
2483				err = -EIO;
2484			}
2485			/* Reset the vfs inode size to the old size. */
2486			i_size_write(vi, old_size);
2487			goto err_out;
2488		}
2489	}
2490	if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2491		ntfs_warning(vi->i_sb, "Changes in inode size are not "
2492				"supported yet for %s files, ignoring.",
2493				NInoCompressed(ni) ? "compressed" :
2494				"encrypted");
2495		err = -EOPNOTSUPP;
2496		goto bad_out;
2497	}
2498	if (a->non_resident)
2499		goto do_non_resident_truncate;
2500	BUG_ON(NInoNonResident(ni));
2501	/* Resize the attribute record to best fit the new attribute size. */
2502	if (new_size < vol->mft_record_size &&
2503			!ntfs_resident_attr_value_resize(m, a, new_size)) {
2504		/* The resize succeeded! */
2505		flush_dcache_mft_record_page(ctx->ntfs_ino);
2506		mark_mft_record_dirty(ctx->ntfs_ino);
2507		write_lock_irqsave(&ni->size_lock, flags);
2508		/* Update the sizes in the ntfs inode and all is done. */
2509		ni->allocated_size = le32_to_cpu(a->length) -
2510				le16_to_cpu(a->data.resident.value_offset);
2511		/*
2512		 * Note ntfs_resident_attr_value_resize() has already done any
2513		 * necessary data clearing in the attribute record.  When the
2514		 * file is being shrunk vmtruncate() will already have cleared
2515		 * the top part of the last partial page, i.e. since this is
2516		 * the resident case this is the page with index 0.  However,
2517		 * when the file is being expanded, the page cache page data
2518		 * between the old data_size, i.e. old_size, and the new_size
2519		 * has not been zeroed.  Fortunately, we do not need to zero it
2520		 * either since on one hand it will either already be zero due
2521		 * to both readpage and writepage clearing partial page data
2522		 * beyond i_size in which case there is nothing to do or in the
2523		 * case of the file being mmap()ped at the same time, POSIX
2524		 * specifies that the behaviour is unspecified thus we do not
2525		 * have to do anything.  This means that in our implementation
2526		 * in the rare case that the file is mmap()ped and a write
2527		 * occurred into the mmap()ped region just beyond the file size
2528		 * and writepage has not yet been called to write out the page
2529		 * (which would clear the area beyond the file size) and we now
2530		 * extend the file size to incorporate this dirty region
2531		 * outside the file size, a write of the page would result in
2532		 * this data being written to disk instead of being cleared.
2533		 * Given both POSIX and the Linux mmap(2) man page specify that
2534		 * this corner case is undefined, we choose to leave it like
2535		 * that as this is much simpler for us as we cannot lock the
2536		 * relevant page now since we are holding too many ntfs locks
2537		 * which would result in a lock reversal deadlock.
2538		 */
2539		ni->initialized_size = new_size;
2540		write_unlock_irqrestore(&ni->size_lock, flags);
2541		goto unm_done;
2542	}
2543	/* If the above resize failed, this must be an attribute extension. */
2544	BUG_ON(size_change < 0);
2545	/*
2546	 * We have to drop all the locks so we can call
2547	 * ntfs_attr_make_non_resident().  This could be optimised by try-
2548	 * locking the first page cache page and only if that fails dropping
2549	 * the locks, locking the page, and redoing all the locking and
2550	 * lookups.  While this would be a huge optimisation, it is not worth
2551	 * it as this is definitely a slow code path as it only ever can happen
2552	 * once for any given file.
2553	 */
2554	ntfs_attr_put_search_ctx(ctx);
2555	unmap_mft_record(base_ni);
2556	up_write(&ni->runlist.lock);
2557	/*
2558	 * Not enough space in the mft record, try to make the attribute
2559	 * non-resident and if successful restart the truncation process.
2560	 */
2561	err = ntfs_attr_make_non_resident(ni, old_size);
2562	if (likely(!err))
2563		goto retry_truncate;
2564	/*
2565	 * Could not make non-resident.  If this is due to this not being
2566	 * permitted for this attribute type or there not being enough space,
2567	 * try to make other attributes non-resident.  Otherwise fail.
2568	 */
2569	if (unlikely(err != -EPERM && err != -ENOSPC)) {
2570		ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute "
2571				"type 0x%x, because the conversion from "
2572				"resident to non-resident attribute failed "
2573				"with error code %i.", vi->i_ino,
2574				(unsigned)le32_to_cpu(ni->type), err);
2575		if (err != -ENOMEM)
2576			err = -EIO;
2577		goto conv_err_out;
2578	}
2579	/* TODO: Not implemented from here, abort. */
2580	if (err == -ENOSPC)
2581		ntfs_error(vol->sb, "Not enough space in the mft record/on "
2582				"disk for the non-resident attribute value.  "
2583				"This case is not implemented yet.");
2584	else /* if (err == -EPERM) */
2585		ntfs_error(vol->sb, "This attribute type may not be "
2586				"non-resident.  This case is not implemented "
2587				"yet.");
2588	err = -EOPNOTSUPP;
2589	goto conv_err_out;
2590#if 0
2591	// TODO: Attempt to make other attributes non-resident.
2592	if (!err)
2593		goto do_resident_extend;
2594	/*
2595	 * Both the attribute list attribute and the standard information
2596	 * attribute must remain in the base inode.  Thus, if this is one of
2597	 * these attributes, we have to try to move other attributes out into
2598	 * extent mft records instead.
2599	 */
2600	if (ni->type == AT_ATTRIBUTE_LIST ||
2601			ni->type == AT_STANDARD_INFORMATION) {
2602		// TODO: Attempt to move other attributes into extent mft
2603		// records.
2604		err = -EOPNOTSUPP;
2605		if (!err)
2606			goto do_resident_extend;
2607		goto err_out;
2608	}
2609	// TODO: Attempt to move this attribute to an extent mft record, but
2610	// only if it is not already the only attribute in an mft record in
2611	// which case there would be nothing to gain.
2612	err = -EOPNOTSUPP;
2613	if (!err)
2614		goto do_resident_extend;
2615	/* There is nothing we can do to make enough space. )-: */
2616	goto err_out;
2617#endif
2618do_non_resident_truncate:
2619	BUG_ON(!NInoNonResident(ni));
2620	if (alloc_change < 0) {
2621		highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2622		if (highest_vcn > 0 &&
2623				old_alloc_size >> vol->cluster_size_bits >
2624				highest_vcn + 1) {
2625			/*
2626			 * This attribute has multiple extents.  Not yet
2627			 * supported.
2628			 */
2629			ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, "
2630					"attribute type 0x%x, because the "
2631					"attribute is highly fragmented (it "
2632					"consists of multiple extents) and "
2633					"this case is not implemented yet.",
2634					vi->i_ino,
2635					(unsigned)le32_to_cpu(ni->type));
2636			err = -EOPNOTSUPP;
2637			goto bad_out;
2638		}
2639	}
2640	/*
2641	 * If the size is shrinking, need to reduce the initialized_size and
2642	 * the data_size before reducing the allocation.
2643	 */
2644	if (size_change < 0) {
2645		/*
2646		 * Make the valid size smaller (i_size is already up-to-date).
2647		 */
2648		write_lock_irqsave(&ni->size_lock, flags);
2649		if (new_size < ni->initialized_size) {
2650			ni->initialized_size = new_size;
2651			a->data.non_resident.initialized_size =
2652					cpu_to_sle64(new_size);
2653		}
2654		a->data.non_resident.data_size = cpu_to_sle64(new_size);
2655		write_unlock_irqrestore(&ni->size_lock, flags);
2656		flush_dcache_mft_record_page(ctx->ntfs_ino);
2657		mark_mft_record_dirty(ctx->ntfs_ino);
2658		/* If the allocated size is not changing, we are done. */
2659		if (!alloc_change)
2660			goto unm_done;
2661		/*
2662		 * If the size is shrinking it makes no sense for the
2663		 * allocation to be growing.
2664		 */
2665		BUG_ON(alloc_change > 0);
2666	} else /* if (size_change >= 0) */ {
2667		/*
2668		 * The file size is growing or staying the same but the
2669		 * allocation can be shrinking, growing or staying the same.
2670		 */
2671		if (alloc_change > 0) {
2672			/*
2673			 * We need to extend the allocation and possibly update
2674			 * the data size.  If we are updating the data size,
2675			 * since we are not touching the initialized_size we do
2676			 * not need to worry about the actual data on disk.
2677			 * And as far as the page cache is concerned, there
2678			 * will be no pages beyond the old data size and any
2679			 * partial region in the last page between the old and
2680			 * new data size (or the end of the page if the new
2681			 * data size is outside the page) does not need to be
2682			 * modified as explained above for the resident
2683			 * attribute truncate case.  To do this, we simply drop
2684			 * the locks we hold and leave all the work to our
2685			 * friendly helper ntfs_attr_extend_allocation().
2686			 */
2687			ntfs_attr_put_search_ctx(ctx);
2688			unmap_mft_record(base_ni);
2689			up_write(&ni->runlist.lock);
2690			err = ntfs_attr_extend_allocation(ni, new_size,
2691					size_change > 0 ? new_size : -1, -1);
2692			/*
2693			 * ntfs_attr_extend_allocation() will have done error
2694			 * output already.
2695			 */
2696			goto done;
2697		}
2698		if (!alloc_change)
2699			goto alloc_done;
2700	}
2701	/* alloc_change < 0 */
2702	/* Free the clusters. */
2703	nr_freed = ntfs_cluster_free(ni, new_alloc_size >>
2704			vol->cluster_size_bits, -1, ctx);
2705	m = ctx->mrec;
2706	a = ctx->attr;
2707	if (unlikely(nr_freed < 0)) {
2708		ntfs_error(vol->sb, "Failed to release cluster(s) (error code "
2709				"%lli).  Unmount and run chkdsk to recover "
2710				"the lost cluster(s).", (long long)nr_freed);
2711		NVolSetErrors(vol);
2712		nr_freed = 0;
2713	}
2714	/* Truncate the runlist. */
2715	err = ntfs_rl_truncate_nolock(vol, &ni->runlist,
2716			new_alloc_size >> vol->cluster_size_bits);
2717	/*
2718	 * If the runlist truncation failed and/or the search context is no
2719	 * longer valid, we cannot resize the attribute record or build the
2720	 * mapping pairs array thus we mark the inode bad so that no access to
2721	 * the freed clusters can happen.
2722	 */
2723	if (unlikely(err || IS_ERR(m))) {
2724		ntfs_error(vol->sb, "Failed to %s (error code %li).%s",
2725				IS_ERR(m) ?
2726				"restore attribute search context" :
2727				"truncate attribute runlist",
2728				IS_ERR(m) ? PTR_ERR(m) : err, es);
2729		err = -EIO;
2730		goto bad_out;
2731	}
2732	/* Get the size for the shrunk mapping pairs array for the runlist. */
2733	mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1);
2734	if (unlikely(mp_size <= 0)) {
2735		ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2736				"attribute type 0x%x, because determining the "
2737				"size for the mapping pairs failed with error "
2738				"code %i.%s", vi->i_ino,
2739				(unsigned)le32_to_cpu(ni->type), mp_size, es);
2740		err = -EIO;
2741		goto bad_out;
2742	}
2743	/*
2744	 * Shrink the attribute record for the new mapping pairs array.  Note,
2745	 * this cannot fail since we are making the attribute smaller thus by
2746	 * definition there is enough space to do so.
2747	 */
2748	attr_len = le32_to_cpu(a->length);
2749	err = ntfs_attr_record_resize(m, a, mp_size +
2750			le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
2751	BUG_ON(err);
2752	/*
2753	 * Generate the mapping pairs array directly into the attribute record.
2754	 */
2755	err = ntfs_mapping_pairs_build(vol, (u8*)a +
2756			le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
2757			mp_size, ni->runlist.rl, 0, -1, NULL);
2758	if (unlikely(err)) {
2759		ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2760				"attribute type 0x%x, because building the "
2761				"mapping pairs failed with error code %i.%s",
2762				vi->i_ino, (unsigned)le32_to_cpu(ni->type),
2763				err, es);
2764		err = -EIO;
2765		goto bad_out;
2766	}
2767	/* Update the allocated/compressed size as well as the highest vcn. */
2768	a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >>
2769			vol->cluster_size_bits) - 1);
2770	write_lock_irqsave(&ni->size_lock, flags);
2771	ni->allocated_size = new_alloc_size;
2772	a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size);
2773	if (NInoSparse(ni) || NInoCompressed(ni)) {
2774		if (nr_freed) {
2775			ni->itype.compressed.size -= nr_freed <<
2776					vol->cluster_size_bits;
2777			BUG_ON(ni->itype.compressed.size < 0);
2778			a->data.non_resident.compressed_size = cpu_to_sle64(
2779					ni->itype.compressed.size);
2780			vi->i_blocks = ni->itype.compressed.size >> 9;
2781		}
2782	} else
2783		vi->i_blocks = new_alloc_size >> 9;
2784	write_unlock_irqrestore(&ni->size_lock, flags);
2785	/*
2786	 * We have shrunk the allocation.  If this is a shrinking truncate we
2787	 * have already dealt with the initialized_size and the data_size above
2788	 * and we are done.  If the truncate is only changing the allocation
2789	 * and not the data_size, we are also done.  If this is an extending
2790	 * truncate, need to extend the data_size now which is ensured by the
2791	 * fact that @size_change is positive.
2792	 */
2793alloc_done:
2794	/*
2795	 * If the size is growing, need to update it now.  If it is shrinking,
2796	 * we have already updated it above (before the allocation change).
2797	 */
2798	if (size_change > 0)
2799		a->data.non_resident.data_size = cpu_to_sle64(new_size);
2800	/* Ensure the modified mft record is written out. */
2801	flush_dcache_mft_record_page(ctx->ntfs_ino);
2802	mark_mft_record_dirty(ctx->ntfs_ino);
2803unm_done:
2804	ntfs_attr_put_search_ctx(ctx);
2805	unmap_mft_record(base_ni);
2806	up_write(&ni->runlist.lock);
2807done:
2808	/* Update the mtime and ctime on the base inode. */
2809	/* normally ->truncate shouldn't update ctime or mtime,
2810	 * but ntfs did before so it got a copy & paste version
2811	 * of file_update_time.  one day someone should fix this
2812	 * for real.
2813	 */
2814	if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) {
2815		struct timespec now = current_fs_time(VFS_I(base_ni)->i_sb);
2816		int sync_it = 0;
2817
2818		if (!timespec_equal(&VFS_I(base_ni)->i_mtime, &now) ||
2819		    !timespec_equal(&VFS_I(base_ni)->i_ctime, &now))
2820			sync_it = 1;
2821		VFS_I(base_ni)->i_mtime = now;
2822		VFS_I(base_ni)->i_ctime = now;
2823
2824		if (sync_it)
2825			mark_inode_dirty_sync(VFS_I(base_ni));
2826	}
2827
2828	if (likely(!err)) {
2829		NInoClearTruncateFailed(ni);
2830		ntfs_debug("Done.");
2831	}
2832	return err;
2833old_bad_out:
2834	old_size = -1;
2835bad_out:
2836	if (err != -ENOMEM && err != -EOPNOTSUPP)
2837		NVolSetErrors(vol);
2838	if (err != -EOPNOTSUPP)
2839		NInoSetTruncateFailed(ni);
2840	else if (old_size >= 0)
2841		i_size_write(vi, old_size);
2842err_out:
2843	if (ctx)
2844		ntfs_attr_put_search_ctx(ctx);
2845	if (m)
2846		unmap_mft_record(base_ni);
2847	up_write(&ni->runlist.lock);
2848out:
2849	ntfs_debug("Failed.  Returning error code %i.", err);
2850	return err;
2851conv_err_out:
2852	if (err != -ENOMEM && err != -EOPNOTSUPP)
2853		NVolSetErrors(vol);
2854	if (err != -EOPNOTSUPP)
2855		NInoSetTruncateFailed(ni);
2856	else
2857		i_size_write(vi, old_size);
2858	goto out;
2859}
2860
2861/**
2862 * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value
2863 * @vi:		inode for which the i_size was changed
2864 *
2865 * Wrapper for ntfs_truncate() that has no return value.
2866 *
2867 * See ntfs_truncate() description above for details.
2868 */
 
2869void ntfs_truncate_vfs(struct inode *vi) {
2870	ntfs_truncate(vi);
2871}
 
2872
2873/**
2874 * ntfs_setattr - called from notify_change() when an attribute is being changed
2875 * @dentry:	dentry whose attributes to change
2876 * @attr:	structure describing the attributes and the changes
2877 *
2878 * We have to trap VFS attempts to truncate the file described by @dentry as
2879 * soon as possible, because we do not implement changes in i_size yet.  So we
2880 * abort all i_size changes here.
2881 *
2882 * We also abort all changes of user, group, and mode as we do not implement
2883 * the NTFS ACLs yet.
2884 *
2885 * Called with ->i_mutex held.
2886 */
2887int ntfs_setattr(struct dentry *dentry, struct iattr *attr)
2888{
2889	struct inode *vi = dentry->d_inode;
2890	int err;
2891	unsigned int ia_valid = attr->ia_valid;
2892
2893	err = inode_change_ok(vi, attr);
2894	if (err)
2895		goto out;
2896	/* We do not support NTFS ACLs yet. */
2897	if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) {
2898		ntfs_warning(vi->i_sb, "Changes in user/group/mode are not "
2899				"supported yet, ignoring.");
2900		err = -EOPNOTSUPP;
2901		goto out;
2902	}
2903	if (ia_valid & ATTR_SIZE) {
2904		if (attr->ia_size != i_size_read(vi)) {
2905			ntfs_inode *ni = NTFS_I(vi);
2906			/*
2907			 * FIXME: For now we do not support resizing of
2908			 * compressed or encrypted files yet.
2909			 */
2910			if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2911				ntfs_warning(vi->i_sb, "Changes in inode size "
2912						"are not supported yet for "
2913						"%s files, ignoring.",
2914						NInoCompressed(ni) ?
2915						"compressed" : "encrypted");
2916				err = -EOPNOTSUPP;
2917			} else
2918				err = vmtruncate(vi, attr->ia_size);
 
 
2919			if (err || ia_valid == ATTR_SIZE)
2920				goto out;
2921		} else {
2922			/*
2923			 * We skipped the truncate but must still update
2924			 * timestamps.
2925			 */
2926			ia_valid |= ATTR_MTIME | ATTR_CTIME;
2927		}
2928	}
2929	if (ia_valid & ATTR_ATIME)
2930		vi->i_atime = timespec_trunc(attr->ia_atime,
2931				vi->i_sb->s_time_gran);
2932	if (ia_valid & ATTR_MTIME)
2933		vi->i_mtime = timespec_trunc(attr->ia_mtime,
2934				vi->i_sb->s_time_gran);
2935	if (ia_valid & ATTR_CTIME)
2936		vi->i_ctime = timespec_trunc(attr->ia_ctime,
2937				vi->i_sb->s_time_gran);
2938	mark_inode_dirty(vi);
2939out:
2940	return err;
2941}
2942
2943/**
2944 * ntfs_write_inode - write out a dirty inode
2945 * @vi:		inode to write out
2946 * @sync:	if true, write out synchronously
2947 *
2948 * Write out a dirty inode to disk including any extent inodes if present.
2949 *
2950 * If @sync is true, commit the inode to disk and wait for io completion.  This
2951 * is done using write_mft_record().
2952 *
2953 * If @sync is false, just schedule the write to happen but do not wait for i/o
2954 * completion.  In 2.6 kernels, scheduling usually happens just by virtue of
2955 * marking the page (and in this case mft record) dirty but we do not implement
2956 * this yet as write_mft_record() largely ignores the @sync parameter and
2957 * always performs synchronous writes.
2958 *
2959 * Return 0 on success and -errno on error.
2960 */
2961int __ntfs_write_inode(struct inode *vi, int sync)
2962{
2963	sle64 nt;
2964	ntfs_inode *ni = NTFS_I(vi);
2965	ntfs_attr_search_ctx *ctx;
2966	MFT_RECORD *m;
2967	STANDARD_INFORMATION *si;
2968	int err = 0;
2969	bool modified = false;
2970
2971	ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "",
2972			vi->i_ino);
2973	/*
2974	 * Dirty attribute inodes are written via their real inodes so just
2975	 * clean them here.  Access time updates are taken care off when the
2976	 * real inode is written.
2977	 */
2978	if (NInoAttr(ni)) {
2979		NInoClearDirty(ni);
2980		ntfs_debug("Done.");
2981		return 0;
2982	}
2983	/* Map, pin, and lock the mft record belonging to the inode. */
2984	m = map_mft_record(ni);
2985	if (IS_ERR(m)) {
2986		err = PTR_ERR(m);
2987		goto err_out;
2988	}
2989	/* Update the access times in the standard information attribute. */
2990	ctx = ntfs_attr_get_search_ctx(ni, m);
2991	if (unlikely(!ctx)) {
2992		err = -ENOMEM;
2993		goto unm_err_out;
2994	}
2995	err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0,
2996			CASE_SENSITIVE, 0, NULL, 0, ctx);
2997	if (unlikely(err)) {
2998		ntfs_attr_put_search_ctx(ctx);
2999		goto unm_err_out;
3000	}
3001	si = (STANDARD_INFORMATION*)((u8*)ctx->attr +
3002			le16_to_cpu(ctx->attr->data.resident.value_offset));
3003	/* Update the access times if they have changed. */
3004	nt = utc2ntfs(vi->i_mtime);
3005	if (si->last_data_change_time != nt) {
3006		ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, "
3007				"new = 0x%llx", vi->i_ino, (long long)
3008				sle64_to_cpu(si->last_data_change_time),
3009				(long long)sle64_to_cpu(nt));
3010		si->last_data_change_time = nt;
3011		modified = true;
3012	}
3013	nt = utc2ntfs(vi->i_ctime);
3014	if (si->last_mft_change_time != nt) {
3015		ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, "
3016				"new = 0x%llx", vi->i_ino, (long long)
3017				sle64_to_cpu(si->last_mft_change_time),
3018				(long long)sle64_to_cpu(nt));
3019		si->last_mft_change_time = nt;
3020		modified = true;
3021	}
3022	nt = utc2ntfs(vi->i_atime);
3023	if (si->last_access_time != nt) {
3024		ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, "
3025				"new = 0x%llx", vi->i_ino,
3026				(long long)sle64_to_cpu(si->last_access_time),
3027				(long long)sle64_to_cpu(nt));
3028		si->last_access_time = nt;
3029		modified = true;
3030	}
3031	/*
3032	 * If we just modified the standard information attribute we need to
3033	 * mark the mft record it is in dirty.  We do this manually so that
3034	 * mark_inode_dirty() is not called which would redirty the inode and
3035	 * hence result in an infinite loop of trying to write the inode.
3036	 * There is no need to mark the base inode nor the base mft record
3037	 * dirty, since we are going to write this mft record below in any case
3038	 * and the base mft record may actually not have been modified so it
3039	 * might not need to be written out.
3040	 * NOTE: It is not a problem when the inode for $MFT itself is being
3041	 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES
3042	 * on the $MFT inode and hence ntfs_write_inode() will not be
3043	 * re-invoked because of it which in turn is ok since the dirtied mft
3044	 * record will be cleaned and written out to disk below, i.e. before
3045	 * this function returns.
3046	 */
3047	if (modified) {
3048		flush_dcache_mft_record_page(ctx->ntfs_ino);
3049		if (!NInoTestSetDirty(ctx->ntfs_ino))
3050			mark_ntfs_record_dirty(ctx->ntfs_ino->page,
3051					ctx->ntfs_ino->page_ofs);
3052	}
3053	ntfs_attr_put_search_ctx(ctx);
3054	/* Now the access times are updated, write the base mft record. */
3055	if (NInoDirty(ni))
3056		err = write_mft_record(ni, m, sync);
3057	/* Write all attached extent mft records. */
3058	mutex_lock(&ni->extent_lock);
3059	if (ni->nr_extents > 0) {
3060		ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos;
3061		int i;
3062
3063		ntfs_debug("Writing %i extent inodes.", ni->nr_extents);
3064		for (i = 0; i < ni->nr_extents; i++) {
3065			ntfs_inode *tni = extent_nis[i];
3066
3067			if (NInoDirty(tni)) {
3068				MFT_RECORD *tm = map_mft_record(tni);
3069				int ret;
3070
3071				if (IS_ERR(tm)) {
3072					if (!err || err == -ENOMEM)
3073						err = PTR_ERR(tm);
3074					continue;
3075				}
3076				ret = write_mft_record(tni, tm, sync);
3077				unmap_mft_record(tni);
3078				if (unlikely(ret)) {
3079					if (!err || err == -ENOMEM)
3080						err = ret;
3081				}
3082			}
3083		}
3084	}
3085	mutex_unlock(&ni->extent_lock);
3086	unmap_mft_record(ni);
3087	if (unlikely(err))
3088		goto err_out;
3089	ntfs_debug("Done.");
3090	return 0;
3091unm_err_out:
3092	unmap_mft_record(ni);
3093err_out:
3094	if (err == -ENOMEM) {
3095		ntfs_warning(vi->i_sb, "Not enough memory to write inode.  "
3096				"Marking the inode dirty again, so the VFS "
3097				"retries later.");
3098		mark_inode_dirty(vi);
3099	} else {
3100		ntfs_error(vi->i_sb, "Failed (error %i):  Run chkdsk.", -err);
3101		NVolSetErrors(ni->vol);
3102	}
3103	return err;
3104}
3105
3106#endif /* NTFS_RW */
v4.17
   1/**
   2 * inode.c - NTFS kernel inode handling.
   3 *
   4 * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.
   5 *
   6 * This program/include file is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License as published
   8 * by the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 * This program/include file is distributed in the hope that it will be
  12 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
  13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program (in the main directory of the Linux-NTFS
  18 * distribution in the file COPYING); if not, write to the Free Software
  19 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  20 */
  21
  22#include <linux/buffer_head.h>
  23#include <linux/fs.h>
  24#include <linux/mm.h>
  25#include <linux/mount.h>
  26#include <linux/mutex.h>
  27#include <linux/pagemap.h>
  28#include <linux/quotaops.h>
  29#include <linux/slab.h>
  30#include <linux/log2.h>
  31
  32#include "aops.h"
  33#include "attrib.h"
  34#include "bitmap.h"
  35#include "dir.h"
  36#include "debug.h"
  37#include "inode.h"
  38#include "lcnalloc.h"
  39#include "malloc.h"
  40#include "mft.h"
  41#include "time.h"
  42#include "ntfs.h"
  43
  44/**
  45 * ntfs_test_inode - compare two (possibly fake) inodes for equality
  46 * @vi:		vfs inode which to test
  47 * @na:		ntfs attribute which is being tested with
  48 *
  49 * Compare the ntfs attribute embedded in the ntfs specific part of the vfs
  50 * inode @vi for equality with the ntfs attribute @na.
  51 *
  52 * If searching for the normal file/directory inode, set @na->type to AT_UNUSED.
  53 * @na->name and @na->name_len are then ignored.
  54 *
  55 * Return 1 if the attributes match and 0 if not.
  56 *
  57 * NOTE: This function runs with the inode_hash_lock spin lock held so it is not
  58 * allowed to sleep.
  59 */
  60int ntfs_test_inode(struct inode *vi, ntfs_attr *na)
  61{
  62	ntfs_inode *ni;
  63
  64	if (vi->i_ino != na->mft_no)
  65		return 0;
  66	ni = NTFS_I(vi);
  67	/* If !NInoAttr(ni), @vi is a normal file or directory inode. */
  68	if (likely(!NInoAttr(ni))) {
  69		/* If not looking for a normal inode this is a mismatch. */
  70		if (unlikely(na->type != AT_UNUSED))
  71			return 0;
  72	} else {
  73		/* A fake inode describing an attribute. */
  74		if (ni->type != na->type)
  75			return 0;
  76		if (ni->name_len != na->name_len)
  77			return 0;
  78		if (na->name_len && memcmp(ni->name, na->name,
  79				na->name_len * sizeof(ntfschar)))
  80			return 0;
  81	}
  82	/* Match! */
  83	return 1;
  84}
  85
  86/**
  87 * ntfs_init_locked_inode - initialize an inode
  88 * @vi:		vfs inode to initialize
  89 * @na:		ntfs attribute which to initialize @vi to
  90 *
  91 * Initialize the vfs inode @vi with the values from the ntfs attribute @na in
  92 * order to enable ntfs_test_inode() to do its work.
  93 *
  94 * If initializing the normal file/directory inode, set @na->type to AT_UNUSED.
  95 * In that case, @na->name and @na->name_len should be set to NULL and 0,
  96 * respectively. Although that is not strictly necessary as
  97 * ntfs_read_locked_inode() will fill them in later.
  98 *
  99 * Return 0 on success and -errno on error.
 100 *
 101 * NOTE: This function runs with the inode->i_lock spin lock held so it is not
 102 * allowed to sleep. (Hence the GFP_ATOMIC allocation.)
 103 */
 104static int ntfs_init_locked_inode(struct inode *vi, ntfs_attr *na)
 105{
 106	ntfs_inode *ni = NTFS_I(vi);
 107
 108	vi->i_ino = na->mft_no;
 109
 110	ni->type = na->type;
 111	if (na->type == AT_INDEX_ALLOCATION)
 112		NInoSetMstProtected(ni);
 113
 114	ni->name = na->name;
 115	ni->name_len = na->name_len;
 116
 117	/* If initializing a normal inode, we are done. */
 118	if (likely(na->type == AT_UNUSED)) {
 119		BUG_ON(na->name);
 120		BUG_ON(na->name_len);
 121		return 0;
 122	}
 123
 124	/* It is a fake inode. */
 125	NInoSetAttr(ni);
 126
 127	/*
 128	 * We have I30 global constant as an optimization as it is the name
 129	 * in >99.9% of named attributes! The other <0.1% incur a GFP_ATOMIC
 130	 * allocation but that is ok. And most attributes are unnamed anyway,
 131	 * thus the fraction of named attributes with name != I30 is actually
 132	 * absolutely tiny.
 133	 */
 134	if (na->name_len && na->name != I30) {
 135		unsigned int i;
 136
 137		BUG_ON(!na->name);
 138		i = na->name_len * sizeof(ntfschar);
 139		ni->name = kmalloc(i + sizeof(ntfschar), GFP_ATOMIC);
 140		if (!ni->name)
 141			return -ENOMEM;
 142		memcpy(ni->name, na->name, i);
 143		ni->name[na->name_len] = 0;
 144	}
 145	return 0;
 146}
 147
 148typedef int (*set_t)(struct inode *, void *);
 149static int ntfs_read_locked_inode(struct inode *vi);
 150static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi);
 151static int ntfs_read_locked_index_inode(struct inode *base_vi,
 152		struct inode *vi);
 153
 154/**
 155 * ntfs_iget - obtain a struct inode corresponding to a specific normal inode
 156 * @sb:		super block of mounted volume
 157 * @mft_no:	mft record number / inode number to obtain
 158 *
 159 * Obtain the struct inode corresponding to a specific normal inode (i.e. a
 160 * file or directory).
 161 *
 162 * If the inode is in the cache, it is just returned with an increased
 163 * reference count. Otherwise, a new struct inode is allocated and initialized,
 164 * and finally ntfs_read_locked_inode() is called to read in the inode and
 165 * fill in the remainder of the inode structure.
 166 *
 167 * Return the struct inode on success. Check the return value with IS_ERR() and
 168 * if true, the function failed and the error code is obtained from PTR_ERR().
 169 */
 170struct inode *ntfs_iget(struct super_block *sb, unsigned long mft_no)
 171{
 172	struct inode *vi;
 173	int err;
 174	ntfs_attr na;
 175
 176	na.mft_no = mft_no;
 177	na.type = AT_UNUSED;
 178	na.name = NULL;
 179	na.name_len = 0;
 180
 181	vi = iget5_locked(sb, mft_no, (test_t)ntfs_test_inode,
 182			(set_t)ntfs_init_locked_inode, &na);
 183	if (unlikely(!vi))
 184		return ERR_PTR(-ENOMEM);
 185
 186	err = 0;
 187
 188	/* If this is a freshly allocated inode, need to read it now. */
 189	if (vi->i_state & I_NEW) {
 190		err = ntfs_read_locked_inode(vi);
 191		unlock_new_inode(vi);
 192	}
 193	/*
 194	 * There is no point in keeping bad inodes around if the failure was
 195	 * due to ENOMEM. We want to be able to retry again later.
 196	 */
 197	if (unlikely(err == -ENOMEM)) {
 198		iput(vi);
 199		vi = ERR_PTR(err);
 200	}
 201	return vi;
 202}
 203
 204/**
 205 * ntfs_attr_iget - obtain a struct inode corresponding to an attribute
 206 * @base_vi:	vfs base inode containing the attribute
 207 * @type:	attribute type
 208 * @name:	Unicode name of the attribute (NULL if unnamed)
 209 * @name_len:	length of @name in Unicode characters (0 if unnamed)
 210 *
 211 * Obtain the (fake) struct inode corresponding to the attribute specified by
 212 * @type, @name, and @name_len, which is present in the base mft record
 213 * specified by the vfs inode @base_vi.
 214 *
 215 * If the attribute inode is in the cache, it is just returned with an
 216 * increased reference count. Otherwise, a new struct inode is allocated and
 217 * initialized, and finally ntfs_read_locked_attr_inode() is called to read the
 218 * attribute and fill in the inode structure.
 219 *
 220 * Note, for index allocation attributes, you need to use ntfs_index_iget()
 221 * instead of ntfs_attr_iget() as working with indices is a lot more complex.
 222 *
 223 * Return the struct inode of the attribute inode on success. Check the return
 224 * value with IS_ERR() and if true, the function failed and the error code is
 225 * obtained from PTR_ERR().
 226 */
 227struct inode *ntfs_attr_iget(struct inode *base_vi, ATTR_TYPE type,
 228		ntfschar *name, u32 name_len)
 229{
 230	struct inode *vi;
 231	int err;
 232	ntfs_attr na;
 233
 234	/* Make sure no one calls ntfs_attr_iget() for indices. */
 235	BUG_ON(type == AT_INDEX_ALLOCATION);
 236
 237	na.mft_no = base_vi->i_ino;
 238	na.type = type;
 239	na.name = name;
 240	na.name_len = name_len;
 241
 242	vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
 243			(set_t)ntfs_init_locked_inode, &na);
 244	if (unlikely(!vi))
 245		return ERR_PTR(-ENOMEM);
 246
 247	err = 0;
 248
 249	/* If this is a freshly allocated inode, need to read it now. */
 250	if (vi->i_state & I_NEW) {
 251		err = ntfs_read_locked_attr_inode(base_vi, vi);
 252		unlock_new_inode(vi);
 253	}
 254	/*
 255	 * There is no point in keeping bad attribute inodes around. This also
 256	 * simplifies things in that we never need to check for bad attribute
 257	 * inodes elsewhere.
 258	 */
 259	if (unlikely(err)) {
 260		iput(vi);
 261		vi = ERR_PTR(err);
 262	}
 263	return vi;
 264}
 265
 266/**
 267 * ntfs_index_iget - obtain a struct inode corresponding to an index
 268 * @base_vi:	vfs base inode containing the index related attributes
 269 * @name:	Unicode name of the index
 270 * @name_len:	length of @name in Unicode characters
 271 *
 272 * Obtain the (fake) struct inode corresponding to the index specified by @name
 273 * and @name_len, which is present in the base mft record specified by the vfs
 274 * inode @base_vi.
 275 *
 276 * If the index inode is in the cache, it is just returned with an increased
 277 * reference count.  Otherwise, a new struct inode is allocated and
 278 * initialized, and finally ntfs_read_locked_index_inode() is called to read
 279 * the index related attributes and fill in the inode structure.
 280 *
 281 * Return the struct inode of the index inode on success. Check the return
 282 * value with IS_ERR() and if true, the function failed and the error code is
 283 * obtained from PTR_ERR().
 284 */
 285struct inode *ntfs_index_iget(struct inode *base_vi, ntfschar *name,
 286		u32 name_len)
 287{
 288	struct inode *vi;
 289	int err;
 290	ntfs_attr na;
 291
 292	na.mft_no = base_vi->i_ino;
 293	na.type = AT_INDEX_ALLOCATION;
 294	na.name = name;
 295	na.name_len = name_len;
 296
 297	vi = iget5_locked(base_vi->i_sb, na.mft_no, (test_t)ntfs_test_inode,
 298			(set_t)ntfs_init_locked_inode, &na);
 299	if (unlikely(!vi))
 300		return ERR_PTR(-ENOMEM);
 301
 302	err = 0;
 303
 304	/* If this is a freshly allocated inode, need to read it now. */
 305	if (vi->i_state & I_NEW) {
 306		err = ntfs_read_locked_index_inode(base_vi, vi);
 307		unlock_new_inode(vi);
 308	}
 309	/*
 310	 * There is no point in keeping bad index inodes around.  This also
 311	 * simplifies things in that we never need to check for bad index
 312	 * inodes elsewhere.
 313	 */
 314	if (unlikely(err)) {
 315		iput(vi);
 316		vi = ERR_PTR(err);
 317	}
 318	return vi;
 319}
 320
 321struct inode *ntfs_alloc_big_inode(struct super_block *sb)
 322{
 323	ntfs_inode *ni;
 324
 325	ntfs_debug("Entering.");
 326	ni = kmem_cache_alloc(ntfs_big_inode_cache, GFP_NOFS);
 327	if (likely(ni != NULL)) {
 328		ni->state = 0;
 329		return VFS_I(ni);
 330	}
 331	ntfs_error(sb, "Allocation of NTFS big inode structure failed.");
 332	return NULL;
 333}
 334
 335static void ntfs_i_callback(struct rcu_head *head)
 336{
 337	struct inode *inode = container_of(head, struct inode, i_rcu);
 
 338	kmem_cache_free(ntfs_big_inode_cache, NTFS_I(inode));
 339}
 340
 341void ntfs_destroy_big_inode(struct inode *inode)
 342{
 343	ntfs_inode *ni = NTFS_I(inode);
 344
 345	ntfs_debug("Entering.");
 346	BUG_ON(ni->page);
 347	if (!atomic_dec_and_test(&ni->count))
 348		BUG();
 349	call_rcu(&inode->i_rcu, ntfs_i_callback);
 350}
 351
 352static inline ntfs_inode *ntfs_alloc_extent_inode(void)
 353{
 354	ntfs_inode *ni;
 355
 356	ntfs_debug("Entering.");
 357	ni = kmem_cache_alloc(ntfs_inode_cache, GFP_NOFS);
 358	if (likely(ni != NULL)) {
 359		ni->state = 0;
 360		return ni;
 361	}
 362	ntfs_error(NULL, "Allocation of NTFS inode structure failed.");
 363	return NULL;
 364}
 365
 366static void ntfs_destroy_extent_inode(ntfs_inode *ni)
 367{
 368	ntfs_debug("Entering.");
 369	BUG_ON(ni->page);
 370	if (!atomic_dec_and_test(&ni->count))
 371		BUG();
 372	kmem_cache_free(ntfs_inode_cache, ni);
 373}
 374
 375/*
 376 * The attribute runlist lock has separate locking rules from the
 377 * normal runlist lock, so split the two lock-classes:
 378 */
 379static struct lock_class_key attr_list_rl_lock_class;
 380
 381/**
 382 * __ntfs_init_inode - initialize ntfs specific part of an inode
 383 * @sb:		super block of mounted volume
 384 * @ni:		freshly allocated ntfs inode which to initialize
 385 *
 386 * Initialize an ntfs inode to defaults.
 387 *
 388 * NOTE: ni->mft_no, ni->state, ni->type, ni->name, and ni->name_len are left
 389 * untouched. Make sure to initialize them elsewhere.
 390 *
 391 * Return zero on success and -ENOMEM on error.
 392 */
 393void __ntfs_init_inode(struct super_block *sb, ntfs_inode *ni)
 394{
 395	ntfs_debug("Entering.");
 396	rwlock_init(&ni->size_lock);
 397	ni->initialized_size = ni->allocated_size = 0;
 398	ni->seq_no = 0;
 399	atomic_set(&ni->count, 1);
 400	ni->vol = NTFS_SB(sb);
 401	ntfs_init_runlist(&ni->runlist);
 402	mutex_init(&ni->mrec_lock);
 403	ni->page = NULL;
 404	ni->page_ofs = 0;
 405	ni->attr_list_size = 0;
 406	ni->attr_list = NULL;
 407	ntfs_init_runlist(&ni->attr_list_rl);
 408	lockdep_set_class(&ni->attr_list_rl.lock,
 409				&attr_list_rl_lock_class);
 410	ni->itype.index.block_size = 0;
 411	ni->itype.index.vcn_size = 0;
 412	ni->itype.index.collation_rule = 0;
 413	ni->itype.index.block_size_bits = 0;
 414	ni->itype.index.vcn_size_bits = 0;
 415	mutex_init(&ni->extent_lock);
 416	ni->nr_extents = 0;
 417	ni->ext.base_ntfs_ino = NULL;
 418}
 419
 420/*
 421 * Extent inodes get MFT-mapped in a nested way, while the base inode
 422 * is still mapped. Teach this nesting to the lock validator by creating
 423 * a separate class for nested inode's mrec_lock's:
 424 */
 425static struct lock_class_key extent_inode_mrec_lock_key;
 426
 427inline ntfs_inode *ntfs_new_extent_inode(struct super_block *sb,
 428		unsigned long mft_no)
 429{
 430	ntfs_inode *ni = ntfs_alloc_extent_inode();
 431
 432	ntfs_debug("Entering.");
 433	if (likely(ni != NULL)) {
 434		__ntfs_init_inode(sb, ni);
 435		lockdep_set_class(&ni->mrec_lock, &extent_inode_mrec_lock_key);
 436		ni->mft_no = mft_no;
 437		ni->type = AT_UNUSED;
 438		ni->name = NULL;
 439		ni->name_len = 0;
 440	}
 441	return ni;
 442}
 443
 444/**
 445 * ntfs_is_extended_system_file - check if a file is in the $Extend directory
 446 * @ctx:	initialized attribute search context
 447 *
 448 * Search all file name attributes in the inode described by the attribute
 449 * search context @ctx and check if any of the names are in the $Extend system
 450 * directory.
 451 *
 452 * Return values:
 453 *	   1: file is in $Extend directory
 454 *	   0: file is not in $Extend directory
 455 *    -errno: failed to determine if the file is in the $Extend directory
 456 */
 457static int ntfs_is_extended_system_file(ntfs_attr_search_ctx *ctx)
 458{
 459	int nr_links, err;
 460
 461	/* Restart search. */
 462	ntfs_attr_reinit_search_ctx(ctx);
 463
 464	/* Get number of hard links. */
 465	nr_links = le16_to_cpu(ctx->mrec->link_count);
 466
 467	/* Loop through all hard links. */
 468	while (!(err = ntfs_attr_lookup(AT_FILE_NAME, NULL, 0, 0, 0, NULL, 0,
 469			ctx))) {
 470		FILE_NAME_ATTR *file_name_attr;
 471		ATTR_RECORD *attr = ctx->attr;
 472		u8 *p, *p2;
 473
 474		nr_links--;
 475		/*
 476		 * Maximum sanity checking as we are called on an inode that
 477		 * we suspect might be corrupt.
 478		 */
 479		p = (u8*)attr + le32_to_cpu(attr->length);
 480		if (p < (u8*)ctx->mrec || (u8*)p > (u8*)ctx->mrec +
 481				le32_to_cpu(ctx->mrec->bytes_in_use)) {
 482err_corrupt_attr:
 483			ntfs_error(ctx->ntfs_ino->vol->sb, "Corrupt file name "
 484					"attribute. You should run chkdsk.");
 485			return -EIO;
 486		}
 487		if (attr->non_resident) {
 488			ntfs_error(ctx->ntfs_ino->vol->sb, "Non-resident file "
 489					"name. You should run chkdsk.");
 490			return -EIO;
 491		}
 492		if (attr->flags) {
 493			ntfs_error(ctx->ntfs_ino->vol->sb, "File name with "
 494					"invalid flags. You should run "
 495					"chkdsk.");
 496			return -EIO;
 497		}
 498		if (!(attr->data.resident.flags & RESIDENT_ATTR_IS_INDEXED)) {
 499			ntfs_error(ctx->ntfs_ino->vol->sb, "Unindexed file "
 500					"name. You should run chkdsk.");
 501			return -EIO;
 502		}
 503		file_name_attr = (FILE_NAME_ATTR*)((u8*)attr +
 504				le16_to_cpu(attr->data.resident.value_offset));
 505		p2 = (u8*)attr + le32_to_cpu(attr->data.resident.value_length);
 506		if (p2 < (u8*)attr || p2 > p)
 507			goto err_corrupt_attr;
 508		/* This attribute is ok, but is it in the $Extend directory? */
 509		if (MREF_LE(file_name_attr->parent_directory) == FILE_Extend)
 510			return 1;	/* YES, it's an extended system file. */
 511	}
 512	if (unlikely(err != -ENOENT))
 513		return err;
 514	if (unlikely(nr_links)) {
 515		ntfs_error(ctx->ntfs_ino->vol->sb, "Inode hard link count "
 516				"doesn't match number of name attributes. You "
 517				"should run chkdsk.");
 518		return -EIO;
 519	}
 520	return 0;	/* NO, it is not an extended system file. */
 521}
 522
 523/**
 524 * ntfs_read_locked_inode - read an inode from its device
 525 * @vi:		inode to read
 526 *
 527 * ntfs_read_locked_inode() is called from ntfs_iget() to read the inode
 528 * described by @vi into memory from the device.
 529 *
 530 * The only fields in @vi that we need to/can look at when the function is
 531 * called are i_sb, pointing to the mounted device's super block, and i_ino,
 532 * the number of the inode to load.
 533 *
 534 * ntfs_read_locked_inode() maps, pins and locks the mft record number i_ino
 535 * for reading and sets up the necessary @vi fields as well as initializing
 536 * the ntfs inode.
 537 *
 538 * Q: What locks are held when the function is called?
 539 * A: i_state has I_NEW set, hence the inode is locked, also
 540 *    i_count is set to 1, so it is not going to go away
 541 *    i_flags is set to 0 and we have no business touching it.  Only an ioctl()
 542 *    is allowed to write to them. We should of course be honouring them but
 543 *    we need to do that using the IS_* macros defined in include/linux/fs.h.
 544 *    In any case ntfs_read_locked_inode() has nothing to do with i_flags.
 545 *
 546 * Return 0 on success and -errno on error.  In the error case, the inode will
 547 * have had make_bad_inode() executed on it.
 548 */
 549static int ntfs_read_locked_inode(struct inode *vi)
 550{
 551	ntfs_volume *vol = NTFS_SB(vi->i_sb);
 552	ntfs_inode *ni;
 553	struct inode *bvi;
 554	MFT_RECORD *m;
 555	ATTR_RECORD *a;
 556	STANDARD_INFORMATION *si;
 557	ntfs_attr_search_ctx *ctx;
 558	int err = 0;
 559
 560	ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
 561
 562	/* Setup the generic vfs inode parts now. */
 
 
 
 
 
 
 
 563	vi->i_uid = vol->uid;
 564	vi->i_gid = vol->gid;
 565	vi->i_mode = 0;
 566
 567	/*
 568	 * Initialize the ntfs specific part of @vi special casing
 569	 * FILE_MFT which we need to do at mount time.
 570	 */
 571	if (vi->i_ino != FILE_MFT)
 572		ntfs_init_big_inode(vi);
 573	ni = NTFS_I(vi);
 574
 575	m = map_mft_record(ni);
 576	if (IS_ERR(m)) {
 577		err = PTR_ERR(m);
 578		goto err_out;
 579	}
 580	ctx = ntfs_attr_get_search_ctx(ni, m);
 581	if (!ctx) {
 582		err = -ENOMEM;
 583		goto unm_err_out;
 584	}
 585
 586	if (!(m->flags & MFT_RECORD_IN_USE)) {
 587		ntfs_error(vi->i_sb, "Inode is not in use!");
 588		goto unm_err_out;
 589	}
 590	if (m->base_mft_record) {
 591		ntfs_error(vi->i_sb, "Inode is an extent inode!");
 592		goto unm_err_out;
 593	}
 594
 595	/* Transfer information from mft record into vfs and ntfs inodes. */
 596	vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
 597
 598	/*
 599	 * FIXME: Keep in mind that link_count is two for files which have both
 600	 * a long file name and a short file name as separate entries, so if
 601	 * we are hiding short file names this will be too high. Either we need
 602	 * to account for the short file names by subtracting them or we need
 603	 * to make sure we delete files even though i_nlink is not zero which
 604	 * might be tricky due to vfs interactions. Need to think about this
 605	 * some more when implementing the unlink command.
 606	 */
 607	set_nlink(vi, le16_to_cpu(m->link_count));
 608	/*
 609	 * FIXME: Reparse points can have the directory bit set even though
 610	 * they would be S_IFLNK. Need to deal with this further below when we
 611	 * implement reparse points / symbolic links but it will do for now.
 612	 * Also if not a directory, it could be something else, rather than
 613	 * a regular file. But again, will do for now.
 614	 */
 615	/* Everyone gets all permissions. */
 616	vi->i_mode |= S_IRWXUGO;
 617	/* If read-only, no one gets write permissions. */
 618	if (IS_RDONLY(vi))
 619		vi->i_mode &= ~S_IWUGO;
 620	if (m->flags & MFT_RECORD_IS_DIRECTORY) {
 621		vi->i_mode |= S_IFDIR;
 622		/*
 623		 * Apply the directory permissions mask set in the mount
 624		 * options.
 625		 */
 626		vi->i_mode &= ~vol->dmask;
 627		/* Things break without this kludge! */
 628		if (vi->i_nlink > 1)
 629			set_nlink(vi, 1);
 630	} else {
 631		vi->i_mode |= S_IFREG;
 632		/* Apply the file permissions mask set in the mount options. */
 633		vi->i_mode &= ~vol->fmask;
 634	}
 635	/*
 636	 * Find the standard information attribute in the mft record. At this
 637	 * stage we haven't setup the attribute list stuff yet, so this could
 638	 * in fact fail if the standard information is in an extent record, but
 639	 * I don't think this actually ever happens.
 640	 */
 641	err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0, 0, 0, NULL, 0,
 642			ctx);
 643	if (unlikely(err)) {
 644		if (err == -ENOENT) {
 645			/*
 646			 * TODO: We should be performing a hot fix here (if the
 647			 * recover mount option is set) by creating a new
 648			 * attribute.
 649			 */
 650			ntfs_error(vi->i_sb, "$STANDARD_INFORMATION attribute "
 651					"is missing.");
 652		}
 653		goto unm_err_out;
 654	}
 655	a = ctx->attr;
 656	/* Get the standard information attribute value. */
 657	si = (STANDARD_INFORMATION*)((u8*)a +
 658			le16_to_cpu(a->data.resident.value_offset));
 659
 660	/* Transfer information from the standard information into vi. */
 661	/*
 662	 * Note: The i_?times do not quite map perfectly onto the NTFS times,
 663	 * but they are close enough, and in the end it doesn't really matter
 664	 * that much...
 665	 */
 666	/*
 667	 * mtime is the last change of the data within the file. Not changed
 668	 * when only metadata is changed, e.g. a rename doesn't affect mtime.
 669	 */
 670	vi->i_mtime = ntfs2utc(si->last_data_change_time);
 671	/*
 672	 * ctime is the last change of the metadata of the file. This obviously
 673	 * always changes, when mtime is changed. ctime can be changed on its
 674	 * own, mtime is then not changed, e.g. when a file is renamed.
 675	 */
 676	vi->i_ctime = ntfs2utc(si->last_mft_change_time);
 677	/*
 678	 * Last access to the data within the file. Not changed during a rename
 679	 * for example but changed whenever the file is written to.
 680	 */
 681	vi->i_atime = ntfs2utc(si->last_access_time);
 682
 683	/* Find the attribute list attribute if present. */
 684	ntfs_attr_reinit_search_ctx(ctx);
 685	err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
 686	if (err) {
 687		if (unlikely(err != -ENOENT)) {
 688			ntfs_error(vi->i_sb, "Failed to lookup attribute list "
 689					"attribute.");
 690			goto unm_err_out;
 691		}
 692	} else /* if (!err) */ {
 693		if (vi->i_ino == FILE_MFT)
 694			goto skip_attr_list_load;
 695		ntfs_debug("Attribute list found in inode 0x%lx.", vi->i_ino);
 696		NInoSetAttrList(ni);
 697		a = ctx->attr;
 698		if (a->flags & ATTR_COMPRESSION_MASK) {
 699			ntfs_error(vi->i_sb, "Attribute list attribute is "
 700					"compressed.");
 701			goto unm_err_out;
 702		}
 703		if (a->flags & ATTR_IS_ENCRYPTED ||
 704				a->flags & ATTR_IS_SPARSE) {
 705			if (a->non_resident) {
 706				ntfs_error(vi->i_sb, "Non-resident attribute "
 707						"list attribute is encrypted/"
 708						"sparse.");
 709				goto unm_err_out;
 710			}
 711			ntfs_warning(vi->i_sb, "Resident attribute list "
 712					"attribute in inode 0x%lx is marked "
 713					"encrypted/sparse which is not true.  "
 714					"However, Windows allows this and "
 715					"chkdsk does not detect or correct it "
 716					"so we will just ignore the invalid "
 717					"flags and pretend they are not set.",
 718					vi->i_ino);
 719		}
 720		/* Now allocate memory for the attribute list. */
 721		ni->attr_list_size = (u32)ntfs_attr_size(a);
 722		ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
 723		if (!ni->attr_list) {
 724			ntfs_error(vi->i_sb, "Not enough memory to allocate "
 725					"buffer for attribute list.");
 726			err = -ENOMEM;
 727			goto unm_err_out;
 728		}
 729		if (a->non_resident) {
 730			NInoSetAttrListNonResident(ni);
 731			if (a->data.non_resident.lowest_vcn) {
 732				ntfs_error(vi->i_sb, "Attribute list has non "
 733						"zero lowest_vcn.");
 734				goto unm_err_out;
 735			}
 736			/*
 737			 * Setup the runlist. No need for locking as we have
 738			 * exclusive access to the inode at this time.
 739			 */
 740			ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
 741					a, NULL);
 742			if (IS_ERR(ni->attr_list_rl.rl)) {
 743				err = PTR_ERR(ni->attr_list_rl.rl);
 744				ni->attr_list_rl.rl = NULL;
 745				ntfs_error(vi->i_sb, "Mapping pairs "
 746						"decompression failed.");
 747				goto unm_err_out;
 748			}
 749			/* Now load the attribute list. */
 750			if ((err = load_attribute_list(vol, &ni->attr_list_rl,
 751					ni->attr_list, ni->attr_list_size,
 752					sle64_to_cpu(a->data.non_resident.
 753					initialized_size)))) {
 754				ntfs_error(vi->i_sb, "Failed to load "
 755						"attribute list attribute.");
 756				goto unm_err_out;
 757			}
 758		} else /* if (!a->non_resident) */ {
 759			if ((u8*)a + le16_to_cpu(a->data.resident.value_offset)
 760					+ le32_to_cpu(
 761					a->data.resident.value_length) >
 762					(u8*)ctx->mrec + vol->mft_record_size) {
 763				ntfs_error(vi->i_sb, "Corrupt attribute list "
 764						"in inode.");
 765				goto unm_err_out;
 766			}
 767			/* Now copy the attribute list. */
 768			memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
 769					a->data.resident.value_offset),
 770					le32_to_cpu(
 771					a->data.resident.value_length));
 772		}
 773	}
 774skip_attr_list_load:
 775	/*
 776	 * If an attribute list is present we now have the attribute list value
 777	 * in ntfs_ino->attr_list and it is ntfs_ino->attr_list_size bytes.
 778	 */
 779	if (S_ISDIR(vi->i_mode)) {
 780		loff_t bvi_size;
 781		ntfs_inode *bni;
 782		INDEX_ROOT *ir;
 783		u8 *ir_end, *index_end;
 784
 785		/* It is a directory, find index root attribute. */
 786		ntfs_attr_reinit_search_ctx(ctx);
 787		err = ntfs_attr_lookup(AT_INDEX_ROOT, I30, 4, CASE_SENSITIVE,
 788				0, NULL, 0, ctx);
 789		if (unlikely(err)) {
 790			if (err == -ENOENT) {
 791				// FIXME: File is corrupt! Hot-fix with empty
 792				// index root attribute if recovery option is
 793				// set.
 794				ntfs_error(vi->i_sb, "$INDEX_ROOT attribute "
 795						"is missing.");
 796			}
 797			goto unm_err_out;
 798		}
 799		a = ctx->attr;
 800		/* Set up the state. */
 801		if (unlikely(a->non_resident)) {
 802			ntfs_error(vol->sb, "$INDEX_ROOT attribute is not "
 803					"resident.");
 804			goto unm_err_out;
 805		}
 806		/* Ensure the attribute name is placed before the value. */
 807		if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
 808				le16_to_cpu(a->data.resident.value_offset)))) {
 809			ntfs_error(vol->sb, "$INDEX_ROOT attribute name is "
 810					"placed after the attribute value.");
 811			goto unm_err_out;
 812		}
 813		/*
 814		 * Compressed/encrypted index root just means that the newly
 815		 * created files in that directory should be created compressed/
 816		 * encrypted. However index root cannot be both compressed and
 817		 * encrypted.
 818		 */
 819		if (a->flags & ATTR_COMPRESSION_MASK)
 820			NInoSetCompressed(ni);
 821		if (a->flags & ATTR_IS_ENCRYPTED) {
 822			if (a->flags & ATTR_COMPRESSION_MASK) {
 823				ntfs_error(vi->i_sb, "Found encrypted and "
 824						"compressed attribute.");
 825				goto unm_err_out;
 826			}
 827			NInoSetEncrypted(ni);
 828		}
 829		if (a->flags & ATTR_IS_SPARSE)
 830			NInoSetSparse(ni);
 831		ir = (INDEX_ROOT*)((u8*)a +
 832				le16_to_cpu(a->data.resident.value_offset));
 833		ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
 834		if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
 835			ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
 836					"corrupt.");
 837			goto unm_err_out;
 838		}
 839		index_end = (u8*)&ir->index +
 840				le32_to_cpu(ir->index.index_length);
 841		if (index_end > ir_end) {
 842			ntfs_error(vi->i_sb, "Directory index is corrupt.");
 843			goto unm_err_out;
 844		}
 845		if (ir->type != AT_FILE_NAME) {
 846			ntfs_error(vi->i_sb, "Indexed attribute is not "
 847					"$FILE_NAME.");
 848			goto unm_err_out;
 849		}
 850		if (ir->collation_rule != COLLATION_FILE_NAME) {
 851			ntfs_error(vi->i_sb, "Index collation rule is not "
 852					"COLLATION_FILE_NAME.");
 853			goto unm_err_out;
 854		}
 855		ni->itype.index.collation_rule = ir->collation_rule;
 856		ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
 857		if (ni->itype.index.block_size &
 858				(ni->itype.index.block_size - 1)) {
 859			ntfs_error(vi->i_sb, "Index block size (%u) is not a "
 860					"power of two.",
 861					ni->itype.index.block_size);
 862			goto unm_err_out;
 863		}
 864		if (ni->itype.index.block_size > PAGE_SIZE) {
 865			ntfs_error(vi->i_sb, "Index block size (%u) > "
 866					"PAGE_SIZE (%ld) is not "
 867					"supported.  Sorry.",
 868					ni->itype.index.block_size,
 869					PAGE_SIZE);
 870			err = -EOPNOTSUPP;
 871			goto unm_err_out;
 872		}
 873		if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
 874			ntfs_error(vi->i_sb, "Index block size (%u) < "
 875					"NTFS_BLOCK_SIZE (%i) is not "
 876					"supported.  Sorry.",
 877					ni->itype.index.block_size,
 878					NTFS_BLOCK_SIZE);
 879			err = -EOPNOTSUPP;
 880			goto unm_err_out;
 881		}
 882		ni->itype.index.block_size_bits =
 883				ffs(ni->itype.index.block_size) - 1;
 884		/* Determine the size of a vcn in the directory index. */
 885		if (vol->cluster_size <= ni->itype.index.block_size) {
 886			ni->itype.index.vcn_size = vol->cluster_size;
 887			ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
 888		} else {
 889			ni->itype.index.vcn_size = vol->sector_size;
 890			ni->itype.index.vcn_size_bits = vol->sector_size_bits;
 891		}
 892
 893		/* Setup the index allocation attribute, even if not present. */
 894		NInoSetMstProtected(ni);
 895		ni->type = AT_INDEX_ALLOCATION;
 896		ni->name = I30;
 897		ni->name_len = 4;
 898
 899		if (!(ir->index.flags & LARGE_INDEX)) {
 900			/* No index allocation. */
 901			vi->i_size = ni->initialized_size =
 902					ni->allocated_size = 0;
 903			/* We are done with the mft record, so we release it. */
 904			ntfs_attr_put_search_ctx(ctx);
 905			unmap_mft_record(ni);
 906			m = NULL;
 907			ctx = NULL;
 908			goto skip_large_dir_stuff;
 909		} /* LARGE_INDEX: Index allocation present. Setup state. */
 910		NInoSetIndexAllocPresent(ni);
 911		/* Find index allocation attribute. */
 912		ntfs_attr_reinit_search_ctx(ctx);
 913		err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, I30, 4,
 914				CASE_SENSITIVE, 0, NULL, 0, ctx);
 915		if (unlikely(err)) {
 916			if (err == -ENOENT)
 917				ntfs_error(vi->i_sb, "$INDEX_ALLOCATION "
 918						"attribute is not present but "
 919						"$INDEX_ROOT indicated it is.");
 920			else
 921				ntfs_error(vi->i_sb, "Failed to lookup "
 922						"$INDEX_ALLOCATION "
 923						"attribute.");
 924			goto unm_err_out;
 925		}
 926		a = ctx->attr;
 927		if (!a->non_resident) {
 928			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
 929					"is resident.");
 930			goto unm_err_out;
 931		}
 932		/*
 933		 * Ensure the attribute name is placed before the mapping pairs
 934		 * array.
 935		 */
 936		if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
 937				le16_to_cpu(
 938				a->data.non_resident.mapping_pairs_offset)))) {
 939			ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name "
 940					"is placed after the mapping pairs "
 941					"array.");
 942			goto unm_err_out;
 943		}
 944		if (a->flags & ATTR_IS_ENCRYPTED) {
 945			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
 946					"is encrypted.");
 947			goto unm_err_out;
 948		}
 949		if (a->flags & ATTR_IS_SPARSE) {
 950			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
 951					"is sparse.");
 952			goto unm_err_out;
 953		}
 954		if (a->flags & ATTR_COMPRESSION_MASK) {
 955			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute "
 956					"is compressed.");
 957			goto unm_err_out;
 958		}
 959		if (a->data.non_resident.lowest_vcn) {
 960			ntfs_error(vi->i_sb, "First extent of "
 961					"$INDEX_ALLOCATION attribute has non "
 962					"zero lowest_vcn.");
 963			goto unm_err_out;
 964		}
 965		vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
 966		ni->initialized_size = sle64_to_cpu(
 967				a->data.non_resident.initialized_size);
 968		ni->allocated_size = sle64_to_cpu(
 969				a->data.non_resident.allocated_size);
 970		/*
 971		 * We are done with the mft record, so we release it. Otherwise
 972		 * we would deadlock in ntfs_attr_iget().
 973		 */
 974		ntfs_attr_put_search_ctx(ctx);
 975		unmap_mft_record(ni);
 976		m = NULL;
 977		ctx = NULL;
 978		/* Get the index bitmap attribute inode. */
 979		bvi = ntfs_attr_iget(vi, AT_BITMAP, I30, 4);
 980		if (IS_ERR(bvi)) {
 981			ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
 982			err = PTR_ERR(bvi);
 983			goto unm_err_out;
 984		}
 985		bni = NTFS_I(bvi);
 986		if (NInoCompressed(bni) || NInoEncrypted(bni) ||
 987				NInoSparse(bni)) {
 988			ntfs_error(vi->i_sb, "$BITMAP attribute is compressed "
 989					"and/or encrypted and/or sparse.");
 990			goto iput_unm_err_out;
 991		}
 992		/* Consistency check bitmap size vs. index allocation size. */
 993		bvi_size = i_size_read(bvi);
 994		if ((bvi_size << 3) < (vi->i_size >>
 995				ni->itype.index.block_size_bits)) {
 996			ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) "
 997					"for index allocation (0x%llx).",
 998					bvi_size << 3, vi->i_size);
 999			goto iput_unm_err_out;
1000		}
1001		/* No longer need the bitmap attribute inode. */
1002		iput(bvi);
1003skip_large_dir_stuff:
1004		/* Setup the operations for this inode. */
1005		vi->i_op = &ntfs_dir_inode_ops;
1006		vi->i_fop = &ntfs_dir_ops;
1007		vi->i_mapping->a_ops = &ntfs_mst_aops;
1008	} else {
1009		/* It is a file. */
1010		ntfs_attr_reinit_search_ctx(ctx);
1011
1012		/* Setup the data attribute, even if not present. */
1013		ni->type = AT_DATA;
1014		ni->name = NULL;
1015		ni->name_len = 0;
1016
1017		/* Find first extent of the unnamed data attribute. */
1018		err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, 0, NULL, 0, ctx);
1019		if (unlikely(err)) {
1020			vi->i_size = ni->initialized_size =
1021					ni->allocated_size = 0;
1022			if (err != -ENOENT) {
1023				ntfs_error(vi->i_sb, "Failed to lookup $DATA "
1024						"attribute.");
1025				goto unm_err_out;
1026			}
1027			/*
1028			 * FILE_Secure does not have an unnamed $DATA
1029			 * attribute, so we special case it here.
1030			 */
1031			if (vi->i_ino == FILE_Secure)
1032				goto no_data_attr_special_case;
1033			/*
1034			 * Most if not all the system files in the $Extend
1035			 * system directory do not have unnamed data
1036			 * attributes so we need to check if the parent
1037			 * directory of the file is FILE_Extend and if it is
1038			 * ignore this error. To do this we need to get the
1039			 * name of this inode from the mft record as the name
1040			 * contains the back reference to the parent directory.
1041			 */
1042			if (ntfs_is_extended_system_file(ctx) > 0)
1043				goto no_data_attr_special_case;
1044			// FIXME: File is corrupt! Hot-fix with empty data
1045			// attribute if recovery option is set.
1046			ntfs_error(vi->i_sb, "$DATA attribute is missing.");
1047			goto unm_err_out;
1048		}
1049		a = ctx->attr;
1050		/* Setup the state. */
1051		if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1052			if (a->flags & ATTR_COMPRESSION_MASK) {
1053				NInoSetCompressed(ni);
1054				if (vol->cluster_size > 4096) {
1055					ntfs_error(vi->i_sb, "Found "
1056							"compressed data but "
1057							"compression is "
1058							"disabled due to "
1059							"cluster size (%i) > "
1060							"4kiB.",
1061							vol->cluster_size);
1062					goto unm_err_out;
1063				}
1064				if ((a->flags & ATTR_COMPRESSION_MASK)
1065						!= ATTR_IS_COMPRESSED) {
1066					ntfs_error(vi->i_sb, "Found unknown "
1067							"compression method "
1068							"or corrupt file.");
1069					goto unm_err_out;
1070				}
1071			}
1072			if (a->flags & ATTR_IS_SPARSE)
1073				NInoSetSparse(ni);
1074		}
1075		if (a->flags & ATTR_IS_ENCRYPTED) {
1076			if (NInoCompressed(ni)) {
1077				ntfs_error(vi->i_sb, "Found encrypted and "
1078						"compressed data.");
1079				goto unm_err_out;
1080			}
1081			NInoSetEncrypted(ni);
1082		}
1083		if (a->non_resident) {
1084			NInoSetNonResident(ni);
1085			if (NInoCompressed(ni) || NInoSparse(ni)) {
1086				if (NInoCompressed(ni) && a->data.non_resident.
1087						compression_unit != 4) {
1088					ntfs_error(vi->i_sb, "Found "
1089							"non-standard "
1090							"compression unit (%u "
1091							"instead of 4).  "
1092							"Cannot handle this.",
1093							a->data.non_resident.
1094							compression_unit);
1095					err = -EOPNOTSUPP;
1096					goto unm_err_out;
1097				}
1098				if (a->data.non_resident.compression_unit) {
1099					ni->itype.compressed.block_size = 1U <<
1100							(a->data.non_resident.
1101							compression_unit +
1102							vol->cluster_size_bits);
1103					ni->itype.compressed.block_size_bits =
1104							ffs(ni->itype.
1105							compressed.
1106							block_size) - 1;
1107					ni->itype.compressed.block_clusters =
1108							1U << a->data.
1109							non_resident.
1110							compression_unit;
1111				} else {
1112					ni->itype.compressed.block_size = 0;
1113					ni->itype.compressed.block_size_bits =
1114							0;
1115					ni->itype.compressed.block_clusters =
1116							0;
1117				}
1118				ni->itype.compressed.size = sle64_to_cpu(
1119						a->data.non_resident.
1120						compressed_size);
1121			}
1122			if (a->data.non_resident.lowest_vcn) {
1123				ntfs_error(vi->i_sb, "First extent of $DATA "
1124						"attribute has non zero "
1125						"lowest_vcn.");
1126				goto unm_err_out;
1127			}
1128			vi->i_size = sle64_to_cpu(
1129					a->data.non_resident.data_size);
1130			ni->initialized_size = sle64_to_cpu(
1131					a->data.non_resident.initialized_size);
1132			ni->allocated_size = sle64_to_cpu(
1133					a->data.non_resident.allocated_size);
1134		} else { /* Resident attribute. */
1135			vi->i_size = ni->initialized_size = le32_to_cpu(
1136					a->data.resident.value_length);
1137			ni->allocated_size = le32_to_cpu(a->length) -
1138					le16_to_cpu(
1139					a->data.resident.value_offset);
1140			if (vi->i_size > ni->allocated_size) {
1141				ntfs_error(vi->i_sb, "Resident data attribute "
1142						"is corrupt (size exceeds "
1143						"allocation).");
1144				goto unm_err_out;
1145			}
1146		}
1147no_data_attr_special_case:
1148		/* We are done with the mft record, so we release it. */
1149		ntfs_attr_put_search_ctx(ctx);
1150		unmap_mft_record(ni);
1151		m = NULL;
1152		ctx = NULL;
1153		/* Setup the operations for this inode. */
1154		vi->i_op = &ntfs_file_inode_ops;
1155		vi->i_fop = &ntfs_file_ops;
1156		vi->i_mapping->a_ops = &ntfs_normal_aops;
1157		if (NInoMstProtected(ni))
1158			vi->i_mapping->a_ops = &ntfs_mst_aops;
1159		else if (NInoCompressed(ni))
1160			vi->i_mapping->a_ops = &ntfs_compressed_aops;
1161	}
 
 
 
 
1162	/*
1163	 * The number of 512-byte blocks used on disk (for stat). This is in so
1164	 * far inaccurate as it doesn't account for any named streams or other
1165	 * special non-resident attributes, but that is how Windows works, too,
1166	 * so we are at least consistent with Windows, if not entirely
1167	 * consistent with the Linux Way. Doing it the Linux Way would cause a
1168	 * significant slowdown as it would involve iterating over all
1169	 * attributes in the mft record and adding the allocated/compressed
1170	 * sizes of all non-resident attributes present to give us the Linux
1171	 * correct size that should go into i_blocks (after division by 512).
1172	 */
1173	if (S_ISREG(vi->i_mode) && (NInoCompressed(ni) || NInoSparse(ni)))
1174		vi->i_blocks = ni->itype.compressed.size >> 9;
1175	else
1176		vi->i_blocks = ni->allocated_size >> 9;
1177	ntfs_debug("Done.");
1178	return 0;
1179iput_unm_err_out:
1180	iput(bvi);
1181unm_err_out:
1182	if (!err)
1183		err = -EIO;
1184	if (ctx)
1185		ntfs_attr_put_search_ctx(ctx);
1186	if (m)
1187		unmap_mft_record(ni);
1188err_out:
1189	ntfs_error(vol->sb, "Failed with error code %i.  Marking corrupt "
1190			"inode 0x%lx as bad.  Run chkdsk.", err, vi->i_ino);
1191	make_bad_inode(vi);
1192	if (err != -EOPNOTSUPP && err != -ENOMEM)
1193		NVolSetErrors(vol);
1194	return err;
1195}
1196
1197/**
1198 * ntfs_read_locked_attr_inode - read an attribute inode from its base inode
1199 * @base_vi:	base inode
1200 * @vi:		attribute inode to read
1201 *
1202 * ntfs_read_locked_attr_inode() is called from ntfs_attr_iget() to read the
1203 * attribute inode described by @vi into memory from the base mft record
1204 * described by @base_ni.
1205 *
1206 * ntfs_read_locked_attr_inode() maps, pins and locks the base inode for
1207 * reading and looks up the attribute described by @vi before setting up the
1208 * necessary fields in @vi as well as initializing the ntfs inode.
1209 *
1210 * Q: What locks are held when the function is called?
1211 * A: i_state has I_NEW set, hence the inode is locked, also
1212 *    i_count is set to 1, so it is not going to go away
1213 *
1214 * Return 0 on success and -errno on error.  In the error case, the inode will
1215 * have had make_bad_inode() executed on it.
1216 *
1217 * Note this cannot be called for AT_INDEX_ALLOCATION.
1218 */
1219static int ntfs_read_locked_attr_inode(struct inode *base_vi, struct inode *vi)
1220{
1221	ntfs_volume *vol = NTFS_SB(vi->i_sb);
1222	ntfs_inode *ni, *base_ni;
1223	MFT_RECORD *m;
1224	ATTR_RECORD *a;
1225	ntfs_attr_search_ctx *ctx;
1226	int err = 0;
1227
1228	ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1229
1230	ntfs_init_big_inode(vi);
1231
1232	ni	= NTFS_I(vi);
1233	base_ni = NTFS_I(base_vi);
1234
1235	/* Just mirror the values from the base inode. */
 
1236	vi->i_uid	= base_vi->i_uid;
1237	vi->i_gid	= base_vi->i_gid;
1238	set_nlink(vi, base_vi->i_nlink);
1239	vi->i_mtime	= base_vi->i_mtime;
1240	vi->i_ctime	= base_vi->i_ctime;
1241	vi->i_atime	= base_vi->i_atime;
1242	vi->i_generation = ni->seq_no = base_ni->seq_no;
1243
1244	/* Set inode type to zero but preserve permissions. */
1245	vi->i_mode	= base_vi->i_mode & ~S_IFMT;
1246
1247	m = map_mft_record(base_ni);
1248	if (IS_ERR(m)) {
1249		err = PTR_ERR(m);
1250		goto err_out;
1251	}
1252	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1253	if (!ctx) {
1254		err = -ENOMEM;
1255		goto unm_err_out;
1256	}
1257	/* Find the attribute. */
1258	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1259			CASE_SENSITIVE, 0, NULL, 0, ctx);
1260	if (unlikely(err))
1261		goto unm_err_out;
1262	a = ctx->attr;
1263	if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_SPARSE)) {
1264		if (a->flags & ATTR_COMPRESSION_MASK) {
1265			NInoSetCompressed(ni);
1266			if ((ni->type != AT_DATA) || (ni->type == AT_DATA &&
1267					ni->name_len)) {
1268				ntfs_error(vi->i_sb, "Found compressed "
1269						"non-data or named data "
1270						"attribute.  Please report "
1271						"you saw this message to "
1272						"linux-ntfs-dev@lists."
1273						"sourceforge.net");
1274				goto unm_err_out;
1275			}
1276			if (vol->cluster_size > 4096) {
1277				ntfs_error(vi->i_sb, "Found compressed "
1278						"attribute but compression is "
1279						"disabled due to cluster size "
1280						"(%i) > 4kiB.",
1281						vol->cluster_size);
1282				goto unm_err_out;
1283			}
1284			if ((a->flags & ATTR_COMPRESSION_MASK) !=
1285					ATTR_IS_COMPRESSED) {
1286				ntfs_error(vi->i_sb, "Found unknown "
1287						"compression method.");
1288				goto unm_err_out;
1289			}
1290		}
1291		/*
1292		 * The compressed/sparse flag set in an index root just means
1293		 * to compress all files.
1294		 */
1295		if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1296			ntfs_error(vi->i_sb, "Found mst protected attribute "
1297					"but the attribute is %s.  Please "
1298					"report you saw this message to "
1299					"linux-ntfs-dev@lists.sourceforge.net",
1300					NInoCompressed(ni) ? "compressed" :
1301					"sparse");
1302			goto unm_err_out;
1303		}
1304		if (a->flags & ATTR_IS_SPARSE)
1305			NInoSetSparse(ni);
1306	}
1307	if (a->flags & ATTR_IS_ENCRYPTED) {
1308		if (NInoCompressed(ni)) {
1309			ntfs_error(vi->i_sb, "Found encrypted and compressed "
1310					"data.");
1311			goto unm_err_out;
1312		}
1313		/*
1314		 * The encryption flag set in an index root just means to
1315		 * encrypt all files.
1316		 */
1317		if (NInoMstProtected(ni) && ni->type != AT_INDEX_ROOT) {
1318			ntfs_error(vi->i_sb, "Found mst protected attribute "
1319					"but the attribute is encrypted.  "
1320					"Please report you saw this message "
1321					"to linux-ntfs-dev@lists.sourceforge."
1322					"net");
1323			goto unm_err_out;
1324		}
1325		if (ni->type != AT_DATA) {
1326			ntfs_error(vi->i_sb, "Found encrypted non-data "
1327					"attribute.");
1328			goto unm_err_out;
1329		}
1330		NInoSetEncrypted(ni);
1331	}
1332	if (!a->non_resident) {
1333		/* Ensure the attribute name is placed before the value. */
1334		if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1335				le16_to_cpu(a->data.resident.value_offset)))) {
1336			ntfs_error(vol->sb, "Attribute name is placed after "
1337					"the attribute value.");
1338			goto unm_err_out;
1339		}
1340		if (NInoMstProtected(ni)) {
1341			ntfs_error(vi->i_sb, "Found mst protected attribute "
1342					"but the attribute is resident.  "
1343					"Please report you saw this message to "
1344					"linux-ntfs-dev@lists.sourceforge.net");
1345			goto unm_err_out;
1346		}
1347		vi->i_size = ni->initialized_size = le32_to_cpu(
1348				a->data.resident.value_length);
1349		ni->allocated_size = le32_to_cpu(a->length) -
1350				le16_to_cpu(a->data.resident.value_offset);
1351		if (vi->i_size > ni->allocated_size) {
1352			ntfs_error(vi->i_sb, "Resident attribute is corrupt "
1353					"(size exceeds allocation).");
1354			goto unm_err_out;
1355		}
1356	} else {
1357		NInoSetNonResident(ni);
1358		/*
1359		 * Ensure the attribute name is placed before the mapping pairs
1360		 * array.
1361		 */
1362		if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1363				le16_to_cpu(
1364				a->data.non_resident.mapping_pairs_offset)))) {
1365			ntfs_error(vol->sb, "Attribute name is placed after "
1366					"the mapping pairs array.");
1367			goto unm_err_out;
1368		}
1369		if (NInoCompressed(ni) || NInoSparse(ni)) {
1370			if (NInoCompressed(ni) && a->data.non_resident.
1371					compression_unit != 4) {
1372				ntfs_error(vi->i_sb, "Found non-standard "
1373						"compression unit (%u instead "
1374						"of 4).  Cannot handle this.",
1375						a->data.non_resident.
1376						compression_unit);
1377				err = -EOPNOTSUPP;
1378				goto unm_err_out;
1379			}
1380			if (a->data.non_resident.compression_unit) {
1381				ni->itype.compressed.block_size = 1U <<
1382						(a->data.non_resident.
1383						compression_unit +
1384						vol->cluster_size_bits);
1385				ni->itype.compressed.block_size_bits =
1386						ffs(ni->itype.compressed.
1387						block_size) - 1;
1388				ni->itype.compressed.block_clusters = 1U <<
1389						a->data.non_resident.
1390						compression_unit;
1391			} else {
1392				ni->itype.compressed.block_size = 0;
1393				ni->itype.compressed.block_size_bits = 0;
1394				ni->itype.compressed.block_clusters = 0;
1395			}
1396			ni->itype.compressed.size = sle64_to_cpu(
1397					a->data.non_resident.compressed_size);
1398		}
1399		if (a->data.non_resident.lowest_vcn) {
1400			ntfs_error(vi->i_sb, "First extent of attribute has "
1401					"non-zero lowest_vcn.");
1402			goto unm_err_out;
1403		}
1404		vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1405		ni->initialized_size = sle64_to_cpu(
1406				a->data.non_resident.initialized_size);
1407		ni->allocated_size = sle64_to_cpu(
1408				a->data.non_resident.allocated_size);
1409	}
1410	vi->i_mapping->a_ops = &ntfs_normal_aops;
1411	if (NInoMstProtected(ni))
1412		vi->i_mapping->a_ops = &ntfs_mst_aops;
1413	else if (NInoCompressed(ni))
1414		vi->i_mapping->a_ops = &ntfs_compressed_aops;
1415	if ((NInoCompressed(ni) || NInoSparse(ni)) && ni->type != AT_INDEX_ROOT)
1416		vi->i_blocks = ni->itype.compressed.size >> 9;
1417	else
1418		vi->i_blocks = ni->allocated_size >> 9;
1419	/*
1420	 * Make sure the base inode does not go away and attach it to the
1421	 * attribute inode.
1422	 */
1423	igrab(base_vi);
1424	ni->ext.base_ntfs_ino = base_ni;
1425	ni->nr_extents = -1;
1426
1427	ntfs_attr_put_search_ctx(ctx);
1428	unmap_mft_record(base_ni);
1429
1430	ntfs_debug("Done.");
1431	return 0;
1432
1433unm_err_out:
1434	if (!err)
1435		err = -EIO;
1436	if (ctx)
1437		ntfs_attr_put_search_ctx(ctx);
1438	unmap_mft_record(base_ni);
1439err_out:
1440	ntfs_error(vol->sb, "Failed with error code %i while reading attribute "
1441			"inode (mft_no 0x%lx, type 0x%x, name_len %i).  "
1442			"Marking corrupt inode and base inode 0x%lx as bad.  "
1443			"Run chkdsk.", err, vi->i_ino, ni->type, ni->name_len,
1444			base_vi->i_ino);
1445	make_bad_inode(vi);
1446	if (err != -ENOMEM)
1447		NVolSetErrors(vol);
1448	return err;
1449}
1450
1451/**
1452 * ntfs_read_locked_index_inode - read an index inode from its base inode
1453 * @base_vi:	base inode
1454 * @vi:		index inode to read
1455 *
1456 * ntfs_read_locked_index_inode() is called from ntfs_index_iget() to read the
1457 * index inode described by @vi into memory from the base mft record described
1458 * by @base_ni.
1459 *
1460 * ntfs_read_locked_index_inode() maps, pins and locks the base inode for
1461 * reading and looks up the attributes relating to the index described by @vi
1462 * before setting up the necessary fields in @vi as well as initializing the
1463 * ntfs inode.
1464 *
1465 * Note, index inodes are essentially attribute inodes (NInoAttr() is true)
1466 * with the attribute type set to AT_INDEX_ALLOCATION.  Apart from that, they
1467 * are setup like directory inodes since directories are a special case of
1468 * indices ao they need to be treated in much the same way.  Most importantly,
1469 * for small indices the index allocation attribute might not actually exist.
1470 * However, the index root attribute always exists but this does not need to
1471 * have an inode associated with it and this is why we define a new inode type
1472 * index.  Also, like for directories, we need to have an attribute inode for
1473 * the bitmap attribute corresponding to the index allocation attribute and we
1474 * can store this in the appropriate field of the inode, just like we do for
1475 * normal directory inodes.
1476 *
1477 * Q: What locks are held when the function is called?
1478 * A: i_state has I_NEW set, hence the inode is locked, also
1479 *    i_count is set to 1, so it is not going to go away
1480 *
1481 * Return 0 on success and -errno on error.  In the error case, the inode will
1482 * have had make_bad_inode() executed on it.
1483 */
1484static int ntfs_read_locked_index_inode(struct inode *base_vi, struct inode *vi)
1485{
1486	loff_t bvi_size;
1487	ntfs_volume *vol = NTFS_SB(vi->i_sb);
1488	ntfs_inode *ni, *base_ni, *bni;
1489	struct inode *bvi;
1490	MFT_RECORD *m;
1491	ATTR_RECORD *a;
1492	ntfs_attr_search_ctx *ctx;
1493	INDEX_ROOT *ir;
1494	u8 *ir_end, *index_end;
1495	int err = 0;
1496
1497	ntfs_debug("Entering for i_ino 0x%lx.", vi->i_ino);
1498	ntfs_init_big_inode(vi);
1499	ni	= NTFS_I(vi);
1500	base_ni = NTFS_I(base_vi);
1501	/* Just mirror the values from the base inode. */
 
1502	vi->i_uid	= base_vi->i_uid;
1503	vi->i_gid	= base_vi->i_gid;
1504	set_nlink(vi, base_vi->i_nlink);
1505	vi->i_mtime	= base_vi->i_mtime;
1506	vi->i_ctime	= base_vi->i_ctime;
1507	vi->i_atime	= base_vi->i_atime;
1508	vi->i_generation = ni->seq_no = base_ni->seq_no;
1509	/* Set inode type to zero but preserve permissions. */
1510	vi->i_mode	= base_vi->i_mode & ~S_IFMT;
1511	/* Map the mft record for the base inode. */
1512	m = map_mft_record(base_ni);
1513	if (IS_ERR(m)) {
1514		err = PTR_ERR(m);
1515		goto err_out;
1516	}
1517	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1518	if (!ctx) {
1519		err = -ENOMEM;
1520		goto unm_err_out;
1521	}
1522	/* Find the index root attribute. */
1523	err = ntfs_attr_lookup(AT_INDEX_ROOT, ni->name, ni->name_len,
1524			CASE_SENSITIVE, 0, NULL, 0, ctx);
1525	if (unlikely(err)) {
1526		if (err == -ENOENT)
1527			ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is "
1528					"missing.");
1529		goto unm_err_out;
1530	}
1531	a = ctx->attr;
1532	/* Set up the state. */
1533	if (unlikely(a->non_resident)) {
1534		ntfs_error(vol->sb, "$INDEX_ROOT attribute is not resident.");
1535		goto unm_err_out;
1536	}
1537	/* Ensure the attribute name is placed before the value. */
1538	if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1539			le16_to_cpu(a->data.resident.value_offset)))) {
1540		ntfs_error(vol->sb, "$INDEX_ROOT attribute name is placed "
1541				"after the attribute value.");
1542		goto unm_err_out;
1543	}
1544	/*
1545	 * Compressed/encrypted/sparse index root is not allowed, except for
1546	 * directories of course but those are not dealt with here.
1547	 */
1548	if (a->flags & (ATTR_COMPRESSION_MASK | ATTR_IS_ENCRYPTED |
1549			ATTR_IS_SPARSE)) {
1550		ntfs_error(vi->i_sb, "Found compressed/encrypted/sparse index "
1551				"root attribute.");
1552		goto unm_err_out;
1553	}
1554	ir = (INDEX_ROOT*)((u8*)a + le16_to_cpu(a->data.resident.value_offset));
1555	ir_end = (u8*)ir + le32_to_cpu(a->data.resident.value_length);
1556	if (ir_end > (u8*)ctx->mrec + vol->mft_record_size) {
1557		ntfs_error(vi->i_sb, "$INDEX_ROOT attribute is corrupt.");
1558		goto unm_err_out;
1559	}
1560	index_end = (u8*)&ir->index + le32_to_cpu(ir->index.index_length);
1561	if (index_end > ir_end) {
1562		ntfs_error(vi->i_sb, "Index is corrupt.");
1563		goto unm_err_out;
1564	}
1565	if (ir->type) {
1566		ntfs_error(vi->i_sb, "Index type is not 0 (type is 0x%x).",
1567				le32_to_cpu(ir->type));
1568		goto unm_err_out;
1569	}
1570	ni->itype.index.collation_rule = ir->collation_rule;
1571	ntfs_debug("Index collation rule is 0x%x.",
1572			le32_to_cpu(ir->collation_rule));
1573	ni->itype.index.block_size = le32_to_cpu(ir->index_block_size);
1574	if (!is_power_of_2(ni->itype.index.block_size)) {
1575		ntfs_error(vi->i_sb, "Index block size (%u) is not a power of "
1576				"two.", ni->itype.index.block_size);
1577		goto unm_err_out;
1578	}
1579	if (ni->itype.index.block_size > PAGE_SIZE) {
1580		ntfs_error(vi->i_sb, "Index block size (%u) > PAGE_SIZE "
1581				"(%ld) is not supported.  Sorry.",
1582				ni->itype.index.block_size, PAGE_SIZE);
1583		err = -EOPNOTSUPP;
1584		goto unm_err_out;
1585	}
1586	if (ni->itype.index.block_size < NTFS_BLOCK_SIZE) {
1587		ntfs_error(vi->i_sb, "Index block size (%u) < NTFS_BLOCK_SIZE "
1588				"(%i) is not supported.  Sorry.",
1589				ni->itype.index.block_size, NTFS_BLOCK_SIZE);
1590		err = -EOPNOTSUPP;
1591		goto unm_err_out;
1592	}
1593	ni->itype.index.block_size_bits = ffs(ni->itype.index.block_size) - 1;
1594	/* Determine the size of a vcn in the index. */
1595	if (vol->cluster_size <= ni->itype.index.block_size) {
1596		ni->itype.index.vcn_size = vol->cluster_size;
1597		ni->itype.index.vcn_size_bits = vol->cluster_size_bits;
1598	} else {
1599		ni->itype.index.vcn_size = vol->sector_size;
1600		ni->itype.index.vcn_size_bits = vol->sector_size_bits;
1601	}
1602	/* Check for presence of index allocation attribute. */
1603	if (!(ir->index.flags & LARGE_INDEX)) {
1604		/* No index allocation. */
1605		vi->i_size = ni->initialized_size = ni->allocated_size = 0;
1606		/* We are done with the mft record, so we release it. */
1607		ntfs_attr_put_search_ctx(ctx);
1608		unmap_mft_record(base_ni);
1609		m = NULL;
1610		ctx = NULL;
1611		goto skip_large_index_stuff;
1612	} /* LARGE_INDEX:  Index allocation present.  Setup state. */
1613	NInoSetIndexAllocPresent(ni);
1614	/* Find index allocation attribute. */
1615	ntfs_attr_reinit_search_ctx(ctx);
1616	err = ntfs_attr_lookup(AT_INDEX_ALLOCATION, ni->name, ni->name_len,
1617			CASE_SENSITIVE, 0, NULL, 0, ctx);
1618	if (unlikely(err)) {
1619		if (err == -ENOENT)
1620			ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1621					"not present but $INDEX_ROOT "
1622					"indicated it is.");
1623		else
1624			ntfs_error(vi->i_sb, "Failed to lookup "
1625					"$INDEX_ALLOCATION attribute.");
1626		goto unm_err_out;
1627	}
1628	a = ctx->attr;
1629	if (!a->non_resident) {
1630		ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1631				"resident.");
1632		goto unm_err_out;
1633	}
1634	/*
1635	 * Ensure the attribute name is placed before the mapping pairs array.
1636	 */
1637	if (unlikely(a->name_length && (le16_to_cpu(a->name_offset) >=
1638			le16_to_cpu(
1639			a->data.non_resident.mapping_pairs_offset)))) {
1640		ntfs_error(vol->sb, "$INDEX_ALLOCATION attribute name is "
1641				"placed after the mapping pairs array.");
1642		goto unm_err_out;
1643	}
1644	if (a->flags & ATTR_IS_ENCRYPTED) {
1645		ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1646				"encrypted.");
1647		goto unm_err_out;
1648	}
1649	if (a->flags & ATTR_IS_SPARSE) {
1650		ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is sparse.");
1651		goto unm_err_out;
1652	}
1653	if (a->flags & ATTR_COMPRESSION_MASK) {
1654		ntfs_error(vi->i_sb, "$INDEX_ALLOCATION attribute is "
1655				"compressed.");
1656		goto unm_err_out;
1657	}
1658	if (a->data.non_resident.lowest_vcn) {
1659		ntfs_error(vi->i_sb, "First extent of $INDEX_ALLOCATION "
1660				"attribute has non zero lowest_vcn.");
1661		goto unm_err_out;
1662	}
1663	vi->i_size = sle64_to_cpu(a->data.non_resident.data_size);
1664	ni->initialized_size = sle64_to_cpu(
1665			a->data.non_resident.initialized_size);
1666	ni->allocated_size = sle64_to_cpu(a->data.non_resident.allocated_size);
1667	/*
1668	 * We are done with the mft record, so we release it.  Otherwise
1669	 * we would deadlock in ntfs_attr_iget().
1670	 */
1671	ntfs_attr_put_search_ctx(ctx);
1672	unmap_mft_record(base_ni);
1673	m = NULL;
1674	ctx = NULL;
1675	/* Get the index bitmap attribute inode. */
1676	bvi = ntfs_attr_iget(base_vi, AT_BITMAP, ni->name, ni->name_len);
1677	if (IS_ERR(bvi)) {
1678		ntfs_error(vi->i_sb, "Failed to get bitmap attribute.");
1679		err = PTR_ERR(bvi);
1680		goto unm_err_out;
1681	}
1682	bni = NTFS_I(bvi);
1683	if (NInoCompressed(bni) || NInoEncrypted(bni) ||
1684			NInoSparse(bni)) {
1685		ntfs_error(vi->i_sb, "$BITMAP attribute is compressed and/or "
1686				"encrypted and/or sparse.");
1687		goto iput_unm_err_out;
1688	}
1689	/* Consistency check bitmap size vs. index allocation size. */
1690	bvi_size = i_size_read(bvi);
1691	if ((bvi_size << 3) < (vi->i_size >> ni->itype.index.block_size_bits)) {
1692		ntfs_error(vi->i_sb, "Index bitmap too small (0x%llx) for "
1693				"index allocation (0x%llx).", bvi_size << 3,
1694				vi->i_size);
1695		goto iput_unm_err_out;
1696	}
1697	iput(bvi);
1698skip_large_index_stuff:
1699	/* Setup the operations for this index inode. */
 
 
1700	vi->i_mapping->a_ops = &ntfs_mst_aops;
1701	vi->i_blocks = ni->allocated_size >> 9;
1702	/*
1703	 * Make sure the base inode doesn't go away and attach it to the
1704	 * index inode.
1705	 */
1706	igrab(base_vi);
1707	ni->ext.base_ntfs_ino = base_ni;
1708	ni->nr_extents = -1;
1709
1710	ntfs_debug("Done.");
1711	return 0;
1712iput_unm_err_out:
1713	iput(bvi);
1714unm_err_out:
1715	if (!err)
1716		err = -EIO;
1717	if (ctx)
1718		ntfs_attr_put_search_ctx(ctx);
1719	if (m)
1720		unmap_mft_record(base_ni);
1721err_out:
1722	ntfs_error(vi->i_sb, "Failed with error code %i while reading index "
1723			"inode (mft_no 0x%lx, name_len %i.", err, vi->i_ino,
1724			ni->name_len);
1725	make_bad_inode(vi);
1726	if (err != -EOPNOTSUPP && err != -ENOMEM)
1727		NVolSetErrors(vol);
1728	return err;
1729}
1730
1731/*
1732 * The MFT inode has special locking, so teach the lock validator
1733 * about this by splitting off the locking rules of the MFT from
1734 * the locking rules of other inodes. The MFT inode can never be
1735 * accessed from the VFS side (or even internally), only by the
1736 * map_mft functions.
1737 */
1738static struct lock_class_key mft_ni_runlist_lock_key, mft_ni_mrec_lock_key;
1739
1740/**
1741 * ntfs_read_inode_mount - special read_inode for mount time use only
1742 * @vi:		inode to read
1743 *
1744 * Read inode FILE_MFT at mount time, only called with super_block lock
1745 * held from within the read_super() code path.
1746 *
1747 * This function exists because when it is called the page cache for $MFT/$DATA
1748 * is not initialized and hence we cannot get at the contents of mft records
1749 * by calling map_mft_record*().
1750 *
1751 * Further it needs to cope with the circular references problem, i.e. cannot
1752 * load any attributes other than $ATTRIBUTE_LIST until $DATA is loaded, because
1753 * we do not know where the other extent mft records are yet and again, because
1754 * we cannot call map_mft_record*() yet.  Obviously this applies only when an
1755 * attribute list is actually present in $MFT inode.
1756 *
1757 * We solve these problems by starting with the $DATA attribute before anything
1758 * else and iterating using ntfs_attr_lookup($DATA) over all extents.  As each
1759 * extent is found, we ntfs_mapping_pairs_decompress() including the implied
1760 * ntfs_runlists_merge().  Each step of the iteration necessarily provides
1761 * sufficient information for the next step to complete.
1762 *
1763 * This should work but there are two possible pit falls (see inline comments
1764 * below), but only time will tell if they are real pits or just smoke...
1765 */
1766int ntfs_read_inode_mount(struct inode *vi)
1767{
1768	VCN next_vcn, last_vcn, highest_vcn;
1769	s64 block;
1770	struct super_block *sb = vi->i_sb;
1771	ntfs_volume *vol = NTFS_SB(sb);
1772	struct buffer_head *bh;
1773	ntfs_inode *ni;
1774	MFT_RECORD *m = NULL;
1775	ATTR_RECORD *a;
1776	ntfs_attr_search_ctx *ctx;
1777	unsigned int i, nr_blocks;
1778	int err;
1779
1780	ntfs_debug("Entering.");
1781
1782	/* Initialize the ntfs specific part of @vi. */
1783	ntfs_init_big_inode(vi);
1784
1785	ni = NTFS_I(vi);
1786
1787	/* Setup the data attribute. It is special as it is mst protected. */
1788	NInoSetNonResident(ni);
1789	NInoSetMstProtected(ni);
1790	NInoSetSparseDisabled(ni);
1791	ni->type = AT_DATA;
1792	ni->name = NULL;
1793	ni->name_len = 0;
1794	/*
1795	 * This sets up our little cheat allowing us to reuse the async read io
1796	 * completion handler for directories.
1797	 */
1798	ni->itype.index.block_size = vol->mft_record_size;
1799	ni->itype.index.block_size_bits = vol->mft_record_size_bits;
1800
1801	/* Very important! Needed to be able to call map_mft_record*(). */
1802	vol->mft_ino = vi;
1803
1804	/* Allocate enough memory to read the first mft record. */
1805	if (vol->mft_record_size > 64 * 1024) {
1806		ntfs_error(sb, "Unsupported mft record size %i (max 64kiB).",
1807				vol->mft_record_size);
1808		goto err_out;
1809	}
1810	i = vol->mft_record_size;
1811	if (i < sb->s_blocksize)
1812		i = sb->s_blocksize;
1813	m = (MFT_RECORD*)ntfs_malloc_nofs(i);
1814	if (!m) {
1815		ntfs_error(sb, "Failed to allocate buffer for $MFT record 0.");
1816		goto err_out;
1817	}
1818
1819	/* Determine the first block of the $MFT/$DATA attribute. */
1820	block = vol->mft_lcn << vol->cluster_size_bits >>
1821			sb->s_blocksize_bits;
1822	nr_blocks = vol->mft_record_size >> sb->s_blocksize_bits;
1823	if (!nr_blocks)
1824		nr_blocks = 1;
1825
1826	/* Load $MFT/$DATA's first mft record. */
1827	for (i = 0; i < nr_blocks; i++) {
1828		bh = sb_bread(sb, block++);
1829		if (!bh) {
1830			ntfs_error(sb, "Device read failed.");
1831			goto err_out;
1832		}
1833		memcpy((char*)m + (i << sb->s_blocksize_bits), bh->b_data,
1834				sb->s_blocksize);
1835		brelse(bh);
1836	}
1837
1838	/* Apply the mst fixups. */
1839	if (post_read_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size)) {
1840		/* FIXME: Try to use the $MFTMirr now. */
1841		ntfs_error(sb, "MST fixup failed. $MFT is corrupt.");
1842		goto err_out;
1843	}
1844
1845	/* Need this to sanity check attribute list references to $MFT. */
1846	vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number);
1847
1848	/* Provides readpage() for map_mft_record(). */
1849	vi->i_mapping->a_ops = &ntfs_mst_aops;
1850
1851	ctx = ntfs_attr_get_search_ctx(ni, m);
1852	if (!ctx) {
1853		err = -ENOMEM;
1854		goto err_out;
1855	}
1856
1857	/* Find the attribute list attribute if present. */
1858	err = ntfs_attr_lookup(AT_ATTRIBUTE_LIST, NULL, 0, 0, 0, NULL, 0, ctx);
1859	if (err) {
1860		if (unlikely(err != -ENOENT)) {
1861			ntfs_error(sb, "Failed to lookup attribute list "
1862					"attribute. You should run chkdsk.");
1863			goto put_err_out;
1864		}
1865	} else /* if (!err) */ {
1866		ATTR_LIST_ENTRY *al_entry, *next_al_entry;
1867		u8 *al_end;
1868		static const char *es = "  Not allowed.  $MFT is corrupt.  "
1869				"You should run chkdsk.";
1870
1871		ntfs_debug("Attribute list attribute found in $MFT.");
1872		NInoSetAttrList(ni);
1873		a = ctx->attr;
1874		if (a->flags & ATTR_COMPRESSION_MASK) {
1875			ntfs_error(sb, "Attribute list attribute is "
1876					"compressed.%s", es);
1877			goto put_err_out;
1878		}
1879		if (a->flags & ATTR_IS_ENCRYPTED ||
1880				a->flags & ATTR_IS_SPARSE) {
1881			if (a->non_resident) {
1882				ntfs_error(sb, "Non-resident attribute list "
1883						"attribute is encrypted/"
1884						"sparse.%s", es);
1885				goto put_err_out;
1886			}
1887			ntfs_warning(sb, "Resident attribute list attribute "
1888					"in $MFT system file is marked "
1889					"encrypted/sparse which is not true.  "
1890					"However, Windows allows this and "
1891					"chkdsk does not detect or correct it "
1892					"so we will just ignore the invalid "
1893					"flags and pretend they are not set.");
1894		}
1895		/* Now allocate memory for the attribute list. */
1896		ni->attr_list_size = (u32)ntfs_attr_size(a);
1897		ni->attr_list = ntfs_malloc_nofs(ni->attr_list_size);
1898		if (!ni->attr_list) {
1899			ntfs_error(sb, "Not enough memory to allocate buffer "
1900					"for attribute list.");
1901			goto put_err_out;
1902		}
1903		if (a->non_resident) {
1904			NInoSetAttrListNonResident(ni);
1905			if (a->data.non_resident.lowest_vcn) {
1906				ntfs_error(sb, "Attribute list has non zero "
1907						"lowest_vcn. $MFT is corrupt. "
1908						"You should run chkdsk.");
1909				goto put_err_out;
1910			}
1911			/* Setup the runlist. */
1912			ni->attr_list_rl.rl = ntfs_mapping_pairs_decompress(vol,
1913					a, NULL);
1914			if (IS_ERR(ni->attr_list_rl.rl)) {
1915				err = PTR_ERR(ni->attr_list_rl.rl);
1916				ni->attr_list_rl.rl = NULL;
1917				ntfs_error(sb, "Mapping pairs decompression "
1918						"failed with error code %i.",
1919						-err);
1920				goto put_err_out;
1921			}
1922			/* Now load the attribute list. */
1923			if ((err = load_attribute_list(vol, &ni->attr_list_rl,
1924					ni->attr_list, ni->attr_list_size,
1925					sle64_to_cpu(a->data.
1926					non_resident.initialized_size)))) {
1927				ntfs_error(sb, "Failed to load attribute list "
1928						"attribute with error code %i.",
1929						-err);
1930				goto put_err_out;
1931			}
1932		} else /* if (!ctx.attr->non_resident) */ {
1933			if ((u8*)a + le16_to_cpu(
1934					a->data.resident.value_offset) +
1935					le32_to_cpu(
1936					a->data.resident.value_length) >
1937					(u8*)ctx->mrec + vol->mft_record_size) {
1938				ntfs_error(sb, "Corrupt attribute list "
1939						"attribute.");
1940				goto put_err_out;
1941			}
1942			/* Now copy the attribute list. */
1943			memcpy(ni->attr_list, (u8*)a + le16_to_cpu(
1944					a->data.resident.value_offset),
1945					le32_to_cpu(
1946					a->data.resident.value_length));
1947		}
1948		/* The attribute list is now setup in memory. */
1949		/*
1950		 * FIXME: I don't know if this case is actually possible.
1951		 * According to logic it is not possible but I have seen too
1952		 * many weird things in MS software to rely on logic... Thus we
1953		 * perform a manual search and make sure the first $MFT/$DATA
1954		 * extent is in the base inode. If it is not we abort with an
1955		 * error and if we ever see a report of this error we will need
1956		 * to do some magic in order to have the necessary mft record
1957		 * loaded and in the right place in the page cache. But
1958		 * hopefully logic will prevail and this never happens...
1959		 */
1960		al_entry = (ATTR_LIST_ENTRY*)ni->attr_list;
1961		al_end = (u8*)al_entry + ni->attr_list_size;
1962		for (;; al_entry = next_al_entry) {
1963			/* Out of bounds check. */
1964			if ((u8*)al_entry < ni->attr_list ||
1965					(u8*)al_entry > al_end)
1966				goto em_put_err_out;
1967			/* Catch the end of the attribute list. */
1968			if ((u8*)al_entry == al_end)
1969				goto em_put_err_out;
1970			if (!al_entry->length)
1971				goto em_put_err_out;
1972			if ((u8*)al_entry + 6 > al_end || (u8*)al_entry +
1973					le16_to_cpu(al_entry->length) > al_end)
1974				goto em_put_err_out;
1975			next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry +
1976					le16_to_cpu(al_entry->length));
1977			if (le32_to_cpu(al_entry->type) > le32_to_cpu(AT_DATA))
1978				goto em_put_err_out;
1979			if (AT_DATA != al_entry->type)
1980				continue;
1981			/* We want an unnamed attribute. */
1982			if (al_entry->name_length)
1983				goto em_put_err_out;
1984			/* Want the first entry, i.e. lowest_vcn == 0. */
1985			if (al_entry->lowest_vcn)
1986				goto em_put_err_out;
1987			/* First entry has to be in the base mft record. */
1988			if (MREF_LE(al_entry->mft_reference) != vi->i_ino) {
1989				/* MFT references do not match, logic fails. */
1990				ntfs_error(sb, "BUG: The first $DATA extent "
1991						"of $MFT is not in the base "
1992						"mft record. Please report "
1993						"you saw this message to "
1994						"linux-ntfs-dev@lists."
1995						"sourceforge.net");
1996				goto put_err_out;
1997			} else {
1998				/* Sequence numbers must match. */
1999				if (MSEQNO_LE(al_entry->mft_reference) !=
2000						ni->seq_no)
2001					goto em_put_err_out;
2002				/* Got it. All is ok. We can stop now. */
2003				break;
2004			}
2005		}
2006	}
2007
2008	ntfs_attr_reinit_search_ctx(ctx);
2009
2010	/* Now load all attribute extents. */
2011	a = NULL;
2012	next_vcn = last_vcn = highest_vcn = 0;
2013	while (!(err = ntfs_attr_lookup(AT_DATA, NULL, 0, 0, next_vcn, NULL, 0,
2014			ctx))) {
2015		runlist_element *nrl;
2016
2017		/* Cache the current attribute. */
2018		a = ctx->attr;
2019		/* $MFT must be non-resident. */
2020		if (!a->non_resident) {
2021			ntfs_error(sb, "$MFT must be non-resident but a "
2022					"resident extent was found. $MFT is "
2023					"corrupt. Run chkdsk.");
2024			goto put_err_out;
2025		}
2026		/* $MFT must be uncompressed and unencrypted. */
2027		if (a->flags & ATTR_COMPRESSION_MASK ||
2028				a->flags & ATTR_IS_ENCRYPTED ||
2029				a->flags & ATTR_IS_SPARSE) {
2030			ntfs_error(sb, "$MFT must be uncompressed, "
2031					"non-sparse, and unencrypted but a "
2032					"compressed/sparse/encrypted extent "
2033					"was found. $MFT is corrupt. Run "
2034					"chkdsk.");
2035			goto put_err_out;
2036		}
2037		/*
2038		 * Decompress the mapping pairs array of this extent and merge
2039		 * the result into the existing runlist. No need for locking
2040		 * as we have exclusive access to the inode at this time and we
2041		 * are a mount in progress task, too.
2042		 */
2043		nrl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl);
2044		if (IS_ERR(nrl)) {
2045			ntfs_error(sb, "ntfs_mapping_pairs_decompress() "
2046					"failed with error code %ld.  $MFT is "
2047					"corrupt.", PTR_ERR(nrl));
2048			goto put_err_out;
2049		}
2050		ni->runlist.rl = nrl;
2051
2052		/* Are we in the first extent? */
2053		if (!next_vcn) {
2054			if (a->data.non_resident.lowest_vcn) {
2055				ntfs_error(sb, "First extent of $DATA "
2056						"attribute has non zero "
2057						"lowest_vcn. $MFT is corrupt. "
2058						"You should run chkdsk.");
2059				goto put_err_out;
2060			}
2061			/* Get the last vcn in the $DATA attribute. */
2062			last_vcn = sle64_to_cpu(
2063					a->data.non_resident.allocated_size)
2064					>> vol->cluster_size_bits;
2065			/* Fill in the inode size. */
2066			vi->i_size = sle64_to_cpu(
2067					a->data.non_resident.data_size);
2068			ni->initialized_size = sle64_to_cpu(
2069					a->data.non_resident.initialized_size);
2070			ni->allocated_size = sle64_to_cpu(
2071					a->data.non_resident.allocated_size);
2072			/*
2073			 * Verify the number of mft records does not exceed
2074			 * 2^32 - 1.
2075			 */
2076			if ((vi->i_size >> vol->mft_record_size_bits) >=
2077					(1ULL << 32)) {
2078				ntfs_error(sb, "$MFT is too big! Aborting.");
2079				goto put_err_out;
2080			}
2081			/*
2082			 * We have got the first extent of the runlist for
2083			 * $MFT which means it is now relatively safe to call
2084			 * the normal ntfs_read_inode() function.
2085			 * Complete reading the inode, this will actually
2086			 * re-read the mft record for $MFT, this time entering
2087			 * it into the page cache with which we complete the
2088			 * kick start of the volume. It should be safe to do
2089			 * this now as the first extent of $MFT/$DATA is
2090			 * already known and we would hope that we don't need
2091			 * further extents in order to find the other
2092			 * attributes belonging to $MFT. Only time will tell if
2093			 * this is really the case. If not we will have to play
2094			 * magic at this point, possibly duplicating a lot of
2095			 * ntfs_read_inode() at this point. We will need to
2096			 * ensure we do enough of its work to be able to call
2097			 * ntfs_read_inode() on extents of $MFT/$DATA. But lets
2098			 * hope this never happens...
2099			 */
2100			ntfs_read_locked_inode(vi);
2101			if (is_bad_inode(vi)) {
2102				ntfs_error(sb, "ntfs_read_inode() of $MFT "
2103						"failed. BUG or corrupt $MFT. "
2104						"Run chkdsk and if no errors "
2105						"are found, please report you "
2106						"saw this message to "
2107						"linux-ntfs-dev@lists."
2108						"sourceforge.net");
2109				ntfs_attr_put_search_ctx(ctx);
2110				/* Revert to the safe super operations. */
2111				ntfs_free(m);
2112				return -1;
2113			}
2114			/*
2115			 * Re-initialize some specifics about $MFT's inode as
2116			 * ntfs_read_inode() will have set up the default ones.
2117			 */
2118			/* Set uid and gid to root. */
2119			vi->i_uid = GLOBAL_ROOT_UID;
2120			vi->i_gid = GLOBAL_ROOT_GID;
2121			/* Regular file. No access for anyone. */
2122			vi->i_mode = S_IFREG;
2123			/* No VFS initiated operations allowed for $MFT. */
2124			vi->i_op = &ntfs_empty_inode_ops;
2125			vi->i_fop = &ntfs_empty_file_ops;
2126		}
2127
2128		/* Get the lowest vcn for the next extent. */
2129		highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2130		next_vcn = highest_vcn + 1;
2131
2132		/* Only one extent or error, which we catch below. */
2133		if (next_vcn <= 0)
2134			break;
2135
2136		/* Avoid endless loops due to corruption. */
2137		if (next_vcn < sle64_to_cpu(
2138				a->data.non_resident.lowest_vcn)) {
2139			ntfs_error(sb, "$MFT has corrupt attribute list "
2140					"attribute. Run chkdsk.");
2141			goto put_err_out;
2142		}
2143	}
2144	if (err != -ENOENT) {
2145		ntfs_error(sb, "Failed to lookup $MFT/$DATA attribute extent. "
2146				"$MFT is corrupt. Run chkdsk.");
2147		goto put_err_out;
2148	}
2149	if (!a) {
2150		ntfs_error(sb, "$MFT/$DATA attribute not found. $MFT is "
2151				"corrupt. Run chkdsk.");
2152		goto put_err_out;
2153	}
2154	if (highest_vcn && highest_vcn != last_vcn - 1) {
2155		ntfs_error(sb, "Failed to load the complete runlist for "
2156				"$MFT/$DATA. Driver bug or corrupt $MFT. "
2157				"Run chkdsk.");
2158		ntfs_debug("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx",
2159				(unsigned long long)highest_vcn,
2160				(unsigned long long)last_vcn - 1);
2161		goto put_err_out;
2162	}
2163	ntfs_attr_put_search_ctx(ctx);
2164	ntfs_debug("Done.");
2165	ntfs_free(m);
2166
2167	/*
2168	 * Split the locking rules of the MFT inode from the
2169	 * locking rules of other inodes:
2170	 */
2171	lockdep_set_class(&ni->runlist.lock, &mft_ni_runlist_lock_key);
2172	lockdep_set_class(&ni->mrec_lock, &mft_ni_mrec_lock_key);
2173
2174	return 0;
2175
2176em_put_err_out:
2177	ntfs_error(sb, "Couldn't find first extent of $DATA attribute in "
2178			"attribute list. $MFT is corrupt. Run chkdsk.");
2179put_err_out:
2180	ntfs_attr_put_search_ctx(ctx);
2181err_out:
2182	ntfs_error(sb, "Failed. Marking inode as bad.");
2183	make_bad_inode(vi);
2184	ntfs_free(m);
2185	return -1;
2186}
2187
2188static void __ntfs_clear_inode(ntfs_inode *ni)
2189{
2190	/* Free all alocated memory. */
2191	down_write(&ni->runlist.lock);
2192	if (ni->runlist.rl) {
2193		ntfs_free(ni->runlist.rl);
2194		ni->runlist.rl = NULL;
2195	}
2196	up_write(&ni->runlist.lock);
2197
2198	if (ni->attr_list) {
2199		ntfs_free(ni->attr_list);
2200		ni->attr_list = NULL;
2201	}
2202
2203	down_write(&ni->attr_list_rl.lock);
2204	if (ni->attr_list_rl.rl) {
2205		ntfs_free(ni->attr_list_rl.rl);
2206		ni->attr_list_rl.rl = NULL;
2207	}
2208	up_write(&ni->attr_list_rl.lock);
2209
2210	if (ni->name_len && ni->name != I30) {
2211		/* Catch bugs... */
2212		BUG_ON(!ni->name);
2213		kfree(ni->name);
2214	}
2215}
2216
2217void ntfs_clear_extent_inode(ntfs_inode *ni)
2218{
2219	ntfs_debug("Entering for inode 0x%lx.", ni->mft_no);
2220
2221	BUG_ON(NInoAttr(ni));
2222	BUG_ON(ni->nr_extents != -1);
2223
2224#ifdef NTFS_RW
2225	if (NInoDirty(ni)) {
2226		if (!is_bad_inode(VFS_I(ni->ext.base_ntfs_ino)))
2227			ntfs_error(ni->vol->sb, "Clearing dirty extent inode!  "
2228					"Losing data!  This is a BUG!!!");
2229		// FIXME:  Do something!!!
2230	}
2231#endif /* NTFS_RW */
2232
2233	__ntfs_clear_inode(ni);
2234
2235	/* Bye, bye... */
2236	ntfs_destroy_extent_inode(ni);
2237}
2238
2239/**
2240 * ntfs_evict_big_inode - clean up the ntfs specific part of an inode
2241 * @vi:		vfs inode pending annihilation
2242 *
2243 * When the VFS is going to remove an inode from memory, ntfs_clear_big_inode()
2244 * is called, which deallocates all memory belonging to the NTFS specific part
2245 * of the inode and returns.
2246 *
2247 * If the MFT record is dirty, we commit it before doing anything else.
2248 */
2249void ntfs_evict_big_inode(struct inode *vi)
2250{
2251	ntfs_inode *ni = NTFS_I(vi);
2252
2253	truncate_inode_pages_final(&vi->i_data);
2254	clear_inode(vi);
2255
2256#ifdef NTFS_RW
2257	if (NInoDirty(ni)) {
2258		bool was_bad = (is_bad_inode(vi));
2259
2260		/* Committing the inode also commits all extent inodes. */
2261		ntfs_commit_inode(vi);
2262
2263		if (!was_bad && (is_bad_inode(vi) || NInoDirty(ni))) {
2264			ntfs_error(vi->i_sb, "Failed to commit dirty inode "
2265					"0x%lx.  Losing data!", vi->i_ino);
2266			// FIXME:  Do something!!!
2267		}
2268	}
2269#endif /* NTFS_RW */
2270
2271	/* No need to lock at this stage as no one else has a reference. */
2272	if (ni->nr_extents > 0) {
2273		int i;
2274
2275		for (i = 0; i < ni->nr_extents; i++)
2276			ntfs_clear_extent_inode(ni->ext.extent_ntfs_inos[i]);
2277		kfree(ni->ext.extent_ntfs_inos);
2278	}
2279
2280	__ntfs_clear_inode(ni);
2281
2282	if (NInoAttr(ni)) {
2283		/* Release the base inode if we are holding it. */
2284		if (ni->nr_extents == -1) {
2285			iput(VFS_I(ni->ext.base_ntfs_ino));
2286			ni->nr_extents = 0;
2287			ni->ext.base_ntfs_ino = NULL;
2288		}
2289	}
2290	return;
2291}
2292
2293/**
2294 * ntfs_show_options - show mount options in /proc/mounts
2295 * @sf:		seq_file in which to write our mount options
2296 * @root:	root of the mounted tree whose mount options to display
2297 *
2298 * Called by the VFS once for each mounted ntfs volume when someone reads
2299 * /proc/mounts in order to display the NTFS specific mount options of each
2300 * mount. The mount options of fs specified by @root are written to the seq file
2301 * @sf and success is returned.
2302 */
2303int ntfs_show_options(struct seq_file *sf, struct dentry *root)
2304{
2305	ntfs_volume *vol = NTFS_SB(root->d_sb);
2306	int i;
2307
2308	seq_printf(sf, ",uid=%i", from_kuid_munged(&init_user_ns, vol->uid));
2309	seq_printf(sf, ",gid=%i", from_kgid_munged(&init_user_ns, vol->gid));
2310	if (vol->fmask == vol->dmask)
2311		seq_printf(sf, ",umask=0%o", vol->fmask);
2312	else {
2313		seq_printf(sf, ",fmask=0%o", vol->fmask);
2314		seq_printf(sf, ",dmask=0%o", vol->dmask);
2315	}
2316	seq_printf(sf, ",nls=%s", vol->nls_map->charset);
2317	if (NVolCaseSensitive(vol))
2318		seq_printf(sf, ",case_sensitive");
2319	if (NVolShowSystemFiles(vol))
2320		seq_printf(sf, ",show_sys_files");
2321	if (!NVolSparseEnabled(vol))
2322		seq_printf(sf, ",disable_sparse");
2323	for (i = 0; on_errors_arr[i].val; i++) {
2324		if (on_errors_arr[i].val & vol->on_errors)
2325			seq_printf(sf, ",errors=%s", on_errors_arr[i].str);
2326	}
2327	seq_printf(sf, ",mft_zone_multiplier=%i", vol->mft_zone_multiplier);
2328	return 0;
2329}
2330
2331#ifdef NTFS_RW
2332
2333static const char *es = "  Leaving inconsistent metadata.  Unmount and run "
2334		"chkdsk.";
2335
2336/**
2337 * ntfs_truncate - called when the i_size of an ntfs inode is changed
2338 * @vi:		inode for which the i_size was changed
2339 *
2340 * We only support i_size changes for normal files at present, i.e. not
2341 * compressed and not encrypted.  This is enforced in ntfs_setattr(), see
2342 * below.
2343 *
2344 * The kernel guarantees that @vi is a regular file (S_ISREG() is true) and
2345 * that the change is allowed.
2346 *
2347 * This implies for us that @vi is a file inode rather than a directory, index,
2348 * or attribute inode as well as that @vi is a base inode.
2349 *
2350 * Returns 0 on success or -errno on error.
2351 *
2352 * Called with ->i_mutex held.
2353 */
2354int ntfs_truncate(struct inode *vi)
2355{
2356	s64 new_size, old_size, nr_freed, new_alloc_size, old_alloc_size;
2357	VCN highest_vcn;
2358	unsigned long flags;
2359	ntfs_inode *base_ni, *ni = NTFS_I(vi);
2360	ntfs_volume *vol = ni->vol;
2361	ntfs_attr_search_ctx *ctx;
2362	MFT_RECORD *m;
2363	ATTR_RECORD *a;
2364	const char *te = "  Leaving file length out of sync with i_size.";
2365	int err, mp_size, size_change, alloc_change;
2366	u32 attr_len;
2367
2368	ntfs_debug("Entering for inode 0x%lx.", vi->i_ino);
2369	BUG_ON(NInoAttr(ni));
2370	BUG_ON(S_ISDIR(vi->i_mode));
2371	BUG_ON(NInoMstProtected(ni));
2372	BUG_ON(ni->nr_extents < 0);
2373retry_truncate:
2374	/*
2375	 * Lock the runlist for writing and map the mft record to ensure it is
2376	 * safe to mess with the attribute runlist and sizes.
2377	 */
2378	down_write(&ni->runlist.lock);
2379	if (!NInoAttr(ni))
2380		base_ni = ni;
2381	else
2382		base_ni = ni->ext.base_ntfs_ino;
2383	m = map_mft_record(base_ni);
2384	if (IS_ERR(m)) {
2385		err = PTR_ERR(m);
2386		ntfs_error(vi->i_sb, "Failed to map mft record for inode 0x%lx "
2387				"(error code %d).%s", vi->i_ino, err, te);
2388		ctx = NULL;
2389		m = NULL;
2390		goto old_bad_out;
2391	}
2392	ctx = ntfs_attr_get_search_ctx(base_ni, m);
2393	if (unlikely(!ctx)) {
2394		ntfs_error(vi->i_sb, "Failed to allocate a search context for "
2395				"inode 0x%lx (not enough memory).%s",
2396				vi->i_ino, te);
2397		err = -ENOMEM;
2398		goto old_bad_out;
2399	}
2400	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2401			CASE_SENSITIVE, 0, NULL, 0, ctx);
2402	if (unlikely(err)) {
2403		if (err == -ENOENT) {
2404			ntfs_error(vi->i_sb, "Open attribute is missing from "
2405					"mft record.  Inode 0x%lx is corrupt.  "
2406					"Run chkdsk.%s", vi->i_ino, te);
2407			err = -EIO;
2408		} else
2409			ntfs_error(vi->i_sb, "Failed to lookup attribute in "
2410					"inode 0x%lx (error code %d).%s",
2411					vi->i_ino, err, te);
2412		goto old_bad_out;
2413	}
2414	m = ctx->mrec;
2415	a = ctx->attr;
2416	/*
2417	 * The i_size of the vfs inode is the new size for the attribute value.
2418	 */
2419	new_size = i_size_read(vi);
2420	/* The current size of the attribute value is the old size. */
2421	old_size = ntfs_attr_size(a);
2422	/* Calculate the new allocated size. */
2423	if (NInoNonResident(ni))
2424		new_alloc_size = (new_size + vol->cluster_size - 1) &
2425				~(s64)vol->cluster_size_mask;
2426	else
2427		new_alloc_size = (new_size + 7) & ~7;
2428	/* The current allocated size is the old allocated size. */
2429	read_lock_irqsave(&ni->size_lock, flags);
2430	old_alloc_size = ni->allocated_size;
2431	read_unlock_irqrestore(&ni->size_lock, flags);
2432	/*
2433	 * The change in the file size.  This will be 0 if no change, >0 if the
2434	 * size is growing, and <0 if the size is shrinking.
2435	 */
2436	size_change = -1;
2437	if (new_size - old_size >= 0) {
2438		size_change = 1;
2439		if (new_size == old_size)
2440			size_change = 0;
2441	}
2442	/* As above for the allocated size. */
2443	alloc_change = -1;
2444	if (new_alloc_size - old_alloc_size >= 0) {
2445		alloc_change = 1;
2446		if (new_alloc_size == old_alloc_size)
2447			alloc_change = 0;
2448	}
2449	/*
2450	 * If neither the size nor the allocation are being changed there is
2451	 * nothing to do.
2452	 */
2453	if (!size_change && !alloc_change)
2454		goto unm_done;
2455	/* If the size is changing, check if new size is allowed in $AttrDef. */
2456	if (size_change) {
2457		err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
2458		if (unlikely(err)) {
2459			if (err == -ERANGE) {
2460				ntfs_error(vol->sb, "Truncate would cause the "
2461						"inode 0x%lx to %simum size "
2462						"for its attribute type "
2463						"(0x%x).  Aborting truncate.",
2464						vi->i_ino,
2465						new_size > old_size ? "exceed "
2466						"the max" : "go under the min",
2467						le32_to_cpu(ni->type));
2468				err = -EFBIG;
2469			} else {
2470				ntfs_error(vol->sb, "Inode 0x%lx has unknown "
2471						"attribute type 0x%x.  "
2472						"Aborting truncate.",
2473						vi->i_ino,
2474						le32_to_cpu(ni->type));
2475				err = -EIO;
2476			}
2477			/* Reset the vfs inode size to the old size. */
2478			i_size_write(vi, old_size);
2479			goto err_out;
2480		}
2481	}
2482	if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2483		ntfs_warning(vi->i_sb, "Changes in inode size are not "
2484				"supported yet for %s files, ignoring.",
2485				NInoCompressed(ni) ? "compressed" :
2486				"encrypted");
2487		err = -EOPNOTSUPP;
2488		goto bad_out;
2489	}
2490	if (a->non_resident)
2491		goto do_non_resident_truncate;
2492	BUG_ON(NInoNonResident(ni));
2493	/* Resize the attribute record to best fit the new attribute size. */
2494	if (new_size < vol->mft_record_size &&
2495			!ntfs_resident_attr_value_resize(m, a, new_size)) {
2496		/* The resize succeeded! */
2497		flush_dcache_mft_record_page(ctx->ntfs_ino);
2498		mark_mft_record_dirty(ctx->ntfs_ino);
2499		write_lock_irqsave(&ni->size_lock, flags);
2500		/* Update the sizes in the ntfs inode and all is done. */
2501		ni->allocated_size = le32_to_cpu(a->length) -
2502				le16_to_cpu(a->data.resident.value_offset);
2503		/*
2504		 * Note ntfs_resident_attr_value_resize() has already done any
2505		 * necessary data clearing in the attribute record.  When the
2506		 * file is being shrunk vmtruncate() will already have cleared
2507		 * the top part of the last partial page, i.e. since this is
2508		 * the resident case this is the page with index 0.  However,
2509		 * when the file is being expanded, the page cache page data
2510		 * between the old data_size, i.e. old_size, and the new_size
2511		 * has not been zeroed.  Fortunately, we do not need to zero it
2512		 * either since on one hand it will either already be zero due
2513		 * to both readpage and writepage clearing partial page data
2514		 * beyond i_size in which case there is nothing to do or in the
2515		 * case of the file being mmap()ped at the same time, POSIX
2516		 * specifies that the behaviour is unspecified thus we do not
2517		 * have to do anything.  This means that in our implementation
2518		 * in the rare case that the file is mmap()ped and a write
2519		 * occurred into the mmap()ped region just beyond the file size
2520		 * and writepage has not yet been called to write out the page
2521		 * (which would clear the area beyond the file size) and we now
2522		 * extend the file size to incorporate this dirty region
2523		 * outside the file size, a write of the page would result in
2524		 * this data being written to disk instead of being cleared.
2525		 * Given both POSIX and the Linux mmap(2) man page specify that
2526		 * this corner case is undefined, we choose to leave it like
2527		 * that as this is much simpler for us as we cannot lock the
2528		 * relevant page now since we are holding too many ntfs locks
2529		 * which would result in a lock reversal deadlock.
2530		 */
2531		ni->initialized_size = new_size;
2532		write_unlock_irqrestore(&ni->size_lock, flags);
2533		goto unm_done;
2534	}
2535	/* If the above resize failed, this must be an attribute extension. */
2536	BUG_ON(size_change < 0);
2537	/*
2538	 * We have to drop all the locks so we can call
2539	 * ntfs_attr_make_non_resident().  This could be optimised by try-
2540	 * locking the first page cache page and only if that fails dropping
2541	 * the locks, locking the page, and redoing all the locking and
2542	 * lookups.  While this would be a huge optimisation, it is not worth
2543	 * it as this is definitely a slow code path as it only ever can happen
2544	 * once for any given file.
2545	 */
2546	ntfs_attr_put_search_ctx(ctx);
2547	unmap_mft_record(base_ni);
2548	up_write(&ni->runlist.lock);
2549	/*
2550	 * Not enough space in the mft record, try to make the attribute
2551	 * non-resident and if successful restart the truncation process.
2552	 */
2553	err = ntfs_attr_make_non_resident(ni, old_size);
2554	if (likely(!err))
2555		goto retry_truncate;
2556	/*
2557	 * Could not make non-resident.  If this is due to this not being
2558	 * permitted for this attribute type or there not being enough space,
2559	 * try to make other attributes non-resident.  Otherwise fail.
2560	 */
2561	if (unlikely(err != -EPERM && err != -ENOSPC)) {
2562		ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, attribute "
2563				"type 0x%x, because the conversion from "
2564				"resident to non-resident attribute failed "
2565				"with error code %i.", vi->i_ino,
2566				(unsigned)le32_to_cpu(ni->type), err);
2567		if (err != -ENOMEM)
2568			err = -EIO;
2569		goto conv_err_out;
2570	}
2571	/* TODO: Not implemented from here, abort. */
2572	if (err == -ENOSPC)
2573		ntfs_error(vol->sb, "Not enough space in the mft record/on "
2574				"disk for the non-resident attribute value.  "
2575				"This case is not implemented yet.");
2576	else /* if (err == -EPERM) */
2577		ntfs_error(vol->sb, "This attribute type may not be "
2578				"non-resident.  This case is not implemented "
2579				"yet.");
2580	err = -EOPNOTSUPP;
2581	goto conv_err_out;
2582#if 0
2583	// TODO: Attempt to make other attributes non-resident.
2584	if (!err)
2585		goto do_resident_extend;
2586	/*
2587	 * Both the attribute list attribute and the standard information
2588	 * attribute must remain in the base inode.  Thus, if this is one of
2589	 * these attributes, we have to try to move other attributes out into
2590	 * extent mft records instead.
2591	 */
2592	if (ni->type == AT_ATTRIBUTE_LIST ||
2593			ni->type == AT_STANDARD_INFORMATION) {
2594		// TODO: Attempt to move other attributes into extent mft
2595		// records.
2596		err = -EOPNOTSUPP;
2597		if (!err)
2598			goto do_resident_extend;
2599		goto err_out;
2600	}
2601	// TODO: Attempt to move this attribute to an extent mft record, but
2602	// only if it is not already the only attribute in an mft record in
2603	// which case there would be nothing to gain.
2604	err = -EOPNOTSUPP;
2605	if (!err)
2606		goto do_resident_extend;
2607	/* There is nothing we can do to make enough space. )-: */
2608	goto err_out;
2609#endif
2610do_non_resident_truncate:
2611	BUG_ON(!NInoNonResident(ni));
2612	if (alloc_change < 0) {
2613		highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
2614		if (highest_vcn > 0 &&
2615				old_alloc_size >> vol->cluster_size_bits >
2616				highest_vcn + 1) {
2617			/*
2618			 * This attribute has multiple extents.  Not yet
2619			 * supported.
2620			 */
2621			ntfs_error(vol->sb, "Cannot truncate inode 0x%lx, "
2622					"attribute type 0x%x, because the "
2623					"attribute is highly fragmented (it "
2624					"consists of multiple extents) and "
2625					"this case is not implemented yet.",
2626					vi->i_ino,
2627					(unsigned)le32_to_cpu(ni->type));
2628			err = -EOPNOTSUPP;
2629			goto bad_out;
2630		}
2631	}
2632	/*
2633	 * If the size is shrinking, need to reduce the initialized_size and
2634	 * the data_size before reducing the allocation.
2635	 */
2636	if (size_change < 0) {
2637		/*
2638		 * Make the valid size smaller (i_size is already up-to-date).
2639		 */
2640		write_lock_irqsave(&ni->size_lock, flags);
2641		if (new_size < ni->initialized_size) {
2642			ni->initialized_size = new_size;
2643			a->data.non_resident.initialized_size =
2644					cpu_to_sle64(new_size);
2645		}
2646		a->data.non_resident.data_size = cpu_to_sle64(new_size);
2647		write_unlock_irqrestore(&ni->size_lock, flags);
2648		flush_dcache_mft_record_page(ctx->ntfs_ino);
2649		mark_mft_record_dirty(ctx->ntfs_ino);
2650		/* If the allocated size is not changing, we are done. */
2651		if (!alloc_change)
2652			goto unm_done;
2653		/*
2654		 * If the size is shrinking it makes no sense for the
2655		 * allocation to be growing.
2656		 */
2657		BUG_ON(alloc_change > 0);
2658	} else /* if (size_change >= 0) */ {
2659		/*
2660		 * The file size is growing or staying the same but the
2661		 * allocation can be shrinking, growing or staying the same.
2662		 */
2663		if (alloc_change > 0) {
2664			/*
2665			 * We need to extend the allocation and possibly update
2666			 * the data size.  If we are updating the data size,
2667			 * since we are not touching the initialized_size we do
2668			 * not need to worry about the actual data on disk.
2669			 * And as far as the page cache is concerned, there
2670			 * will be no pages beyond the old data size and any
2671			 * partial region in the last page between the old and
2672			 * new data size (or the end of the page if the new
2673			 * data size is outside the page) does not need to be
2674			 * modified as explained above for the resident
2675			 * attribute truncate case.  To do this, we simply drop
2676			 * the locks we hold and leave all the work to our
2677			 * friendly helper ntfs_attr_extend_allocation().
2678			 */
2679			ntfs_attr_put_search_ctx(ctx);
2680			unmap_mft_record(base_ni);
2681			up_write(&ni->runlist.lock);
2682			err = ntfs_attr_extend_allocation(ni, new_size,
2683					size_change > 0 ? new_size : -1, -1);
2684			/*
2685			 * ntfs_attr_extend_allocation() will have done error
2686			 * output already.
2687			 */
2688			goto done;
2689		}
2690		if (!alloc_change)
2691			goto alloc_done;
2692	}
2693	/* alloc_change < 0 */
2694	/* Free the clusters. */
2695	nr_freed = ntfs_cluster_free(ni, new_alloc_size >>
2696			vol->cluster_size_bits, -1, ctx);
2697	m = ctx->mrec;
2698	a = ctx->attr;
2699	if (unlikely(nr_freed < 0)) {
2700		ntfs_error(vol->sb, "Failed to release cluster(s) (error code "
2701				"%lli).  Unmount and run chkdsk to recover "
2702				"the lost cluster(s).", (long long)nr_freed);
2703		NVolSetErrors(vol);
2704		nr_freed = 0;
2705	}
2706	/* Truncate the runlist. */
2707	err = ntfs_rl_truncate_nolock(vol, &ni->runlist,
2708			new_alloc_size >> vol->cluster_size_bits);
2709	/*
2710	 * If the runlist truncation failed and/or the search context is no
2711	 * longer valid, we cannot resize the attribute record or build the
2712	 * mapping pairs array thus we mark the inode bad so that no access to
2713	 * the freed clusters can happen.
2714	 */
2715	if (unlikely(err || IS_ERR(m))) {
2716		ntfs_error(vol->sb, "Failed to %s (error code %li).%s",
2717				IS_ERR(m) ?
2718				"restore attribute search context" :
2719				"truncate attribute runlist",
2720				IS_ERR(m) ? PTR_ERR(m) : err, es);
2721		err = -EIO;
2722		goto bad_out;
2723	}
2724	/* Get the size for the shrunk mapping pairs array for the runlist. */
2725	mp_size = ntfs_get_size_for_mapping_pairs(vol, ni->runlist.rl, 0, -1);
2726	if (unlikely(mp_size <= 0)) {
2727		ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2728				"attribute type 0x%x, because determining the "
2729				"size for the mapping pairs failed with error "
2730				"code %i.%s", vi->i_ino,
2731				(unsigned)le32_to_cpu(ni->type), mp_size, es);
2732		err = -EIO;
2733		goto bad_out;
2734	}
2735	/*
2736	 * Shrink the attribute record for the new mapping pairs array.  Note,
2737	 * this cannot fail since we are making the attribute smaller thus by
2738	 * definition there is enough space to do so.
2739	 */
2740	attr_len = le32_to_cpu(a->length);
2741	err = ntfs_attr_record_resize(m, a, mp_size +
2742			le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
2743	BUG_ON(err);
2744	/*
2745	 * Generate the mapping pairs array directly into the attribute record.
2746	 */
2747	err = ntfs_mapping_pairs_build(vol, (u8*)a +
2748			le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
2749			mp_size, ni->runlist.rl, 0, -1, NULL);
2750	if (unlikely(err)) {
2751		ntfs_error(vol->sb, "Cannot shrink allocation of inode 0x%lx, "
2752				"attribute type 0x%x, because building the "
2753				"mapping pairs failed with error code %i.%s",
2754				vi->i_ino, (unsigned)le32_to_cpu(ni->type),
2755				err, es);
2756		err = -EIO;
2757		goto bad_out;
2758	}
2759	/* Update the allocated/compressed size as well as the highest vcn. */
2760	a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >>
2761			vol->cluster_size_bits) - 1);
2762	write_lock_irqsave(&ni->size_lock, flags);
2763	ni->allocated_size = new_alloc_size;
2764	a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size);
2765	if (NInoSparse(ni) || NInoCompressed(ni)) {
2766		if (nr_freed) {
2767			ni->itype.compressed.size -= nr_freed <<
2768					vol->cluster_size_bits;
2769			BUG_ON(ni->itype.compressed.size < 0);
2770			a->data.non_resident.compressed_size = cpu_to_sle64(
2771					ni->itype.compressed.size);
2772			vi->i_blocks = ni->itype.compressed.size >> 9;
2773		}
2774	} else
2775		vi->i_blocks = new_alloc_size >> 9;
2776	write_unlock_irqrestore(&ni->size_lock, flags);
2777	/*
2778	 * We have shrunk the allocation.  If this is a shrinking truncate we
2779	 * have already dealt with the initialized_size and the data_size above
2780	 * and we are done.  If the truncate is only changing the allocation
2781	 * and not the data_size, we are also done.  If this is an extending
2782	 * truncate, need to extend the data_size now which is ensured by the
2783	 * fact that @size_change is positive.
2784	 */
2785alloc_done:
2786	/*
2787	 * If the size is growing, need to update it now.  If it is shrinking,
2788	 * we have already updated it above (before the allocation change).
2789	 */
2790	if (size_change > 0)
2791		a->data.non_resident.data_size = cpu_to_sle64(new_size);
2792	/* Ensure the modified mft record is written out. */
2793	flush_dcache_mft_record_page(ctx->ntfs_ino);
2794	mark_mft_record_dirty(ctx->ntfs_ino);
2795unm_done:
2796	ntfs_attr_put_search_ctx(ctx);
2797	unmap_mft_record(base_ni);
2798	up_write(&ni->runlist.lock);
2799done:
2800	/* Update the mtime and ctime on the base inode. */
2801	/* normally ->truncate shouldn't update ctime or mtime,
2802	 * but ntfs did before so it got a copy & paste version
2803	 * of file_update_time.  one day someone should fix this
2804	 * for real.
2805	 */
2806	if (!IS_NOCMTIME(VFS_I(base_ni)) && !IS_RDONLY(VFS_I(base_ni))) {
2807		struct timespec now = current_time(VFS_I(base_ni));
2808		int sync_it = 0;
2809
2810		if (!timespec_equal(&VFS_I(base_ni)->i_mtime, &now) ||
2811		    !timespec_equal(&VFS_I(base_ni)->i_ctime, &now))
2812			sync_it = 1;
2813		VFS_I(base_ni)->i_mtime = now;
2814		VFS_I(base_ni)->i_ctime = now;
2815
2816		if (sync_it)
2817			mark_inode_dirty_sync(VFS_I(base_ni));
2818	}
2819
2820	if (likely(!err)) {
2821		NInoClearTruncateFailed(ni);
2822		ntfs_debug("Done.");
2823	}
2824	return err;
2825old_bad_out:
2826	old_size = -1;
2827bad_out:
2828	if (err != -ENOMEM && err != -EOPNOTSUPP)
2829		NVolSetErrors(vol);
2830	if (err != -EOPNOTSUPP)
2831		NInoSetTruncateFailed(ni);
2832	else if (old_size >= 0)
2833		i_size_write(vi, old_size);
2834err_out:
2835	if (ctx)
2836		ntfs_attr_put_search_ctx(ctx);
2837	if (m)
2838		unmap_mft_record(base_ni);
2839	up_write(&ni->runlist.lock);
2840out:
2841	ntfs_debug("Failed.  Returning error code %i.", err);
2842	return err;
2843conv_err_out:
2844	if (err != -ENOMEM && err != -EOPNOTSUPP)
2845		NVolSetErrors(vol);
2846	if (err != -EOPNOTSUPP)
2847		NInoSetTruncateFailed(ni);
2848	else
2849		i_size_write(vi, old_size);
2850	goto out;
2851}
2852
2853/**
2854 * ntfs_truncate_vfs - wrapper for ntfs_truncate() that has no return value
2855 * @vi:		inode for which the i_size was changed
2856 *
2857 * Wrapper for ntfs_truncate() that has no return value.
2858 *
2859 * See ntfs_truncate() description above for details.
2860 */
2861#ifdef NTFS_RW
2862void ntfs_truncate_vfs(struct inode *vi) {
2863	ntfs_truncate(vi);
2864}
2865#endif
2866
2867/**
2868 * ntfs_setattr - called from notify_change() when an attribute is being changed
2869 * @dentry:	dentry whose attributes to change
2870 * @attr:	structure describing the attributes and the changes
2871 *
2872 * We have to trap VFS attempts to truncate the file described by @dentry as
2873 * soon as possible, because we do not implement changes in i_size yet.  So we
2874 * abort all i_size changes here.
2875 *
2876 * We also abort all changes of user, group, and mode as we do not implement
2877 * the NTFS ACLs yet.
2878 *
2879 * Called with ->i_mutex held.
2880 */
2881int ntfs_setattr(struct dentry *dentry, struct iattr *attr)
2882{
2883	struct inode *vi = d_inode(dentry);
2884	int err;
2885	unsigned int ia_valid = attr->ia_valid;
2886
2887	err = setattr_prepare(dentry, attr);
2888	if (err)
2889		goto out;
2890	/* We do not support NTFS ACLs yet. */
2891	if (ia_valid & (ATTR_UID | ATTR_GID | ATTR_MODE)) {
2892		ntfs_warning(vi->i_sb, "Changes in user/group/mode are not "
2893				"supported yet, ignoring.");
2894		err = -EOPNOTSUPP;
2895		goto out;
2896	}
2897	if (ia_valid & ATTR_SIZE) {
2898		if (attr->ia_size != i_size_read(vi)) {
2899			ntfs_inode *ni = NTFS_I(vi);
2900			/*
2901			 * FIXME: For now we do not support resizing of
2902			 * compressed or encrypted files yet.
2903			 */
2904			if (NInoCompressed(ni) || NInoEncrypted(ni)) {
2905				ntfs_warning(vi->i_sb, "Changes in inode size "
2906						"are not supported yet for "
2907						"%s files, ignoring.",
2908						NInoCompressed(ni) ?
2909						"compressed" : "encrypted");
2910				err = -EOPNOTSUPP;
2911			} else {
2912				truncate_setsize(vi, attr->ia_size);
2913				ntfs_truncate_vfs(vi);
2914			}
2915			if (err || ia_valid == ATTR_SIZE)
2916				goto out;
2917		} else {
2918			/*
2919			 * We skipped the truncate but must still update
2920			 * timestamps.
2921			 */
2922			ia_valid |= ATTR_MTIME | ATTR_CTIME;
2923		}
2924	}
2925	if (ia_valid & ATTR_ATIME)
2926		vi->i_atime = timespec_trunc(attr->ia_atime,
2927				vi->i_sb->s_time_gran);
2928	if (ia_valid & ATTR_MTIME)
2929		vi->i_mtime = timespec_trunc(attr->ia_mtime,
2930				vi->i_sb->s_time_gran);
2931	if (ia_valid & ATTR_CTIME)
2932		vi->i_ctime = timespec_trunc(attr->ia_ctime,
2933				vi->i_sb->s_time_gran);
2934	mark_inode_dirty(vi);
2935out:
2936	return err;
2937}
2938
2939/**
2940 * ntfs_write_inode - write out a dirty inode
2941 * @vi:		inode to write out
2942 * @sync:	if true, write out synchronously
2943 *
2944 * Write out a dirty inode to disk including any extent inodes if present.
2945 *
2946 * If @sync is true, commit the inode to disk and wait for io completion.  This
2947 * is done using write_mft_record().
2948 *
2949 * If @sync is false, just schedule the write to happen but do not wait for i/o
2950 * completion.  In 2.6 kernels, scheduling usually happens just by virtue of
2951 * marking the page (and in this case mft record) dirty but we do not implement
2952 * this yet as write_mft_record() largely ignores the @sync parameter and
2953 * always performs synchronous writes.
2954 *
2955 * Return 0 on success and -errno on error.
2956 */
2957int __ntfs_write_inode(struct inode *vi, int sync)
2958{
2959	sle64 nt;
2960	ntfs_inode *ni = NTFS_I(vi);
2961	ntfs_attr_search_ctx *ctx;
2962	MFT_RECORD *m;
2963	STANDARD_INFORMATION *si;
2964	int err = 0;
2965	bool modified = false;
2966
2967	ntfs_debug("Entering for %sinode 0x%lx.", NInoAttr(ni) ? "attr " : "",
2968			vi->i_ino);
2969	/*
2970	 * Dirty attribute inodes are written via their real inodes so just
2971	 * clean them here.  Access time updates are taken care off when the
2972	 * real inode is written.
2973	 */
2974	if (NInoAttr(ni)) {
2975		NInoClearDirty(ni);
2976		ntfs_debug("Done.");
2977		return 0;
2978	}
2979	/* Map, pin, and lock the mft record belonging to the inode. */
2980	m = map_mft_record(ni);
2981	if (IS_ERR(m)) {
2982		err = PTR_ERR(m);
2983		goto err_out;
2984	}
2985	/* Update the access times in the standard information attribute. */
2986	ctx = ntfs_attr_get_search_ctx(ni, m);
2987	if (unlikely(!ctx)) {
2988		err = -ENOMEM;
2989		goto unm_err_out;
2990	}
2991	err = ntfs_attr_lookup(AT_STANDARD_INFORMATION, NULL, 0,
2992			CASE_SENSITIVE, 0, NULL, 0, ctx);
2993	if (unlikely(err)) {
2994		ntfs_attr_put_search_ctx(ctx);
2995		goto unm_err_out;
2996	}
2997	si = (STANDARD_INFORMATION*)((u8*)ctx->attr +
2998			le16_to_cpu(ctx->attr->data.resident.value_offset));
2999	/* Update the access times if they have changed. */
3000	nt = utc2ntfs(vi->i_mtime);
3001	if (si->last_data_change_time != nt) {
3002		ntfs_debug("Updating mtime for inode 0x%lx: old = 0x%llx, "
3003				"new = 0x%llx", vi->i_ino, (long long)
3004				sle64_to_cpu(si->last_data_change_time),
3005				(long long)sle64_to_cpu(nt));
3006		si->last_data_change_time = nt;
3007		modified = true;
3008	}
3009	nt = utc2ntfs(vi->i_ctime);
3010	if (si->last_mft_change_time != nt) {
3011		ntfs_debug("Updating ctime for inode 0x%lx: old = 0x%llx, "
3012				"new = 0x%llx", vi->i_ino, (long long)
3013				sle64_to_cpu(si->last_mft_change_time),
3014				(long long)sle64_to_cpu(nt));
3015		si->last_mft_change_time = nt;
3016		modified = true;
3017	}
3018	nt = utc2ntfs(vi->i_atime);
3019	if (si->last_access_time != nt) {
3020		ntfs_debug("Updating atime for inode 0x%lx: old = 0x%llx, "
3021				"new = 0x%llx", vi->i_ino,
3022				(long long)sle64_to_cpu(si->last_access_time),
3023				(long long)sle64_to_cpu(nt));
3024		si->last_access_time = nt;
3025		modified = true;
3026	}
3027	/*
3028	 * If we just modified the standard information attribute we need to
3029	 * mark the mft record it is in dirty.  We do this manually so that
3030	 * mark_inode_dirty() is not called which would redirty the inode and
3031	 * hence result in an infinite loop of trying to write the inode.
3032	 * There is no need to mark the base inode nor the base mft record
3033	 * dirty, since we are going to write this mft record below in any case
3034	 * and the base mft record may actually not have been modified so it
3035	 * might not need to be written out.
3036	 * NOTE: It is not a problem when the inode for $MFT itself is being
3037	 * written out as mark_ntfs_record_dirty() will only set I_DIRTY_PAGES
3038	 * on the $MFT inode and hence ntfs_write_inode() will not be
3039	 * re-invoked because of it which in turn is ok since the dirtied mft
3040	 * record will be cleaned and written out to disk below, i.e. before
3041	 * this function returns.
3042	 */
3043	if (modified) {
3044		flush_dcache_mft_record_page(ctx->ntfs_ino);
3045		if (!NInoTestSetDirty(ctx->ntfs_ino))
3046			mark_ntfs_record_dirty(ctx->ntfs_ino->page,
3047					ctx->ntfs_ino->page_ofs);
3048	}
3049	ntfs_attr_put_search_ctx(ctx);
3050	/* Now the access times are updated, write the base mft record. */
3051	if (NInoDirty(ni))
3052		err = write_mft_record(ni, m, sync);
3053	/* Write all attached extent mft records. */
3054	mutex_lock(&ni->extent_lock);
3055	if (ni->nr_extents > 0) {
3056		ntfs_inode **extent_nis = ni->ext.extent_ntfs_inos;
3057		int i;
3058
3059		ntfs_debug("Writing %i extent inodes.", ni->nr_extents);
3060		for (i = 0; i < ni->nr_extents; i++) {
3061			ntfs_inode *tni = extent_nis[i];
3062
3063			if (NInoDirty(tni)) {
3064				MFT_RECORD *tm = map_mft_record(tni);
3065				int ret;
3066
3067				if (IS_ERR(tm)) {
3068					if (!err || err == -ENOMEM)
3069						err = PTR_ERR(tm);
3070					continue;
3071				}
3072				ret = write_mft_record(tni, tm, sync);
3073				unmap_mft_record(tni);
3074				if (unlikely(ret)) {
3075					if (!err || err == -ENOMEM)
3076						err = ret;
3077				}
3078			}
3079		}
3080	}
3081	mutex_unlock(&ni->extent_lock);
3082	unmap_mft_record(ni);
3083	if (unlikely(err))
3084		goto err_out;
3085	ntfs_debug("Done.");
3086	return 0;
3087unm_err_out:
3088	unmap_mft_record(ni);
3089err_out:
3090	if (err == -ENOMEM) {
3091		ntfs_warning(vi->i_sb, "Not enough memory to write inode.  "
3092				"Marking the inode dirty again, so the VFS "
3093				"retries later.");
3094		mark_inode_dirty(vi);
3095	} else {
3096		ntfs_error(vi->i_sb, "Failed (error %i):  Run chkdsk.", -err);
3097		NVolSetErrors(ni->vol);
3098	}
3099	return err;
3100}
3101
3102#endif /* NTFS_RW */