Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * fs/f2fs/file.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/fs.h>
  12#include <linux/f2fs_fs.h>
  13#include <linux/stat.h>
  14#include <linux/buffer_head.h>
  15#include <linux/writeback.h>
  16#include <linux/blkdev.h>
  17#include <linux/falloc.h>
  18#include <linux/types.h>
  19#include <linux/compat.h>
  20#include <linux/uaccess.h>
  21#include <linux/mount.h>
  22#include <linux/pagevec.h>
  23#include <linux/uio.h>
  24#include <linux/uuid.h>
  25#include <linux/file.h>
  26
  27#include "f2fs.h"
  28#include "node.h"
  29#include "segment.h"
  30#include "xattr.h"
  31#include "acl.h"
  32#include "gc.h"
  33#include "trace.h"
  34#include <trace/events/f2fs.h>
  35
  36static int f2fs_filemap_fault(struct vm_fault *vmf)
  37{
  38	struct inode *inode = file_inode(vmf->vma->vm_file);
  39	int err;
  40
  41	down_read(&F2FS_I(inode)->i_mmap_sem);
  42	err = filemap_fault(vmf);
  43	up_read(&F2FS_I(inode)->i_mmap_sem);
  44
  45	return err;
  46}
  47
  48static int f2fs_vm_page_mkwrite(struct vm_fault *vmf)
  49{
  50	struct page *page = vmf->page;
  51	struct inode *inode = file_inode(vmf->vma->vm_file);
  52	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  53	struct dnode_of_data dn;
  54	int err;
  55
  56	if (unlikely(f2fs_cp_error(sbi))) {
  57		err = -EIO;
  58		goto err;
  59	}
  60
  61	sb_start_pagefault(inode->i_sb);
  62
  63	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
  64
  65	/* block allocation */
  66	f2fs_lock_op(sbi);
  67	set_new_dnode(&dn, inode, NULL, NULL, 0);
  68	err = f2fs_reserve_block(&dn, page->index);
  69	if (err) {
  70		f2fs_unlock_op(sbi);
  71		goto out;
  72	}
  73	f2fs_put_dnode(&dn);
  74	f2fs_unlock_op(sbi);
  75
  76	f2fs_balance_fs(sbi, dn.node_changed);
  77
  78	file_update_time(vmf->vma->vm_file);
  79	down_read(&F2FS_I(inode)->i_mmap_sem);
  80	lock_page(page);
  81	if (unlikely(page->mapping != inode->i_mapping ||
  82			page_offset(page) > i_size_read(inode) ||
  83			!PageUptodate(page))) {
  84		unlock_page(page);
  85		err = -EFAULT;
  86		goto out_sem;
  87	}
  88
  89	/*
  90	 * check to see if the page is mapped already (no holes)
  91	 */
  92	if (PageMappedToDisk(page))
  93		goto mapped;
  94
  95	/* page is wholly or partially inside EOF */
  96	if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
  97						i_size_read(inode)) {
  98		unsigned offset;
  99		offset = i_size_read(inode) & ~PAGE_MASK;
 100		zero_user_segment(page, offset, PAGE_SIZE);
 101	}
 102	set_page_dirty(page);
 103	if (!PageUptodate(page))
 104		SetPageUptodate(page);
 105
 106	f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
 107
 108	trace_f2fs_vm_page_mkwrite(page, DATA);
 109mapped:
 110	/* fill the page */
 111	f2fs_wait_on_page_writeback(page, DATA, false);
 112
 113	/* wait for GCed encrypted page writeback */
 114	if (f2fs_encrypted_file(inode))
 115		f2fs_wait_on_block_writeback(sbi, dn.data_blkaddr);
 116
 117out_sem:
 118	up_read(&F2FS_I(inode)->i_mmap_sem);
 119out:
 120	sb_end_pagefault(inode->i_sb);
 121	f2fs_update_time(sbi, REQ_TIME);
 122err:
 123	return block_page_mkwrite_return(err);
 124}
 125
 126static const struct vm_operations_struct f2fs_file_vm_ops = {
 127	.fault		= f2fs_filemap_fault,
 128	.map_pages	= filemap_map_pages,
 129	.page_mkwrite	= f2fs_vm_page_mkwrite,
 130};
 131
 132static int get_parent_ino(struct inode *inode, nid_t *pino)
 133{
 134	struct dentry *dentry;
 135
 136	inode = igrab(inode);
 137	dentry = d_find_any_alias(inode);
 138	iput(inode);
 139	if (!dentry)
 140		return 0;
 141
 142	*pino = parent_ino(dentry);
 143	dput(dentry);
 144	return 1;
 145}
 146
 147static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
 148{
 149	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 150	enum cp_reason_type cp_reason = CP_NO_NEEDED;
 151
 152	if (!S_ISREG(inode->i_mode))
 153		cp_reason = CP_NON_REGULAR;
 154	else if (inode->i_nlink != 1)
 155		cp_reason = CP_HARDLINK;
 156	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
 157		cp_reason = CP_SB_NEED_CP;
 158	else if (file_wrong_pino(inode))
 159		cp_reason = CP_WRONG_PINO;
 160	else if (!space_for_roll_forward(sbi))
 161		cp_reason = CP_NO_SPC_ROLL;
 162	else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
 163		cp_reason = CP_NODE_NEED_CP;
 164	else if (test_opt(sbi, FASTBOOT))
 165		cp_reason = CP_FASTBOOT_MODE;
 166	else if (F2FS_OPTION(sbi).active_logs == 2)
 167		cp_reason = CP_SPEC_LOG_NUM;
 168	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
 169		need_dentry_mark(sbi, inode->i_ino) &&
 170		exist_written_data(sbi, F2FS_I(inode)->i_pino, TRANS_DIR_INO))
 171		cp_reason = CP_RECOVER_DIR;
 172
 173	return cp_reason;
 174}
 175
 176static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
 177{
 178	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
 179	bool ret = false;
 180	/* But we need to avoid that there are some inode updates */
 181	if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
 182		ret = true;
 183	f2fs_put_page(i, 0);
 184	return ret;
 185}
 186
 187static void try_to_fix_pino(struct inode *inode)
 188{
 189	struct f2fs_inode_info *fi = F2FS_I(inode);
 190	nid_t pino;
 191
 192	down_write(&fi->i_sem);
 193	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
 194			get_parent_ino(inode, &pino)) {
 195		f2fs_i_pino_write(inode, pino);
 196		file_got_pino(inode);
 197	}
 198	up_write(&fi->i_sem);
 199}
 200
 201static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
 202						int datasync, bool atomic)
 203{
 204	struct inode *inode = file->f_mapping->host;
 205	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 206	nid_t ino = inode->i_ino;
 207	int ret = 0;
 208	enum cp_reason_type cp_reason = 0;
 209	struct writeback_control wbc = {
 210		.sync_mode = WB_SYNC_ALL,
 211		.nr_to_write = LONG_MAX,
 212		.for_reclaim = 0,
 213	};
 214
 215	if (unlikely(f2fs_readonly(inode->i_sb)))
 216		return 0;
 217
 218	trace_f2fs_sync_file_enter(inode);
 219
 220	/* if fdatasync is triggered, let's do in-place-update */
 221	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
 222		set_inode_flag(inode, FI_NEED_IPU);
 223	ret = file_write_and_wait_range(file, start, end);
 224	clear_inode_flag(inode, FI_NEED_IPU);
 225
 226	if (ret) {
 227		trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
 228		return ret;
 229	}
 230
 231	/* if the inode is dirty, let's recover all the time */
 232	if (!f2fs_skip_inode_update(inode, datasync)) {
 233		f2fs_write_inode(inode, NULL);
 234		goto go_write;
 235	}
 236
 237	/*
 238	 * if there is no written data, don't waste time to write recovery info.
 239	 */
 240	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
 241			!exist_written_data(sbi, ino, APPEND_INO)) {
 242
 243		/* it may call write_inode just prior to fsync */
 244		if (need_inode_page_update(sbi, ino))
 245			goto go_write;
 246
 247		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
 248				exist_written_data(sbi, ino, UPDATE_INO))
 249			goto flush_out;
 250		goto out;
 251	}
 252go_write:
 253	/*
 254	 * Both of fdatasync() and fsync() are able to be recovered from
 255	 * sudden-power-off.
 256	 */
 257	down_read(&F2FS_I(inode)->i_sem);
 258	cp_reason = need_do_checkpoint(inode);
 259	up_read(&F2FS_I(inode)->i_sem);
 260
 261	if (cp_reason) {
 262		/* all the dirty node pages should be flushed for POR */
 263		ret = f2fs_sync_fs(inode->i_sb, 1);
 264
 265		/*
 266		 * We've secured consistency through sync_fs. Following pino
 267		 * will be used only for fsynced inodes after checkpoint.
 268		 */
 269		try_to_fix_pino(inode);
 270		clear_inode_flag(inode, FI_APPEND_WRITE);
 271		clear_inode_flag(inode, FI_UPDATE_WRITE);
 272		goto out;
 273	}
 274sync_nodes:
 275	ret = fsync_node_pages(sbi, inode, &wbc, atomic);
 276	if (ret)
 277		goto out;
 278
 279	/* if cp_error was enabled, we should avoid infinite loop */
 280	if (unlikely(f2fs_cp_error(sbi))) {
 281		ret = -EIO;
 282		goto out;
 283	}
 284
 285	if (need_inode_block_update(sbi, ino)) {
 286		f2fs_mark_inode_dirty_sync(inode, true);
 287		f2fs_write_inode(inode, NULL);
 288		goto sync_nodes;
 289	}
 290
 291	/*
 292	 * If it's atomic_write, it's just fine to keep write ordering. So
 293	 * here we don't need to wait for node write completion, since we use
 294	 * node chain which serializes node blocks. If one of node writes are
 295	 * reordered, we can see simply broken chain, resulting in stopping
 296	 * roll-forward recovery. It means we'll recover all or none node blocks
 297	 * given fsync mark.
 298	 */
 299	if (!atomic) {
 300		ret = wait_on_node_pages_writeback(sbi, ino);
 301		if (ret)
 302			goto out;
 303	}
 304
 305	/* once recovery info is written, don't need to tack this */
 306	remove_ino_entry(sbi, ino, APPEND_INO);
 307	clear_inode_flag(inode, FI_APPEND_WRITE);
 308flush_out:
 309	if (!atomic)
 310		ret = f2fs_issue_flush(sbi, inode->i_ino);
 311	if (!ret) {
 312		remove_ino_entry(sbi, ino, UPDATE_INO);
 313		clear_inode_flag(inode, FI_UPDATE_WRITE);
 314		remove_ino_entry(sbi, ino, FLUSH_INO);
 315	}
 316	f2fs_update_time(sbi, REQ_TIME);
 317out:
 318	trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
 319	f2fs_trace_ios(NULL, 1);
 320	return ret;
 321}
 322
 323int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
 324{
 325	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
 326		return -EIO;
 327	return f2fs_do_sync_file(file, start, end, datasync, false);
 328}
 329
 330static pgoff_t __get_first_dirty_index(struct address_space *mapping,
 331						pgoff_t pgofs, int whence)
 332{
 333	struct page *page;
 334	int nr_pages;
 335
 336	if (whence != SEEK_DATA)
 337		return 0;
 338
 339	/* find first dirty page index */
 340	nr_pages = find_get_pages_tag(mapping, &pgofs, PAGECACHE_TAG_DIRTY,
 341				      1, &page);
 342	if (!nr_pages)
 343		return ULONG_MAX;
 344	pgofs = page->index;
 345	put_page(page);
 346	return pgofs;
 347}
 348
 349static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
 350							int whence)
 351{
 352	switch (whence) {
 353	case SEEK_DATA:
 354		if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
 355			(blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
 356			return true;
 357		break;
 358	case SEEK_HOLE:
 359		if (blkaddr == NULL_ADDR)
 360			return true;
 361		break;
 362	}
 363	return false;
 364}
 365
 366static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
 367{
 368	struct inode *inode = file->f_mapping->host;
 369	loff_t maxbytes = inode->i_sb->s_maxbytes;
 370	struct dnode_of_data dn;
 371	pgoff_t pgofs, end_offset, dirty;
 372	loff_t data_ofs = offset;
 373	loff_t isize;
 374	int err = 0;
 375
 376	inode_lock(inode);
 377
 378	isize = i_size_read(inode);
 379	if (offset >= isize)
 380		goto fail;
 381
 382	/* handle inline data case */
 383	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
 384		if (whence == SEEK_HOLE)
 385			data_ofs = isize;
 386		goto found;
 387	}
 388
 389	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
 390
 391	dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
 392
 393	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
 394		set_new_dnode(&dn, inode, NULL, NULL, 0);
 395		err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
 396		if (err && err != -ENOENT) {
 397			goto fail;
 398		} else if (err == -ENOENT) {
 399			/* direct node does not exists */
 400			if (whence == SEEK_DATA) {
 401				pgofs = get_next_page_offset(&dn, pgofs);
 402				continue;
 403			} else {
 404				goto found;
 405			}
 406		}
 407
 408		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
 409
 410		/* find data/hole in dnode block */
 411		for (; dn.ofs_in_node < end_offset;
 412				dn.ofs_in_node++, pgofs++,
 413				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
 414			block_t blkaddr;
 415			blkaddr = datablock_addr(dn.inode,
 416					dn.node_page, dn.ofs_in_node);
 417
 418			if (__found_offset(blkaddr, dirty, pgofs, whence)) {
 419				f2fs_put_dnode(&dn);
 420				goto found;
 421			}
 422		}
 423		f2fs_put_dnode(&dn);
 424	}
 425
 426	if (whence == SEEK_DATA)
 427		goto fail;
 428found:
 429	if (whence == SEEK_HOLE && data_ofs > isize)
 430		data_ofs = isize;
 431	inode_unlock(inode);
 432	return vfs_setpos(file, data_ofs, maxbytes);
 433fail:
 434	inode_unlock(inode);
 435	return -ENXIO;
 436}
 437
 438static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
 439{
 440	struct inode *inode = file->f_mapping->host;
 441	loff_t maxbytes = inode->i_sb->s_maxbytes;
 442
 443	switch (whence) {
 444	case SEEK_SET:
 445	case SEEK_CUR:
 446	case SEEK_END:
 447		return generic_file_llseek_size(file, offset, whence,
 448						maxbytes, i_size_read(inode));
 449	case SEEK_DATA:
 450	case SEEK_HOLE:
 451		if (offset < 0)
 452			return -ENXIO;
 453		return f2fs_seek_block(file, offset, whence);
 454	}
 455
 456	return -EINVAL;
 457}
 458
 459static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
 460{
 461	struct inode *inode = file_inode(file);
 462	int err;
 463
 464	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
 465		return -EIO;
 466
 467	/* we don't need to use inline_data strictly */
 468	err = f2fs_convert_inline_inode(inode);
 469	if (err)
 470		return err;
 471
 472	file_accessed(file);
 473	vma->vm_ops = &f2fs_file_vm_ops;
 474	return 0;
 475}
 476
 477static int f2fs_file_open(struct inode *inode, struct file *filp)
 478{
 479	int err = fscrypt_file_open(inode, filp);
 480
 481	if (err)
 482		return err;
 483
 484	filp->f_mode |= FMODE_NOWAIT;
 485
 486	return dquot_file_open(inode, filp);
 487}
 488
 489void truncate_data_blocks_range(struct dnode_of_data *dn, int count)
 490{
 491	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 492	struct f2fs_node *raw_node;
 493	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
 494	__le32 *addr;
 495	int base = 0;
 496
 497	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
 498		base = get_extra_isize(dn->inode);
 499
 500	raw_node = F2FS_NODE(dn->node_page);
 501	addr = blkaddr_in_node(raw_node) + base + ofs;
 502
 503	for (; count > 0; count--, addr++, dn->ofs_in_node++) {
 504		block_t blkaddr = le32_to_cpu(*addr);
 505		if (blkaddr == NULL_ADDR)
 506			continue;
 507
 508		dn->data_blkaddr = NULL_ADDR;
 509		set_data_blkaddr(dn);
 510		invalidate_blocks(sbi, blkaddr);
 511		if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
 512			clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
 513		nr_free++;
 514	}
 515
 516	if (nr_free) {
 517		pgoff_t fofs;
 518		/*
 519		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
 520		 * we will invalidate all blkaddr in the whole range.
 521		 */
 522		fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
 523							dn->inode) + ofs;
 524		f2fs_update_extent_cache_range(dn, fofs, 0, len);
 525		dec_valid_block_count(sbi, dn->inode, nr_free);
 526	}
 527	dn->ofs_in_node = ofs;
 528
 529	f2fs_update_time(sbi, REQ_TIME);
 530	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
 531					 dn->ofs_in_node, nr_free);
 532}
 533
 534void truncate_data_blocks(struct dnode_of_data *dn)
 535{
 536	truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
 537}
 538
 539static int truncate_partial_data_page(struct inode *inode, u64 from,
 540								bool cache_only)
 541{
 542	unsigned offset = from & (PAGE_SIZE - 1);
 543	pgoff_t index = from >> PAGE_SHIFT;
 544	struct address_space *mapping = inode->i_mapping;
 545	struct page *page;
 546
 547	if (!offset && !cache_only)
 548		return 0;
 549
 550	if (cache_only) {
 551		page = find_lock_page(mapping, index);
 552		if (page && PageUptodate(page))
 553			goto truncate_out;
 554		f2fs_put_page(page, 1);
 555		return 0;
 556	}
 557
 558	page = get_lock_data_page(inode, index, true);
 559	if (IS_ERR(page))
 560		return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
 561truncate_out:
 562	f2fs_wait_on_page_writeback(page, DATA, true);
 563	zero_user(page, offset, PAGE_SIZE - offset);
 564
 565	/* An encrypted inode should have a key and truncate the last page. */
 566	f2fs_bug_on(F2FS_I_SB(inode), cache_only && f2fs_encrypted_inode(inode));
 567	if (!cache_only)
 568		set_page_dirty(page);
 569	f2fs_put_page(page, 1);
 570	return 0;
 571}
 572
 573int truncate_blocks(struct inode *inode, u64 from, bool lock)
 574{
 575	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 576	struct dnode_of_data dn;
 577	pgoff_t free_from;
 578	int count = 0, err = 0;
 579	struct page *ipage;
 580	bool truncate_page = false;
 581
 582	trace_f2fs_truncate_blocks_enter(inode, from);
 583
 584	free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
 585
 586	if (free_from >= sbi->max_file_blocks)
 587		goto free_partial;
 588
 589	if (lock)
 590		f2fs_lock_op(sbi);
 591
 592	ipage = get_node_page(sbi, inode->i_ino);
 593	if (IS_ERR(ipage)) {
 594		err = PTR_ERR(ipage);
 595		goto out;
 596	}
 597
 598	if (f2fs_has_inline_data(inode)) {
 599		truncate_inline_inode(inode, ipage, from);
 600		f2fs_put_page(ipage, 1);
 601		truncate_page = true;
 602		goto out;
 603	}
 604
 605	set_new_dnode(&dn, inode, ipage, NULL, 0);
 606	err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
 607	if (err) {
 608		if (err == -ENOENT)
 609			goto free_next;
 610		goto out;
 611	}
 612
 613	count = ADDRS_PER_PAGE(dn.node_page, inode);
 614
 615	count -= dn.ofs_in_node;
 616	f2fs_bug_on(sbi, count < 0);
 617
 618	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
 619		truncate_data_blocks_range(&dn, count);
 620		free_from += count;
 621	}
 622
 623	f2fs_put_dnode(&dn);
 624free_next:
 625	err = truncate_inode_blocks(inode, free_from);
 626out:
 627	if (lock)
 628		f2fs_unlock_op(sbi);
 629free_partial:
 630	/* lastly zero out the first data page */
 631	if (!err)
 632		err = truncate_partial_data_page(inode, from, truncate_page);
 633
 634	trace_f2fs_truncate_blocks_exit(inode, err);
 635	return err;
 636}
 637
 638int f2fs_truncate(struct inode *inode)
 639{
 640	int err;
 641
 642	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
 643		return -EIO;
 644
 645	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
 646				S_ISLNK(inode->i_mode)))
 647		return 0;
 648
 649	trace_f2fs_truncate(inode);
 650
 651#ifdef CONFIG_F2FS_FAULT_INJECTION
 652	if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
 653		f2fs_show_injection_info(FAULT_TRUNCATE);
 654		return -EIO;
 655	}
 656#endif
 657	/* we should check inline_data size */
 658	if (!f2fs_may_inline_data(inode)) {
 659		err = f2fs_convert_inline_inode(inode);
 660		if (err)
 661			return err;
 662	}
 663
 664	err = truncate_blocks(inode, i_size_read(inode), true);
 665	if (err)
 666		return err;
 667
 668	inode->i_mtime = inode->i_ctime = current_time(inode);
 669	f2fs_mark_inode_dirty_sync(inode, false);
 670	return 0;
 671}
 672
 673int f2fs_getattr(const struct path *path, struct kstat *stat,
 674		 u32 request_mask, unsigned int query_flags)
 675{
 676	struct inode *inode = d_inode(path->dentry);
 677	struct f2fs_inode_info *fi = F2FS_I(inode);
 678	struct f2fs_inode *ri;
 679	unsigned int flags;
 680
 681	if (f2fs_has_extra_attr(inode) &&
 682			f2fs_sb_has_inode_crtime(inode->i_sb) &&
 683			F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
 684		stat->result_mask |= STATX_BTIME;
 685		stat->btime.tv_sec = fi->i_crtime.tv_sec;
 686		stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
 687	}
 688
 689	flags = fi->i_flags & (FS_FL_USER_VISIBLE | FS_PROJINHERIT_FL);
 690	if (flags & FS_APPEND_FL)
 691		stat->attributes |= STATX_ATTR_APPEND;
 692	if (flags & FS_COMPR_FL)
 693		stat->attributes |= STATX_ATTR_COMPRESSED;
 694	if (f2fs_encrypted_inode(inode))
 695		stat->attributes |= STATX_ATTR_ENCRYPTED;
 696	if (flags & FS_IMMUTABLE_FL)
 697		stat->attributes |= STATX_ATTR_IMMUTABLE;
 698	if (flags & FS_NODUMP_FL)
 699		stat->attributes |= STATX_ATTR_NODUMP;
 700
 701	stat->attributes_mask |= (STATX_ATTR_APPEND |
 702				  STATX_ATTR_COMPRESSED |
 703				  STATX_ATTR_ENCRYPTED |
 704				  STATX_ATTR_IMMUTABLE |
 705				  STATX_ATTR_NODUMP);
 706
 707	generic_fillattr(inode, stat);
 708
 709	/* we need to show initial sectors used for inline_data/dentries */
 710	if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
 711					f2fs_has_inline_dentry(inode))
 712		stat->blocks += (stat->size + 511) >> 9;
 713
 714	return 0;
 715}
 716
 717#ifdef CONFIG_F2FS_FS_POSIX_ACL
 718static void __setattr_copy(struct inode *inode, const struct iattr *attr)
 719{
 720	unsigned int ia_valid = attr->ia_valid;
 721
 722	if (ia_valid & ATTR_UID)
 723		inode->i_uid = attr->ia_uid;
 724	if (ia_valid & ATTR_GID)
 725		inode->i_gid = attr->ia_gid;
 726	if (ia_valid & ATTR_ATIME)
 727		inode->i_atime = timespec_trunc(attr->ia_atime,
 728						inode->i_sb->s_time_gran);
 729	if (ia_valid & ATTR_MTIME)
 730		inode->i_mtime = timespec_trunc(attr->ia_mtime,
 731						inode->i_sb->s_time_gran);
 732	if (ia_valid & ATTR_CTIME)
 733		inode->i_ctime = timespec_trunc(attr->ia_ctime,
 734						inode->i_sb->s_time_gran);
 735	if (ia_valid & ATTR_MODE) {
 736		umode_t mode = attr->ia_mode;
 737
 738		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
 739			mode &= ~S_ISGID;
 740		set_acl_inode(inode, mode);
 741	}
 742}
 743#else
 744#define __setattr_copy setattr_copy
 745#endif
 746
 747int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
 748{
 749	struct inode *inode = d_inode(dentry);
 750	int err;
 751	bool size_changed = false;
 752
 753	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
 754		return -EIO;
 755
 756	err = setattr_prepare(dentry, attr);
 757	if (err)
 758		return err;
 759
 760	err = fscrypt_prepare_setattr(dentry, attr);
 761	if (err)
 762		return err;
 763
 764	if (is_quota_modification(inode, attr)) {
 765		err = dquot_initialize(inode);
 766		if (err)
 767			return err;
 768	}
 769	if ((attr->ia_valid & ATTR_UID &&
 770		!uid_eq(attr->ia_uid, inode->i_uid)) ||
 771		(attr->ia_valid & ATTR_GID &&
 772		!gid_eq(attr->ia_gid, inode->i_gid))) {
 773		err = dquot_transfer(inode, attr);
 774		if (err)
 775			return err;
 776	}
 777
 778	if (attr->ia_valid & ATTR_SIZE) {
 779		if (attr->ia_size <= i_size_read(inode)) {
 780			down_write(&F2FS_I(inode)->i_mmap_sem);
 781			truncate_setsize(inode, attr->ia_size);
 782			err = f2fs_truncate(inode);
 783			up_write(&F2FS_I(inode)->i_mmap_sem);
 784			if (err)
 785				return err;
 786		} else {
 787			/*
 788			 * do not trim all blocks after i_size if target size is
 789			 * larger than i_size.
 790			 */
 791			down_write(&F2FS_I(inode)->i_mmap_sem);
 792			truncate_setsize(inode, attr->ia_size);
 793			up_write(&F2FS_I(inode)->i_mmap_sem);
 794
 795			/* should convert inline inode here */
 796			if (!f2fs_may_inline_data(inode)) {
 797				err = f2fs_convert_inline_inode(inode);
 798				if (err)
 799					return err;
 800			}
 801			inode->i_mtime = inode->i_ctime = current_time(inode);
 802		}
 803
 804		down_write(&F2FS_I(inode)->i_sem);
 805		F2FS_I(inode)->last_disk_size = i_size_read(inode);
 806		up_write(&F2FS_I(inode)->i_sem);
 807
 808		size_changed = true;
 809	}
 810
 811	__setattr_copy(inode, attr);
 812
 813	if (attr->ia_valid & ATTR_MODE) {
 814		err = posix_acl_chmod(inode, get_inode_mode(inode));
 815		if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
 816			inode->i_mode = F2FS_I(inode)->i_acl_mode;
 817			clear_inode_flag(inode, FI_ACL_MODE);
 818		}
 819	}
 820
 821	/* file size may changed here */
 822	f2fs_mark_inode_dirty_sync(inode, size_changed);
 823
 824	/* inode change will produce dirty node pages flushed by checkpoint */
 825	f2fs_balance_fs(F2FS_I_SB(inode), true);
 826
 827	return err;
 828}
 829
 830const struct inode_operations f2fs_file_inode_operations = {
 831	.getattr	= f2fs_getattr,
 832	.setattr	= f2fs_setattr,
 833	.get_acl	= f2fs_get_acl,
 834	.set_acl	= f2fs_set_acl,
 835#ifdef CONFIG_F2FS_FS_XATTR
 836	.listxattr	= f2fs_listxattr,
 837#endif
 838	.fiemap		= f2fs_fiemap,
 839};
 840
 841static int fill_zero(struct inode *inode, pgoff_t index,
 842					loff_t start, loff_t len)
 843{
 844	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 845	struct page *page;
 846
 847	if (!len)
 848		return 0;
 849
 850	f2fs_balance_fs(sbi, true);
 851
 852	f2fs_lock_op(sbi);
 853	page = get_new_data_page(inode, NULL, index, false);
 854	f2fs_unlock_op(sbi);
 855
 856	if (IS_ERR(page))
 857		return PTR_ERR(page);
 858
 859	f2fs_wait_on_page_writeback(page, DATA, true);
 860	zero_user(page, start, len);
 861	set_page_dirty(page);
 862	f2fs_put_page(page, 1);
 863	return 0;
 864}
 865
 866int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
 867{
 868	int err;
 869
 870	while (pg_start < pg_end) {
 871		struct dnode_of_data dn;
 872		pgoff_t end_offset, count;
 873
 874		set_new_dnode(&dn, inode, NULL, NULL, 0);
 875		err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
 876		if (err) {
 877			if (err == -ENOENT) {
 878				pg_start = get_next_page_offset(&dn, pg_start);
 879				continue;
 880			}
 881			return err;
 882		}
 883
 884		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
 885		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
 886
 887		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
 888
 889		truncate_data_blocks_range(&dn, count);
 890		f2fs_put_dnode(&dn);
 891
 892		pg_start += count;
 893	}
 894	return 0;
 895}
 896
 897static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
 898{
 899	pgoff_t pg_start, pg_end;
 900	loff_t off_start, off_end;
 901	int ret;
 902
 903	ret = f2fs_convert_inline_inode(inode);
 904	if (ret)
 905		return ret;
 906
 907	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
 908	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
 909
 910	off_start = offset & (PAGE_SIZE - 1);
 911	off_end = (offset + len) & (PAGE_SIZE - 1);
 912
 913	if (pg_start == pg_end) {
 914		ret = fill_zero(inode, pg_start, off_start,
 915						off_end - off_start);
 916		if (ret)
 917			return ret;
 918	} else {
 919		if (off_start) {
 920			ret = fill_zero(inode, pg_start++, off_start,
 921						PAGE_SIZE - off_start);
 922			if (ret)
 923				return ret;
 924		}
 925		if (off_end) {
 926			ret = fill_zero(inode, pg_end, 0, off_end);
 927			if (ret)
 928				return ret;
 929		}
 930
 931		if (pg_start < pg_end) {
 932			struct address_space *mapping = inode->i_mapping;
 933			loff_t blk_start, blk_end;
 934			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 935
 936			f2fs_balance_fs(sbi, true);
 937
 938			blk_start = (loff_t)pg_start << PAGE_SHIFT;
 939			blk_end = (loff_t)pg_end << PAGE_SHIFT;
 940			down_write(&F2FS_I(inode)->i_mmap_sem);
 941			truncate_inode_pages_range(mapping, blk_start,
 942					blk_end - 1);
 943
 944			f2fs_lock_op(sbi);
 945			ret = truncate_hole(inode, pg_start, pg_end);
 946			f2fs_unlock_op(sbi);
 947			up_write(&F2FS_I(inode)->i_mmap_sem);
 948		}
 949	}
 950
 951	return ret;
 952}
 953
 954static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
 955				int *do_replace, pgoff_t off, pgoff_t len)
 956{
 957	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 958	struct dnode_of_data dn;
 959	int ret, done, i;
 960
 961next_dnode:
 962	set_new_dnode(&dn, inode, NULL, NULL, 0);
 963	ret = get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
 964	if (ret && ret != -ENOENT) {
 965		return ret;
 966	} else if (ret == -ENOENT) {
 967		if (dn.max_level == 0)
 968			return -ENOENT;
 969		done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
 970		blkaddr += done;
 971		do_replace += done;
 972		goto next;
 973	}
 974
 975	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
 976							dn.ofs_in_node, len);
 977	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
 978		*blkaddr = datablock_addr(dn.inode,
 979					dn.node_page, dn.ofs_in_node);
 980		if (!is_checkpointed_data(sbi, *blkaddr)) {
 981
 982			if (test_opt(sbi, LFS)) {
 983				f2fs_put_dnode(&dn);
 984				return -ENOTSUPP;
 985			}
 986
 987			/* do not invalidate this block address */
 988			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
 989			*do_replace = 1;
 990		}
 991	}
 992	f2fs_put_dnode(&dn);
 993next:
 994	len -= done;
 995	off += done;
 996	if (len)
 997		goto next_dnode;
 998	return 0;
 999}
1000
1001static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1002				int *do_replace, pgoff_t off, int len)
1003{
1004	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1005	struct dnode_of_data dn;
1006	int ret, i;
1007
1008	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1009		if (*do_replace == 0)
1010			continue;
1011
1012		set_new_dnode(&dn, inode, NULL, NULL, 0);
1013		ret = get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1014		if (ret) {
1015			dec_valid_block_count(sbi, inode, 1);
1016			invalidate_blocks(sbi, *blkaddr);
1017		} else {
1018			f2fs_update_data_blkaddr(&dn, *blkaddr);
1019		}
1020		f2fs_put_dnode(&dn);
1021	}
1022	return 0;
1023}
1024
1025static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1026			block_t *blkaddr, int *do_replace,
1027			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1028{
1029	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1030	pgoff_t i = 0;
1031	int ret;
1032
1033	while (i < len) {
1034		if (blkaddr[i] == NULL_ADDR && !full) {
1035			i++;
1036			continue;
1037		}
1038
1039		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1040			struct dnode_of_data dn;
1041			struct node_info ni;
1042			size_t new_size;
1043			pgoff_t ilen;
1044
1045			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1046			ret = get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1047			if (ret)
1048				return ret;
1049
1050			get_node_info(sbi, dn.nid, &ni);
1051			ilen = min((pgoff_t)
1052				ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1053						dn.ofs_in_node, len - i);
1054			do {
1055				dn.data_blkaddr = datablock_addr(dn.inode,
1056						dn.node_page, dn.ofs_in_node);
1057				truncate_data_blocks_range(&dn, 1);
1058
1059				if (do_replace[i]) {
1060					f2fs_i_blocks_write(src_inode,
1061							1, false, false);
1062					f2fs_i_blocks_write(dst_inode,
1063							1, true, false);
1064					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1065					blkaddr[i], ni.version, true, false);
1066
1067					do_replace[i] = 0;
1068				}
1069				dn.ofs_in_node++;
1070				i++;
1071				new_size = (dst + i) << PAGE_SHIFT;
1072				if (dst_inode->i_size < new_size)
1073					f2fs_i_size_write(dst_inode, new_size);
1074			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1075
1076			f2fs_put_dnode(&dn);
1077		} else {
1078			struct page *psrc, *pdst;
1079
1080			psrc = get_lock_data_page(src_inode, src + i, true);
1081			if (IS_ERR(psrc))
1082				return PTR_ERR(psrc);
1083			pdst = get_new_data_page(dst_inode, NULL, dst + i,
1084								true);
1085			if (IS_ERR(pdst)) {
1086				f2fs_put_page(psrc, 1);
1087				return PTR_ERR(pdst);
1088			}
1089			f2fs_copy_page(psrc, pdst);
1090			set_page_dirty(pdst);
1091			f2fs_put_page(pdst, 1);
1092			f2fs_put_page(psrc, 1);
1093
1094			ret = truncate_hole(src_inode, src + i, src + i + 1);
1095			if (ret)
1096				return ret;
1097			i++;
1098		}
1099	}
1100	return 0;
1101}
1102
1103static int __exchange_data_block(struct inode *src_inode,
1104			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1105			pgoff_t len, bool full)
1106{
1107	block_t *src_blkaddr;
1108	int *do_replace;
1109	pgoff_t olen;
1110	int ret;
1111
1112	while (len) {
1113		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
1114
1115		src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1116					sizeof(block_t) * olen, GFP_KERNEL);
1117		if (!src_blkaddr)
1118			return -ENOMEM;
1119
1120		do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1121					sizeof(int) * olen, GFP_KERNEL);
1122		if (!do_replace) {
1123			kvfree(src_blkaddr);
1124			return -ENOMEM;
1125		}
1126
1127		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1128					do_replace, src, olen);
1129		if (ret)
1130			goto roll_back;
1131
1132		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1133					do_replace, src, dst, olen, full);
1134		if (ret)
1135			goto roll_back;
1136
1137		src += olen;
1138		dst += olen;
1139		len -= olen;
1140
1141		kvfree(src_blkaddr);
1142		kvfree(do_replace);
1143	}
1144	return 0;
1145
1146roll_back:
1147	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, len);
1148	kvfree(src_blkaddr);
1149	kvfree(do_replace);
1150	return ret;
1151}
1152
1153static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
1154{
1155	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1156	pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1157	int ret;
1158
1159	f2fs_balance_fs(sbi, true);
1160	f2fs_lock_op(sbi);
1161
1162	f2fs_drop_extent_tree(inode);
1163
1164	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1165	f2fs_unlock_op(sbi);
1166	return ret;
1167}
1168
1169static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1170{
1171	pgoff_t pg_start, pg_end;
1172	loff_t new_size;
1173	int ret;
1174
1175	if (offset + len >= i_size_read(inode))
1176		return -EINVAL;
1177
1178	/* collapse range should be aligned to block size of f2fs. */
1179	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1180		return -EINVAL;
1181
1182	ret = f2fs_convert_inline_inode(inode);
1183	if (ret)
1184		return ret;
1185
1186	pg_start = offset >> PAGE_SHIFT;
1187	pg_end = (offset + len) >> PAGE_SHIFT;
1188
1189	/* avoid gc operation during block exchange */
1190	down_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
1191
1192	down_write(&F2FS_I(inode)->i_mmap_sem);
1193	/* write out all dirty pages from offset */
1194	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1195	if (ret)
1196		goto out_unlock;
1197
1198	truncate_pagecache(inode, offset);
1199
1200	ret = f2fs_do_collapse(inode, pg_start, pg_end);
1201	if (ret)
1202		goto out_unlock;
1203
1204	/* write out all moved pages, if possible */
1205	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1206	truncate_pagecache(inode, offset);
1207
1208	new_size = i_size_read(inode) - len;
1209	truncate_pagecache(inode, new_size);
1210
1211	ret = truncate_blocks(inode, new_size, true);
1212	if (!ret)
1213		f2fs_i_size_write(inode, new_size);
1214out_unlock:
1215	up_write(&F2FS_I(inode)->i_mmap_sem);
1216	up_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
1217	return ret;
1218}
1219
1220static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1221								pgoff_t end)
1222{
1223	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1224	pgoff_t index = start;
1225	unsigned int ofs_in_node = dn->ofs_in_node;
1226	blkcnt_t count = 0;
1227	int ret;
1228
1229	for (; index < end; index++, dn->ofs_in_node++) {
1230		if (datablock_addr(dn->inode, dn->node_page,
1231					dn->ofs_in_node) == NULL_ADDR)
1232			count++;
1233	}
1234
1235	dn->ofs_in_node = ofs_in_node;
1236	ret = reserve_new_blocks(dn, count);
1237	if (ret)
1238		return ret;
1239
1240	dn->ofs_in_node = ofs_in_node;
1241	for (index = start; index < end; index++, dn->ofs_in_node++) {
1242		dn->data_blkaddr = datablock_addr(dn->inode,
1243					dn->node_page, dn->ofs_in_node);
1244		/*
1245		 * reserve_new_blocks will not guarantee entire block
1246		 * allocation.
1247		 */
1248		if (dn->data_blkaddr == NULL_ADDR) {
1249			ret = -ENOSPC;
1250			break;
1251		}
1252		if (dn->data_blkaddr != NEW_ADDR) {
1253			invalidate_blocks(sbi, dn->data_blkaddr);
1254			dn->data_blkaddr = NEW_ADDR;
1255			set_data_blkaddr(dn);
1256		}
1257	}
1258
1259	f2fs_update_extent_cache_range(dn, start, 0, index - start);
1260
1261	return ret;
1262}
1263
1264static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1265								int mode)
1266{
1267	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1268	struct address_space *mapping = inode->i_mapping;
1269	pgoff_t index, pg_start, pg_end;
1270	loff_t new_size = i_size_read(inode);
1271	loff_t off_start, off_end;
1272	int ret = 0;
1273
1274	ret = inode_newsize_ok(inode, (len + offset));
1275	if (ret)
1276		return ret;
1277
1278	ret = f2fs_convert_inline_inode(inode);
1279	if (ret)
1280		return ret;
1281
1282	down_write(&F2FS_I(inode)->i_mmap_sem);
1283	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1284	if (ret)
1285		goto out_sem;
1286
1287	truncate_pagecache_range(inode, offset, offset + len - 1);
1288
1289	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1290	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1291
1292	off_start = offset & (PAGE_SIZE - 1);
1293	off_end = (offset + len) & (PAGE_SIZE - 1);
1294
1295	if (pg_start == pg_end) {
1296		ret = fill_zero(inode, pg_start, off_start,
1297						off_end - off_start);
1298		if (ret)
1299			goto out_sem;
1300
1301		new_size = max_t(loff_t, new_size, offset + len);
1302	} else {
1303		if (off_start) {
1304			ret = fill_zero(inode, pg_start++, off_start,
1305						PAGE_SIZE - off_start);
1306			if (ret)
1307				goto out_sem;
1308
1309			new_size = max_t(loff_t, new_size,
1310					(loff_t)pg_start << PAGE_SHIFT);
1311		}
1312
1313		for (index = pg_start; index < pg_end;) {
1314			struct dnode_of_data dn;
1315			unsigned int end_offset;
1316			pgoff_t end;
1317
1318			f2fs_lock_op(sbi);
1319
1320			set_new_dnode(&dn, inode, NULL, NULL, 0);
1321			ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
1322			if (ret) {
1323				f2fs_unlock_op(sbi);
1324				goto out;
1325			}
1326
1327			end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1328			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1329
1330			ret = f2fs_do_zero_range(&dn, index, end);
1331			f2fs_put_dnode(&dn);
1332			f2fs_unlock_op(sbi);
1333
1334			f2fs_balance_fs(sbi, dn.node_changed);
1335
1336			if (ret)
1337				goto out;
1338
1339			index = end;
1340			new_size = max_t(loff_t, new_size,
1341					(loff_t)index << PAGE_SHIFT);
1342		}
1343
1344		if (off_end) {
1345			ret = fill_zero(inode, pg_end, 0, off_end);
1346			if (ret)
1347				goto out;
1348
1349			new_size = max_t(loff_t, new_size, offset + len);
1350		}
1351	}
1352
1353out:
1354	if (new_size > i_size_read(inode)) {
1355		if (mode & FALLOC_FL_KEEP_SIZE)
1356			file_set_keep_isize(inode);
1357		else
1358			f2fs_i_size_write(inode, new_size);
1359	}
1360out_sem:
1361	up_write(&F2FS_I(inode)->i_mmap_sem);
1362
1363	return ret;
1364}
1365
1366static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1367{
1368	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1369	pgoff_t nr, pg_start, pg_end, delta, idx;
1370	loff_t new_size;
1371	int ret = 0;
1372
1373	new_size = i_size_read(inode) + len;
1374	ret = inode_newsize_ok(inode, new_size);
1375	if (ret)
1376		return ret;
1377
1378	if (offset >= i_size_read(inode))
1379		return -EINVAL;
1380
1381	/* insert range should be aligned to block size of f2fs. */
1382	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1383		return -EINVAL;
1384
1385	ret = f2fs_convert_inline_inode(inode);
1386	if (ret)
1387		return ret;
1388
1389	f2fs_balance_fs(sbi, true);
1390
1391	/* avoid gc operation during block exchange */
1392	down_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
1393
1394	down_write(&F2FS_I(inode)->i_mmap_sem);
1395	ret = truncate_blocks(inode, i_size_read(inode), true);
1396	if (ret)
1397		goto out;
1398
1399	/* write out all dirty pages from offset */
1400	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1401	if (ret)
1402		goto out;
1403
1404	truncate_pagecache(inode, offset);
1405
1406	pg_start = offset >> PAGE_SHIFT;
1407	pg_end = (offset + len) >> PAGE_SHIFT;
1408	delta = pg_end - pg_start;
1409	idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1410
1411	while (!ret && idx > pg_start) {
1412		nr = idx - pg_start;
1413		if (nr > delta)
1414			nr = delta;
1415		idx -= nr;
1416
1417		f2fs_lock_op(sbi);
1418		f2fs_drop_extent_tree(inode);
1419
1420		ret = __exchange_data_block(inode, inode, idx,
1421					idx + delta, nr, false);
1422		f2fs_unlock_op(sbi);
1423	}
1424
1425	/* write out all moved pages, if possible */
1426	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1427	truncate_pagecache(inode, offset);
1428
1429	if (!ret)
1430		f2fs_i_size_write(inode, new_size);
1431out:
1432	up_write(&F2FS_I(inode)->i_mmap_sem);
1433	up_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
1434	return ret;
1435}
1436
1437static int expand_inode_data(struct inode *inode, loff_t offset,
1438					loff_t len, int mode)
1439{
1440	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1441	struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1442			.m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE };
1443	pgoff_t pg_end;
1444	loff_t new_size = i_size_read(inode);
1445	loff_t off_end;
1446	int err;
1447
1448	err = inode_newsize_ok(inode, (len + offset));
1449	if (err)
1450		return err;
1451
1452	err = f2fs_convert_inline_inode(inode);
1453	if (err)
1454		return err;
1455
1456	f2fs_balance_fs(sbi, true);
1457
1458	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1459	off_end = (offset + len) & (PAGE_SIZE - 1);
1460
1461	map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
1462	map.m_len = pg_end - map.m_lblk;
1463	if (off_end)
1464		map.m_len++;
1465
1466	err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1467	if (err) {
1468		pgoff_t last_off;
1469
1470		if (!map.m_len)
1471			return err;
1472
1473		last_off = map.m_lblk + map.m_len - 1;
1474
1475		/* update new size to the failed position */
1476		new_size = (last_off == pg_end) ? offset + len:
1477					(loff_t)(last_off + 1) << PAGE_SHIFT;
1478	} else {
1479		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1480	}
1481
1482	if (new_size > i_size_read(inode)) {
1483		if (mode & FALLOC_FL_KEEP_SIZE)
1484			file_set_keep_isize(inode);
1485		else
1486			f2fs_i_size_write(inode, new_size);
1487	}
1488
1489	return err;
1490}
1491
1492static long f2fs_fallocate(struct file *file, int mode,
1493				loff_t offset, loff_t len)
1494{
1495	struct inode *inode = file_inode(file);
1496	long ret = 0;
1497
1498	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1499		return -EIO;
1500
1501	/* f2fs only support ->fallocate for regular file */
1502	if (!S_ISREG(inode->i_mode))
1503		return -EINVAL;
1504
1505	if (f2fs_encrypted_inode(inode) &&
1506		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1507		return -EOPNOTSUPP;
1508
1509	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1510			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1511			FALLOC_FL_INSERT_RANGE))
1512		return -EOPNOTSUPP;
1513
1514	inode_lock(inode);
1515
1516	if (mode & FALLOC_FL_PUNCH_HOLE) {
1517		if (offset >= inode->i_size)
1518			goto out;
1519
1520		ret = punch_hole(inode, offset, len);
1521	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1522		ret = f2fs_collapse_range(inode, offset, len);
1523	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1524		ret = f2fs_zero_range(inode, offset, len, mode);
1525	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1526		ret = f2fs_insert_range(inode, offset, len);
1527	} else {
1528		ret = expand_inode_data(inode, offset, len, mode);
1529	}
1530
1531	if (!ret) {
1532		inode->i_mtime = inode->i_ctime = current_time(inode);
1533		f2fs_mark_inode_dirty_sync(inode, false);
1534		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1535	}
1536
1537out:
1538	inode_unlock(inode);
1539
1540	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1541	return ret;
1542}
1543
1544static int f2fs_release_file(struct inode *inode, struct file *filp)
1545{
1546	/*
1547	 * f2fs_relase_file is called at every close calls. So we should
1548	 * not drop any inmemory pages by close called by other process.
1549	 */
1550	if (!(filp->f_mode & FMODE_WRITE) ||
1551			atomic_read(&inode->i_writecount) != 1)
1552		return 0;
1553
1554	/* some remained atomic pages should discarded */
1555	if (f2fs_is_atomic_file(inode))
1556		drop_inmem_pages(inode);
1557	if (f2fs_is_volatile_file(inode)) {
1558		clear_inode_flag(inode, FI_VOLATILE_FILE);
1559		stat_dec_volatile_write(inode);
1560		set_inode_flag(inode, FI_DROP_CACHE);
1561		filemap_fdatawrite(inode->i_mapping);
1562		clear_inode_flag(inode, FI_DROP_CACHE);
1563	}
1564	return 0;
1565}
1566
1567static int f2fs_file_flush(struct file *file, fl_owner_t id)
1568{
1569	struct inode *inode = file_inode(file);
1570
1571	/*
1572	 * If the process doing a transaction is crashed, we should do
1573	 * roll-back. Otherwise, other reader/write can see corrupted database
1574	 * until all the writers close its file. Since this should be done
1575	 * before dropping file lock, it needs to do in ->flush.
1576	 */
1577	if (f2fs_is_atomic_file(inode) &&
1578			F2FS_I(inode)->inmem_task == current)
1579		drop_inmem_pages(inode);
1580	return 0;
1581}
1582
1583static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1584{
1585	struct inode *inode = file_inode(filp);
1586	struct f2fs_inode_info *fi = F2FS_I(inode);
1587	unsigned int flags = fi->i_flags &
1588			(FS_FL_USER_VISIBLE | FS_PROJINHERIT_FL);
1589	return put_user(flags, (int __user *)arg);
1590}
1591
1592static int __f2fs_ioc_setflags(struct inode *inode, unsigned int flags)
1593{
1594	struct f2fs_inode_info *fi = F2FS_I(inode);
1595	unsigned int oldflags;
1596
1597	/* Is it quota file? Do not allow user to mess with it */
1598	if (IS_NOQUOTA(inode))
1599		return -EPERM;
1600
1601	flags = f2fs_mask_flags(inode->i_mode, flags);
1602
1603	oldflags = fi->i_flags;
1604
1605	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL))
1606		if (!capable(CAP_LINUX_IMMUTABLE))
1607			return -EPERM;
1608
1609	flags = flags & (FS_FL_USER_MODIFIABLE | FS_PROJINHERIT_FL);
1610	flags |= oldflags & ~(FS_FL_USER_MODIFIABLE | FS_PROJINHERIT_FL);
1611	fi->i_flags = flags;
1612
1613	if (fi->i_flags & FS_PROJINHERIT_FL)
1614		set_inode_flag(inode, FI_PROJ_INHERIT);
1615	else
1616		clear_inode_flag(inode, FI_PROJ_INHERIT);
1617
1618	inode->i_ctime = current_time(inode);
1619	f2fs_set_inode_flags(inode);
1620	f2fs_mark_inode_dirty_sync(inode, false);
1621	return 0;
1622}
1623
1624static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1625{
1626	struct inode *inode = file_inode(filp);
1627	unsigned int flags;
1628	int ret;
1629
1630	if (!inode_owner_or_capable(inode))
1631		return -EACCES;
1632
1633	if (get_user(flags, (int __user *)arg))
1634		return -EFAULT;
1635
1636	ret = mnt_want_write_file(filp);
1637	if (ret)
1638		return ret;
1639
1640	inode_lock(inode);
1641
1642	ret = __f2fs_ioc_setflags(inode, flags);
1643
1644	inode_unlock(inode);
1645	mnt_drop_write_file(filp);
1646	return ret;
1647}
1648
1649static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1650{
1651	struct inode *inode = file_inode(filp);
1652
1653	return put_user(inode->i_generation, (int __user *)arg);
1654}
1655
1656static int f2fs_ioc_start_atomic_write(struct file *filp)
1657{
1658	struct inode *inode = file_inode(filp);
1659	int ret;
1660
1661	if (!inode_owner_or_capable(inode))
1662		return -EACCES;
1663
1664	if (!S_ISREG(inode->i_mode))
1665		return -EINVAL;
1666
1667	ret = mnt_want_write_file(filp);
1668	if (ret)
1669		return ret;
1670
1671	inode_lock(inode);
1672
1673	if (f2fs_is_atomic_file(inode))
1674		goto out;
1675
1676	ret = f2fs_convert_inline_inode(inode);
1677	if (ret)
1678		goto out;
1679
1680	set_inode_flag(inode, FI_ATOMIC_FILE);
1681	set_inode_flag(inode, FI_HOT_DATA);
1682	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1683
1684	if (!get_dirty_pages(inode))
1685		goto inc_stat;
1686
1687	f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
1688		"Unexpected flush for atomic writes: ino=%lu, npages=%u",
1689					inode->i_ino, get_dirty_pages(inode));
1690	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
1691	if (ret) {
1692		clear_inode_flag(inode, FI_ATOMIC_FILE);
1693		clear_inode_flag(inode, FI_HOT_DATA);
1694		goto out;
1695	}
1696
1697inc_stat:
1698	F2FS_I(inode)->inmem_task = current;
1699	stat_inc_atomic_write(inode);
1700	stat_update_max_atomic_write(inode);
1701out:
1702	inode_unlock(inode);
1703	mnt_drop_write_file(filp);
1704	return ret;
1705}
1706
1707static int f2fs_ioc_commit_atomic_write(struct file *filp)
1708{
1709	struct inode *inode = file_inode(filp);
1710	int ret;
1711
1712	if (!inode_owner_or_capable(inode))
1713		return -EACCES;
1714
1715	ret = mnt_want_write_file(filp);
1716	if (ret)
1717		return ret;
1718
1719	inode_lock(inode);
1720
1721	down_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
1722
1723	if (f2fs_is_volatile_file(inode))
1724		goto err_out;
1725
1726	if (f2fs_is_atomic_file(inode)) {
1727		ret = commit_inmem_pages(inode);
1728		if (ret)
1729			goto err_out;
1730
1731		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1732		if (!ret) {
1733			clear_inode_flag(inode, FI_ATOMIC_FILE);
1734			clear_inode_flag(inode, FI_HOT_DATA);
1735			stat_dec_atomic_write(inode);
1736		}
1737	} else {
1738		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
1739	}
1740err_out:
1741	up_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
1742	inode_unlock(inode);
1743	mnt_drop_write_file(filp);
1744	return ret;
1745}
1746
1747static int f2fs_ioc_start_volatile_write(struct file *filp)
1748{
1749	struct inode *inode = file_inode(filp);
1750	int ret;
1751
1752	if (!inode_owner_or_capable(inode))
1753		return -EACCES;
1754
1755	if (!S_ISREG(inode->i_mode))
1756		return -EINVAL;
1757
1758	ret = mnt_want_write_file(filp);
1759	if (ret)
1760		return ret;
1761
1762	inode_lock(inode);
1763
1764	if (f2fs_is_volatile_file(inode))
1765		goto out;
1766
1767	ret = f2fs_convert_inline_inode(inode);
1768	if (ret)
1769		goto out;
1770
1771	stat_inc_volatile_write(inode);
1772	stat_update_max_volatile_write(inode);
1773
1774	set_inode_flag(inode, FI_VOLATILE_FILE);
1775	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1776out:
1777	inode_unlock(inode);
1778	mnt_drop_write_file(filp);
1779	return ret;
1780}
1781
1782static int f2fs_ioc_release_volatile_write(struct file *filp)
1783{
1784	struct inode *inode = file_inode(filp);
1785	int ret;
1786
1787	if (!inode_owner_or_capable(inode))
1788		return -EACCES;
1789
1790	ret = mnt_want_write_file(filp);
1791	if (ret)
1792		return ret;
1793
1794	inode_lock(inode);
1795
1796	if (!f2fs_is_volatile_file(inode))
1797		goto out;
1798
1799	if (!f2fs_is_first_block_written(inode)) {
1800		ret = truncate_partial_data_page(inode, 0, true);
1801		goto out;
1802	}
1803
1804	ret = punch_hole(inode, 0, F2FS_BLKSIZE);
1805out:
1806	inode_unlock(inode);
1807	mnt_drop_write_file(filp);
1808	return ret;
1809}
1810
1811static int f2fs_ioc_abort_volatile_write(struct file *filp)
1812{
1813	struct inode *inode = file_inode(filp);
1814	int ret;
1815
1816	if (!inode_owner_or_capable(inode))
1817		return -EACCES;
1818
1819	ret = mnt_want_write_file(filp);
1820	if (ret)
1821		return ret;
1822
1823	inode_lock(inode);
1824
1825	if (f2fs_is_atomic_file(inode))
1826		drop_inmem_pages(inode);
1827	if (f2fs_is_volatile_file(inode)) {
1828		clear_inode_flag(inode, FI_VOLATILE_FILE);
1829		stat_dec_volatile_write(inode);
1830		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1831	}
1832
1833	inode_unlock(inode);
1834
1835	mnt_drop_write_file(filp);
1836	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1837	return ret;
1838}
1839
1840static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1841{
1842	struct inode *inode = file_inode(filp);
1843	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1844	struct super_block *sb = sbi->sb;
1845	__u32 in;
1846	int ret;
1847
1848	if (!capable(CAP_SYS_ADMIN))
1849		return -EPERM;
1850
1851	if (get_user(in, (__u32 __user *)arg))
1852		return -EFAULT;
1853
1854	ret = mnt_want_write_file(filp);
1855	if (ret)
1856		return ret;
1857
1858	switch (in) {
1859	case F2FS_GOING_DOWN_FULLSYNC:
1860		sb = freeze_bdev(sb->s_bdev);
1861		if (IS_ERR(sb)) {
1862			ret = PTR_ERR(sb);
1863			goto out;
1864		}
1865		if (sb) {
1866			f2fs_stop_checkpoint(sbi, false);
1867			thaw_bdev(sb->s_bdev, sb);
1868		}
1869		break;
1870	case F2FS_GOING_DOWN_METASYNC:
1871		/* do checkpoint only */
1872		ret = f2fs_sync_fs(sb, 1);
1873		if (ret)
1874			goto out;
1875		f2fs_stop_checkpoint(sbi, false);
1876		break;
1877	case F2FS_GOING_DOWN_NOSYNC:
1878		f2fs_stop_checkpoint(sbi, false);
1879		break;
1880	case F2FS_GOING_DOWN_METAFLUSH:
1881		sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
1882		f2fs_stop_checkpoint(sbi, false);
1883		break;
1884	default:
1885		ret = -EINVAL;
1886		goto out;
1887	}
1888
1889	stop_gc_thread(sbi);
1890	stop_discard_thread(sbi);
1891
1892	drop_discard_cmd(sbi);
1893	clear_opt(sbi, DISCARD);
1894
1895	f2fs_update_time(sbi, REQ_TIME);
1896out:
1897	mnt_drop_write_file(filp);
1898	return ret;
1899}
1900
1901static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1902{
1903	struct inode *inode = file_inode(filp);
1904	struct super_block *sb = inode->i_sb;
1905	struct request_queue *q = bdev_get_queue(sb->s_bdev);
1906	struct fstrim_range range;
1907	int ret;
1908
1909	if (!capable(CAP_SYS_ADMIN))
1910		return -EPERM;
1911
1912	if (!blk_queue_discard(q))
1913		return -EOPNOTSUPP;
1914
1915	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1916				sizeof(range)))
1917		return -EFAULT;
1918
1919	ret = mnt_want_write_file(filp);
1920	if (ret)
1921		return ret;
1922
1923	range.minlen = max((unsigned int)range.minlen,
1924				q->limits.discard_granularity);
1925	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1926	mnt_drop_write_file(filp);
1927	if (ret < 0)
1928		return ret;
1929
1930	if (copy_to_user((struct fstrim_range __user *)arg, &range,
1931				sizeof(range)))
1932		return -EFAULT;
1933	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1934	return 0;
1935}
1936
1937static bool uuid_is_nonzero(__u8 u[16])
1938{
1939	int i;
1940
1941	for (i = 0; i < 16; i++)
1942		if (u[i])
1943			return true;
1944	return false;
1945}
1946
1947static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
1948{
1949	struct inode *inode = file_inode(filp);
1950
1951	if (!f2fs_sb_has_encrypt(inode->i_sb))
1952		return -EOPNOTSUPP;
1953
1954	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1955
1956	return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
1957}
1958
1959static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
1960{
1961	if (!f2fs_sb_has_encrypt(file_inode(filp)->i_sb))
1962		return -EOPNOTSUPP;
1963	return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
1964}
1965
1966static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
1967{
1968	struct inode *inode = file_inode(filp);
1969	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1970	int err;
1971
1972	if (!f2fs_sb_has_encrypt(inode->i_sb))
1973		return -EOPNOTSUPP;
1974
1975	err = mnt_want_write_file(filp);
1976	if (err)
1977		return err;
1978
1979	down_write(&sbi->sb_lock);
1980
1981	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
1982		goto got_it;
1983
1984	/* update superblock with uuid */
1985	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
1986
1987	err = f2fs_commit_super(sbi, false);
1988	if (err) {
1989		/* undo new data */
1990		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
1991		goto out_err;
1992	}
1993got_it:
1994	if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
1995									16))
1996		err = -EFAULT;
1997out_err:
1998	up_write(&sbi->sb_lock);
1999	mnt_drop_write_file(filp);
2000	return err;
2001}
2002
2003static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2004{
2005	struct inode *inode = file_inode(filp);
2006	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2007	__u32 sync;
2008	int ret;
2009
2010	if (!capable(CAP_SYS_ADMIN))
2011		return -EPERM;
2012
2013	if (get_user(sync, (__u32 __user *)arg))
2014		return -EFAULT;
2015
2016	if (f2fs_readonly(sbi->sb))
2017		return -EROFS;
2018
2019	ret = mnt_want_write_file(filp);
2020	if (ret)
2021		return ret;
2022
2023	if (!sync) {
2024		if (!mutex_trylock(&sbi->gc_mutex)) {
2025			ret = -EBUSY;
2026			goto out;
2027		}
2028	} else {
2029		mutex_lock(&sbi->gc_mutex);
2030	}
2031
2032	ret = f2fs_gc(sbi, sync, true, NULL_SEGNO);
2033out:
2034	mnt_drop_write_file(filp);
2035	return ret;
2036}
2037
2038static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2039{
2040	struct inode *inode = file_inode(filp);
2041	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2042	struct f2fs_gc_range range;
2043	u64 end;
2044	int ret;
2045
2046	if (!capable(CAP_SYS_ADMIN))
2047		return -EPERM;
2048
2049	if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2050							sizeof(range)))
2051		return -EFAULT;
2052
2053	if (f2fs_readonly(sbi->sb))
2054		return -EROFS;
2055
2056	ret = mnt_want_write_file(filp);
2057	if (ret)
2058		return ret;
2059
2060	end = range.start + range.len;
2061	if (range.start < MAIN_BLKADDR(sbi) || end >= MAX_BLKADDR(sbi)) {
2062		ret = -EINVAL;
2063		goto out;
2064	}
2065do_more:
2066	if (!range.sync) {
2067		if (!mutex_trylock(&sbi->gc_mutex)) {
2068			ret = -EBUSY;
2069			goto out;
2070		}
2071	} else {
2072		mutex_lock(&sbi->gc_mutex);
2073	}
2074
2075	ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start));
2076	range.start += sbi->blocks_per_seg;
2077	if (range.start <= end)
2078		goto do_more;
2079out:
2080	mnt_drop_write_file(filp);
2081	return ret;
2082}
2083
2084static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
2085{
2086	struct inode *inode = file_inode(filp);
2087	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2088	int ret;
2089
2090	if (!capable(CAP_SYS_ADMIN))
2091		return -EPERM;
2092
2093	if (f2fs_readonly(sbi->sb))
2094		return -EROFS;
2095
2096	ret = mnt_want_write_file(filp);
2097	if (ret)
2098		return ret;
2099
2100	ret = f2fs_sync_fs(sbi->sb, 1);
2101
2102	mnt_drop_write_file(filp);
2103	return ret;
2104}
2105
2106static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2107					struct file *filp,
2108					struct f2fs_defragment *range)
2109{
2110	struct inode *inode = file_inode(filp);
2111	struct f2fs_map_blocks map = { .m_next_extent = NULL,
2112					.m_seg_type = NO_CHECK_TYPE };
2113	struct extent_info ei = {0,0,0};
2114	pgoff_t pg_start, pg_end, next_pgofs;
2115	unsigned int blk_per_seg = sbi->blocks_per_seg;
2116	unsigned int total = 0, sec_num;
2117	block_t blk_end = 0;
2118	bool fragmented = false;
2119	int err;
2120
2121	/* if in-place-update policy is enabled, don't waste time here */
2122	if (should_update_inplace(inode, NULL))
2123		return -EINVAL;
2124
2125	pg_start = range->start >> PAGE_SHIFT;
2126	pg_end = (range->start + range->len) >> PAGE_SHIFT;
2127
2128	f2fs_balance_fs(sbi, true);
2129
2130	inode_lock(inode);
2131
2132	/* writeback all dirty pages in the range */
2133	err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2134						range->start + range->len - 1);
2135	if (err)
2136		goto out;
2137
2138	/*
2139	 * lookup mapping info in extent cache, skip defragmenting if physical
2140	 * block addresses are continuous.
2141	 */
2142	if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2143		if (ei.fofs + ei.len >= pg_end)
2144			goto out;
2145	}
2146
2147	map.m_lblk = pg_start;
2148	map.m_next_pgofs = &next_pgofs;
2149
2150	/*
2151	 * lookup mapping info in dnode page cache, skip defragmenting if all
2152	 * physical block addresses are continuous even if there are hole(s)
2153	 * in logical blocks.
2154	 */
2155	while (map.m_lblk < pg_end) {
2156		map.m_len = pg_end - map.m_lblk;
2157		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2158		if (err)
2159			goto out;
2160
2161		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2162			map.m_lblk = next_pgofs;
2163			continue;
2164		}
2165
2166		if (blk_end && blk_end != map.m_pblk)
2167			fragmented = true;
2168
2169		/* record total count of block that we're going to move */
2170		total += map.m_len;
2171
2172		blk_end = map.m_pblk + map.m_len;
2173
2174		map.m_lblk += map.m_len;
2175	}
2176
2177	if (!fragmented)
2178		goto out;
2179
2180	sec_num = (total + BLKS_PER_SEC(sbi) - 1) / BLKS_PER_SEC(sbi);
2181
2182	/*
2183	 * make sure there are enough free section for LFS allocation, this can
2184	 * avoid defragment running in SSR mode when free section are allocated
2185	 * intensively
2186	 */
2187	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2188		err = -EAGAIN;
2189		goto out;
2190	}
2191
2192	map.m_lblk = pg_start;
2193	map.m_len = pg_end - pg_start;
2194	total = 0;
2195
2196	while (map.m_lblk < pg_end) {
2197		pgoff_t idx;
2198		int cnt = 0;
2199
2200do_map:
2201		map.m_len = pg_end - map.m_lblk;
2202		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2203		if (err)
2204			goto clear_out;
2205
2206		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2207			map.m_lblk = next_pgofs;
2208			continue;
2209		}
2210
2211		set_inode_flag(inode, FI_DO_DEFRAG);
2212
2213		idx = map.m_lblk;
2214		while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2215			struct page *page;
2216
2217			page = get_lock_data_page(inode, idx, true);
2218			if (IS_ERR(page)) {
2219				err = PTR_ERR(page);
2220				goto clear_out;
2221			}
2222
2223			set_page_dirty(page);
2224			f2fs_put_page(page, 1);
2225
2226			idx++;
2227			cnt++;
2228			total++;
2229		}
2230
2231		map.m_lblk = idx;
2232
2233		if (idx < pg_end && cnt < blk_per_seg)
2234			goto do_map;
2235
2236		clear_inode_flag(inode, FI_DO_DEFRAG);
2237
2238		err = filemap_fdatawrite(inode->i_mapping);
2239		if (err)
2240			goto out;
2241	}
2242clear_out:
2243	clear_inode_flag(inode, FI_DO_DEFRAG);
2244out:
2245	inode_unlock(inode);
2246	if (!err)
2247		range->len = (u64)total << PAGE_SHIFT;
2248	return err;
2249}
2250
2251static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2252{
2253	struct inode *inode = file_inode(filp);
2254	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2255	struct f2fs_defragment range;
2256	int err;
2257
2258	if (!capable(CAP_SYS_ADMIN))
2259		return -EPERM;
2260
2261	if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2262		return -EINVAL;
2263
2264	if (f2fs_readonly(sbi->sb))
2265		return -EROFS;
2266
2267	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2268							sizeof(range)))
2269		return -EFAULT;
2270
2271	/* verify alignment of offset & size */
2272	if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2273		return -EINVAL;
2274
2275	if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2276					sbi->max_file_blocks))
2277		return -EINVAL;
2278
2279	err = mnt_want_write_file(filp);
2280	if (err)
2281		return err;
2282
2283	err = f2fs_defragment_range(sbi, filp, &range);
2284	mnt_drop_write_file(filp);
2285
2286	f2fs_update_time(sbi, REQ_TIME);
2287	if (err < 0)
2288		return err;
2289
2290	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2291							sizeof(range)))
2292		return -EFAULT;
2293
2294	return 0;
2295}
2296
2297static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2298			struct file *file_out, loff_t pos_out, size_t len)
2299{
2300	struct inode *src = file_inode(file_in);
2301	struct inode *dst = file_inode(file_out);
2302	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2303	size_t olen = len, dst_max_i_size = 0;
2304	size_t dst_osize;
2305	int ret;
2306
2307	if (file_in->f_path.mnt != file_out->f_path.mnt ||
2308				src->i_sb != dst->i_sb)
2309		return -EXDEV;
2310
2311	if (unlikely(f2fs_readonly(src->i_sb)))
2312		return -EROFS;
2313
2314	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2315		return -EINVAL;
2316
2317	if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
2318		return -EOPNOTSUPP;
2319
2320	if (src == dst) {
2321		if (pos_in == pos_out)
2322			return 0;
2323		if (pos_out > pos_in && pos_out < pos_in + len)
2324			return -EINVAL;
2325	}
2326
2327	inode_lock(src);
2328	down_write(&F2FS_I(src)->dio_rwsem[WRITE]);
2329	if (src != dst) {
2330		ret = -EBUSY;
2331		if (!inode_trylock(dst))
2332			goto out;
2333		if (!down_write_trylock(&F2FS_I(dst)->dio_rwsem[WRITE])) {
2334			inode_unlock(dst);
2335			goto out;
2336		}
2337	}
2338
2339	ret = -EINVAL;
2340	if (pos_in + len > src->i_size || pos_in + len < pos_in)
2341		goto out_unlock;
2342	if (len == 0)
2343		olen = len = src->i_size - pos_in;
2344	if (pos_in + len == src->i_size)
2345		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2346	if (len == 0) {
2347		ret = 0;
2348		goto out_unlock;
2349	}
2350
2351	dst_osize = dst->i_size;
2352	if (pos_out + olen > dst->i_size)
2353		dst_max_i_size = pos_out + olen;
2354
2355	/* verify the end result is block aligned */
2356	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2357			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2358			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2359		goto out_unlock;
2360
2361	ret = f2fs_convert_inline_inode(src);
2362	if (ret)
2363		goto out_unlock;
2364
2365	ret = f2fs_convert_inline_inode(dst);
2366	if (ret)
2367		goto out_unlock;
2368
2369	/* write out all dirty pages from offset */
2370	ret = filemap_write_and_wait_range(src->i_mapping,
2371					pos_in, pos_in + len);
2372	if (ret)
2373		goto out_unlock;
2374
2375	ret = filemap_write_and_wait_range(dst->i_mapping,
2376					pos_out, pos_out + len);
2377	if (ret)
2378		goto out_unlock;
2379
2380	f2fs_balance_fs(sbi, true);
2381	f2fs_lock_op(sbi);
2382	ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2383				pos_out >> F2FS_BLKSIZE_BITS,
2384				len >> F2FS_BLKSIZE_BITS, false);
2385
2386	if (!ret) {
2387		if (dst_max_i_size)
2388			f2fs_i_size_write(dst, dst_max_i_size);
2389		else if (dst_osize != dst->i_size)
2390			f2fs_i_size_write(dst, dst_osize);
2391	}
2392	f2fs_unlock_op(sbi);
2393out_unlock:
2394	if (src != dst) {
2395		up_write(&F2FS_I(dst)->dio_rwsem[WRITE]);
2396		inode_unlock(dst);
2397	}
2398out:
2399	up_write(&F2FS_I(src)->dio_rwsem[WRITE]);
2400	inode_unlock(src);
2401	return ret;
2402}
2403
2404static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2405{
2406	struct f2fs_move_range range;
2407	struct fd dst;
2408	int err;
2409
2410	if (!(filp->f_mode & FMODE_READ) ||
2411			!(filp->f_mode & FMODE_WRITE))
2412		return -EBADF;
2413
2414	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2415							sizeof(range)))
2416		return -EFAULT;
2417
2418	dst = fdget(range.dst_fd);
2419	if (!dst.file)
2420		return -EBADF;
2421
2422	if (!(dst.file->f_mode & FMODE_WRITE)) {
2423		err = -EBADF;
2424		goto err_out;
2425	}
2426
2427	err = mnt_want_write_file(filp);
2428	if (err)
2429		goto err_out;
2430
2431	err = f2fs_move_file_range(filp, range.pos_in, dst.file,
2432					range.pos_out, range.len);
2433
2434	mnt_drop_write_file(filp);
2435	if (err)
2436		goto err_out;
2437
2438	if (copy_to_user((struct f2fs_move_range __user *)arg,
2439						&range, sizeof(range)))
2440		err = -EFAULT;
2441err_out:
2442	fdput(dst);
2443	return err;
2444}
2445
2446static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2447{
2448	struct inode *inode = file_inode(filp);
2449	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2450	struct sit_info *sm = SIT_I(sbi);
2451	unsigned int start_segno = 0, end_segno = 0;
2452	unsigned int dev_start_segno = 0, dev_end_segno = 0;
2453	struct f2fs_flush_device range;
2454	int ret;
2455
2456	if (!capable(CAP_SYS_ADMIN))
2457		return -EPERM;
2458
2459	if (f2fs_readonly(sbi->sb))
2460		return -EROFS;
2461
2462	if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2463							sizeof(range)))
2464		return -EFAULT;
2465
2466	if (sbi->s_ndevs <= 1 || sbi->s_ndevs - 1 <= range.dev_num ||
2467			sbi->segs_per_sec != 1) {
2468		f2fs_msg(sbi->sb, KERN_WARNING,
2469			"Can't flush %u in %d for segs_per_sec %u != 1\n",
2470				range.dev_num, sbi->s_ndevs,
2471				sbi->segs_per_sec);
2472		return -EINVAL;
2473	}
2474
2475	ret = mnt_want_write_file(filp);
2476	if (ret)
2477		return ret;
2478
2479	if (range.dev_num != 0)
2480		dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2481	dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2482
2483	start_segno = sm->last_victim[FLUSH_DEVICE];
2484	if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2485		start_segno = dev_start_segno;
2486	end_segno = min(start_segno + range.segments, dev_end_segno);
2487
2488	while (start_segno < end_segno) {
2489		if (!mutex_trylock(&sbi->gc_mutex)) {
2490			ret = -EBUSY;
2491			goto out;
2492		}
2493		sm->last_victim[GC_CB] = end_segno + 1;
2494		sm->last_victim[GC_GREEDY] = end_segno + 1;
2495		sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2496		ret = f2fs_gc(sbi, true, true, start_segno);
2497		if (ret == -EAGAIN)
2498			ret = 0;
2499		else if (ret < 0)
2500			break;
2501		start_segno++;
2502	}
2503out:
2504	mnt_drop_write_file(filp);
2505	return ret;
2506}
2507
2508static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2509{
2510	struct inode *inode = file_inode(filp);
2511	u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2512
2513	/* Must validate to set it with SQLite behavior in Android. */
2514	sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
2515
2516	return put_user(sb_feature, (u32 __user *)arg);
2517}
2518
2519#ifdef CONFIG_QUOTA
2520static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2521{
2522	struct inode *inode = file_inode(filp);
2523	struct f2fs_inode_info *fi = F2FS_I(inode);
2524	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2525	struct super_block *sb = sbi->sb;
2526	struct dquot *transfer_to[MAXQUOTAS] = {};
2527	struct page *ipage;
2528	kprojid_t kprojid;
2529	int err;
2530
2531	if (!f2fs_sb_has_project_quota(sb)) {
2532		if (projid != F2FS_DEF_PROJID)
2533			return -EOPNOTSUPP;
2534		else
2535			return 0;
2536	}
2537
2538	if (!f2fs_has_extra_attr(inode))
2539		return -EOPNOTSUPP;
2540
2541	kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
2542
2543	if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
2544		return 0;
2545
2546	err = mnt_want_write_file(filp);
2547	if (err)
2548		return err;
2549
2550	err = -EPERM;
2551	inode_lock(inode);
2552
2553	/* Is it quota file? Do not allow user to mess with it */
2554	if (IS_NOQUOTA(inode))
2555		goto out_unlock;
2556
2557	ipage = get_node_page(sbi, inode->i_ino);
2558	if (IS_ERR(ipage)) {
2559		err = PTR_ERR(ipage);
2560		goto out_unlock;
2561	}
2562
2563	if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
2564								i_projid)) {
2565		err = -EOVERFLOW;
2566		f2fs_put_page(ipage, 1);
2567		goto out_unlock;
2568	}
2569	f2fs_put_page(ipage, 1);
2570
2571	dquot_initialize(inode);
2572
2573	transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
2574	if (!IS_ERR(transfer_to[PRJQUOTA])) {
2575		err = __dquot_transfer(inode, transfer_to);
2576		dqput(transfer_to[PRJQUOTA]);
2577		if (err)
2578			goto out_dirty;
2579	}
2580
2581	F2FS_I(inode)->i_projid = kprojid;
2582	inode->i_ctime = current_time(inode);
2583out_dirty:
2584	f2fs_mark_inode_dirty_sync(inode, true);
2585out_unlock:
2586	inode_unlock(inode);
2587	mnt_drop_write_file(filp);
2588	return err;
2589}
2590#else
2591static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2592{
2593	if (projid != F2FS_DEF_PROJID)
2594		return -EOPNOTSUPP;
2595	return 0;
2596}
2597#endif
2598
2599/* Transfer internal flags to xflags */
2600static inline __u32 f2fs_iflags_to_xflags(unsigned long iflags)
2601{
2602	__u32 xflags = 0;
2603
2604	if (iflags & FS_SYNC_FL)
2605		xflags |= FS_XFLAG_SYNC;
2606	if (iflags & FS_IMMUTABLE_FL)
2607		xflags |= FS_XFLAG_IMMUTABLE;
2608	if (iflags & FS_APPEND_FL)
2609		xflags |= FS_XFLAG_APPEND;
2610	if (iflags & FS_NODUMP_FL)
2611		xflags |= FS_XFLAG_NODUMP;
2612	if (iflags & FS_NOATIME_FL)
2613		xflags |= FS_XFLAG_NOATIME;
2614	if (iflags & FS_PROJINHERIT_FL)
2615		xflags |= FS_XFLAG_PROJINHERIT;
2616	return xflags;
2617}
2618
2619#define F2FS_SUPPORTED_FS_XFLAGS (FS_XFLAG_SYNC | FS_XFLAG_IMMUTABLE | \
2620				  FS_XFLAG_APPEND | FS_XFLAG_NODUMP | \
2621				  FS_XFLAG_NOATIME | FS_XFLAG_PROJINHERIT)
2622
2623/* Flags we can manipulate with through EXT4_IOC_FSSETXATTR */
2624#define F2FS_FL_XFLAG_VISIBLE		(FS_SYNC_FL | \
2625					 FS_IMMUTABLE_FL | \
2626					 FS_APPEND_FL | \
2627					 FS_NODUMP_FL | \
2628					 FS_NOATIME_FL | \
2629					 FS_PROJINHERIT_FL)
2630
2631/* Transfer xflags flags to internal */
2632static inline unsigned long f2fs_xflags_to_iflags(__u32 xflags)
2633{
2634	unsigned long iflags = 0;
2635
2636	if (xflags & FS_XFLAG_SYNC)
2637		iflags |= FS_SYNC_FL;
2638	if (xflags & FS_XFLAG_IMMUTABLE)
2639		iflags |= FS_IMMUTABLE_FL;
2640	if (xflags & FS_XFLAG_APPEND)
2641		iflags |= FS_APPEND_FL;
2642	if (xflags & FS_XFLAG_NODUMP)
2643		iflags |= FS_NODUMP_FL;
2644	if (xflags & FS_XFLAG_NOATIME)
2645		iflags |= FS_NOATIME_FL;
2646	if (xflags & FS_XFLAG_PROJINHERIT)
2647		iflags |= FS_PROJINHERIT_FL;
2648
2649	return iflags;
2650}
2651
2652static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg)
2653{
2654	struct inode *inode = file_inode(filp);
2655	struct f2fs_inode_info *fi = F2FS_I(inode);
2656	struct fsxattr fa;
2657
2658	memset(&fa, 0, sizeof(struct fsxattr));
2659	fa.fsx_xflags = f2fs_iflags_to_xflags(fi->i_flags &
2660				(FS_FL_USER_VISIBLE | FS_PROJINHERIT_FL));
2661
2662	if (f2fs_sb_has_project_quota(inode->i_sb))
2663		fa.fsx_projid = (__u32)from_kprojid(&init_user_ns,
2664							fi->i_projid);
2665
2666	if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa)))
2667		return -EFAULT;
2668	return 0;
2669}
2670
2671static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg)
2672{
2673	struct inode *inode = file_inode(filp);
2674	struct f2fs_inode_info *fi = F2FS_I(inode);
2675	struct fsxattr fa;
2676	unsigned int flags;
2677	int err;
2678
2679	if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa)))
2680		return -EFAULT;
2681
2682	/* Make sure caller has proper permission */
2683	if (!inode_owner_or_capable(inode))
2684		return -EACCES;
2685
2686	if (fa.fsx_xflags & ~F2FS_SUPPORTED_FS_XFLAGS)
2687		return -EOPNOTSUPP;
2688
2689	flags = f2fs_xflags_to_iflags(fa.fsx_xflags);
2690	if (f2fs_mask_flags(inode->i_mode, flags) != flags)
2691		return -EOPNOTSUPP;
2692
2693	err = mnt_want_write_file(filp);
2694	if (err)
2695		return err;
2696
2697	inode_lock(inode);
2698	flags = (fi->i_flags & ~F2FS_FL_XFLAG_VISIBLE) |
2699				(flags & F2FS_FL_XFLAG_VISIBLE);
2700	err = __f2fs_ioc_setflags(inode, flags);
2701	inode_unlock(inode);
2702	mnt_drop_write_file(filp);
2703	if (err)
2704		return err;
2705
2706	err = f2fs_ioc_setproject(filp, fa.fsx_projid);
2707	if (err)
2708		return err;
2709
2710	return 0;
2711}
2712
2713int f2fs_pin_file_control(struct inode *inode, bool inc)
2714{
2715	struct f2fs_inode_info *fi = F2FS_I(inode);
2716	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2717
2718	/* Use i_gc_failures for normal file as a risk signal. */
2719	if (inc)
2720		f2fs_i_gc_failures_write(inode, fi->i_gc_failures + 1);
2721
2722	if (fi->i_gc_failures > sbi->gc_pin_file_threshold) {
2723		f2fs_msg(sbi->sb, KERN_WARNING,
2724			"%s: Enable GC = ino %lx after %x GC trials\n",
2725			__func__, inode->i_ino, fi->i_gc_failures);
2726		clear_inode_flag(inode, FI_PIN_FILE);
2727		return -EAGAIN;
2728	}
2729	return 0;
2730}
2731
2732static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
2733{
2734	struct inode *inode = file_inode(filp);
2735	__u32 pin;
2736	int ret = 0;
2737
2738	if (!inode_owner_or_capable(inode))
2739		return -EACCES;
2740
2741	if (get_user(pin, (__u32 __user *)arg))
2742		return -EFAULT;
2743
2744	if (!S_ISREG(inode->i_mode))
2745		return -EINVAL;
2746
2747	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
2748		return -EROFS;
2749
2750	ret = mnt_want_write_file(filp);
2751	if (ret)
2752		return ret;
2753
2754	inode_lock(inode);
2755
2756	if (should_update_outplace(inode, NULL)) {
2757		ret = -EINVAL;
2758		goto out;
2759	}
2760
2761	if (!pin) {
2762		clear_inode_flag(inode, FI_PIN_FILE);
2763		F2FS_I(inode)->i_gc_failures = 1;
2764		goto done;
2765	}
2766
2767	if (f2fs_pin_file_control(inode, false)) {
2768		ret = -EAGAIN;
2769		goto out;
2770	}
2771	ret = f2fs_convert_inline_inode(inode);
2772	if (ret)
2773		goto out;
2774
2775	set_inode_flag(inode, FI_PIN_FILE);
2776	ret = F2FS_I(inode)->i_gc_failures;
2777done:
2778	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2779out:
2780	inode_unlock(inode);
2781	mnt_drop_write_file(filp);
2782	return ret;
2783}
2784
2785static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
2786{
2787	struct inode *inode = file_inode(filp);
2788	__u32 pin = 0;
2789
2790	if (is_inode_flag_set(inode, FI_PIN_FILE))
2791		pin = F2FS_I(inode)->i_gc_failures;
2792	return put_user(pin, (u32 __user *)arg);
2793}
2794
2795int f2fs_precache_extents(struct inode *inode)
2796{
2797	struct f2fs_inode_info *fi = F2FS_I(inode);
2798	struct f2fs_map_blocks map;
2799	pgoff_t m_next_extent;
2800	loff_t end;
2801	int err;
2802
2803	if (is_inode_flag_set(inode, FI_NO_EXTENT))
2804		return -EOPNOTSUPP;
2805
2806	map.m_lblk = 0;
2807	map.m_next_pgofs = NULL;
2808	map.m_next_extent = &m_next_extent;
2809	map.m_seg_type = NO_CHECK_TYPE;
2810	end = F2FS_I_SB(inode)->max_file_blocks;
2811
2812	while (map.m_lblk < end) {
2813		map.m_len = end - map.m_lblk;
2814
2815		down_write(&fi->dio_rwsem[WRITE]);
2816		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
2817		up_write(&fi->dio_rwsem[WRITE]);
2818		if (err)
2819			return err;
2820
2821		map.m_lblk = m_next_extent;
2822	}
2823
2824	return err;
2825}
2826
2827static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
2828{
2829	return f2fs_precache_extents(file_inode(filp));
2830}
2831
2832long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
2833{
2834	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
2835		return -EIO;
2836
2837	switch (cmd) {
2838	case F2FS_IOC_GETFLAGS:
2839		return f2fs_ioc_getflags(filp, arg);
2840	case F2FS_IOC_SETFLAGS:
2841		return f2fs_ioc_setflags(filp, arg);
2842	case F2FS_IOC_GETVERSION:
2843		return f2fs_ioc_getversion(filp, arg);
2844	case F2FS_IOC_START_ATOMIC_WRITE:
2845		return f2fs_ioc_start_atomic_write(filp);
2846	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2847		return f2fs_ioc_commit_atomic_write(filp);
2848	case F2FS_IOC_START_VOLATILE_WRITE:
2849		return f2fs_ioc_start_volatile_write(filp);
2850	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2851		return f2fs_ioc_release_volatile_write(filp);
2852	case F2FS_IOC_ABORT_VOLATILE_WRITE:
2853		return f2fs_ioc_abort_volatile_write(filp);
2854	case F2FS_IOC_SHUTDOWN:
2855		return f2fs_ioc_shutdown(filp, arg);
2856	case FITRIM:
2857		return f2fs_ioc_fitrim(filp, arg);
2858	case F2FS_IOC_SET_ENCRYPTION_POLICY:
2859		return f2fs_ioc_set_encryption_policy(filp, arg);
2860	case F2FS_IOC_GET_ENCRYPTION_POLICY:
2861		return f2fs_ioc_get_encryption_policy(filp, arg);
2862	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2863		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
2864	case F2FS_IOC_GARBAGE_COLLECT:
2865		return f2fs_ioc_gc(filp, arg);
2866	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
2867		return f2fs_ioc_gc_range(filp, arg);
2868	case F2FS_IOC_WRITE_CHECKPOINT:
2869		return f2fs_ioc_write_checkpoint(filp, arg);
2870	case F2FS_IOC_DEFRAGMENT:
2871		return f2fs_ioc_defragment(filp, arg);
2872	case F2FS_IOC_MOVE_RANGE:
2873		return f2fs_ioc_move_range(filp, arg);
2874	case F2FS_IOC_FLUSH_DEVICE:
2875		return f2fs_ioc_flush_device(filp, arg);
2876	case F2FS_IOC_GET_FEATURES:
2877		return f2fs_ioc_get_features(filp, arg);
2878	case F2FS_IOC_FSGETXATTR:
2879		return f2fs_ioc_fsgetxattr(filp, arg);
2880	case F2FS_IOC_FSSETXATTR:
2881		return f2fs_ioc_fssetxattr(filp, arg);
2882	case F2FS_IOC_GET_PIN_FILE:
2883		return f2fs_ioc_get_pin_file(filp, arg);
2884	case F2FS_IOC_SET_PIN_FILE:
2885		return f2fs_ioc_set_pin_file(filp, arg);
2886	case F2FS_IOC_PRECACHE_EXTENTS:
2887		return f2fs_ioc_precache_extents(filp, arg);
2888	default:
2889		return -ENOTTY;
2890	}
2891}
2892
2893static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2894{
2895	struct file *file = iocb->ki_filp;
2896	struct inode *inode = file_inode(file);
2897	struct blk_plug plug;
2898	ssize_t ret;
2899
2900	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2901		return -EIO;
2902
2903	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2904		return -EINVAL;
2905
2906	if (!inode_trylock(inode)) {
2907		if (iocb->ki_flags & IOCB_NOWAIT)
2908			return -EAGAIN;
2909		inode_lock(inode);
2910	}
2911
2912	ret = generic_write_checks(iocb, from);
2913	if (ret > 0) {
2914		bool preallocated = false;
2915		size_t target_size = 0;
2916		int err;
2917
2918		if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
2919			set_inode_flag(inode, FI_NO_PREALLOC);
2920
2921		if ((iocb->ki_flags & IOCB_NOWAIT) &&
2922			(iocb->ki_flags & IOCB_DIRECT)) {
2923				if (!f2fs_overwrite_io(inode, iocb->ki_pos,
2924						iov_iter_count(from)) ||
2925					f2fs_has_inline_data(inode) ||
2926					f2fs_force_buffered_io(inode, WRITE)) {
2927						inode_unlock(inode);
2928						return -EAGAIN;
2929				}
2930
2931		} else {
2932			preallocated = true;
2933			target_size = iocb->ki_pos + iov_iter_count(from);
2934
2935			err = f2fs_preallocate_blocks(iocb, from);
2936			if (err) {
2937				clear_inode_flag(inode, FI_NO_PREALLOC);
2938				inode_unlock(inode);
2939				return err;
2940			}
2941		}
2942		blk_start_plug(&plug);
2943		ret = __generic_file_write_iter(iocb, from);
2944		blk_finish_plug(&plug);
2945		clear_inode_flag(inode, FI_NO_PREALLOC);
2946
2947		/* if we couldn't write data, we should deallocate blocks. */
2948		if (preallocated && i_size_read(inode) < target_size)
2949			f2fs_truncate(inode);
2950
2951		if (ret > 0)
2952			f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
2953	}
2954	inode_unlock(inode);
2955
2956	if (ret > 0)
2957		ret = generic_write_sync(iocb, ret);
2958	return ret;
2959}
2960
2961#ifdef CONFIG_COMPAT
2962long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2963{
2964	switch (cmd) {
2965	case F2FS_IOC32_GETFLAGS:
2966		cmd = F2FS_IOC_GETFLAGS;
2967		break;
2968	case F2FS_IOC32_SETFLAGS:
2969		cmd = F2FS_IOC_SETFLAGS;
2970		break;
2971	case F2FS_IOC32_GETVERSION:
2972		cmd = F2FS_IOC_GETVERSION;
2973		break;
2974	case F2FS_IOC_START_ATOMIC_WRITE:
2975	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2976	case F2FS_IOC_START_VOLATILE_WRITE:
2977	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2978	case F2FS_IOC_ABORT_VOLATILE_WRITE:
2979	case F2FS_IOC_SHUTDOWN:
2980	case F2FS_IOC_SET_ENCRYPTION_POLICY:
2981	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2982	case F2FS_IOC_GET_ENCRYPTION_POLICY:
2983	case F2FS_IOC_GARBAGE_COLLECT:
2984	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
2985	case F2FS_IOC_WRITE_CHECKPOINT:
2986	case F2FS_IOC_DEFRAGMENT:
2987	case F2FS_IOC_MOVE_RANGE:
2988	case F2FS_IOC_FLUSH_DEVICE:
2989	case F2FS_IOC_GET_FEATURES:
2990	case F2FS_IOC_FSGETXATTR:
2991	case F2FS_IOC_FSSETXATTR:
2992	case F2FS_IOC_GET_PIN_FILE:
2993	case F2FS_IOC_SET_PIN_FILE:
2994	case F2FS_IOC_PRECACHE_EXTENTS:
2995		break;
2996	default:
2997		return -ENOIOCTLCMD;
2998	}
2999	return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
3000}
3001#endif
3002
3003const struct file_operations f2fs_file_operations = {
3004	.llseek		= f2fs_llseek,
3005	.read_iter	= generic_file_read_iter,
3006	.write_iter	= f2fs_file_write_iter,
3007	.open		= f2fs_file_open,
3008	.release	= f2fs_release_file,
3009	.mmap		= f2fs_file_mmap,
3010	.flush		= f2fs_file_flush,
3011	.fsync		= f2fs_sync_file,
3012	.fallocate	= f2fs_fallocate,
3013	.unlocked_ioctl	= f2fs_ioctl,
3014#ifdef CONFIG_COMPAT
3015	.compat_ioctl	= f2fs_compat_ioctl,
3016#endif
3017	.splice_read	= generic_file_splice_read,
3018	.splice_write	= iter_file_splice_write,
3019};