Loading...
1/*
2 * Octeon Watchdog driver
3 *
4 * Copyright (C) 2007, 2008, 2009, 2010 Cavium Networks
5 *
6 * Some parts derived from wdt.c
7 *
8 * (c) Copyright 1996-1997 Alan Cox <alan@lxorguk.ukuu.org.uk>,
9 * All Rights Reserved.
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 *
16 * Neither Alan Cox nor CymruNet Ltd. admit liability nor provide
17 * warranty for any of this software. This material is provided
18 * "AS-IS" and at no charge.
19 *
20 * (c) Copyright 1995 Alan Cox <alan@lxorguk.ukuu.org.uk>
21 *
22 * This file is subject to the terms and conditions of the GNU General Public
23 * License. See the file "COPYING" in the main directory of this archive
24 * for more details.
25 *
26 *
27 * The OCTEON watchdog has a maximum timeout of 2^32 * io_clock.
28 * For most systems this is less than 10 seconds, so to allow for
29 * software to request longer watchdog heartbeats, we maintain software
30 * counters to count multiples of the base rate. If the system locks
31 * up in such a manner that we can not run the software counters, the
32 * only result is a watchdog reset sooner than was requested. But
33 * that is OK, because in this case userspace would likely not be able
34 * to do anything anyhow.
35 *
36 * The hardware watchdog interval we call the period. The OCTEON
37 * watchdog goes through several stages, after the first period an
38 * irq is asserted, then if it is not reset, after the next period NMI
39 * is asserted, then after an additional period a chip wide soft reset.
40 * So for the software counters, we reset watchdog after each period
41 * and decrement the counter. But for the last two periods we need to
42 * let the watchdog progress to the NMI stage so we disable the irq
43 * and let it proceed. Once in the NMI, we print the register state
44 * to the serial port and then wait for the reset.
45 *
46 * A watchdog is maintained for each CPU in the system, that way if
47 * one CPU suffers a lockup, we also get a register dump and reset.
48 * The userspace ping resets the watchdog on all CPUs.
49 *
50 * Before userspace opens the watchdog device, we still run the
51 * watchdogs to catch any lockups that may be kernel related.
52 *
53 */
54
55#include <linux/miscdevice.h>
56#include <linux/interrupt.h>
57#include <linux/watchdog.h>
58#include <linux/cpumask.h>
59#include <linux/bitops.h>
60#include <linux/kernel.h>
61#include <linux/module.h>
62#include <linux/string.h>
63#include <linux/delay.h>
64#include <linux/cpu.h>
65#include <linux/smp.h>
66#include <linux/fs.h>
67#include <linux/irq.h>
68
69#include <asm/mipsregs.h>
70#include <asm/uasm.h>
71
72#include <asm/octeon/octeon.h>
73
74/* The count needed to achieve timeout_sec. */
75static unsigned int timeout_cnt;
76
77/* The maximum period supported. */
78static unsigned int max_timeout_sec;
79
80/* The current period. */
81static unsigned int timeout_sec;
82
83/* Set to non-zero when userspace countdown mode active */
84static int do_coundown;
85static unsigned int countdown_reset;
86static unsigned int per_cpu_countdown[NR_CPUS];
87
88static cpumask_t irq_enabled_cpus;
89
90#define WD_TIMO 60 /* Default heartbeat = 60 seconds */
91
92static int heartbeat = WD_TIMO;
93module_param(heartbeat, int, S_IRUGO);
94MODULE_PARM_DESC(heartbeat,
95 "Watchdog heartbeat in seconds. (0 < heartbeat, default="
96 __MODULE_STRING(WD_TIMO) ")");
97
98static int nowayout = WATCHDOG_NOWAYOUT;
99module_param(nowayout, int, S_IRUGO);
100MODULE_PARM_DESC(nowayout,
101 "Watchdog cannot be stopped once started (default="
102 __MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
103
104static unsigned long octeon_wdt_is_open;
105static char expect_close;
106
107static u32 __initdata nmi_stage1_insns[64];
108/* We need one branch and therefore one relocation per target label. */
109static struct uasm_label __initdata labels[5];
110static struct uasm_reloc __initdata relocs[5];
111
112enum lable_id {
113 label_enter_bootloader = 1
114};
115
116/* Some CP0 registers */
117#define K0 26
118#define C0_CVMMEMCTL 11, 7
119#define C0_STATUS 12, 0
120#define C0_EBASE 15, 1
121#define C0_DESAVE 31, 0
122
123void octeon_wdt_nmi_stage2(void);
124
125static void __init octeon_wdt_build_stage1(void)
126{
127 int i;
128 int len;
129 u32 *p = nmi_stage1_insns;
130#ifdef CONFIG_HOTPLUG_CPU
131 struct uasm_label *l = labels;
132 struct uasm_reloc *r = relocs;
133#endif
134
135 /*
136 * For the next few instructions running the debugger may
137 * cause corruption of k0 in the saved registers. Since we're
138 * about to crash, nobody probably cares.
139 *
140 * Save K0 into the debug scratch register
141 */
142 uasm_i_dmtc0(&p, K0, C0_DESAVE);
143
144 uasm_i_mfc0(&p, K0, C0_STATUS);
145#ifdef CONFIG_HOTPLUG_CPU
146 uasm_il_bbit0(&p, &r, K0, ilog2(ST0_NMI), label_enter_bootloader);
147#endif
148 /* Force 64-bit addressing enabled */
149 uasm_i_ori(&p, K0, K0, ST0_UX | ST0_SX | ST0_KX);
150 uasm_i_mtc0(&p, K0, C0_STATUS);
151
152#ifdef CONFIG_HOTPLUG_CPU
153 uasm_i_mfc0(&p, K0, C0_EBASE);
154 /* Coreid number in K0 */
155 uasm_i_andi(&p, K0, K0, 0xf);
156 /* 8 * coreid in bits 16-31 */
157 uasm_i_dsll_safe(&p, K0, K0, 3 + 16);
158 uasm_i_ori(&p, K0, K0, 0x8001);
159 uasm_i_dsll_safe(&p, K0, K0, 16);
160 uasm_i_ori(&p, K0, K0, 0x0700);
161 uasm_i_drotr_safe(&p, K0, K0, 32);
162 /*
163 * Should result in: 0x8001,0700,0000,8*coreid which is
164 * CVMX_CIU_WDOGX(coreid) - 0x0500
165 *
166 * Now ld K0, CVMX_CIU_WDOGX(coreid)
167 */
168 uasm_i_ld(&p, K0, 0x500, K0);
169 /*
170 * If bit one set handle the NMI as a watchdog event.
171 * otherwise transfer control to bootloader.
172 */
173 uasm_il_bbit0(&p, &r, K0, 1, label_enter_bootloader);
174 uasm_i_nop(&p);
175#endif
176
177 /* Clear Dcache so cvmseg works right. */
178 uasm_i_cache(&p, 1, 0, 0);
179
180 /* Use K0 to do a read/modify/write of CVMMEMCTL */
181 uasm_i_dmfc0(&p, K0, C0_CVMMEMCTL);
182 /* Clear out the size of CVMSEG */
183 uasm_i_dins(&p, K0, 0, 0, 6);
184 /* Set CVMSEG to its largest value */
185 uasm_i_ori(&p, K0, K0, 0x1c0 | 54);
186 /* Store the CVMMEMCTL value */
187 uasm_i_dmtc0(&p, K0, C0_CVMMEMCTL);
188
189 /* Load the address of the second stage handler */
190 UASM_i_LA(&p, K0, (long)octeon_wdt_nmi_stage2);
191 uasm_i_jr(&p, K0);
192 uasm_i_dmfc0(&p, K0, C0_DESAVE);
193
194#ifdef CONFIG_HOTPLUG_CPU
195 uasm_build_label(&l, p, label_enter_bootloader);
196 /* Jump to the bootloader and restore K0 */
197 UASM_i_LA(&p, K0, (long)octeon_bootloader_entry_addr);
198 uasm_i_jr(&p, K0);
199 uasm_i_dmfc0(&p, K0, C0_DESAVE);
200#endif
201 uasm_resolve_relocs(relocs, labels);
202
203 len = (int)(p - nmi_stage1_insns);
204 pr_debug("Synthesized NMI stage 1 handler (%d instructions).\n", len);
205
206 pr_debug("\t.set push\n");
207 pr_debug("\t.set noreorder\n");
208 for (i = 0; i < len; i++)
209 pr_debug("\t.word 0x%08x\n", nmi_stage1_insns[i]);
210 pr_debug("\t.set pop\n");
211
212 if (len > 32)
213 panic("NMI stage 1 handler exceeds 32 instructions, was %d\n", len);
214}
215
216static int cpu2core(int cpu)
217{
218#ifdef CONFIG_SMP
219 return cpu_logical_map(cpu);
220#else
221 return cvmx_get_core_num();
222#endif
223}
224
225static int core2cpu(int coreid)
226{
227#ifdef CONFIG_SMP
228 return cpu_number_map(coreid);
229#else
230 return 0;
231#endif
232}
233
234/**
235 * Poke the watchdog when an interrupt is received
236 *
237 * @cpl:
238 * @dev_id:
239 *
240 * Returns
241 */
242static irqreturn_t octeon_wdt_poke_irq(int cpl, void *dev_id)
243{
244 unsigned int core = cvmx_get_core_num();
245 int cpu = core2cpu(core);
246
247 if (do_coundown) {
248 if (per_cpu_countdown[cpu] > 0) {
249 /* We're alive, poke the watchdog */
250 cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
251 per_cpu_countdown[cpu]--;
252 } else {
253 /* Bad news, you are about to reboot. */
254 disable_irq_nosync(cpl);
255 cpumask_clear_cpu(cpu, &irq_enabled_cpus);
256 }
257 } else {
258 /* Not open, just ping away... */
259 cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
260 }
261 return IRQ_HANDLED;
262}
263
264/* From setup.c */
265extern int prom_putchar(char c);
266
267/**
268 * Write a string to the uart
269 *
270 * @str: String to write
271 */
272static void octeon_wdt_write_string(const char *str)
273{
274 /* Just loop writing one byte at a time */
275 while (*str)
276 prom_putchar(*str++);
277}
278
279/**
280 * Write a hex number out of the uart
281 *
282 * @value: Number to display
283 * @digits: Number of digits to print (1 to 16)
284 */
285static void octeon_wdt_write_hex(u64 value, int digits)
286{
287 int d;
288 int v;
289 for (d = 0; d < digits; d++) {
290 v = (value >> ((digits - d - 1) * 4)) & 0xf;
291 if (v >= 10)
292 prom_putchar('a' + v - 10);
293 else
294 prom_putchar('0' + v);
295 }
296}
297
298const char *reg_name[] = {
299 "$0", "at", "v0", "v1", "a0", "a1", "a2", "a3",
300 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
301 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
302 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
303};
304
305/**
306 * NMI stage 3 handler. NMIs are handled in the following manner:
307 * 1) The first NMI handler enables CVMSEG and transfers from
308 * the bootbus region into normal memory. It is careful to not
309 * destroy any registers.
310 * 2) The second stage handler uses CVMSEG to save the registers
311 * and create a stack for C code. It then calls the third level
312 * handler with one argument, a pointer to the register values.
313 * 3) The third, and final, level handler is the following C
314 * function that prints out some useful infomration.
315 *
316 * @reg: Pointer to register state before the NMI
317 */
318void octeon_wdt_nmi_stage3(u64 reg[32])
319{
320 u64 i;
321
322 unsigned int coreid = cvmx_get_core_num();
323 /*
324 * Save status and cause early to get them before any changes
325 * might happen.
326 */
327 u64 cp0_cause = read_c0_cause();
328 u64 cp0_status = read_c0_status();
329 u64 cp0_error_epc = read_c0_errorepc();
330 u64 cp0_epc = read_c0_epc();
331
332 /* Delay so output from all cores output is not jumbled together. */
333 __delay(100000000ull * coreid);
334
335 octeon_wdt_write_string("\r\n*** NMI Watchdog interrupt on Core 0x");
336 octeon_wdt_write_hex(coreid, 1);
337 octeon_wdt_write_string(" ***\r\n");
338 for (i = 0; i < 32; i++) {
339 octeon_wdt_write_string("\t");
340 octeon_wdt_write_string(reg_name[i]);
341 octeon_wdt_write_string("\t0x");
342 octeon_wdt_write_hex(reg[i], 16);
343 if (i & 1)
344 octeon_wdt_write_string("\r\n");
345 }
346 octeon_wdt_write_string("\terr_epc\t0x");
347 octeon_wdt_write_hex(cp0_error_epc, 16);
348
349 octeon_wdt_write_string("\tepc\t0x");
350 octeon_wdt_write_hex(cp0_epc, 16);
351 octeon_wdt_write_string("\r\n");
352
353 octeon_wdt_write_string("\tstatus\t0x");
354 octeon_wdt_write_hex(cp0_status, 16);
355 octeon_wdt_write_string("\tcause\t0x");
356 octeon_wdt_write_hex(cp0_cause, 16);
357 octeon_wdt_write_string("\r\n");
358
359 octeon_wdt_write_string("\tsum0\t0x");
360 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_SUM0(coreid * 2)), 16);
361 octeon_wdt_write_string("\ten0\t0x");
362 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)), 16);
363 octeon_wdt_write_string("\r\n");
364
365 octeon_wdt_write_string("*** Chip soft reset soon ***\r\n");
366}
367
368static void octeon_wdt_disable_interrupt(int cpu)
369{
370 unsigned int core;
371 unsigned int irq;
372 union cvmx_ciu_wdogx ciu_wdog;
373
374 core = cpu2core(cpu);
375
376 irq = OCTEON_IRQ_WDOG0 + core;
377
378 /* Poke the watchdog to clear out its state */
379 cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
380
381 /* Disable the hardware. */
382 ciu_wdog.u64 = 0;
383 cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
384
385 free_irq(irq, octeon_wdt_poke_irq);
386}
387
388static void octeon_wdt_setup_interrupt(int cpu)
389{
390 unsigned int core;
391 unsigned int irq;
392 union cvmx_ciu_wdogx ciu_wdog;
393
394 core = cpu2core(cpu);
395
396 /* Disable it before doing anything with the interrupts. */
397 ciu_wdog.u64 = 0;
398 cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
399
400 per_cpu_countdown[cpu] = countdown_reset;
401
402 irq = OCTEON_IRQ_WDOG0 + core;
403
404 if (request_irq(irq, octeon_wdt_poke_irq,
405 IRQF_DISABLED, "octeon_wdt", octeon_wdt_poke_irq))
406 panic("octeon_wdt: Couldn't obtain irq %d", irq);
407
408 cpumask_set_cpu(cpu, &irq_enabled_cpus);
409
410 /* Poke the watchdog to clear out its state */
411 cvmx_write_csr(CVMX_CIU_PP_POKEX(core), 1);
412
413 /* Finally enable the watchdog now that all handlers are installed */
414 ciu_wdog.u64 = 0;
415 ciu_wdog.s.len = timeout_cnt;
416 ciu_wdog.s.mode = 3; /* 3 = Interrupt + NMI + Soft-Reset */
417 cvmx_write_csr(CVMX_CIU_WDOGX(core), ciu_wdog.u64);
418}
419
420static int octeon_wdt_cpu_callback(struct notifier_block *nfb,
421 unsigned long action, void *hcpu)
422{
423 unsigned int cpu = (unsigned long)hcpu;
424
425 switch (action) {
426 case CPU_DOWN_PREPARE:
427 octeon_wdt_disable_interrupt(cpu);
428 break;
429 case CPU_ONLINE:
430 case CPU_DOWN_FAILED:
431 octeon_wdt_setup_interrupt(cpu);
432 break;
433 default:
434 break;
435 }
436 return NOTIFY_OK;
437}
438
439static void octeon_wdt_ping(void)
440{
441 int cpu;
442 int coreid;
443
444 for_each_online_cpu(cpu) {
445 coreid = cpu2core(cpu);
446 cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
447 per_cpu_countdown[cpu] = countdown_reset;
448 if ((countdown_reset || !do_coundown) &&
449 !cpumask_test_cpu(cpu, &irq_enabled_cpus)) {
450 /* We have to enable the irq */
451 int irq = OCTEON_IRQ_WDOG0 + coreid;
452 enable_irq(irq);
453 cpumask_set_cpu(cpu, &irq_enabled_cpus);
454 }
455 }
456}
457
458static void octeon_wdt_calc_parameters(int t)
459{
460 unsigned int periods;
461
462 timeout_sec = max_timeout_sec;
463
464
465 /*
466 * Find the largest interrupt period, that can evenly divide
467 * the requested heartbeat time.
468 */
469 while ((t % timeout_sec) != 0)
470 timeout_sec--;
471
472 periods = t / timeout_sec;
473
474 /*
475 * The last two periods are after the irq is disabled, and
476 * then to the nmi, so we subtract them off.
477 */
478
479 countdown_reset = periods > 2 ? periods - 2 : 0;
480 heartbeat = t;
481 timeout_cnt = ((octeon_get_io_clock_rate() >> 8) * timeout_sec) >> 8;
482}
483
484static int octeon_wdt_set_heartbeat(int t)
485{
486 int cpu;
487 int coreid;
488 union cvmx_ciu_wdogx ciu_wdog;
489
490 if (t <= 0)
491 return -1;
492
493 octeon_wdt_calc_parameters(t);
494
495 for_each_online_cpu(cpu) {
496 coreid = cpu2core(cpu);
497 cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
498 ciu_wdog.u64 = 0;
499 ciu_wdog.s.len = timeout_cnt;
500 ciu_wdog.s.mode = 3; /* 3 = Interrupt + NMI + Soft-Reset */
501 cvmx_write_csr(CVMX_CIU_WDOGX(coreid), ciu_wdog.u64);
502 cvmx_write_csr(CVMX_CIU_PP_POKEX(coreid), 1);
503 }
504 octeon_wdt_ping(); /* Get the irqs back on. */
505 return 0;
506}
507
508/**
509 * octeon_wdt_write:
510 * @file: file handle to the watchdog
511 * @buf: buffer to write (unused as data does not matter here
512 * @count: count of bytes
513 * @ppos: pointer to the position to write. No seeks allowed
514 *
515 * A write to a watchdog device is defined as a keepalive signal. Any
516 * write of data will do, as we we don't define content meaning.
517 */
518
519static ssize_t octeon_wdt_write(struct file *file, const char __user *buf,
520 size_t count, loff_t *ppos)
521{
522 if (count) {
523 if (!nowayout) {
524 size_t i;
525
526 /* In case it was set long ago */
527 expect_close = 0;
528
529 for (i = 0; i != count; i++) {
530 char c;
531 if (get_user(c, buf + i))
532 return -EFAULT;
533 if (c == 'V')
534 expect_close = 1;
535 }
536 }
537 octeon_wdt_ping();
538 }
539 return count;
540}
541
542/**
543 * octeon_wdt_ioctl:
544 * @file: file handle to the device
545 * @cmd: watchdog command
546 * @arg: argument pointer
547 *
548 * The watchdog API defines a common set of functions for all
549 * watchdogs according to their available features. We only
550 * actually usefully support querying capabilities and setting
551 * the timeout.
552 */
553
554static long octeon_wdt_ioctl(struct file *file, unsigned int cmd,
555 unsigned long arg)
556{
557 void __user *argp = (void __user *)arg;
558 int __user *p = argp;
559 int new_heartbeat;
560
561 static struct watchdog_info ident = {
562 .options = WDIOF_SETTIMEOUT|
563 WDIOF_MAGICCLOSE|
564 WDIOF_KEEPALIVEPING,
565 .firmware_version = 1,
566 .identity = "OCTEON",
567 };
568
569 switch (cmd) {
570 case WDIOC_GETSUPPORT:
571 return copy_to_user(argp, &ident, sizeof(ident)) ? -EFAULT : 0;
572 case WDIOC_GETSTATUS:
573 case WDIOC_GETBOOTSTATUS:
574 return put_user(0, p);
575 case WDIOC_KEEPALIVE:
576 octeon_wdt_ping();
577 return 0;
578 case WDIOC_SETTIMEOUT:
579 if (get_user(new_heartbeat, p))
580 return -EFAULT;
581 if (octeon_wdt_set_heartbeat(new_heartbeat))
582 return -EINVAL;
583 /* Fall through. */
584 case WDIOC_GETTIMEOUT:
585 return put_user(heartbeat, p);
586 default:
587 return -ENOTTY;
588 }
589}
590
591/**
592 * octeon_wdt_open:
593 * @inode: inode of device
594 * @file: file handle to device
595 *
596 * The watchdog device has been opened. The watchdog device is single
597 * open and on opening we do a ping to reset the counters.
598 */
599
600static int octeon_wdt_open(struct inode *inode, struct file *file)
601{
602 if (test_and_set_bit(0, &octeon_wdt_is_open))
603 return -EBUSY;
604 /*
605 * Activate
606 */
607 octeon_wdt_ping();
608 do_coundown = 1;
609 return nonseekable_open(inode, file);
610}
611
612/**
613 * octeon_wdt_release:
614 * @inode: inode to board
615 * @file: file handle to board
616 *
617 * The watchdog has a configurable API. There is a religious dispute
618 * between people who want their watchdog to be able to shut down and
619 * those who want to be sure if the watchdog manager dies the machine
620 * reboots. In the former case we disable the counters, in the latter
621 * case you have to open it again very soon.
622 */
623
624static int octeon_wdt_release(struct inode *inode, struct file *file)
625{
626 if (expect_close) {
627 do_coundown = 0;
628 octeon_wdt_ping();
629 } else {
630 pr_crit("octeon_wdt: WDT device closed unexpectedly. WDT will not stop!\n");
631 }
632 clear_bit(0, &octeon_wdt_is_open);
633 expect_close = 0;
634 return 0;
635}
636
637static const struct file_operations octeon_wdt_fops = {
638 .owner = THIS_MODULE,
639 .llseek = no_llseek,
640 .write = octeon_wdt_write,
641 .unlocked_ioctl = octeon_wdt_ioctl,
642 .open = octeon_wdt_open,
643 .release = octeon_wdt_release,
644};
645
646static struct miscdevice octeon_wdt_miscdev = {
647 .minor = WATCHDOG_MINOR,
648 .name = "watchdog",
649 .fops = &octeon_wdt_fops,
650};
651
652static struct notifier_block octeon_wdt_cpu_notifier = {
653 .notifier_call = octeon_wdt_cpu_callback,
654};
655
656
657/**
658 * Module/ driver initialization.
659 *
660 * Returns Zero on success
661 */
662static int __init octeon_wdt_init(void)
663{
664 int i;
665 int ret;
666 int cpu;
667 u64 *ptr;
668
669 /*
670 * Watchdog time expiration length = The 16 bits of LEN
671 * represent the most significant bits of a 24 bit decrementer
672 * that decrements every 256 cycles.
673 *
674 * Try for a timeout of 5 sec, if that fails a smaller number
675 * of even seconds,
676 */
677 max_timeout_sec = 6;
678 do {
679 max_timeout_sec--;
680 timeout_cnt = ((octeon_get_io_clock_rate() >> 8) * max_timeout_sec) >> 8;
681 } while (timeout_cnt > 65535);
682
683 BUG_ON(timeout_cnt == 0);
684
685 octeon_wdt_calc_parameters(heartbeat);
686
687 pr_info("octeon_wdt: Initial granularity %d Sec.\n", timeout_sec);
688
689 ret = misc_register(&octeon_wdt_miscdev);
690 if (ret) {
691 pr_err("octeon_wdt: cannot register miscdev on minor=%d (err=%d)\n",
692 WATCHDOG_MINOR, ret);
693 goto out;
694 }
695
696 /* Build the NMI handler ... */
697 octeon_wdt_build_stage1();
698
699 /* ... and install it. */
700 ptr = (u64 *) nmi_stage1_insns;
701 for (i = 0; i < 16; i++) {
702 cvmx_write_csr(CVMX_MIO_BOOT_LOC_ADR, i * 8);
703 cvmx_write_csr(CVMX_MIO_BOOT_LOC_DAT, ptr[i]);
704 }
705 cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0x81fc0000);
706
707 cpumask_clear(&irq_enabled_cpus);
708
709 for_each_online_cpu(cpu)
710 octeon_wdt_setup_interrupt(cpu);
711
712 register_hotcpu_notifier(&octeon_wdt_cpu_notifier);
713out:
714 return ret;
715}
716
717/**
718 * Module / driver shutdown
719 */
720static void __exit octeon_wdt_cleanup(void)
721{
722 int cpu;
723
724 misc_deregister(&octeon_wdt_miscdev);
725
726 unregister_hotcpu_notifier(&octeon_wdt_cpu_notifier);
727
728 for_each_online_cpu(cpu) {
729 int core = cpu2core(cpu);
730 /* Disable the watchdog */
731 cvmx_write_csr(CVMX_CIU_WDOGX(core), 0);
732 /* Free the interrupt handler */
733 free_irq(OCTEON_IRQ_WDOG0 + core, octeon_wdt_poke_irq);
734 }
735 /*
736 * Disable the boot-bus memory, the code it points to is soon
737 * to go missing.
738 */
739 cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
740}
741
742MODULE_LICENSE("GPL");
743MODULE_AUTHOR("Cavium Networks <support@caviumnetworks.com>");
744MODULE_DESCRIPTION("Cavium Networks Octeon Watchdog driver.");
745module_init(octeon_wdt_init);
746module_exit(octeon_wdt_cleanup);
1/*
2 * Octeon Watchdog driver
3 *
4 * Copyright (C) 2007-2017 Cavium, Inc.
5 *
6 * Converted to use WATCHDOG_CORE by Aaro Koskinen <aaro.koskinen@iki.fi>.
7 *
8 * Some parts derived from wdt.c
9 *
10 * (c) Copyright 1996-1997 Alan Cox <alan@lxorguk.ukuu.org.uk>,
11 * All Rights Reserved.
12 *
13 * This program is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU General Public License
15 * as published by the Free Software Foundation; either version
16 * 2 of the License, or (at your option) any later version.
17 *
18 * Neither Alan Cox nor CymruNet Ltd. admit liability nor provide
19 * warranty for any of this software. This material is provided
20 * "AS-IS" and at no charge.
21 *
22 * (c) Copyright 1995 Alan Cox <alan@lxorguk.ukuu.org.uk>
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file "COPYING" in the main directory of this archive
26 * for more details.
27 *
28 *
29 * The OCTEON watchdog has a maximum timeout of 2^32 * io_clock.
30 * For most systems this is less than 10 seconds, so to allow for
31 * software to request longer watchdog heartbeats, we maintain software
32 * counters to count multiples of the base rate. If the system locks
33 * up in such a manner that we can not run the software counters, the
34 * only result is a watchdog reset sooner than was requested. But
35 * that is OK, because in this case userspace would likely not be able
36 * to do anything anyhow.
37 *
38 * The hardware watchdog interval we call the period. The OCTEON
39 * watchdog goes through several stages, after the first period an
40 * irq is asserted, then if it is not reset, after the next period NMI
41 * is asserted, then after an additional period a chip wide soft reset.
42 * So for the software counters, we reset watchdog after each period
43 * and decrement the counter. But for the last two periods we need to
44 * let the watchdog progress to the NMI stage so we disable the irq
45 * and let it proceed. Once in the NMI, we print the register state
46 * to the serial port and then wait for the reset.
47 *
48 * A watchdog is maintained for each CPU in the system, that way if
49 * one CPU suffers a lockup, we also get a register dump and reset.
50 * The userspace ping resets the watchdog on all CPUs.
51 *
52 * Before userspace opens the watchdog device, we still run the
53 * watchdogs to catch any lockups that may be kernel related.
54 *
55 */
56
57#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
58
59#include <linux/interrupt.h>
60#include <linux/watchdog.h>
61#include <linux/cpumask.h>
62#include <linux/module.h>
63#include <linux/delay.h>
64#include <linux/cpu.h>
65#include <linux/irq.h>
66
67#include <asm/mipsregs.h>
68#include <asm/uasm.h>
69
70#include <asm/octeon/octeon.h>
71#include <asm/octeon/cvmx-boot-vector.h>
72#include <asm/octeon/cvmx-ciu2-defs.h>
73#include <asm/octeon/cvmx-rst-defs.h>
74
75/* Watchdog interrupt major block number (8 MSBs of intsn) */
76#define WD_BLOCK_NUMBER 0x01
77
78static int divisor;
79
80/* The count needed to achieve timeout_sec. */
81static unsigned int timeout_cnt;
82
83/* The maximum period supported. */
84static unsigned int max_timeout_sec;
85
86/* The current period. */
87static unsigned int timeout_sec;
88
89/* Set to non-zero when userspace countdown mode active */
90static bool do_countdown;
91static unsigned int countdown_reset;
92static unsigned int per_cpu_countdown[NR_CPUS];
93
94static cpumask_t irq_enabled_cpus;
95
96#define WD_TIMO 60 /* Default heartbeat = 60 seconds */
97
98#define CVMX_GSERX_SCRATCH(offset) (CVMX_ADD_IO_SEG(0x0001180090000020ull) + ((offset) & 15) * 0x1000000ull)
99
100static int heartbeat = WD_TIMO;
101module_param(heartbeat, int, 0444);
102MODULE_PARM_DESC(heartbeat,
103 "Watchdog heartbeat in seconds. (0 < heartbeat, default="
104 __MODULE_STRING(WD_TIMO) ")");
105
106static bool nowayout = WATCHDOG_NOWAYOUT;
107module_param(nowayout, bool, 0444);
108MODULE_PARM_DESC(nowayout,
109 "Watchdog cannot be stopped once started (default="
110 __MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
111
112static int disable;
113module_param(disable, int, 0444);
114MODULE_PARM_DESC(disable,
115 "Disable the watchdog entirely (default=0)");
116
117static struct cvmx_boot_vector_element *octeon_wdt_bootvector;
118
119void octeon_wdt_nmi_stage2(void);
120
121static int cpu2core(int cpu)
122{
123#ifdef CONFIG_SMP
124 return cpu_logical_map(cpu) & 0x3f;
125#else
126 return cvmx_get_core_num();
127#endif
128}
129
130/**
131 * Poke the watchdog when an interrupt is received
132 *
133 * @cpl:
134 * @dev_id:
135 *
136 * Returns
137 */
138static irqreturn_t octeon_wdt_poke_irq(int cpl, void *dev_id)
139{
140 int cpu = raw_smp_processor_id();
141 unsigned int core = cpu2core(cpu);
142 int node = cpu_to_node(cpu);
143
144 if (do_countdown) {
145 if (per_cpu_countdown[cpu] > 0) {
146 /* We're alive, poke the watchdog */
147 cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
148 per_cpu_countdown[cpu]--;
149 } else {
150 /* Bad news, you are about to reboot. */
151 disable_irq_nosync(cpl);
152 cpumask_clear_cpu(cpu, &irq_enabled_cpus);
153 }
154 } else {
155 /* Not open, just ping away... */
156 cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
157 }
158 return IRQ_HANDLED;
159}
160
161/* From setup.c */
162extern int prom_putchar(char c);
163
164/**
165 * Write a string to the uart
166 *
167 * @str: String to write
168 */
169static void octeon_wdt_write_string(const char *str)
170{
171 /* Just loop writing one byte at a time */
172 while (*str)
173 prom_putchar(*str++);
174}
175
176/**
177 * Write a hex number out of the uart
178 *
179 * @value: Number to display
180 * @digits: Number of digits to print (1 to 16)
181 */
182static void octeon_wdt_write_hex(u64 value, int digits)
183{
184 int d;
185 int v;
186
187 for (d = 0; d < digits; d++) {
188 v = (value >> ((digits - d - 1) * 4)) & 0xf;
189 if (v >= 10)
190 prom_putchar('a' + v - 10);
191 else
192 prom_putchar('0' + v);
193 }
194}
195
196static const char reg_name[][3] = {
197 "$0", "at", "v0", "v1", "a0", "a1", "a2", "a3",
198 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
199 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
200 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
201};
202
203/**
204 * NMI stage 3 handler. NMIs are handled in the following manner:
205 * 1) The first NMI handler enables CVMSEG and transfers from
206 * the bootbus region into normal memory. It is careful to not
207 * destroy any registers.
208 * 2) The second stage handler uses CVMSEG to save the registers
209 * and create a stack for C code. It then calls the third level
210 * handler with one argument, a pointer to the register values.
211 * 3) The third, and final, level handler is the following C
212 * function that prints out some useful infomration.
213 *
214 * @reg: Pointer to register state before the NMI
215 */
216void octeon_wdt_nmi_stage3(u64 reg[32])
217{
218 u64 i;
219
220 unsigned int coreid = cvmx_get_core_num();
221 /*
222 * Save status and cause early to get them before any changes
223 * might happen.
224 */
225 u64 cp0_cause = read_c0_cause();
226 u64 cp0_status = read_c0_status();
227 u64 cp0_error_epc = read_c0_errorepc();
228 u64 cp0_epc = read_c0_epc();
229
230 /* Delay so output from all cores output is not jumbled together. */
231 udelay(85000 * coreid);
232
233 octeon_wdt_write_string("\r\n*** NMI Watchdog interrupt on Core 0x");
234 octeon_wdt_write_hex(coreid, 2);
235 octeon_wdt_write_string(" ***\r\n");
236 for (i = 0; i < 32; i++) {
237 octeon_wdt_write_string("\t");
238 octeon_wdt_write_string(reg_name[i]);
239 octeon_wdt_write_string("\t0x");
240 octeon_wdt_write_hex(reg[i], 16);
241 if (i & 1)
242 octeon_wdt_write_string("\r\n");
243 }
244 octeon_wdt_write_string("\terr_epc\t0x");
245 octeon_wdt_write_hex(cp0_error_epc, 16);
246
247 octeon_wdt_write_string("\tepc\t0x");
248 octeon_wdt_write_hex(cp0_epc, 16);
249 octeon_wdt_write_string("\r\n");
250
251 octeon_wdt_write_string("\tstatus\t0x");
252 octeon_wdt_write_hex(cp0_status, 16);
253 octeon_wdt_write_string("\tcause\t0x");
254 octeon_wdt_write_hex(cp0_cause, 16);
255 octeon_wdt_write_string("\r\n");
256
257 /* The CIU register is different for each Octeon model. */
258 if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
259 octeon_wdt_write_string("\tsrc_wd\t0x");
260 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_SRC_PPX_IP2_WDOG(coreid)), 16);
261 octeon_wdt_write_string("\ten_wd\t0x");
262 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_EN_PPX_IP2_WDOG(coreid)), 16);
263 octeon_wdt_write_string("\r\n");
264 octeon_wdt_write_string("\tsrc_rml\t0x");
265 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_SRC_PPX_IP2_RML(coreid)), 16);
266 octeon_wdt_write_string("\ten_rml\t0x");
267 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_EN_PPX_IP2_RML(coreid)), 16);
268 octeon_wdt_write_string("\r\n");
269 octeon_wdt_write_string("\tsum\t0x");
270 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_SUM_PPX_IP2(coreid)), 16);
271 octeon_wdt_write_string("\r\n");
272 } else if (!octeon_has_feature(OCTEON_FEATURE_CIU3)) {
273 octeon_wdt_write_string("\tsum0\t0x");
274 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_SUM0(coreid * 2)), 16);
275 octeon_wdt_write_string("\ten0\t0x");
276 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)), 16);
277 octeon_wdt_write_string("\r\n");
278 }
279
280 octeon_wdt_write_string("*** Chip soft reset soon ***\r\n");
281
282 /*
283 * G-30204: We must trigger a soft reset before watchdog
284 * does an incomplete job of doing it.
285 */
286 if (OCTEON_IS_OCTEON3() && !OCTEON_IS_MODEL(OCTEON_CN70XX)) {
287 u64 scr;
288 unsigned int node = cvmx_get_node_num();
289 unsigned int lcore = cvmx_get_local_core_num();
290 union cvmx_ciu_wdogx ciu_wdog;
291
292 /*
293 * Wait for other cores to print out information, but
294 * not too long. Do the soft reset before watchdog
295 * can trigger it.
296 */
297 do {
298 ciu_wdog.u64 = cvmx_read_csr_node(node, CVMX_CIU_WDOGX(lcore));
299 } while (ciu_wdog.s.cnt > 0x10000);
300
301 scr = cvmx_read_csr_node(0, CVMX_GSERX_SCRATCH(0));
302 scr |= 1 << 11; /* Indicate watchdog in bit 11 */
303 cvmx_write_csr_node(0, CVMX_GSERX_SCRATCH(0), scr);
304 cvmx_write_csr_node(0, CVMX_RST_SOFT_RST, 1);
305 }
306}
307
308static int octeon_wdt_cpu_to_irq(int cpu)
309{
310 unsigned int coreid;
311 int node;
312 int irq;
313
314 coreid = cpu2core(cpu);
315 node = cpu_to_node(cpu);
316
317 if (octeon_has_feature(OCTEON_FEATURE_CIU3)) {
318 struct irq_domain *domain;
319 int hwirq;
320
321 domain = octeon_irq_get_block_domain(node,
322 WD_BLOCK_NUMBER);
323 hwirq = WD_BLOCK_NUMBER << 12 | 0x200 | coreid;
324 irq = irq_find_mapping(domain, hwirq);
325 } else {
326 irq = OCTEON_IRQ_WDOG0 + coreid;
327 }
328 return irq;
329}
330
331static int octeon_wdt_cpu_pre_down(unsigned int cpu)
332{
333 unsigned int core;
334 int node;
335 union cvmx_ciu_wdogx ciu_wdog;
336
337 core = cpu2core(cpu);
338
339 node = cpu_to_node(cpu);
340
341 /* Poke the watchdog to clear out its state */
342 cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
343
344 /* Disable the hardware. */
345 ciu_wdog.u64 = 0;
346 cvmx_write_csr_node(node, CVMX_CIU_WDOGX(core), ciu_wdog.u64);
347
348 free_irq(octeon_wdt_cpu_to_irq(cpu), octeon_wdt_poke_irq);
349 return 0;
350}
351
352static int octeon_wdt_cpu_online(unsigned int cpu)
353{
354 unsigned int core;
355 unsigned int irq;
356 union cvmx_ciu_wdogx ciu_wdog;
357 int node;
358 struct irq_domain *domain;
359 int hwirq;
360
361 core = cpu2core(cpu);
362 node = cpu_to_node(cpu);
363
364 octeon_wdt_bootvector[core].target_ptr = (u64)octeon_wdt_nmi_stage2;
365
366 /* Disable it before doing anything with the interrupts. */
367 ciu_wdog.u64 = 0;
368 cvmx_write_csr_node(node, CVMX_CIU_WDOGX(core), ciu_wdog.u64);
369
370 per_cpu_countdown[cpu] = countdown_reset;
371
372 if (octeon_has_feature(OCTEON_FEATURE_CIU3)) {
373 /* Must get the domain for the watchdog block */
374 domain = octeon_irq_get_block_domain(node, WD_BLOCK_NUMBER);
375
376 /* Get a irq for the wd intsn (hardware interrupt) */
377 hwirq = WD_BLOCK_NUMBER << 12 | 0x200 | core;
378 irq = irq_create_mapping(domain, hwirq);
379 irqd_set_trigger_type(irq_get_irq_data(irq),
380 IRQ_TYPE_EDGE_RISING);
381 } else
382 irq = OCTEON_IRQ_WDOG0 + core;
383
384 if (request_irq(irq, octeon_wdt_poke_irq,
385 IRQF_NO_THREAD, "octeon_wdt", octeon_wdt_poke_irq))
386 panic("octeon_wdt: Couldn't obtain irq %d", irq);
387
388 /* Must set the irq affinity here */
389 if (octeon_has_feature(OCTEON_FEATURE_CIU3)) {
390 cpumask_t mask;
391
392 cpumask_clear(&mask);
393 cpumask_set_cpu(cpu, &mask);
394 irq_set_affinity(irq, &mask);
395 }
396
397 cpumask_set_cpu(cpu, &irq_enabled_cpus);
398
399 /* Poke the watchdog to clear out its state */
400 cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
401
402 /* Finally enable the watchdog now that all handlers are installed */
403 ciu_wdog.u64 = 0;
404 ciu_wdog.s.len = timeout_cnt;
405 ciu_wdog.s.mode = 3; /* 3 = Interrupt + NMI + Soft-Reset */
406 cvmx_write_csr_node(node, CVMX_CIU_WDOGX(core), ciu_wdog.u64);
407
408 return 0;
409}
410
411static int octeon_wdt_ping(struct watchdog_device __always_unused *wdog)
412{
413 int cpu;
414 int coreid;
415 int node;
416
417 if (disable)
418 return 0;
419
420 for_each_online_cpu(cpu) {
421 coreid = cpu2core(cpu);
422 node = cpu_to_node(cpu);
423 cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(coreid), 1);
424 per_cpu_countdown[cpu] = countdown_reset;
425 if ((countdown_reset || !do_countdown) &&
426 !cpumask_test_cpu(cpu, &irq_enabled_cpus)) {
427 /* We have to enable the irq */
428 enable_irq(octeon_wdt_cpu_to_irq(cpu));
429 cpumask_set_cpu(cpu, &irq_enabled_cpus);
430 }
431 }
432 return 0;
433}
434
435static void octeon_wdt_calc_parameters(int t)
436{
437 unsigned int periods;
438
439 timeout_sec = max_timeout_sec;
440
441
442 /*
443 * Find the largest interrupt period, that can evenly divide
444 * the requested heartbeat time.
445 */
446 while ((t % timeout_sec) != 0)
447 timeout_sec--;
448
449 periods = t / timeout_sec;
450
451 /*
452 * The last two periods are after the irq is disabled, and
453 * then to the nmi, so we subtract them off.
454 */
455
456 countdown_reset = periods > 2 ? periods - 2 : 0;
457 heartbeat = t;
458 timeout_cnt = ((octeon_get_io_clock_rate() / divisor) * timeout_sec) >> 8;
459}
460
461static int octeon_wdt_set_timeout(struct watchdog_device *wdog,
462 unsigned int t)
463{
464 int cpu;
465 int coreid;
466 union cvmx_ciu_wdogx ciu_wdog;
467 int node;
468
469 if (t <= 0)
470 return -1;
471
472 octeon_wdt_calc_parameters(t);
473
474 if (disable)
475 return 0;
476
477 for_each_online_cpu(cpu) {
478 coreid = cpu2core(cpu);
479 node = cpu_to_node(cpu);
480 cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(coreid), 1);
481 ciu_wdog.u64 = 0;
482 ciu_wdog.s.len = timeout_cnt;
483 ciu_wdog.s.mode = 3; /* 3 = Interrupt + NMI + Soft-Reset */
484 cvmx_write_csr_node(node, CVMX_CIU_WDOGX(coreid), ciu_wdog.u64);
485 cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(coreid), 1);
486 }
487 octeon_wdt_ping(wdog); /* Get the irqs back on. */
488 return 0;
489}
490
491static int octeon_wdt_start(struct watchdog_device *wdog)
492{
493 octeon_wdt_ping(wdog);
494 do_countdown = 1;
495 return 0;
496}
497
498static int octeon_wdt_stop(struct watchdog_device *wdog)
499{
500 do_countdown = 0;
501 octeon_wdt_ping(wdog);
502 return 0;
503}
504
505static const struct watchdog_info octeon_wdt_info = {
506 .options = WDIOF_SETTIMEOUT | WDIOF_MAGICCLOSE | WDIOF_KEEPALIVEPING,
507 .identity = "OCTEON",
508};
509
510static const struct watchdog_ops octeon_wdt_ops = {
511 .owner = THIS_MODULE,
512 .start = octeon_wdt_start,
513 .stop = octeon_wdt_stop,
514 .ping = octeon_wdt_ping,
515 .set_timeout = octeon_wdt_set_timeout,
516};
517
518static struct watchdog_device octeon_wdt = {
519 .info = &octeon_wdt_info,
520 .ops = &octeon_wdt_ops,
521};
522
523static enum cpuhp_state octeon_wdt_online;
524/**
525 * Module/ driver initialization.
526 *
527 * Returns Zero on success
528 */
529static int __init octeon_wdt_init(void)
530{
531 int ret;
532
533 octeon_wdt_bootvector = cvmx_boot_vector_get();
534 if (!octeon_wdt_bootvector) {
535 pr_err("Error: Cannot allocate boot vector.\n");
536 return -ENOMEM;
537 }
538
539 if (OCTEON_IS_MODEL(OCTEON_CN68XX))
540 divisor = 0x200;
541 else if (OCTEON_IS_MODEL(OCTEON_CN78XX))
542 divisor = 0x400;
543 else
544 divisor = 0x100;
545
546 /*
547 * Watchdog time expiration length = The 16 bits of LEN
548 * represent the most significant bits of a 24 bit decrementer
549 * that decrements every divisor cycle.
550 *
551 * Try for a timeout of 5 sec, if that fails a smaller number
552 * of even seconds,
553 */
554 max_timeout_sec = 6;
555 do {
556 max_timeout_sec--;
557 timeout_cnt = ((octeon_get_io_clock_rate() / divisor) * max_timeout_sec) >> 8;
558 } while (timeout_cnt > 65535);
559
560 BUG_ON(timeout_cnt == 0);
561
562 octeon_wdt_calc_parameters(heartbeat);
563
564 pr_info("Initial granularity %d Sec\n", timeout_sec);
565
566 octeon_wdt.timeout = timeout_sec;
567 octeon_wdt.max_timeout = UINT_MAX;
568
569 watchdog_set_nowayout(&octeon_wdt, nowayout);
570
571 ret = watchdog_register_device(&octeon_wdt);
572 if (ret) {
573 pr_err("watchdog_register_device() failed: %d\n", ret);
574 return ret;
575 }
576
577 if (disable) {
578 pr_notice("disabled\n");
579 return 0;
580 }
581
582 cpumask_clear(&irq_enabled_cpus);
583
584 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "watchdog/octeon:online",
585 octeon_wdt_cpu_online, octeon_wdt_cpu_pre_down);
586 if (ret < 0)
587 goto err;
588 octeon_wdt_online = ret;
589 return 0;
590err:
591 cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
592 watchdog_unregister_device(&octeon_wdt);
593 return ret;
594}
595
596/**
597 * Module / driver shutdown
598 */
599static void __exit octeon_wdt_cleanup(void)
600{
601 watchdog_unregister_device(&octeon_wdt);
602
603 if (disable)
604 return;
605
606 cpuhp_remove_state(octeon_wdt_online);
607
608 /*
609 * Disable the boot-bus memory, the code it points to is soon
610 * to go missing.
611 */
612 cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
613}
614
615MODULE_LICENSE("GPL");
616MODULE_AUTHOR("Cavium Inc. <support@cavium.com>");
617MODULE_DESCRIPTION("Cavium Inc. OCTEON Watchdog driver.");
618module_init(octeon_wdt_init);
619module_exit(octeon_wdt_cleanup);