Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Feb 10-13, 2025
Register
Loading...
v3.1
 
  1/*
  2 * Tty buffer allocation management
  3 */
  4
  5#include <linux/types.h>
  6#include <linux/errno.h>
  7#include <linux/tty.h>
  8#include <linux/tty_driver.h>
  9#include <linux/tty_flip.h>
 10#include <linux/timer.h>
 11#include <linux/string.h>
 12#include <linux/slab.h>
 13#include <linux/sched.h>
 14#include <linux/init.h>
 15#include <linux/wait.h>
 16#include <linux/bitops.h>
 17#include <linux/delay.h>
 18#include <linux/module.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 19
 20/**
 21 *	tty_buffer_free_all		-	free buffers used by a tty
 22 *	@tty: tty to free from
 23 *
 24 *	Remove all the buffers pending on a tty whether queued with data
 25 *	or in the free ring. Must be called when the tty is no longer in use
 26 *
 27 *	Locking: none
 28 */
 29
 30void tty_buffer_free_all(struct tty_struct *tty)
 31{
 32	struct tty_buffer *thead;
 33	while ((thead = tty->buf.head) != NULL) {
 34		tty->buf.head = thead->next;
 35		kfree(thead);
 36	}
 37	while ((thead = tty->buf.free) != NULL) {
 38		tty->buf.free = thead->next;
 39		kfree(thead);
 40	}
 41	tty->buf.tail = NULL;
 42	tty->buf.memory_used = 0;
 
 
 
 
 
 
 
 43}
 44
 45/**
 46 *	tty_buffer_alloc	-	allocate a tty buffer
 47 *	@tty: tty device
 48 *	@size: desired size (characters)
 49 *
 50 *	Allocate a new tty buffer to hold the desired number of characters.
 
 
 51 *	Return NULL if out of memory or the allocation would exceed the
 52 *	per device queue
 53 *
 54 *	Locking: Caller must hold tty->buf.lock
 55 */
 56
 57static struct tty_buffer *tty_buffer_alloc(struct tty_struct *tty, size_t size)
 58{
 
 59	struct tty_buffer *p;
 60
 61	if (tty->buf.memory_used + size > 65536)
 
 
 
 
 
 
 
 
 
 
 
 
 
 62		return NULL;
 63	p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC);
 64	if (p == NULL)
 65		return NULL;
 66	p->used = 0;
 67	p->size = size;
 68	p->next = NULL;
 69	p->commit = 0;
 70	p->read = 0;
 71	p->char_buf_ptr = (char *)(p->data);
 72	p->flag_buf_ptr = (unsigned char *)p->char_buf_ptr + size;
 73	tty->buf.memory_used += size;
 74	return p;
 75}
 76
 77/**
 78 *	tty_buffer_free		-	free a tty buffer
 79 *	@tty: tty owning the buffer
 80 *	@b: the buffer to free
 81 *
 82 *	Free a tty buffer, or add it to the free list according to our
 83 *	internal strategy
 84 *
 85 *	Locking: Caller must hold tty->buf.lock
 86 */
 87
 88static void tty_buffer_free(struct tty_struct *tty, struct tty_buffer *b)
 89{
 
 
 90	/* Dumb strategy for now - should keep some stats */
 91	tty->buf.memory_used -= b->size;
 92	WARN_ON(tty->buf.memory_used < 0);
 93
 94	if (b->size >= 512)
 95		kfree(b);
 96	else {
 97		b->next = tty->buf.free;
 98		tty->buf.free = b;
 99	}
100}
101
102/**
103 *	__tty_buffer_flush		-	flush full tty buffers
104 *	@tty: tty to flush
105 *
106 *	flush all the buffers containing receive data. Caller must
107 *	hold the buffer lock and must have ensured no parallel flush to
108 *	ldisc is running.
109 *
110 *	Locking: Caller must hold tty->buf.lock
111 */
112
113static void __tty_buffer_flush(struct tty_struct *tty)
114{
115	struct tty_buffer *thead;
116
117	while ((thead = tty->buf.head) != NULL) {
118		tty->buf.head = thead->next;
119		tty_buffer_free(tty, thead);
120	}
121	tty->buf.tail = NULL;
122}
123
124/**
125 *	tty_buffer_flush		-	flush full tty buffers
126 *	@tty: tty to flush
 
127 *
128 *	flush all the buffers containing receive data. If the buffer is
129 *	being processed by flush_to_ldisc then we defer the processing
130 *	to that function
131 *
132 *	Locking: none
 
133 */
134
135void tty_buffer_flush(struct tty_struct *tty)
136{
137	unsigned long flags;
138	spin_lock_irqsave(&tty->buf.lock, flags);
 
139
140	/* If the data is being pushed to the tty layer then we can't
141	   process it here. Instead set a flag and the flush_to_ldisc
142	   path will process the flush request before it exits */
143	if (test_bit(TTY_FLUSHING, &tty->flags)) {
144		set_bit(TTY_FLUSHPENDING, &tty->flags);
145		spin_unlock_irqrestore(&tty->buf.lock, flags);
146		wait_event(tty->read_wait,
147				test_bit(TTY_FLUSHPENDING, &tty->flags) == 0);
148		return;
149	} else
150		__tty_buffer_flush(tty);
151	spin_unlock_irqrestore(&tty->buf.lock, flags);
152}
153
154/**
155 *	tty_buffer_find		-	find a free tty buffer
156 *	@tty: tty owning the buffer
157 *	@size: characters wanted
158 *
159 *	Locate an existing suitable tty buffer or if we are lacking one then
160 *	allocate a new one. We round our buffers off in 256 character chunks
161 *	to get better allocation behaviour.
162 *
163 *	Locking: Caller must hold tty->buf.lock
164 */
165
166static struct tty_buffer *tty_buffer_find(struct tty_struct *tty, size_t size)
167{
168	struct tty_buffer **tbh = &tty->buf.free;
169	while ((*tbh) != NULL) {
170		struct tty_buffer *t = *tbh;
171		if (t->size >= size) {
172			*tbh = t->next;
173			t->next = NULL;
174			t->used = 0;
175			t->commit = 0;
176			t->read = 0;
177			tty->buf.memory_used += t->size;
178			return t;
179		}
180		tbh = &((*tbh)->next);
181	}
182	/* Round the buffer size out */
183	size = (size + 0xFF) & ~0xFF;
184	return tty_buffer_alloc(tty, size);
185	/* Should possibly check if this fails for the largest buffer we
186	   have queued and recycle that ? */
 
 
187}
188
189/**
190 *	tty_buffer_request_room		-	grow tty buffer if needed
191 *	@tty: tty structure
192 *	@size: size desired
 
193 *
194 *	Make at least size bytes of linear space available for the tty
195 *	buffer. If we fail return the size we managed to find.
196 *
197 *	Locking: Takes tty->buf.lock
 
 
198 */
199int tty_buffer_request_room(struct tty_struct *tty, size_t size)
 
200{
 
201	struct tty_buffer *b, *n;
202	int left;
203	unsigned long flags;
204
205	spin_lock_irqsave(&tty->buf.lock, flags);
206
207	/* OPTIMISATION: We could keep a per tty "zero" sized buffer to
208	   remove this conditional if its worth it. This would be invisible
209	   to the callers */
210	if ((b = tty->buf.tail) != NULL)
211		left = b->size - b->used;
212	else
213		left = 0;
214
215	if (left < size) {
 
216		/* This is the slow path - looking for new buffers to use */
217		if ((n = tty_buffer_find(tty, size)) != NULL) {
218			if (b != NULL) {
219				b->next = n;
220				b->commit = b->used;
221			} else
222				tty->buf.head = n;
223			tty->buf.tail = n;
224		} else
 
 
 
 
 
 
 
 
225			size = left;
226	}
227
228	spin_unlock_irqrestore(&tty->buf.lock, flags);
229	return size;
230}
 
 
 
 
 
231EXPORT_SYMBOL_GPL(tty_buffer_request_room);
232
233/**
234 *	tty_insert_flip_string_fixed_flag - Add characters to the tty buffer
235 *	@tty: tty structure
236 *	@chars: characters
237 *	@flag: flag value for each character
238 *	@size: size
239 *
240 *	Queue a series of bytes to the tty buffering. All the characters
241 *	passed are marked with the supplied flag. Returns the number added.
242 *
243 *	Locking: Called functions may take tty->buf.lock
244 */
245
246int tty_insert_flip_string_fixed_flag(struct tty_struct *tty,
247		const unsigned char *chars, char flag, size_t size)
248{
249	int copied = 0;
250	do {
251		int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE);
252		int space = tty_buffer_request_room(tty, goal);
253		struct tty_buffer *tb = tty->buf.tail;
254		/* If there is no space then tb may be NULL */
255		if (unlikely(space == 0))
256			break;
257		memcpy(tb->char_buf_ptr + tb->used, chars, space);
258		memset(tb->flag_buf_ptr + tb->used, flag, space);
 
259		tb->used += space;
260		copied += space;
261		chars += space;
262		/* There is a small chance that we need to split the data over
263		   several buffers. If this is the case we must loop */
264	} while (unlikely(size > copied));
265	return copied;
266}
267EXPORT_SYMBOL(tty_insert_flip_string_fixed_flag);
268
269/**
270 *	tty_insert_flip_string_flags	-	Add characters to the tty buffer
271 *	@tty: tty structure
272 *	@chars: characters
273 *	@flags: flag bytes
274 *	@size: size
275 *
276 *	Queue a series of bytes to the tty buffering. For each character
277 *	the flags array indicates the status of the character. Returns the
278 *	number added.
279 *
280 *	Locking: Called functions may take tty->buf.lock
281 */
282
283int tty_insert_flip_string_flags(struct tty_struct *tty,
284		const unsigned char *chars, const char *flags, size_t size)
285{
286	int copied = 0;
287	do {
288		int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE);
289		int space = tty_buffer_request_room(tty, goal);
290		struct tty_buffer *tb = tty->buf.tail;
291		/* If there is no space then tb may be NULL */
292		if (unlikely(space == 0))
293			break;
294		memcpy(tb->char_buf_ptr + tb->used, chars, space);
295		memcpy(tb->flag_buf_ptr + tb->used, flags, space);
296		tb->used += space;
297		copied += space;
298		chars += space;
299		flags += space;
300		/* There is a small chance that we need to split the data over
301		   several buffers. If this is the case we must loop */
302	} while (unlikely(size > copied));
303	return copied;
304}
305EXPORT_SYMBOL(tty_insert_flip_string_flags);
306
307/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
308 *	tty_schedule_flip	-	push characters to ldisc
309 *	@tty: tty to push from
310 *
311 *	Takes any pending buffers and transfers their ownership to the
312 *	ldisc side of the queue. It then schedules those characters for
313 *	processing by the line discipline.
314 *
315 *	Locking: Takes tty->buf.lock
316 */
317
318void tty_schedule_flip(struct tty_struct *tty)
319{
320	unsigned long flags;
321	spin_lock_irqsave(&tty->buf.lock, flags);
322	if (tty->buf.tail != NULL)
323		tty->buf.tail->commit = tty->buf.tail->used;
324	spin_unlock_irqrestore(&tty->buf.lock, flags);
325	schedule_work(&tty->buf.work);
 
326}
327EXPORT_SYMBOL(tty_schedule_flip);
328
329/**
330 *	tty_prepare_flip_string		-	make room for characters
331 *	@tty: tty
332 *	@chars: return pointer for character write area
333 *	@size: desired size
334 *
335 *	Prepare a block of space in the buffer for data. Returns the length
336 *	available and buffer pointer to the space which is now allocated and
337 *	accounted for as ready for normal characters. This is used for drivers
338 *	that need their own block copy routines into the buffer. There is no
339 *	guarantee the buffer is a DMA target!
340 *
341 *	Locking: May call functions taking tty->buf.lock
342 */
343
344int tty_prepare_flip_string(struct tty_struct *tty, unsigned char **chars,
345								size_t size)
346{
347	int space = tty_buffer_request_room(tty, size);
348	if (likely(space)) {
349		struct tty_buffer *tb = tty->buf.tail;
350		*chars = tb->char_buf_ptr + tb->used;
351		memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
 
352		tb->used += space;
353	}
354	return space;
355}
356EXPORT_SYMBOL_GPL(tty_prepare_flip_string);
357
358/**
359 *	tty_prepare_flip_string_flags	-	make room for characters
360 *	@tty: tty
361 *	@chars: return pointer for character write area
362 *	@flags: return pointer for status flag write area
363 *	@size: desired size
 
 
 
364 *
365 *	Prepare a block of space in the buffer for data. Returns the length
366 *	available and buffer pointer to the space which is now allocated and
367 *	accounted for as ready for characters. This is used for drivers
368 *	that need their own block copy routines into the buffer. There is no
369 *	guarantee the buffer is a DMA target!
370 *
371 *	Locking: May call functions taking tty->buf.lock
372 */
373
374int tty_prepare_flip_string_flags(struct tty_struct *tty,
375			unsigned char **chars, char **flags, size_t size)
376{
377	int space = tty_buffer_request_room(tty, size);
378	if (likely(space)) {
379		struct tty_buffer *tb = tty->buf.tail;
380		*chars = tb->char_buf_ptr + tb->used;
381		*flags = tb->flag_buf_ptr + tb->used;
382		tb->used += space;
383	}
384	return space;
385}
386EXPORT_SYMBOL_GPL(tty_prepare_flip_string_flags);
 
 
 
 
 
 
387
 
 
388
 
 
389
390/**
391 *	flush_to_ldisc
392 *	@work: tty structure passed from work queue.
393 *
394 *	This routine is called out of the software interrupt to flush data
395 *	from the buffer chain to the line discipline.
396 *
397 *	Locking: holds tty->buf.lock to guard buffer list. Drops the lock
398 *	while invoking the line discipline receive_buf method. The
399 *	receive_buf method is single threaded for each tty instance.
 
400 */
401
402static void flush_to_ldisc(struct work_struct *work)
403{
404	struct tty_struct *tty =
405		container_of(work, struct tty_struct, buf.work);
406	unsigned long 	flags;
407	struct tty_ldisc *disc;
408
409	disc = tty_ldisc_ref(tty);
410	if (disc == NULL)	/*  !TTY_LDISC */
411		return;
412
413	spin_lock_irqsave(&tty->buf.lock, flags);
414
415	if (!test_and_set_bit(TTY_FLUSHING, &tty->flags)) {
416		struct tty_buffer *head;
417		while ((head = tty->buf.head) != NULL) {
418			int count;
419			char *char_buf;
420			unsigned char *flag_buf;
421
422			count = head->commit - head->read;
423			if (!count) {
424				if (head->next == NULL)
425					break;
426				tty->buf.head = head->next;
427				tty_buffer_free(tty, head);
428				continue;
429			}
430			/* Ldisc or user is trying to flush the buffers
431			   we are feeding to the ldisc, stop feeding the
432			   line discipline as we want to empty the queue */
433			if (test_bit(TTY_FLUSHPENDING, &tty->flags))
434				break;
435			if (!tty->receive_room)
436				break;
437			if (count > tty->receive_room)
438				count = tty->receive_room;
439			char_buf = head->char_buf_ptr + head->read;
440			flag_buf = head->flag_buf_ptr + head->read;
441			head->read += count;
442			spin_unlock_irqrestore(&tty->buf.lock, flags);
443			disc->ops->receive_buf(tty, char_buf,
444							flag_buf, count);
445			spin_lock_irqsave(&tty->buf.lock, flags);
446		}
447		clear_bit(TTY_FLUSHING, &tty->flags);
448	}
449
450	/* We may have a deferred request to flush the input buffer,
451	   if so pull the chain under the lock and empty the queue */
452	if (test_bit(TTY_FLUSHPENDING, &tty->flags)) {
453		__tty_buffer_flush(tty);
454		clear_bit(TTY_FLUSHPENDING, &tty->flags);
455		wake_up(&tty->read_wait);
456	}
457	spin_unlock_irqrestore(&tty->buf.lock, flags);
458
459	tty_ldisc_deref(disc);
460}
461
462/**
463 *	tty_flush_to_ldisc
464 *	@tty: tty to push
465 *
466 *	Push the terminal flip buffers to the line discipline.
467 *
468 *	Must not be called from IRQ context.
469 */
470void tty_flush_to_ldisc(struct tty_struct *tty)
471{
472	flush_work(&tty->buf.work);
473}
474
475/**
476 *	tty_flip_buffer_push	-	terminal
477 *	@tty: tty to push
478 *
479 *	Queue a push of the terminal flip buffers to the line discipline. This
480 *	function must not be called from IRQ context if tty->low_latency is set.
481 *
482 *	In the event of the queue being busy for flipping the work will be
483 *	held off and retried later.
484 *
485 *	Locking: tty buffer lock. Driver locks in low latency mode.
486 */
487
488void tty_flip_buffer_push(struct tty_struct *tty)
489{
490	unsigned long flags;
491	spin_lock_irqsave(&tty->buf.lock, flags);
492	if (tty->buf.tail != NULL)
493		tty->buf.tail->commit = tty->buf.tail->used;
494	spin_unlock_irqrestore(&tty->buf.lock, flags);
495
496	if (tty->low_latency)
497		flush_to_ldisc(&tty->buf.work);
498	else
499		schedule_work(&tty->buf.work);
500}
501EXPORT_SYMBOL(tty_flip_buffer_push);
502
503/**
504 *	tty_buffer_init		-	prepare a tty buffer structure
505 *	@tty: tty to initialise
506 *
507 *	Set up the initial state of the buffer management for a tty device.
508 *	Must be called before the other tty buffer functions are used.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
509 *
510 *	Locking: none
 
511 */
512
513void tty_buffer_init(struct tty_struct *tty)
514{
515	spin_lock_init(&tty->buf.lock);
516	tty->buf.head = NULL;
517	tty->buf.tail = NULL;
518	tty->buf.free = NULL;
519	tty->buf.memory_used = 0;
520	INIT_WORK(&tty->buf.work, flush_to_ldisc);
521}
 
522
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Tty buffer allocation management
  4 */
  5
  6#include <linux/types.h>
  7#include <linux/errno.h>
  8#include <linux/tty.h>
  9#include <linux/tty_driver.h>
 10#include <linux/tty_flip.h>
 11#include <linux/timer.h>
 12#include <linux/string.h>
 13#include <linux/slab.h>
 14#include <linux/sched.h>
 
 15#include <linux/wait.h>
 16#include <linux/bitops.h>
 17#include <linux/delay.h>
 18#include <linux/module.h>
 19#include <linux/ratelimit.h>
 20
 21
 22#define MIN_TTYB_SIZE	256
 23#define TTYB_ALIGN_MASK	255
 24
 25/*
 26 * Byte threshold to limit memory consumption for flip buffers.
 27 * The actual memory limit is > 2x this amount.
 28 */
 29#define TTYB_DEFAULT_MEM_LIMIT	65536
 30
 31/*
 32 * We default to dicing tty buffer allocations to this many characters
 33 * in order to avoid multiple page allocations. We know the size of
 34 * tty_buffer itself but it must also be taken into account that the
 35 * the buffer is 256 byte aligned. See tty_buffer_find for the allocation
 36 * logic this must match
 37 */
 38
 39#define TTY_BUFFER_PAGE	(((PAGE_SIZE - sizeof(struct tty_buffer)) / 2) & ~0xFF)
 40
 41/**
 42 *	tty_buffer_lock_exclusive	-	gain exclusive access to buffer
 43 *	tty_buffer_unlock_exclusive	-	release exclusive access
 44 *
 45 *	@port - tty_port owning the flip buffer
 46 *
 47 *	Guarantees safe use of the line discipline's receive_buf() method by
 48 *	excluding the buffer work and any pending flush from using the flip
 49 *	buffer. Data can continue to be added concurrently to the flip buffer
 50 *	from the driver side.
 51 *
 52 *	On release, the buffer work is restarted if there is data in the
 53 *	flip buffer
 54 */
 55
 56void tty_buffer_lock_exclusive(struct tty_port *port)
 57{
 58	struct tty_bufhead *buf = &port->buf;
 59
 60	atomic_inc(&buf->priority);
 61	mutex_lock(&buf->lock);
 62}
 63EXPORT_SYMBOL_GPL(tty_buffer_lock_exclusive);
 64
 65void tty_buffer_unlock_exclusive(struct tty_port *port)
 66{
 67	struct tty_bufhead *buf = &port->buf;
 68	int restart;
 69
 70	restart = buf->head->commit != buf->head->read;
 71
 72	atomic_dec(&buf->priority);
 73	mutex_unlock(&buf->lock);
 74	if (restart)
 75		queue_work(system_unbound_wq, &buf->work);
 76}
 77EXPORT_SYMBOL_GPL(tty_buffer_unlock_exclusive);
 78
 79/**
 80 *	tty_buffer_space_avail	-	return unused buffer space
 81 *	@port - tty_port owning the flip buffer
 82 *
 83 *	Returns the # of bytes which can be written by the driver without
 84 *	reaching the buffer limit.
 85 *
 86 *	Note: this does not guarantee that memory is available to write
 87 *	the returned # of bytes (use tty_prepare_flip_string_xxx() to
 88 *	pre-allocate if memory guarantee is required).
 89 */
 90
 91int tty_buffer_space_avail(struct tty_port *port)
 92{
 93	int space = port->buf.mem_limit - atomic_read(&port->buf.mem_used);
 94	return max(space, 0);
 95}
 96EXPORT_SYMBOL_GPL(tty_buffer_space_avail);
 97
 98static void tty_buffer_reset(struct tty_buffer *p, size_t size)
 99{
100	p->used = 0;
101	p->size = size;
102	p->next = NULL;
103	p->commit = 0;
104	p->read = 0;
105	p->flags = 0;
106}
107
108/**
109 *	tty_buffer_free_all		-	free buffers used by a tty
110 *	@tty: tty to free from
111 *
112 *	Remove all the buffers pending on a tty whether queued with data
113 *	or in the free ring. Must be called when the tty is no longer in use
 
 
114 */
115
116void tty_buffer_free_all(struct tty_port *port)
117{
118	struct tty_bufhead *buf = &port->buf;
119	struct tty_buffer *p, *next;
120	struct llist_node *llist;
121
122	while ((p = buf->head) != NULL) {
123		buf->head = p->next;
124		if (p->size > 0)
125			kfree(p);
126	}
127	llist = llist_del_all(&buf->free);
128	llist_for_each_entry_safe(p, next, llist, free)
129		kfree(p);
130
131	tty_buffer_reset(&buf->sentinel, 0);
132	buf->head = &buf->sentinel;
133	buf->tail = &buf->sentinel;
134
135	atomic_set(&buf->mem_used, 0);
136}
137
138/**
139 *	tty_buffer_alloc	-	allocate a tty buffer
140 *	@tty: tty device
141 *	@size: desired size (characters)
142 *
143 *	Allocate a new tty buffer to hold the desired number of characters.
144 *	We round our buffers off in 256 character chunks to get better
145 *	allocation behaviour.
146 *	Return NULL if out of memory or the allocation would exceed the
147 *	per device queue
 
 
148 */
149
150static struct tty_buffer *tty_buffer_alloc(struct tty_port *port, size_t size)
151{
152	struct llist_node *free;
153	struct tty_buffer *p;
154
155	/* Round the buffer size out */
156	size = __ALIGN_MASK(size, TTYB_ALIGN_MASK);
157
158	if (size <= MIN_TTYB_SIZE) {
159		free = llist_del_first(&port->buf.free);
160		if (free) {
161			p = llist_entry(free, struct tty_buffer, free);
162			goto found;
163		}
164	}
165
166	/* Should possibly check if this fails for the largest buffer we
167	   have queued and recycle that ? */
168	if (atomic_read(&port->buf.mem_used) > port->buf.mem_limit)
169		return NULL;
170	p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC);
171	if (p == NULL)
172		return NULL;
173
174found:
175	tty_buffer_reset(p, size);
176	atomic_add(size, &port->buf.mem_used);
 
 
 
 
177	return p;
178}
179
180/**
181 *	tty_buffer_free		-	free a tty buffer
182 *	@tty: tty owning the buffer
183 *	@b: the buffer to free
184 *
185 *	Free a tty buffer, or add it to the free list according to our
186 *	internal strategy
 
 
187 */
188
189static void tty_buffer_free(struct tty_port *port, struct tty_buffer *b)
190{
191	struct tty_bufhead *buf = &port->buf;
192
193	/* Dumb strategy for now - should keep some stats */
194	WARN_ON(atomic_sub_return(b->size, &buf->mem_used) < 0);
 
195
196	if (b->size > MIN_TTYB_SIZE)
197		kfree(b);
198	else if (b->size > 0)
199		llist_add(&b->free, &buf->free);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
200}
201
202/**
203 *	tty_buffer_flush		-	flush full tty buffers
204 *	@tty: tty to flush
205 *	@ld:  optional ldisc ptr (must be referenced)
206 *
207 *	flush all the buffers containing receive data. If ld != NULL,
208 *	flush the ldisc input buffer.
 
209 *
210 *	Locking: takes buffer lock to ensure single-threaded flip buffer
211 *		 'consumer'
212 */
213
214void tty_buffer_flush(struct tty_struct *tty, struct tty_ldisc *ld)
215{
216	struct tty_port *port = tty->port;
217	struct tty_bufhead *buf = &port->buf;
218	struct tty_buffer *next;
219
220	atomic_inc(&buf->priority);
 
 
 
 
 
 
 
 
 
 
 
 
221
222	mutex_lock(&buf->lock);
223	/* paired w/ release in __tty_buffer_request_room; ensures there are
224	 * no pending memory accesses to the freed buffer
225	 */
226	while ((next = smp_load_acquire(&buf->head->next)) != NULL) {
227		tty_buffer_free(port, buf->head);
228		buf->head = next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
229	}
230	buf->head->read = buf->head->commit;
231
232	if (ld && ld->ops->flush_buffer)
233		ld->ops->flush_buffer(tty);
234
235	atomic_dec(&buf->priority);
236	mutex_unlock(&buf->lock);
237}
238
239/**
240 *	tty_buffer_request_room		-	grow tty buffer if needed
241 *	@tty: tty structure
242 *	@size: size desired
243 *	@flags: buffer flags if new buffer allocated (default = 0)
244 *
245 *	Make at least size bytes of linear space available for the tty
246 *	buffer. If we fail return the size we managed to find.
247 *
248 *	Will change over to a new buffer if the current buffer is encoded as
249 *	TTY_NORMAL (so has no flags buffer) and the new buffer requires
250 *	a flags buffer.
251 */
252static int __tty_buffer_request_room(struct tty_port *port, size_t size,
253				     int flags)
254{
255	struct tty_bufhead *buf = &port->buf;
256	struct tty_buffer *b, *n;
257	int left, change;
 
258
259	b = buf->tail;
260	if (b->flags & TTYB_NORMAL)
261		left = 2 * b->size - b->used;
 
 
 
 
262	else
263		left = b->size - b->used;
264
265	change = (b->flags & TTYB_NORMAL) && (~flags & TTYB_NORMAL);
266	if (change || left < size) {
267		/* This is the slow path - looking for new buffers to use */
268		n = tty_buffer_alloc(port, size);
269		if (n != NULL) {
270			n->flags = flags;
271			buf->tail = n;
272			/* paired w/ acquire in flush_to_ldisc(); ensures
273			 * flush_to_ldisc() sees buffer data.
274			 */
275			smp_store_release(&b->commit, b->used);
276			/* paired w/ acquire in flush_to_ldisc(); ensures the
277			 * latest commit value can be read before the head is
278			 * advanced to the next buffer
279			 */
280			smp_store_release(&b->next, n);
281		} else if (change)
282			size = 0;
283		else
284			size = left;
285	}
 
 
286	return size;
287}
288
289int tty_buffer_request_room(struct tty_port *port, size_t size)
290{
291	return __tty_buffer_request_room(port, size, 0);
292}
293EXPORT_SYMBOL_GPL(tty_buffer_request_room);
294
295/**
296 *	tty_insert_flip_string_fixed_flag - Add characters to the tty buffer
297 *	@port: tty port
298 *	@chars: characters
299 *	@flag: flag value for each character
300 *	@size: size
301 *
302 *	Queue a series of bytes to the tty buffering. All the characters
303 *	passed are marked with the supplied flag. Returns the number added.
 
 
304 */
305
306int tty_insert_flip_string_fixed_flag(struct tty_port *port,
307		const unsigned char *chars, char flag, size_t size)
308{
309	int copied = 0;
310	do {
311		int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE);
312		int flags = (flag == TTY_NORMAL) ? TTYB_NORMAL : 0;
313		int space = __tty_buffer_request_room(port, goal, flags);
314		struct tty_buffer *tb = port->buf.tail;
315		if (unlikely(space == 0))
316			break;
317		memcpy(char_buf_ptr(tb, tb->used), chars, space);
318		if (~tb->flags & TTYB_NORMAL)
319			memset(flag_buf_ptr(tb, tb->used), flag, space);
320		tb->used += space;
321		copied += space;
322		chars += space;
323		/* There is a small chance that we need to split the data over
324		   several buffers. If this is the case we must loop */
325	} while (unlikely(size > copied));
326	return copied;
327}
328EXPORT_SYMBOL(tty_insert_flip_string_fixed_flag);
329
330/**
331 *	tty_insert_flip_string_flags	-	Add characters to the tty buffer
332 *	@port: tty port
333 *	@chars: characters
334 *	@flags: flag bytes
335 *	@size: size
336 *
337 *	Queue a series of bytes to the tty buffering. For each character
338 *	the flags array indicates the status of the character. Returns the
339 *	number added.
 
 
340 */
341
342int tty_insert_flip_string_flags(struct tty_port *port,
343		const unsigned char *chars, const char *flags, size_t size)
344{
345	int copied = 0;
346	do {
347		int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE);
348		int space = tty_buffer_request_room(port, goal);
349		struct tty_buffer *tb = port->buf.tail;
 
350		if (unlikely(space == 0))
351			break;
352		memcpy(char_buf_ptr(tb, tb->used), chars, space);
353		memcpy(flag_buf_ptr(tb, tb->used), flags, space);
354		tb->used += space;
355		copied += space;
356		chars += space;
357		flags += space;
358		/* There is a small chance that we need to split the data over
359		   several buffers. If this is the case we must loop */
360	} while (unlikely(size > copied));
361	return copied;
362}
363EXPORT_SYMBOL(tty_insert_flip_string_flags);
364
365/**
366 *	__tty_insert_flip_char   -	Add one character to the tty buffer
367 *	@port: tty port
368 *	@ch: character
369 *	@flag: flag byte
370 *
371 *	Queue a single byte to the tty buffering, with an optional flag.
372 *	This is the slow path of tty_insert_flip_char.
373 */
374int __tty_insert_flip_char(struct tty_port *port, unsigned char ch, char flag)
375{
376	struct tty_buffer *tb;
377	int flags = (flag == TTY_NORMAL) ? TTYB_NORMAL : 0;
378
379	if (!__tty_buffer_request_room(port, 1, flags))
380		return 0;
381
382	tb = port->buf.tail;
383	if (~tb->flags & TTYB_NORMAL)
384		*flag_buf_ptr(tb, tb->used) = flag;
385	*char_buf_ptr(tb, tb->used++) = ch;
386
387	return 1;
388}
389EXPORT_SYMBOL(__tty_insert_flip_char);
390
391/**
392 *	tty_schedule_flip	-	push characters to ldisc
393 *	@port: tty port to push from
394 *
395 *	Takes any pending buffers and transfers their ownership to the
396 *	ldisc side of the queue. It then schedules those characters for
397 *	processing by the line discipline.
 
 
398 */
399
400void tty_schedule_flip(struct tty_port *port)
401{
402	struct tty_bufhead *buf = &port->buf;
403
404	/* paired w/ acquire in flush_to_ldisc(); ensures
405	 * flush_to_ldisc() sees buffer data.
406	 */
407	smp_store_release(&buf->tail->commit, buf->tail->used);
408	queue_work(system_unbound_wq, &buf->work);
409}
410EXPORT_SYMBOL(tty_schedule_flip);
411
412/**
413 *	tty_prepare_flip_string		-	make room for characters
414 *	@port: tty port
415 *	@chars: return pointer for character write area
416 *	@size: desired size
417 *
418 *	Prepare a block of space in the buffer for data. Returns the length
419 *	available and buffer pointer to the space which is now allocated and
420 *	accounted for as ready for normal characters. This is used for drivers
421 *	that need their own block copy routines into the buffer. There is no
422 *	guarantee the buffer is a DMA target!
 
 
423 */
424
425int tty_prepare_flip_string(struct tty_port *port, unsigned char **chars,
426		size_t size)
427{
428	int space = __tty_buffer_request_room(port, size, TTYB_NORMAL);
429	if (likely(space)) {
430		struct tty_buffer *tb = port->buf.tail;
431		*chars = char_buf_ptr(tb, tb->used);
432		if (~tb->flags & TTYB_NORMAL)
433			memset(flag_buf_ptr(tb, tb->used), TTY_NORMAL, space);
434		tb->used += space;
435	}
436	return space;
437}
438EXPORT_SYMBOL_GPL(tty_prepare_flip_string);
439
440/**
441 *	tty_ldisc_receive_buf		-	forward data to line discipline
442 *	@ld:	line discipline to process input
443 *	@p:	char buffer
444 *	@f:	TTY_* flags buffer
445 *	@count:	number of bytes to process
446 *
447 *	Callers other than flush_to_ldisc() need to exclude the kworker
448 *	from concurrent use of the line discipline, see paste_selection().
449 *
450 *	Returns the number of bytes processed
 
 
 
 
 
 
451 */
452int tty_ldisc_receive_buf(struct tty_ldisc *ld, const unsigned char *p,
453			  char *f, int count)
 
454{
455	if (ld->ops->receive_buf2)
456		count = ld->ops->receive_buf2(ld->tty, p, f, count);
457	else {
458		count = min_t(int, count, ld->tty->receive_room);
459		if (count && ld->ops->receive_buf)
460			ld->ops->receive_buf(ld->tty, p, f, count);
461	}
462	return count;
463}
464EXPORT_SYMBOL_GPL(tty_ldisc_receive_buf);
465
466static int
467receive_buf(struct tty_port *port, struct tty_buffer *head, int count)
468{
469	unsigned char *p = char_buf_ptr(head, head->read);
470	char	      *f = NULL;
471
472	if (~head->flags & TTYB_NORMAL)
473		f = flag_buf_ptr(head, head->read);
474
475	return port->client_ops->receive_buf(port, p, f, count);
476}
477
478/**
479 *	flush_to_ldisc
480 *	@work: tty structure passed from work queue.
481 *
482 *	This routine is called out of the software interrupt to flush data
483 *	from the buffer chain to the line discipline.
484 *
485 *	The receive_buf method is single threaded for each tty instance.
486 *
487 *	Locking: takes buffer lock to ensure single-threaded flip buffer
488 *		 'consumer'
489 */
490
491static void flush_to_ldisc(struct work_struct *work)
492{
493	struct tty_port *port = container_of(work, struct tty_port, buf.work);
494	struct tty_bufhead *buf = &port->buf;
495
496	mutex_lock(&buf->lock);
497
498	while (1) {
499		struct tty_buffer *head = buf->head;
500		struct tty_buffer *next;
501		int count;
502
503		/* Ldisc or user is trying to gain exclusive access */
504		if (atomic_read(&buf->priority))
505			break;
506
507		/* paired w/ release in __tty_buffer_request_room();
508		 * ensures commit value read is not stale if the head
509		 * is advancing to the next buffer
510		 */
511		next = smp_load_acquire(&head->next);
512		/* paired w/ release in __tty_buffer_request_room() or in
513		 * tty_buffer_flush(); ensures we see the committed buffer data
514		 */
515		count = smp_load_acquire(&head->commit) - head->read;
516		if (!count) {
517			if (next == NULL)
 
 
 
 
 
 
 
518				break;
519			buf->head = next;
520			tty_buffer_free(port, head);
521			continue;
 
 
 
 
 
 
522		}
 
 
523
524		count = receive_buf(port, head, count);
525		if (!count)
526			break;
527		head->read += count;
 
 
528	}
 
529
530	mutex_unlock(&buf->lock);
 
531
 
 
 
 
 
 
 
 
 
 
 
532}
533
534/**
535 *	tty_flip_buffer_push	-	terminal
536 *	@port: tty port to push
537 *
538 *	Queue a push of the terminal flip buffers to the line discipline.
539 *	Can be called from IRQ/atomic context.
540 *
541 *	In the event of the queue being busy for flipping the work will be
542 *	held off and retried later.
 
 
543 */
544
545void tty_flip_buffer_push(struct tty_port *port)
546{
547	tty_schedule_flip(port);
 
 
 
 
 
 
 
 
 
548}
549EXPORT_SYMBOL(tty_flip_buffer_push);
550
551/**
552 *	tty_buffer_init		-	prepare a tty buffer structure
553 *	@tty: tty to initialise
554 *
555 *	Set up the initial state of the buffer management for a tty device.
556 *	Must be called before the other tty buffer functions are used.
557 */
558
559void tty_buffer_init(struct tty_port *port)
560{
561	struct tty_bufhead *buf = &port->buf;
562
563	mutex_init(&buf->lock);
564	tty_buffer_reset(&buf->sentinel, 0);
565	buf->head = &buf->sentinel;
566	buf->tail = &buf->sentinel;
567	init_llist_head(&buf->free);
568	atomic_set(&buf->mem_used, 0);
569	atomic_set(&buf->priority, 0);
570	INIT_WORK(&buf->work, flush_to_ldisc);
571	buf->mem_limit = TTYB_DEFAULT_MEM_LIMIT;
572}
573
574/**
575 *	tty_buffer_set_limit	-	change the tty buffer memory limit
576 *	@port: tty port to change
577 *
578 *	Change the tty buffer memory limit.
579 *	Must be called before the other tty buffer functions are used.
580 */
581
582int tty_buffer_set_limit(struct tty_port *port, int limit)
583{
584	if (limit < MIN_TTYB_SIZE)
585		return -EINVAL;
586	port->buf.mem_limit = limit;
587	return 0;
 
 
588}
589EXPORT_SYMBOL_GPL(tty_buffer_set_limit);
590
591/* slave ptys can claim nested buffer lock when handling BRK and INTR */
592void tty_buffer_set_lock_subclass(struct tty_port *port)
593{
594	lockdep_set_subclass(&port->buf.lock, TTY_LOCK_SLAVE);
595}
596
597bool tty_buffer_restart_work(struct tty_port *port)
598{
599	return queue_work(system_unbound_wq, &port->buf.work);
600}
601
602bool tty_buffer_cancel_work(struct tty_port *port)
603{
604	return cancel_work_sync(&port->buf.work);
605}
606
607void tty_buffer_flush_work(struct tty_port *port)
608{
609	flush_work(&port->buf.work);
610}