Loading...
1/*
2 * SuperH MSIOF SPI Master Interface
3 *
4 * Copyright (c) 2009 Magnus Damm
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 */
11
12#include <linux/bitmap.h>
13#include <linux/clk.h>
14#include <linux/completion.h>
15#include <linux/delay.h>
16#include <linux/err.h>
17#include <linux/gpio.h>
18#include <linux/init.h>
19#include <linux/interrupt.h>
20#include <linux/io.h>
21#include <linux/kernel.h>
22#include <linux/platform_device.h>
23#include <linux/pm_runtime.h>
24
25#include <linux/spi/sh_msiof.h>
26#include <linux/spi/spi.h>
27#include <linux/spi/spi_bitbang.h>
28
29#include <asm/unaligned.h>
30
31struct sh_msiof_spi_priv {
32 struct spi_bitbang bitbang; /* must be first for spi_bitbang.c */
33 void __iomem *mapbase;
34 struct clk *clk;
35 struct platform_device *pdev;
36 struct sh_msiof_spi_info *info;
37 struct completion done;
38 unsigned long flags;
39 int tx_fifo_size;
40 int rx_fifo_size;
41};
42
43#define TMDR1 0x00
44#define TMDR2 0x04
45#define TMDR3 0x08
46#define RMDR1 0x10
47#define RMDR2 0x14
48#define RMDR3 0x18
49#define TSCR 0x20
50#define RSCR 0x22
51#define CTR 0x28
52#define FCTR 0x30
53#define STR 0x40
54#define IER 0x44
55#define TDR1 0x48
56#define TDR2 0x4c
57#define TFDR 0x50
58#define RDR1 0x58
59#define RDR2 0x5c
60#define RFDR 0x60
61
62#define CTR_TSCKE (1 << 15)
63#define CTR_TFSE (1 << 14)
64#define CTR_TXE (1 << 9)
65#define CTR_RXE (1 << 8)
66
67#define STR_TEOF (1 << 23)
68#define STR_REOF (1 << 7)
69
70static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
71{
72 switch (reg_offs) {
73 case TSCR:
74 case RSCR:
75 return ioread16(p->mapbase + reg_offs);
76 default:
77 return ioread32(p->mapbase + reg_offs);
78 }
79}
80
81static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
82 u32 value)
83{
84 switch (reg_offs) {
85 case TSCR:
86 case RSCR:
87 iowrite16(value, p->mapbase + reg_offs);
88 break;
89 default:
90 iowrite32(value, p->mapbase + reg_offs);
91 break;
92 }
93}
94
95static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
96 u32 clr, u32 set)
97{
98 u32 mask = clr | set;
99 u32 data;
100 int k;
101
102 data = sh_msiof_read(p, CTR);
103 data &= ~clr;
104 data |= set;
105 sh_msiof_write(p, CTR, data);
106
107 for (k = 100; k > 0; k--) {
108 if ((sh_msiof_read(p, CTR) & mask) == set)
109 break;
110
111 udelay(10);
112 }
113
114 return k > 0 ? 0 : -ETIMEDOUT;
115}
116
117static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
118{
119 struct sh_msiof_spi_priv *p = data;
120
121 /* just disable the interrupt and wake up */
122 sh_msiof_write(p, IER, 0);
123 complete(&p->done);
124
125 return IRQ_HANDLED;
126}
127
128static struct {
129 unsigned short div;
130 unsigned short scr;
131} const sh_msiof_spi_clk_table[] = {
132 { 1, 0x0007 },
133 { 2, 0x0000 },
134 { 4, 0x0001 },
135 { 8, 0x0002 },
136 { 16, 0x0003 },
137 { 32, 0x0004 },
138 { 64, 0x1f00 },
139 { 128, 0x1f01 },
140 { 256, 0x1f02 },
141 { 512, 0x1f03 },
142 { 1024, 0x1f04 },
143};
144
145static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
146 unsigned long parent_rate,
147 unsigned long spi_hz)
148{
149 unsigned long div = 1024;
150 size_t k;
151
152 if (!WARN_ON(!spi_hz || !parent_rate))
153 div = parent_rate / spi_hz;
154
155 /* TODO: make more fine grained */
156
157 for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_clk_table); k++) {
158 if (sh_msiof_spi_clk_table[k].div >= div)
159 break;
160 }
161
162 k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_clk_table) - 1);
163
164 sh_msiof_write(p, TSCR, sh_msiof_spi_clk_table[k].scr);
165 sh_msiof_write(p, RSCR, sh_msiof_spi_clk_table[k].scr);
166}
167
168static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p,
169 u32 cpol, u32 cpha,
170 u32 tx_hi_z, u32 lsb_first)
171{
172 u32 tmp;
173 int edge;
174
175 /*
176 * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG
177 * 0 0 10 10 1 1
178 * 0 1 10 10 0 0
179 * 1 0 11 11 0 0
180 * 1 1 11 11 1 1
181 */
182 sh_msiof_write(p, FCTR, 0);
183 sh_msiof_write(p, TMDR1, 0xe2000005 | (lsb_first << 24));
184 sh_msiof_write(p, RMDR1, 0x22000005 | (lsb_first << 24));
185
186 tmp = 0xa0000000;
187 tmp |= cpol << 30; /* TSCKIZ */
188 tmp |= cpol << 28; /* RSCKIZ */
189
190 edge = cpol ^ !cpha;
191
192 tmp |= edge << 27; /* TEDG */
193 tmp |= edge << 26; /* REDG */
194 tmp |= (tx_hi_z ? 2 : 0) << 22; /* TXDIZ */
195 sh_msiof_write(p, CTR, tmp);
196}
197
198static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
199 const void *tx_buf, void *rx_buf,
200 u32 bits, u32 words)
201{
202 u32 dr2 = ((bits - 1) << 24) | ((words - 1) << 16);
203
204 if (tx_buf)
205 sh_msiof_write(p, TMDR2, dr2);
206 else
207 sh_msiof_write(p, TMDR2, dr2 | 1);
208
209 if (rx_buf)
210 sh_msiof_write(p, RMDR2, dr2);
211
212 sh_msiof_write(p, IER, STR_TEOF | STR_REOF);
213}
214
215static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
216{
217 sh_msiof_write(p, STR, sh_msiof_read(p, STR));
218}
219
220static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
221 const void *tx_buf, int words, int fs)
222{
223 const u8 *buf_8 = tx_buf;
224 int k;
225
226 for (k = 0; k < words; k++)
227 sh_msiof_write(p, TFDR, buf_8[k] << fs);
228}
229
230static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
231 const void *tx_buf, int words, int fs)
232{
233 const u16 *buf_16 = tx_buf;
234 int k;
235
236 for (k = 0; k < words; k++)
237 sh_msiof_write(p, TFDR, buf_16[k] << fs);
238}
239
240static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
241 const void *tx_buf, int words, int fs)
242{
243 const u16 *buf_16 = tx_buf;
244 int k;
245
246 for (k = 0; k < words; k++)
247 sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
248}
249
250static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
251 const void *tx_buf, int words, int fs)
252{
253 const u32 *buf_32 = tx_buf;
254 int k;
255
256 for (k = 0; k < words; k++)
257 sh_msiof_write(p, TFDR, buf_32[k] << fs);
258}
259
260static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
261 const void *tx_buf, int words, int fs)
262{
263 const u32 *buf_32 = tx_buf;
264 int k;
265
266 for (k = 0; k < words; k++)
267 sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
268}
269
270static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
271 const void *tx_buf, int words, int fs)
272{
273 const u32 *buf_32 = tx_buf;
274 int k;
275
276 for (k = 0; k < words; k++)
277 sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
278}
279
280static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
281 const void *tx_buf, int words, int fs)
282{
283 const u32 *buf_32 = tx_buf;
284 int k;
285
286 for (k = 0; k < words; k++)
287 sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
288}
289
290static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
291 void *rx_buf, int words, int fs)
292{
293 u8 *buf_8 = rx_buf;
294 int k;
295
296 for (k = 0; k < words; k++)
297 buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
298}
299
300static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
301 void *rx_buf, int words, int fs)
302{
303 u16 *buf_16 = rx_buf;
304 int k;
305
306 for (k = 0; k < words; k++)
307 buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
308}
309
310static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
311 void *rx_buf, int words, int fs)
312{
313 u16 *buf_16 = rx_buf;
314 int k;
315
316 for (k = 0; k < words; k++)
317 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
318}
319
320static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
321 void *rx_buf, int words, int fs)
322{
323 u32 *buf_32 = rx_buf;
324 int k;
325
326 for (k = 0; k < words; k++)
327 buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
328}
329
330static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
331 void *rx_buf, int words, int fs)
332{
333 u32 *buf_32 = rx_buf;
334 int k;
335
336 for (k = 0; k < words; k++)
337 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
338}
339
340static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
341 void *rx_buf, int words, int fs)
342{
343 u32 *buf_32 = rx_buf;
344 int k;
345
346 for (k = 0; k < words; k++)
347 buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
348}
349
350static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
351 void *rx_buf, int words, int fs)
352{
353 u32 *buf_32 = rx_buf;
354 int k;
355
356 for (k = 0; k < words; k++)
357 put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
358}
359
360static int sh_msiof_spi_bits(struct spi_device *spi, struct spi_transfer *t)
361{
362 int bits;
363
364 bits = t ? t->bits_per_word : 0;
365 if (!bits)
366 bits = spi->bits_per_word;
367 return bits;
368}
369
370static unsigned long sh_msiof_spi_hz(struct spi_device *spi,
371 struct spi_transfer *t)
372{
373 unsigned long hz;
374
375 hz = t ? t->speed_hz : 0;
376 if (!hz)
377 hz = spi->max_speed_hz;
378 return hz;
379}
380
381static int sh_msiof_spi_setup_transfer(struct spi_device *spi,
382 struct spi_transfer *t)
383{
384 int bits;
385
386 /* noting to check hz values against since parent clock is disabled */
387
388 bits = sh_msiof_spi_bits(spi, t);
389 if (bits < 8)
390 return -EINVAL;
391 if (bits > 32)
392 return -EINVAL;
393
394 return spi_bitbang_setup_transfer(spi, t);
395}
396
397static void sh_msiof_spi_chipselect(struct spi_device *spi, int is_on)
398{
399 struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
400 int value;
401
402 /* chip select is active low unless SPI_CS_HIGH is set */
403 if (spi->mode & SPI_CS_HIGH)
404 value = (is_on == BITBANG_CS_ACTIVE) ? 1 : 0;
405 else
406 value = (is_on == BITBANG_CS_ACTIVE) ? 0 : 1;
407
408 if (is_on == BITBANG_CS_ACTIVE) {
409 if (!test_and_set_bit(0, &p->flags)) {
410 pm_runtime_get_sync(&p->pdev->dev);
411 clk_enable(p->clk);
412 }
413
414 /* Configure pins before asserting CS */
415 sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
416 !!(spi->mode & SPI_CPHA),
417 !!(spi->mode & SPI_3WIRE),
418 !!(spi->mode & SPI_LSB_FIRST));
419 }
420
421 /* use spi->controller data for CS (same strategy as spi_gpio) */
422 gpio_set_value((unsigned)spi->controller_data, value);
423
424 if (is_on == BITBANG_CS_INACTIVE) {
425 if (test_and_clear_bit(0, &p->flags)) {
426 clk_disable(p->clk);
427 pm_runtime_put(&p->pdev->dev);
428 }
429 }
430}
431
432static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
433 void (*tx_fifo)(struct sh_msiof_spi_priv *,
434 const void *, int, int),
435 void (*rx_fifo)(struct sh_msiof_spi_priv *,
436 void *, int, int),
437 const void *tx_buf, void *rx_buf,
438 int words, int bits)
439{
440 int fifo_shift;
441 int ret;
442
443 /* limit maximum word transfer to rx/tx fifo size */
444 if (tx_buf)
445 words = min_t(int, words, p->tx_fifo_size);
446 if (rx_buf)
447 words = min_t(int, words, p->rx_fifo_size);
448
449 /* the fifo contents need shifting */
450 fifo_shift = 32 - bits;
451
452 /* setup msiof transfer mode registers */
453 sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
454
455 /* write tx fifo */
456 if (tx_buf)
457 tx_fifo(p, tx_buf, words, fifo_shift);
458
459 /* setup clock and rx/tx signals */
460 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
461 if (rx_buf)
462 ret = ret ? ret : sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
463 ret = ret ? ret : sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
464
465 /* start by setting frame bit */
466 INIT_COMPLETION(p->done);
467 ret = ret ? ret : sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
468 if (ret) {
469 dev_err(&p->pdev->dev, "failed to start hardware\n");
470 goto err;
471 }
472
473 /* wait for tx fifo to be emptied / rx fifo to be filled */
474 wait_for_completion(&p->done);
475
476 /* read rx fifo */
477 if (rx_buf)
478 rx_fifo(p, rx_buf, words, fifo_shift);
479
480 /* clear status bits */
481 sh_msiof_reset_str(p);
482
483 /* shut down frame, tx/tx and clock signals */
484 ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
485 ret = ret ? ret : sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
486 if (rx_buf)
487 ret = ret ? ret : sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
488 ret = ret ? ret : sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
489 if (ret) {
490 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
491 goto err;
492 }
493
494 return words;
495
496 err:
497 sh_msiof_write(p, IER, 0);
498 return ret;
499}
500
501static int sh_msiof_spi_txrx(struct spi_device *spi, struct spi_transfer *t)
502{
503 struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
504 void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
505 void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
506 int bits;
507 int bytes_per_word;
508 int bytes_done;
509 int words;
510 int n;
511 bool swab;
512
513 bits = sh_msiof_spi_bits(spi, t);
514
515 if (bits <= 8 && t->len > 15 && !(t->len & 3)) {
516 bits = 32;
517 swab = true;
518 } else {
519 swab = false;
520 }
521
522 /* setup bytes per word and fifo read/write functions */
523 if (bits <= 8) {
524 bytes_per_word = 1;
525 tx_fifo = sh_msiof_spi_write_fifo_8;
526 rx_fifo = sh_msiof_spi_read_fifo_8;
527 } else if (bits <= 16) {
528 bytes_per_word = 2;
529 if ((unsigned long)t->tx_buf & 0x01)
530 tx_fifo = sh_msiof_spi_write_fifo_16u;
531 else
532 tx_fifo = sh_msiof_spi_write_fifo_16;
533
534 if ((unsigned long)t->rx_buf & 0x01)
535 rx_fifo = sh_msiof_spi_read_fifo_16u;
536 else
537 rx_fifo = sh_msiof_spi_read_fifo_16;
538 } else if (swab) {
539 bytes_per_word = 4;
540 if ((unsigned long)t->tx_buf & 0x03)
541 tx_fifo = sh_msiof_spi_write_fifo_s32u;
542 else
543 tx_fifo = sh_msiof_spi_write_fifo_s32;
544
545 if ((unsigned long)t->rx_buf & 0x03)
546 rx_fifo = sh_msiof_spi_read_fifo_s32u;
547 else
548 rx_fifo = sh_msiof_spi_read_fifo_s32;
549 } else {
550 bytes_per_word = 4;
551 if ((unsigned long)t->tx_buf & 0x03)
552 tx_fifo = sh_msiof_spi_write_fifo_32u;
553 else
554 tx_fifo = sh_msiof_spi_write_fifo_32;
555
556 if ((unsigned long)t->rx_buf & 0x03)
557 rx_fifo = sh_msiof_spi_read_fifo_32u;
558 else
559 rx_fifo = sh_msiof_spi_read_fifo_32;
560 }
561
562 /* setup clocks (clock already enabled in chipselect()) */
563 sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk),
564 sh_msiof_spi_hz(spi, t));
565
566 /* transfer in fifo sized chunks */
567 words = t->len / bytes_per_word;
568 bytes_done = 0;
569
570 while (bytes_done < t->len) {
571 void *rx_buf = t->rx_buf ? t->rx_buf + bytes_done : NULL;
572 const void *tx_buf = t->tx_buf ? t->tx_buf + bytes_done : NULL;
573 n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo,
574 tx_buf,
575 rx_buf,
576 words, bits);
577 if (n < 0)
578 break;
579
580 bytes_done += n * bytes_per_word;
581 words -= n;
582 }
583
584 return bytes_done;
585}
586
587static u32 sh_msiof_spi_txrx_word(struct spi_device *spi, unsigned nsecs,
588 u32 word, u8 bits)
589{
590 BUG(); /* unused but needed by bitbang code */
591 return 0;
592}
593
594static int sh_msiof_spi_probe(struct platform_device *pdev)
595{
596 struct resource *r;
597 struct spi_master *master;
598 struct sh_msiof_spi_priv *p;
599 char clk_name[16];
600 int i;
601 int ret;
602
603 master = spi_alloc_master(&pdev->dev, sizeof(struct sh_msiof_spi_priv));
604 if (master == NULL) {
605 dev_err(&pdev->dev, "failed to allocate spi master\n");
606 ret = -ENOMEM;
607 goto err0;
608 }
609
610 p = spi_master_get_devdata(master);
611
612 platform_set_drvdata(pdev, p);
613 p->info = pdev->dev.platform_data;
614 init_completion(&p->done);
615
616 snprintf(clk_name, sizeof(clk_name), "msiof%d", pdev->id);
617 p->clk = clk_get(&pdev->dev, clk_name);
618 if (IS_ERR(p->clk)) {
619 dev_err(&pdev->dev, "cannot get clock \"%s\"\n", clk_name);
620 ret = PTR_ERR(p->clk);
621 goto err1;
622 }
623
624 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
625 i = platform_get_irq(pdev, 0);
626 if (!r || i < 0) {
627 dev_err(&pdev->dev, "cannot get platform resources\n");
628 ret = -ENOENT;
629 goto err2;
630 }
631 p->mapbase = ioremap_nocache(r->start, resource_size(r));
632 if (!p->mapbase) {
633 dev_err(&pdev->dev, "unable to ioremap\n");
634 ret = -ENXIO;
635 goto err2;
636 }
637
638 ret = request_irq(i, sh_msiof_spi_irq, IRQF_DISABLED,
639 dev_name(&pdev->dev), p);
640 if (ret) {
641 dev_err(&pdev->dev, "unable to request irq\n");
642 goto err3;
643 }
644
645 p->pdev = pdev;
646 pm_runtime_enable(&pdev->dev);
647
648 /* The standard version of MSIOF use 64 word FIFOs */
649 p->tx_fifo_size = 64;
650 p->rx_fifo_size = 64;
651
652 /* Platform data may override FIFO sizes */
653 if (p->info->tx_fifo_override)
654 p->tx_fifo_size = p->info->tx_fifo_override;
655 if (p->info->rx_fifo_override)
656 p->rx_fifo_size = p->info->rx_fifo_override;
657
658 /* init master and bitbang code */
659 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
660 master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
661 master->flags = 0;
662 master->bus_num = pdev->id;
663 master->num_chipselect = p->info->num_chipselect;
664 master->setup = spi_bitbang_setup;
665 master->cleanup = spi_bitbang_cleanup;
666
667 p->bitbang.master = master;
668 p->bitbang.chipselect = sh_msiof_spi_chipselect;
669 p->bitbang.setup_transfer = sh_msiof_spi_setup_transfer;
670 p->bitbang.txrx_bufs = sh_msiof_spi_txrx;
671 p->bitbang.txrx_word[SPI_MODE_0] = sh_msiof_spi_txrx_word;
672 p->bitbang.txrx_word[SPI_MODE_1] = sh_msiof_spi_txrx_word;
673 p->bitbang.txrx_word[SPI_MODE_2] = sh_msiof_spi_txrx_word;
674 p->bitbang.txrx_word[SPI_MODE_3] = sh_msiof_spi_txrx_word;
675
676 ret = spi_bitbang_start(&p->bitbang);
677 if (ret == 0)
678 return 0;
679
680 pm_runtime_disable(&pdev->dev);
681 err3:
682 iounmap(p->mapbase);
683 err2:
684 clk_put(p->clk);
685 err1:
686 spi_master_put(master);
687 err0:
688 return ret;
689}
690
691static int sh_msiof_spi_remove(struct platform_device *pdev)
692{
693 struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
694 int ret;
695
696 ret = spi_bitbang_stop(&p->bitbang);
697 if (!ret) {
698 pm_runtime_disable(&pdev->dev);
699 free_irq(platform_get_irq(pdev, 0), p);
700 iounmap(p->mapbase);
701 clk_put(p->clk);
702 spi_master_put(p->bitbang.master);
703 }
704 return ret;
705}
706
707static int sh_msiof_spi_runtime_nop(struct device *dev)
708{
709 /* Runtime PM callback shared between ->runtime_suspend()
710 * and ->runtime_resume(). Simply returns success.
711 *
712 * This driver re-initializes all registers after
713 * pm_runtime_get_sync() anyway so there is no need
714 * to save and restore registers here.
715 */
716 return 0;
717}
718
719static struct dev_pm_ops sh_msiof_spi_dev_pm_ops = {
720 .runtime_suspend = sh_msiof_spi_runtime_nop,
721 .runtime_resume = sh_msiof_spi_runtime_nop,
722};
723
724static struct platform_driver sh_msiof_spi_drv = {
725 .probe = sh_msiof_spi_probe,
726 .remove = sh_msiof_spi_remove,
727 .driver = {
728 .name = "spi_sh_msiof",
729 .owner = THIS_MODULE,
730 .pm = &sh_msiof_spi_dev_pm_ops,
731 },
732};
733
734static int __init sh_msiof_spi_init(void)
735{
736 return platform_driver_register(&sh_msiof_spi_drv);
737}
738module_init(sh_msiof_spi_init);
739
740static void __exit sh_msiof_spi_exit(void)
741{
742 platform_driver_unregister(&sh_msiof_spi_drv);
743}
744module_exit(sh_msiof_spi_exit);
745
746MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
747MODULE_AUTHOR("Magnus Damm");
748MODULE_LICENSE("GPL v2");
749MODULE_ALIAS("platform:spi_sh_msiof");
1/*
2 * SuperH MSIOF SPI Master Interface
3 *
4 * Copyright (c) 2009 Magnus Damm
5 * Copyright (C) 2014 Renesas Electronics Corporation
6 * Copyright (C) 2014-2017 Glider bvba
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 */
13
14#include <linux/bitmap.h>
15#include <linux/clk.h>
16#include <linux/completion.h>
17#include <linux/delay.h>
18#include <linux/dma-mapping.h>
19#include <linux/dmaengine.h>
20#include <linux/err.h>
21#include <linux/gpio.h>
22#include <linux/gpio/consumer.h>
23#include <linux/interrupt.h>
24#include <linux/io.h>
25#include <linux/kernel.h>
26#include <linux/module.h>
27#include <linux/of.h>
28#include <linux/of_device.h>
29#include <linux/platform_device.h>
30#include <linux/pm_runtime.h>
31#include <linux/sh_dma.h>
32
33#include <linux/spi/sh_msiof.h>
34#include <linux/spi/spi.h>
35
36#include <asm/unaligned.h>
37
38struct sh_msiof_chipdata {
39 u16 tx_fifo_size;
40 u16 rx_fifo_size;
41 u16 master_flags;
42 u16 min_div;
43};
44
45struct sh_msiof_spi_priv {
46 struct spi_master *master;
47 void __iomem *mapbase;
48 struct clk *clk;
49 struct platform_device *pdev;
50 struct sh_msiof_spi_info *info;
51 struct completion done;
52 unsigned int tx_fifo_size;
53 unsigned int rx_fifo_size;
54 unsigned int min_div;
55 void *tx_dma_page;
56 void *rx_dma_page;
57 dma_addr_t tx_dma_addr;
58 dma_addr_t rx_dma_addr;
59 unsigned short unused_ss;
60 bool native_cs_inited;
61 bool native_cs_high;
62 bool slave_aborted;
63};
64
65#define MAX_SS 3 /* Maximum number of native chip selects */
66
67#define TMDR1 0x00 /* Transmit Mode Register 1 */
68#define TMDR2 0x04 /* Transmit Mode Register 2 */
69#define TMDR3 0x08 /* Transmit Mode Register 3 */
70#define RMDR1 0x10 /* Receive Mode Register 1 */
71#define RMDR2 0x14 /* Receive Mode Register 2 */
72#define RMDR3 0x18 /* Receive Mode Register 3 */
73#define TSCR 0x20 /* Transmit Clock Select Register */
74#define RSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */
75#define CTR 0x28 /* Control Register */
76#define FCTR 0x30 /* FIFO Control Register */
77#define STR 0x40 /* Status Register */
78#define IER 0x44 /* Interrupt Enable Register */
79#define TDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */
80#define TDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */
81#define TFDR 0x50 /* Transmit FIFO Data Register */
82#define RDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */
83#define RDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */
84#define RFDR 0x60 /* Receive FIFO Data Register */
85
86/* TMDR1 and RMDR1 */
87#define MDR1_TRMD 0x80000000 /* Transfer Mode (1 = Master mode) */
88#define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
89#define MDR1_SYNCMD_SPI 0x20000000 /* Level mode/SPI */
90#define MDR1_SYNCMD_LR 0x30000000 /* L/R mode */
91#define MDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */
92#define MDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */
93#define MDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */
94#define MDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */
95#define MDR1_FLD_MASK 0x0000000c /* Frame Sync Signal Interval (0-3) */
96#define MDR1_FLD_SHIFT 2
97#define MDR1_XXSTP 0x00000001 /* Transmission/Reception Stop on FIFO */
98/* TMDR1 */
99#define TMDR1_PCON 0x40000000 /* Transfer Signal Connection */
100#define TMDR1_SYNCCH_MASK 0xc000000 /* Synchronization Signal Channel Select */
101#define TMDR1_SYNCCH_SHIFT 26 /* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */
102
103/* TMDR2 and RMDR2 */
104#define MDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */
105#define MDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
106#define MDR2_GRPMASK1 0x00000001 /* Group Output Mask 1 (SH, A1) */
107
108/* TSCR and RSCR */
109#define SCR_BRPS_MASK 0x1f00 /* Prescaler Setting (1-32) */
110#define SCR_BRPS(i) (((i) - 1) << 8)
111#define SCR_BRDV_MASK 0x0007 /* Baud Rate Generator's Division Ratio */
112#define SCR_BRDV_DIV_2 0x0000
113#define SCR_BRDV_DIV_4 0x0001
114#define SCR_BRDV_DIV_8 0x0002
115#define SCR_BRDV_DIV_16 0x0003
116#define SCR_BRDV_DIV_32 0x0004
117#define SCR_BRDV_DIV_1 0x0007
118
119/* CTR */
120#define CTR_TSCKIZ_MASK 0xc0000000 /* Transmit Clock I/O Polarity Select */
121#define CTR_TSCKIZ_SCK 0x80000000 /* Disable SCK when TX disabled */
122#define CTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */
123#define CTR_RSCKIZ_MASK 0x30000000 /* Receive Clock Polarity Select */
124#define CTR_RSCKIZ_SCK 0x20000000 /* Must match CTR_TSCKIZ_SCK */
125#define CTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */
126#define CTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */
127#define CTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */
128#define CTR_TXDIZ_MASK 0x00c00000 /* Pin Output When TX is Disabled */
129#define CTR_TXDIZ_LOW 0x00000000 /* 0 */
130#define CTR_TXDIZ_HIGH 0x00400000 /* 1 */
131#define CTR_TXDIZ_HIZ 0x00800000 /* High-impedance */
132#define CTR_TSCKE 0x00008000 /* Transmit Serial Clock Output Enable */
133#define CTR_TFSE 0x00004000 /* Transmit Frame Sync Signal Output Enable */
134#define CTR_TXE 0x00000200 /* Transmit Enable */
135#define CTR_RXE 0x00000100 /* Receive Enable */
136
137/* FCTR */
138#define FCTR_TFWM_MASK 0xe0000000 /* Transmit FIFO Watermark */
139#define FCTR_TFWM_64 0x00000000 /* Transfer Request when 64 empty stages */
140#define FCTR_TFWM_32 0x20000000 /* Transfer Request when 32 empty stages */
141#define FCTR_TFWM_24 0x40000000 /* Transfer Request when 24 empty stages */
142#define FCTR_TFWM_16 0x60000000 /* Transfer Request when 16 empty stages */
143#define FCTR_TFWM_12 0x80000000 /* Transfer Request when 12 empty stages */
144#define FCTR_TFWM_8 0xa0000000 /* Transfer Request when 8 empty stages */
145#define FCTR_TFWM_4 0xc0000000 /* Transfer Request when 4 empty stages */
146#define FCTR_TFWM_1 0xe0000000 /* Transfer Request when 1 empty stage */
147#define FCTR_TFUA_MASK 0x07f00000 /* Transmit FIFO Usable Area */
148#define FCTR_TFUA_SHIFT 20
149#define FCTR_TFUA(i) ((i) << FCTR_TFUA_SHIFT)
150#define FCTR_RFWM_MASK 0x0000e000 /* Receive FIFO Watermark */
151#define FCTR_RFWM_1 0x00000000 /* Transfer Request when 1 valid stages */
152#define FCTR_RFWM_4 0x00002000 /* Transfer Request when 4 valid stages */
153#define FCTR_RFWM_8 0x00004000 /* Transfer Request when 8 valid stages */
154#define FCTR_RFWM_16 0x00006000 /* Transfer Request when 16 valid stages */
155#define FCTR_RFWM_32 0x00008000 /* Transfer Request when 32 valid stages */
156#define FCTR_RFWM_64 0x0000a000 /* Transfer Request when 64 valid stages */
157#define FCTR_RFWM_128 0x0000c000 /* Transfer Request when 128 valid stages */
158#define FCTR_RFWM_256 0x0000e000 /* Transfer Request when 256 valid stages */
159#define FCTR_RFUA_MASK 0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
160#define FCTR_RFUA_SHIFT 4
161#define FCTR_RFUA(i) ((i) << FCTR_RFUA_SHIFT)
162
163/* STR */
164#define STR_TFEMP 0x20000000 /* Transmit FIFO Empty */
165#define STR_TDREQ 0x10000000 /* Transmit Data Transfer Request */
166#define STR_TEOF 0x00800000 /* Frame Transmission End */
167#define STR_TFSERR 0x00200000 /* Transmit Frame Synchronization Error */
168#define STR_TFOVF 0x00100000 /* Transmit FIFO Overflow */
169#define STR_TFUDF 0x00080000 /* Transmit FIFO Underflow */
170#define STR_RFFUL 0x00002000 /* Receive FIFO Full */
171#define STR_RDREQ 0x00001000 /* Receive Data Transfer Request */
172#define STR_REOF 0x00000080 /* Frame Reception End */
173#define STR_RFSERR 0x00000020 /* Receive Frame Synchronization Error */
174#define STR_RFUDF 0x00000010 /* Receive FIFO Underflow */
175#define STR_RFOVF 0x00000008 /* Receive FIFO Overflow */
176
177/* IER */
178#define IER_TDMAE 0x80000000 /* Transmit Data DMA Transfer Req. Enable */
179#define IER_TFEMPE 0x20000000 /* Transmit FIFO Empty Enable */
180#define IER_TDREQE 0x10000000 /* Transmit Data Transfer Request Enable */
181#define IER_TEOFE 0x00800000 /* Frame Transmission End Enable */
182#define IER_TFSERRE 0x00200000 /* Transmit Frame Sync Error Enable */
183#define IER_TFOVFE 0x00100000 /* Transmit FIFO Overflow Enable */
184#define IER_TFUDFE 0x00080000 /* Transmit FIFO Underflow Enable */
185#define IER_RDMAE 0x00008000 /* Receive Data DMA Transfer Req. Enable */
186#define IER_RFFULE 0x00002000 /* Receive FIFO Full Enable */
187#define IER_RDREQE 0x00001000 /* Receive Data Transfer Request Enable */
188#define IER_REOFE 0x00000080 /* Frame Reception End Enable */
189#define IER_RFSERRE 0x00000020 /* Receive Frame Sync Error Enable */
190#define IER_RFUDFE 0x00000010 /* Receive FIFO Underflow Enable */
191#define IER_RFOVFE 0x00000008 /* Receive FIFO Overflow Enable */
192
193
194static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
195{
196 switch (reg_offs) {
197 case TSCR:
198 case RSCR:
199 return ioread16(p->mapbase + reg_offs);
200 default:
201 return ioread32(p->mapbase + reg_offs);
202 }
203}
204
205static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
206 u32 value)
207{
208 switch (reg_offs) {
209 case TSCR:
210 case RSCR:
211 iowrite16(value, p->mapbase + reg_offs);
212 break;
213 default:
214 iowrite32(value, p->mapbase + reg_offs);
215 break;
216 }
217}
218
219static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
220 u32 clr, u32 set)
221{
222 u32 mask = clr | set;
223 u32 data;
224 int k;
225
226 data = sh_msiof_read(p, CTR);
227 data &= ~clr;
228 data |= set;
229 sh_msiof_write(p, CTR, data);
230
231 for (k = 100; k > 0; k--) {
232 if ((sh_msiof_read(p, CTR) & mask) == set)
233 break;
234
235 udelay(10);
236 }
237
238 return k > 0 ? 0 : -ETIMEDOUT;
239}
240
241static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
242{
243 struct sh_msiof_spi_priv *p = data;
244
245 /* just disable the interrupt and wake up */
246 sh_msiof_write(p, IER, 0);
247 complete(&p->done);
248
249 return IRQ_HANDLED;
250}
251
252static struct {
253 unsigned short div;
254 unsigned short brdv;
255} const sh_msiof_spi_div_table[] = {
256 { 1, SCR_BRDV_DIV_1 },
257 { 2, SCR_BRDV_DIV_2 },
258 { 4, SCR_BRDV_DIV_4 },
259 { 8, SCR_BRDV_DIV_8 },
260 { 16, SCR_BRDV_DIV_16 },
261 { 32, SCR_BRDV_DIV_32 },
262};
263
264static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
265 unsigned long parent_rate, u32 spi_hz)
266{
267 unsigned long div = 1024;
268 u32 brps, scr;
269 size_t k;
270
271 if (!WARN_ON(!spi_hz || !parent_rate))
272 div = DIV_ROUND_UP(parent_rate, spi_hz);
273
274 div = max_t(unsigned long, div, p->min_div);
275
276 for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_div_table); k++) {
277 brps = DIV_ROUND_UP(div, sh_msiof_spi_div_table[k].div);
278 /* SCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
279 if (sh_msiof_spi_div_table[k].div == 1 && brps > 2)
280 continue;
281 if (brps <= 32) /* max of brdv is 32 */
282 break;
283 }
284
285 k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_div_table) - 1);
286 brps = min_t(int, brps, 32);
287
288 scr = sh_msiof_spi_div_table[k].brdv | SCR_BRPS(brps);
289 sh_msiof_write(p, TSCR, scr);
290 if (!(p->master->flags & SPI_MASTER_MUST_TX))
291 sh_msiof_write(p, RSCR, scr);
292}
293
294static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
295{
296 /*
297 * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl
298 * b'000 : 0
299 * b'001 : 100
300 * b'010 : 200
301 * b'011 (SYNCDL only) : 300
302 * b'101 : 50
303 * b'110 : 150
304 */
305 if (dtdl_or_syncdl % 100)
306 return dtdl_or_syncdl / 100 + 5;
307 else
308 return dtdl_or_syncdl / 100;
309}
310
311static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
312{
313 u32 val;
314
315 if (!p->info)
316 return 0;
317
318 /* check if DTDL and SYNCDL is allowed value */
319 if (p->info->dtdl > 200 || p->info->syncdl > 300) {
320 dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
321 return 0;
322 }
323
324 /* check if the sum of DTDL and SYNCDL becomes an integer value */
325 if ((p->info->dtdl + p->info->syncdl) % 100) {
326 dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
327 return 0;
328 }
329
330 val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT;
331 val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT;
332
333 return val;
334}
335
336static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss,
337 u32 cpol, u32 cpha,
338 u32 tx_hi_z, u32 lsb_first, u32 cs_high)
339{
340 u32 tmp;
341 int edge;
342
343 /*
344 * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG
345 * 0 0 10 10 1 1
346 * 0 1 10 10 0 0
347 * 1 0 11 11 0 0
348 * 1 1 11 11 1 1
349 */
350 tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
351 tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
352 tmp |= lsb_first << MDR1_BITLSB_SHIFT;
353 tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
354 if (spi_controller_is_slave(p->master)) {
355 sh_msiof_write(p, TMDR1, tmp | TMDR1_PCON);
356 } else {
357 sh_msiof_write(p, TMDR1,
358 tmp | MDR1_TRMD | TMDR1_PCON |
359 (ss < MAX_SS ? ss : 0) << TMDR1_SYNCCH_SHIFT);
360 }
361 if (p->master->flags & SPI_MASTER_MUST_TX) {
362 /* These bits are reserved if RX needs TX */
363 tmp &= ~0x0000ffff;
364 }
365 sh_msiof_write(p, RMDR1, tmp);
366
367 tmp = 0;
368 tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
369 tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
370
371 edge = cpol ^ !cpha;
372
373 tmp |= edge << CTR_TEDG_SHIFT;
374 tmp |= edge << CTR_REDG_SHIFT;
375 tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
376 sh_msiof_write(p, CTR, tmp);
377}
378
379static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
380 const void *tx_buf, void *rx_buf,
381 u32 bits, u32 words)
382{
383 u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
384
385 if (tx_buf || (p->master->flags & SPI_MASTER_MUST_TX))
386 sh_msiof_write(p, TMDR2, dr2);
387 else
388 sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
389
390 if (rx_buf)
391 sh_msiof_write(p, RMDR2, dr2);
392}
393
394static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
395{
396 sh_msiof_write(p, STR, sh_msiof_read(p, STR));
397}
398
399static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
400 const void *tx_buf, int words, int fs)
401{
402 const u8 *buf_8 = tx_buf;
403 int k;
404
405 for (k = 0; k < words; k++)
406 sh_msiof_write(p, TFDR, buf_8[k] << fs);
407}
408
409static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
410 const void *tx_buf, int words, int fs)
411{
412 const u16 *buf_16 = tx_buf;
413 int k;
414
415 for (k = 0; k < words; k++)
416 sh_msiof_write(p, TFDR, buf_16[k] << fs);
417}
418
419static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
420 const void *tx_buf, int words, int fs)
421{
422 const u16 *buf_16 = tx_buf;
423 int k;
424
425 for (k = 0; k < words; k++)
426 sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
427}
428
429static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
430 const void *tx_buf, int words, int fs)
431{
432 const u32 *buf_32 = tx_buf;
433 int k;
434
435 for (k = 0; k < words; k++)
436 sh_msiof_write(p, TFDR, buf_32[k] << fs);
437}
438
439static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
440 const void *tx_buf, int words, int fs)
441{
442 const u32 *buf_32 = tx_buf;
443 int k;
444
445 for (k = 0; k < words; k++)
446 sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
447}
448
449static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
450 const void *tx_buf, int words, int fs)
451{
452 const u32 *buf_32 = tx_buf;
453 int k;
454
455 for (k = 0; k < words; k++)
456 sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
457}
458
459static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
460 const void *tx_buf, int words, int fs)
461{
462 const u32 *buf_32 = tx_buf;
463 int k;
464
465 for (k = 0; k < words; k++)
466 sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
467}
468
469static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
470 void *rx_buf, int words, int fs)
471{
472 u8 *buf_8 = rx_buf;
473 int k;
474
475 for (k = 0; k < words; k++)
476 buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
477}
478
479static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
480 void *rx_buf, int words, int fs)
481{
482 u16 *buf_16 = rx_buf;
483 int k;
484
485 for (k = 0; k < words; k++)
486 buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
487}
488
489static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
490 void *rx_buf, int words, int fs)
491{
492 u16 *buf_16 = rx_buf;
493 int k;
494
495 for (k = 0; k < words; k++)
496 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
497}
498
499static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
500 void *rx_buf, int words, int fs)
501{
502 u32 *buf_32 = rx_buf;
503 int k;
504
505 for (k = 0; k < words; k++)
506 buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
507}
508
509static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
510 void *rx_buf, int words, int fs)
511{
512 u32 *buf_32 = rx_buf;
513 int k;
514
515 for (k = 0; k < words; k++)
516 put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
517}
518
519static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
520 void *rx_buf, int words, int fs)
521{
522 u32 *buf_32 = rx_buf;
523 int k;
524
525 for (k = 0; k < words; k++)
526 buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
527}
528
529static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
530 void *rx_buf, int words, int fs)
531{
532 u32 *buf_32 = rx_buf;
533 int k;
534
535 for (k = 0; k < words; k++)
536 put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
537}
538
539static int sh_msiof_spi_setup(struct spi_device *spi)
540{
541 struct device_node *np = spi->master->dev.of_node;
542 struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
543 u32 clr, set, tmp;
544
545 if (!np) {
546 /*
547 * Use spi->controller_data for CS (same strategy as spi_gpio),
548 * if any. otherwise let HW control CS
549 */
550 spi->cs_gpio = (uintptr_t)spi->controller_data;
551 }
552
553 if (gpio_is_valid(spi->cs_gpio)) {
554 gpio_direction_output(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
555 return 0;
556 }
557
558 if (spi_controller_is_slave(p->master))
559 return 0;
560
561 if (p->native_cs_inited &&
562 (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH)))
563 return 0;
564
565 /* Configure native chip select mode/polarity early */
566 clr = MDR1_SYNCMD_MASK;
567 set = MDR1_TRMD | TMDR1_PCON | MDR1_SYNCMD_SPI;
568 if (spi->mode & SPI_CS_HIGH)
569 clr |= BIT(MDR1_SYNCAC_SHIFT);
570 else
571 set |= BIT(MDR1_SYNCAC_SHIFT);
572 pm_runtime_get_sync(&p->pdev->dev);
573 tmp = sh_msiof_read(p, TMDR1) & ~clr;
574 sh_msiof_write(p, TMDR1, tmp | set);
575 pm_runtime_put(&p->pdev->dev);
576 p->native_cs_high = spi->mode & SPI_CS_HIGH;
577 p->native_cs_inited = true;
578 return 0;
579}
580
581static int sh_msiof_prepare_message(struct spi_master *master,
582 struct spi_message *msg)
583{
584 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
585 const struct spi_device *spi = msg->spi;
586 u32 ss, cs_high;
587
588 /* Configure pins before asserting CS */
589 if (gpio_is_valid(spi->cs_gpio)) {
590 ss = p->unused_ss;
591 cs_high = p->native_cs_high;
592 } else {
593 ss = spi->chip_select;
594 cs_high = !!(spi->mode & SPI_CS_HIGH);
595 }
596 sh_msiof_spi_set_pin_regs(p, ss, !!(spi->mode & SPI_CPOL),
597 !!(spi->mode & SPI_CPHA),
598 !!(spi->mode & SPI_3WIRE),
599 !!(spi->mode & SPI_LSB_FIRST), cs_high);
600 return 0;
601}
602
603static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
604{
605 bool slave = spi_controller_is_slave(p->master);
606 int ret = 0;
607
608 /* setup clock and rx/tx signals */
609 if (!slave)
610 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
611 if (rx_buf && !ret)
612 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
613 if (!ret)
614 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
615
616 /* start by setting frame bit */
617 if (!ret && !slave)
618 ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
619
620 return ret;
621}
622
623static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
624{
625 bool slave = spi_controller_is_slave(p->master);
626 int ret = 0;
627
628 /* shut down frame, rx/tx and clock signals */
629 if (!slave)
630 ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
631 if (!ret)
632 ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
633 if (rx_buf && !ret)
634 ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
635 if (!ret && !slave)
636 ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
637
638 return ret;
639}
640
641static int sh_msiof_slave_abort(struct spi_master *master)
642{
643 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
644
645 p->slave_aborted = true;
646 complete(&p->done);
647 return 0;
648}
649
650static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p)
651{
652 if (spi_controller_is_slave(p->master)) {
653 if (wait_for_completion_interruptible(&p->done) ||
654 p->slave_aborted) {
655 dev_dbg(&p->pdev->dev, "interrupted\n");
656 return -EINTR;
657 }
658 } else {
659 if (!wait_for_completion_timeout(&p->done, HZ)) {
660 dev_err(&p->pdev->dev, "timeout\n");
661 return -ETIMEDOUT;
662 }
663 }
664
665 return 0;
666}
667
668static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
669 void (*tx_fifo)(struct sh_msiof_spi_priv *,
670 const void *, int, int),
671 void (*rx_fifo)(struct sh_msiof_spi_priv *,
672 void *, int, int),
673 const void *tx_buf, void *rx_buf,
674 int words, int bits)
675{
676 int fifo_shift;
677 int ret;
678
679 /* limit maximum word transfer to rx/tx fifo size */
680 if (tx_buf)
681 words = min_t(int, words, p->tx_fifo_size);
682 if (rx_buf)
683 words = min_t(int, words, p->rx_fifo_size);
684
685 /* the fifo contents need shifting */
686 fifo_shift = 32 - bits;
687
688 /* default FIFO watermarks for PIO */
689 sh_msiof_write(p, FCTR, 0);
690
691 /* setup msiof transfer mode registers */
692 sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
693 sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
694
695 /* write tx fifo */
696 if (tx_buf)
697 tx_fifo(p, tx_buf, words, fifo_shift);
698
699 reinit_completion(&p->done);
700 p->slave_aborted = false;
701
702 ret = sh_msiof_spi_start(p, rx_buf);
703 if (ret) {
704 dev_err(&p->pdev->dev, "failed to start hardware\n");
705 goto stop_ier;
706 }
707
708 /* wait for tx fifo to be emptied / rx fifo to be filled */
709 ret = sh_msiof_wait_for_completion(p);
710 if (ret)
711 goto stop_reset;
712
713 /* read rx fifo */
714 if (rx_buf)
715 rx_fifo(p, rx_buf, words, fifo_shift);
716
717 /* clear status bits */
718 sh_msiof_reset_str(p);
719
720 ret = sh_msiof_spi_stop(p, rx_buf);
721 if (ret) {
722 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
723 return ret;
724 }
725
726 return words;
727
728stop_reset:
729 sh_msiof_reset_str(p);
730 sh_msiof_spi_stop(p, rx_buf);
731stop_ier:
732 sh_msiof_write(p, IER, 0);
733 return ret;
734}
735
736static void sh_msiof_dma_complete(void *arg)
737{
738 struct sh_msiof_spi_priv *p = arg;
739
740 sh_msiof_write(p, IER, 0);
741 complete(&p->done);
742}
743
744static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
745 void *rx, unsigned int len)
746{
747 u32 ier_bits = 0;
748 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
749 dma_cookie_t cookie;
750 int ret;
751
752 /* First prepare and submit the DMA request(s), as this may fail */
753 if (rx) {
754 ier_bits |= IER_RDREQE | IER_RDMAE;
755 desc_rx = dmaengine_prep_slave_single(p->master->dma_rx,
756 p->rx_dma_addr, len, DMA_DEV_TO_MEM,
757 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
758 if (!desc_rx)
759 return -EAGAIN;
760
761 desc_rx->callback = sh_msiof_dma_complete;
762 desc_rx->callback_param = p;
763 cookie = dmaengine_submit(desc_rx);
764 if (dma_submit_error(cookie))
765 return cookie;
766 }
767
768 if (tx) {
769 ier_bits |= IER_TDREQE | IER_TDMAE;
770 dma_sync_single_for_device(p->master->dma_tx->device->dev,
771 p->tx_dma_addr, len, DMA_TO_DEVICE);
772 desc_tx = dmaengine_prep_slave_single(p->master->dma_tx,
773 p->tx_dma_addr, len, DMA_MEM_TO_DEV,
774 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
775 if (!desc_tx) {
776 ret = -EAGAIN;
777 goto no_dma_tx;
778 }
779
780 if (rx) {
781 /* No callback */
782 desc_tx->callback = NULL;
783 } else {
784 desc_tx->callback = sh_msiof_dma_complete;
785 desc_tx->callback_param = p;
786 }
787 cookie = dmaengine_submit(desc_tx);
788 if (dma_submit_error(cookie)) {
789 ret = cookie;
790 goto no_dma_tx;
791 }
792 }
793
794 /* 1 stage FIFO watermarks for DMA */
795 sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);
796
797 /* setup msiof transfer mode registers (32-bit words) */
798 sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
799
800 sh_msiof_write(p, IER, ier_bits);
801
802 reinit_completion(&p->done);
803 p->slave_aborted = false;
804
805 /* Now start DMA */
806 if (rx)
807 dma_async_issue_pending(p->master->dma_rx);
808 if (tx)
809 dma_async_issue_pending(p->master->dma_tx);
810
811 ret = sh_msiof_spi_start(p, rx);
812 if (ret) {
813 dev_err(&p->pdev->dev, "failed to start hardware\n");
814 goto stop_dma;
815 }
816
817 /* wait for tx/rx DMA completion */
818 ret = sh_msiof_wait_for_completion(p);
819 if (ret)
820 goto stop_reset;
821
822 if (!rx) {
823 reinit_completion(&p->done);
824 sh_msiof_write(p, IER, IER_TEOFE);
825
826 /* wait for tx fifo to be emptied */
827 ret = sh_msiof_wait_for_completion(p);
828 if (ret)
829 goto stop_reset;
830 }
831
832 /* clear status bits */
833 sh_msiof_reset_str(p);
834
835 ret = sh_msiof_spi_stop(p, rx);
836 if (ret) {
837 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
838 return ret;
839 }
840
841 if (rx)
842 dma_sync_single_for_cpu(p->master->dma_rx->device->dev,
843 p->rx_dma_addr, len,
844 DMA_FROM_DEVICE);
845
846 return 0;
847
848stop_reset:
849 sh_msiof_reset_str(p);
850 sh_msiof_spi_stop(p, rx);
851stop_dma:
852 if (tx)
853 dmaengine_terminate_all(p->master->dma_tx);
854no_dma_tx:
855 if (rx)
856 dmaengine_terminate_all(p->master->dma_rx);
857 sh_msiof_write(p, IER, 0);
858 return ret;
859}
860
861static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
862{
863 /* src or dst can be unaligned, but not both */
864 if ((unsigned long)src & 3) {
865 while (words--) {
866 *dst++ = swab32(get_unaligned(src));
867 src++;
868 }
869 } else if ((unsigned long)dst & 3) {
870 while (words--) {
871 put_unaligned(swab32(*src++), dst);
872 dst++;
873 }
874 } else {
875 while (words--)
876 *dst++ = swab32(*src++);
877 }
878}
879
880static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
881{
882 /* src or dst can be unaligned, but not both */
883 if ((unsigned long)src & 3) {
884 while (words--) {
885 *dst++ = swahw32(get_unaligned(src));
886 src++;
887 }
888 } else if ((unsigned long)dst & 3) {
889 while (words--) {
890 put_unaligned(swahw32(*src++), dst);
891 dst++;
892 }
893 } else {
894 while (words--)
895 *dst++ = swahw32(*src++);
896 }
897}
898
899static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
900{
901 memcpy(dst, src, words * 4);
902}
903
904static int sh_msiof_transfer_one(struct spi_master *master,
905 struct spi_device *spi,
906 struct spi_transfer *t)
907{
908 struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
909 void (*copy32)(u32 *, const u32 *, unsigned int);
910 void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
911 void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
912 const void *tx_buf = t->tx_buf;
913 void *rx_buf = t->rx_buf;
914 unsigned int len = t->len;
915 unsigned int bits = t->bits_per_word;
916 unsigned int bytes_per_word;
917 unsigned int words;
918 int n;
919 bool swab;
920 int ret;
921
922 /* setup clocks (clock already enabled in chipselect()) */
923 if (!spi_controller_is_slave(p->master))
924 sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
925
926 while (master->dma_tx && len > 15) {
927 /*
928 * DMA supports 32-bit words only, hence pack 8-bit and 16-bit
929 * words, with byte resp. word swapping.
930 */
931 unsigned int l = 0;
932
933 if (tx_buf)
934 l = min(len, p->tx_fifo_size * 4);
935 if (rx_buf)
936 l = min(len, p->rx_fifo_size * 4);
937
938 if (bits <= 8) {
939 if (l & 3)
940 break;
941 copy32 = copy_bswap32;
942 } else if (bits <= 16) {
943 if (l & 3)
944 break;
945 copy32 = copy_wswap32;
946 } else {
947 copy32 = copy_plain32;
948 }
949
950 if (tx_buf)
951 copy32(p->tx_dma_page, tx_buf, l / 4);
952
953 ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
954 if (ret == -EAGAIN) {
955 dev_warn_once(&p->pdev->dev,
956 "DMA not available, falling back to PIO\n");
957 break;
958 }
959 if (ret)
960 return ret;
961
962 if (rx_buf) {
963 copy32(rx_buf, p->rx_dma_page, l / 4);
964 rx_buf += l;
965 }
966 if (tx_buf)
967 tx_buf += l;
968
969 len -= l;
970 if (!len)
971 return 0;
972 }
973
974 if (bits <= 8 && len > 15 && !(len & 3)) {
975 bits = 32;
976 swab = true;
977 } else {
978 swab = false;
979 }
980
981 /* setup bytes per word and fifo read/write functions */
982 if (bits <= 8) {
983 bytes_per_word = 1;
984 tx_fifo = sh_msiof_spi_write_fifo_8;
985 rx_fifo = sh_msiof_spi_read_fifo_8;
986 } else if (bits <= 16) {
987 bytes_per_word = 2;
988 if ((unsigned long)tx_buf & 0x01)
989 tx_fifo = sh_msiof_spi_write_fifo_16u;
990 else
991 tx_fifo = sh_msiof_spi_write_fifo_16;
992
993 if ((unsigned long)rx_buf & 0x01)
994 rx_fifo = sh_msiof_spi_read_fifo_16u;
995 else
996 rx_fifo = sh_msiof_spi_read_fifo_16;
997 } else if (swab) {
998 bytes_per_word = 4;
999 if ((unsigned long)tx_buf & 0x03)
1000 tx_fifo = sh_msiof_spi_write_fifo_s32u;
1001 else
1002 tx_fifo = sh_msiof_spi_write_fifo_s32;
1003
1004 if ((unsigned long)rx_buf & 0x03)
1005 rx_fifo = sh_msiof_spi_read_fifo_s32u;
1006 else
1007 rx_fifo = sh_msiof_spi_read_fifo_s32;
1008 } else {
1009 bytes_per_word = 4;
1010 if ((unsigned long)tx_buf & 0x03)
1011 tx_fifo = sh_msiof_spi_write_fifo_32u;
1012 else
1013 tx_fifo = sh_msiof_spi_write_fifo_32;
1014
1015 if ((unsigned long)rx_buf & 0x03)
1016 rx_fifo = sh_msiof_spi_read_fifo_32u;
1017 else
1018 rx_fifo = sh_msiof_spi_read_fifo_32;
1019 }
1020
1021 /* transfer in fifo sized chunks */
1022 words = len / bytes_per_word;
1023
1024 while (words > 0) {
1025 n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
1026 words, bits);
1027 if (n < 0)
1028 return n;
1029
1030 if (tx_buf)
1031 tx_buf += n * bytes_per_word;
1032 if (rx_buf)
1033 rx_buf += n * bytes_per_word;
1034 words -= n;
1035 }
1036
1037 return 0;
1038}
1039
1040static const struct sh_msiof_chipdata sh_data = {
1041 .tx_fifo_size = 64,
1042 .rx_fifo_size = 64,
1043 .master_flags = 0,
1044 .min_div = 1,
1045};
1046
1047static const struct sh_msiof_chipdata rcar_gen2_data = {
1048 .tx_fifo_size = 64,
1049 .rx_fifo_size = 64,
1050 .master_flags = SPI_MASTER_MUST_TX,
1051 .min_div = 1,
1052};
1053
1054static const struct sh_msiof_chipdata rcar_gen3_data = {
1055 .tx_fifo_size = 64,
1056 .rx_fifo_size = 64,
1057 .master_flags = SPI_MASTER_MUST_TX,
1058 .min_div = 2,
1059};
1060
1061static const struct of_device_id sh_msiof_match[] = {
1062 { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
1063 { .compatible = "renesas,msiof-r8a7743", .data = &rcar_gen2_data },
1064 { .compatible = "renesas,msiof-r8a7745", .data = &rcar_gen2_data },
1065 { .compatible = "renesas,msiof-r8a7790", .data = &rcar_gen2_data },
1066 { .compatible = "renesas,msiof-r8a7791", .data = &rcar_gen2_data },
1067 { .compatible = "renesas,msiof-r8a7792", .data = &rcar_gen2_data },
1068 { .compatible = "renesas,msiof-r8a7793", .data = &rcar_gen2_data },
1069 { .compatible = "renesas,msiof-r8a7794", .data = &rcar_gen2_data },
1070 { .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data },
1071 { .compatible = "renesas,msiof-r8a7796", .data = &rcar_gen3_data },
1072 { .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data },
1073 { .compatible = "renesas,sh-msiof", .data = &sh_data }, /* Deprecated */
1074 {},
1075};
1076MODULE_DEVICE_TABLE(of, sh_msiof_match);
1077
1078#ifdef CONFIG_OF
1079static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1080{
1081 struct sh_msiof_spi_info *info;
1082 struct device_node *np = dev->of_node;
1083 u32 num_cs = 1;
1084
1085 info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
1086 if (!info)
1087 return NULL;
1088
1089 info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE
1090 : MSIOF_SPI_MASTER;
1091
1092 /* Parse the MSIOF properties */
1093 if (info->mode == MSIOF_SPI_MASTER)
1094 of_property_read_u32(np, "num-cs", &num_cs);
1095 of_property_read_u32(np, "renesas,tx-fifo-size",
1096 &info->tx_fifo_override);
1097 of_property_read_u32(np, "renesas,rx-fifo-size",
1098 &info->rx_fifo_override);
1099 of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1100 of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
1101
1102 info->num_chipselect = num_cs;
1103
1104 return info;
1105}
1106#else
1107static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1108{
1109 return NULL;
1110}
1111#endif
1112
1113static int sh_msiof_get_cs_gpios(struct sh_msiof_spi_priv *p)
1114{
1115 struct device *dev = &p->pdev->dev;
1116 unsigned int used_ss_mask = 0;
1117 unsigned int cs_gpios = 0;
1118 unsigned int num_cs, i;
1119 int ret;
1120
1121 ret = gpiod_count(dev, "cs");
1122 if (ret <= 0)
1123 return 0;
1124
1125 num_cs = max_t(unsigned int, ret, p->master->num_chipselect);
1126 for (i = 0; i < num_cs; i++) {
1127 struct gpio_desc *gpiod;
1128
1129 gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1130 if (!IS_ERR(gpiod)) {
1131 cs_gpios++;
1132 continue;
1133 }
1134
1135 if (PTR_ERR(gpiod) != -ENOENT)
1136 return PTR_ERR(gpiod);
1137
1138 if (i >= MAX_SS) {
1139 dev_err(dev, "Invalid native chip select %d\n", i);
1140 return -EINVAL;
1141 }
1142 used_ss_mask |= BIT(i);
1143 }
1144 p->unused_ss = ffz(used_ss_mask);
1145 if (cs_gpios && p->unused_ss >= MAX_SS) {
1146 dev_err(dev, "No unused native chip select available\n");
1147 return -EINVAL;
1148 }
1149 return 0;
1150}
1151
1152static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1153 enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1154{
1155 dma_cap_mask_t mask;
1156 struct dma_chan *chan;
1157 struct dma_slave_config cfg;
1158 int ret;
1159
1160 dma_cap_zero(mask);
1161 dma_cap_set(DMA_SLAVE, mask);
1162
1163 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1164 (void *)(unsigned long)id, dev,
1165 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1166 if (!chan) {
1167 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1168 return NULL;
1169 }
1170
1171 memset(&cfg, 0, sizeof(cfg));
1172 cfg.direction = dir;
1173 if (dir == DMA_MEM_TO_DEV) {
1174 cfg.dst_addr = port_addr;
1175 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1176 } else {
1177 cfg.src_addr = port_addr;
1178 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1179 }
1180
1181 ret = dmaengine_slave_config(chan, &cfg);
1182 if (ret) {
1183 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1184 dma_release_channel(chan);
1185 return NULL;
1186 }
1187
1188 return chan;
1189}
1190
1191static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1192{
1193 struct platform_device *pdev = p->pdev;
1194 struct device *dev = &pdev->dev;
1195 const struct sh_msiof_spi_info *info = dev_get_platdata(dev);
1196 unsigned int dma_tx_id, dma_rx_id;
1197 const struct resource *res;
1198 struct spi_master *master;
1199 struct device *tx_dev, *rx_dev;
1200
1201 if (dev->of_node) {
1202 /* In the OF case we will get the slave IDs from the DT */
1203 dma_tx_id = 0;
1204 dma_rx_id = 0;
1205 } else if (info && info->dma_tx_id && info->dma_rx_id) {
1206 dma_tx_id = info->dma_tx_id;
1207 dma_rx_id = info->dma_rx_id;
1208 } else {
1209 /* The driver assumes no error */
1210 return 0;
1211 }
1212
1213 /* The DMA engine uses the second register set, if present */
1214 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1215 if (!res)
1216 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1217
1218 master = p->master;
1219 master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1220 dma_tx_id,
1221 res->start + TFDR);
1222 if (!master->dma_tx)
1223 return -ENODEV;
1224
1225 master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1226 dma_rx_id,
1227 res->start + RFDR);
1228 if (!master->dma_rx)
1229 goto free_tx_chan;
1230
1231 p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1232 if (!p->tx_dma_page)
1233 goto free_rx_chan;
1234
1235 p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1236 if (!p->rx_dma_page)
1237 goto free_tx_page;
1238
1239 tx_dev = master->dma_tx->device->dev;
1240 p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1241 DMA_TO_DEVICE);
1242 if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1243 goto free_rx_page;
1244
1245 rx_dev = master->dma_rx->device->dev;
1246 p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1247 DMA_FROM_DEVICE);
1248 if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1249 goto unmap_tx_page;
1250
1251 dev_info(dev, "DMA available");
1252 return 0;
1253
1254unmap_tx_page:
1255 dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1256free_rx_page:
1257 free_page((unsigned long)p->rx_dma_page);
1258free_tx_page:
1259 free_page((unsigned long)p->tx_dma_page);
1260free_rx_chan:
1261 dma_release_channel(master->dma_rx);
1262free_tx_chan:
1263 dma_release_channel(master->dma_tx);
1264 master->dma_tx = NULL;
1265 return -ENODEV;
1266}
1267
1268static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1269{
1270 struct spi_master *master = p->master;
1271
1272 if (!master->dma_tx)
1273 return;
1274
1275 dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr,
1276 PAGE_SIZE, DMA_FROM_DEVICE);
1277 dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr,
1278 PAGE_SIZE, DMA_TO_DEVICE);
1279 free_page((unsigned long)p->rx_dma_page);
1280 free_page((unsigned long)p->tx_dma_page);
1281 dma_release_channel(master->dma_rx);
1282 dma_release_channel(master->dma_tx);
1283}
1284
1285static int sh_msiof_spi_probe(struct platform_device *pdev)
1286{
1287 struct resource *r;
1288 struct spi_master *master;
1289 const struct sh_msiof_chipdata *chipdata;
1290 struct sh_msiof_spi_info *info;
1291 struct sh_msiof_spi_priv *p;
1292 int i;
1293 int ret;
1294
1295 chipdata = of_device_get_match_data(&pdev->dev);
1296 if (chipdata) {
1297 info = sh_msiof_spi_parse_dt(&pdev->dev);
1298 } else {
1299 chipdata = (const void *)pdev->id_entry->driver_data;
1300 info = dev_get_platdata(&pdev->dev);
1301 }
1302
1303 if (!info) {
1304 dev_err(&pdev->dev, "failed to obtain device info\n");
1305 return -ENXIO;
1306 }
1307
1308 if (info->mode == MSIOF_SPI_SLAVE)
1309 master = spi_alloc_slave(&pdev->dev,
1310 sizeof(struct sh_msiof_spi_priv));
1311 else
1312 master = spi_alloc_master(&pdev->dev,
1313 sizeof(struct sh_msiof_spi_priv));
1314 if (master == NULL)
1315 return -ENOMEM;
1316
1317 p = spi_master_get_devdata(master);
1318
1319 platform_set_drvdata(pdev, p);
1320 p->master = master;
1321 p->info = info;
1322 p->min_div = chipdata->min_div;
1323
1324 init_completion(&p->done);
1325
1326 p->clk = devm_clk_get(&pdev->dev, NULL);
1327 if (IS_ERR(p->clk)) {
1328 dev_err(&pdev->dev, "cannot get clock\n");
1329 ret = PTR_ERR(p->clk);
1330 goto err1;
1331 }
1332
1333 i = platform_get_irq(pdev, 0);
1334 if (i < 0) {
1335 dev_err(&pdev->dev, "cannot get platform IRQ\n");
1336 ret = -ENOENT;
1337 goto err1;
1338 }
1339
1340 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1341 p->mapbase = devm_ioremap_resource(&pdev->dev, r);
1342 if (IS_ERR(p->mapbase)) {
1343 ret = PTR_ERR(p->mapbase);
1344 goto err1;
1345 }
1346
1347 ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1348 dev_name(&pdev->dev), p);
1349 if (ret) {
1350 dev_err(&pdev->dev, "unable to request irq\n");
1351 goto err1;
1352 }
1353
1354 p->pdev = pdev;
1355 pm_runtime_enable(&pdev->dev);
1356
1357 /* Platform data may override FIFO sizes */
1358 p->tx_fifo_size = chipdata->tx_fifo_size;
1359 p->rx_fifo_size = chipdata->rx_fifo_size;
1360 if (p->info->tx_fifo_override)
1361 p->tx_fifo_size = p->info->tx_fifo_override;
1362 if (p->info->rx_fifo_override)
1363 p->rx_fifo_size = p->info->rx_fifo_override;
1364
1365 /* Setup GPIO chip selects */
1366 master->num_chipselect = p->info->num_chipselect;
1367 ret = sh_msiof_get_cs_gpios(p);
1368 if (ret)
1369 goto err1;
1370
1371 /* init master code */
1372 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1373 master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1374 master->flags = chipdata->master_flags;
1375 master->bus_num = pdev->id;
1376 master->dev.of_node = pdev->dev.of_node;
1377 master->setup = sh_msiof_spi_setup;
1378 master->prepare_message = sh_msiof_prepare_message;
1379 master->slave_abort = sh_msiof_slave_abort;
1380 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
1381 master->auto_runtime_pm = true;
1382 master->transfer_one = sh_msiof_transfer_one;
1383
1384 ret = sh_msiof_request_dma(p);
1385 if (ret < 0)
1386 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1387
1388 ret = devm_spi_register_master(&pdev->dev, master);
1389 if (ret < 0) {
1390 dev_err(&pdev->dev, "spi_register_master error.\n");
1391 goto err2;
1392 }
1393
1394 return 0;
1395
1396 err2:
1397 sh_msiof_release_dma(p);
1398 pm_runtime_disable(&pdev->dev);
1399 err1:
1400 spi_master_put(master);
1401 return ret;
1402}
1403
1404static int sh_msiof_spi_remove(struct platform_device *pdev)
1405{
1406 struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1407
1408 sh_msiof_release_dma(p);
1409 pm_runtime_disable(&pdev->dev);
1410 return 0;
1411}
1412
1413static const struct platform_device_id spi_driver_ids[] = {
1414 { "spi_sh_msiof", (kernel_ulong_t)&sh_data },
1415 {},
1416};
1417MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1418
1419static struct platform_driver sh_msiof_spi_drv = {
1420 .probe = sh_msiof_spi_probe,
1421 .remove = sh_msiof_spi_remove,
1422 .id_table = spi_driver_ids,
1423 .driver = {
1424 .name = "spi_sh_msiof",
1425 .of_match_table = of_match_ptr(sh_msiof_match),
1426 },
1427};
1428module_platform_driver(sh_msiof_spi_drv);
1429
1430MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
1431MODULE_AUTHOR("Magnus Damm");
1432MODULE_LICENSE("GPL v2");
1433MODULE_ALIAS("platform:spi_sh_msiof");