Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 * SuperH MSIOF SPI Master Interface
  3 *
  4 * Copyright (c) 2009 Magnus Damm
 
 
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License version 2 as
  8 * published by the Free Software Foundation.
  9 *
 10 */
 11
 12#include <linux/bitmap.h>
 13#include <linux/clk.h>
 14#include <linux/completion.h>
 15#include <linux/delay.h>
 
 
 16#include <linux/err.h>
 17#include <linux/gpio.h>
 18#include <linux/init.h>
 19#include <linux/interrupt.h>
 20#include <linux/io.h>
 21#include <linux/kernel.h>
 
 
 
 22#include <linux/platform_device.h>
 23#include <linux/pm_runtime.h>
 
 24
 25#include <linux/spi/sh_msiof.h>
 26#include <linux/spi/spi.h>
 27#include <linux/spi/spi_bitbang.h>
 28
 29#include <asm/unaligned.h>
 30
 
 
 
 
 
 
 
 31struct sh_msiof_spi_priv {
 32	struct spi_bitbang bitbang; /* must be first for spi_bitbang.c */
 33	void __iomem *mapbase;
 34	struct clk *clk;
 35	struct platform_device *pdev;
 36	struct sh_msiof_spi_info *info;
 37	struct completion done;
 38	unsigned long flags;
 39	int tx_fifo_size;
 40	int rx_fifo_size;
 
 
 
 
 
 
 
 
 41};
 42
 43#define TMDR1	0x00
 44#define TMDR2	0x04
 45#define TMDR3	0x08
 46#define RMDR1	0x10
 47#define RMDR2	0x14
 48#define RMDR3	0x18
 49#define TSCR	0x20
 50#define RSCR	0x22
 51#define CTR	0x28
 52#define FCTR	0x30
 53#define STR	0x40
 54#define IER	0x44
 55#define TDR1	0x48
 56#define TDR2	0x4c
 57#define TFDR	0x50
 58#define RDR1	0x58
 59#define RDR2	0x5c
 60#define RFDR	0x60
 61
 62#define CTR_TSCKE (1 << 15)
 63#define CTR_TFSE  (1 << 14)
 64#define CTR_TXE   (1 << 9)
 65#define CTR_RXE   (1 << 8)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 66
 67#define STR_TEOF  (1 << 23)
 68#define STR_REOF  (1 << 7)
 69
 70static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
 71{
 72	switch (reg_offs) {
 73	case TSCR:
 74	case RSCR:
 75		return ioread16(p->mapbase + reg_offs);
 76	default:
 77		return ioread32(p->mapbase + reg_offs);
 78	}
 79}
 80
 81static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
 82			   u32 value)
 83{
 84	switch (reg_offs) {
 85	case TSCR:
 86	case RSCR:
 87		iowrite16(value, p->mapbase + reg_offs);
 88		break;
 89	default:
 90		iowrite32(value, p->mapbase + reg_offs);
 91		break;
 92	}
 93}
 94
 95static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
 96				    u32 clr, u32 set)
 97{
 98	u32 mask = clr | set;
 99	u32 data;
100	int k;
101
102	data = sh_msiof_read(p, CTR);
103	data &= ~clr;
104	data |= set;
105	sh_msiof_write(p, CTR, data);
106
107	for (k = 100; k > 0; k--) {
108		if ((sh_msiof_read(p, CTR) & mask) == set)
109			break;
110
111		udelay(10);
112	}
113
114	return k > 0 ? 0 : -ETIMEDOUT;
115}
116
117static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
118{
119	struct sh_msiof_spi_priv *p = data;
120
121	/* just disable the interrupt and wake up */
122	sh_msiof_write(p, IER, 0);
123	complete(&p->done);
124
125	return IRQ_HANDLED;
126}
127
128static struct {
129	unsigned short div;
130	unsigned short scr;
131} const sh_msiof_spi_clk_table[] = {
132	{ 1, 0x0007 },
133	{ 2, 0x0000 },
134	{ 4, 0x0001 },
135	{ 8, 0x0002 },
136	{ 16, 0x0003 },
137	{ 32, 0x0004 },
138	{ 64, 0x1f00 },
139	{ 128, 0x1f01 },
140	{ 256, 0x1f02 },
141	{ 512, 0x1f03 },
142	{ 1024, 0x1f04 },
143};
144
145static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
146				      unsigned long parent_rate,
147				      unsigned long spi_hz)
148{
149	unsigned long div = 1024;
 
150	size_t k;
151
152	if (!WARN_ON(!spi_hz || !parent_rate))
153		div = parent_rate / spi_hz;
154
155	/* TODO: make more fine grained */
156
157	for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_clk_table); k++) {
158		if (sh_msiof_spi_clk_table[k].div >= div)
 
 
 
 
159			break;
160	}
161
162	k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_clk_table) - 1);
 
163
164	sh_msiof_write(p, TSCR, sh_msiof_spi_clk_table[k].scr);
165	sh_msiof_write(p, RSCR, sh_msiof_spi_clk_table[k].scr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
166}
167
168static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
169				      u32 cpol, u32 cpha,
170				      u32 tx_hi_z, u32 lsb_first)
171{
172	u32 tmp;
173	int edge;
174
175	/*
176	 * CPOL CPHA     TSCKIZ RSCKIZ TEDG REDG
177	 *    0    0         10     10    1    1
178	 *    0    1         10     10    0    0
179	 *    1    0         11     11    0    0
180	 *    1    1         11     11    1    1
181	 */
182	sh_msiof_write(p, FCTR, 0);
183	sh_msiof_write(p, TMDR1, 0xe2000005 | (lsb_first << 24));
184	sh_msiof_write(p, RMDR1, 0x22000005 | (lsb_first << 24));
 
 
 
 
 
 
 
 
 
 
 
 
 
185
186	tmp = 0xa0000000;
187	tmp |= cpol << 30; /* TSCKIZ */
188	tmp |= cpol << 28; /* RSCKIZ */
189
190	edge = cpol ^ !cpha;
191
192	tmp |= edge << 27; /* TEDG */
193	tmp |= edge << 26; /* REDG */
194	tmp |= (tx_hi_z ? 2 : 0) << 22; /* TXDIZ */
195	sh_msiof_write(p, CTR, tmp);
196}
197
198static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
199				       const void *tx_buf, void *rx_buf,
200				       u32 bits, u32 words)
201{
202	u32 dr2 = ((bits - 1) << 24) | ((words - 1) << 16);
203
204	if (tx_buf)
205		sh_msiof_write(p, TMDR2, dr2);
206	else
207		sh_msiof_write(p, TMDR2, dr2 | 1);
208
209	if (rx_buf)
210		sh_msiof_write(p, RMDR2, dr2);
211
212	sh_msiof_write(p, IER, STR_TEOF | STR_REOF);
213}
214
215static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
216{
217	sh_msiof_write(p, STR, sh_msiof_read(p, STR));
218}
219
220static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
221				      const void *tx_buf, int words, int fs)
222{
223	const u8 *buf_8 = tx_buf;
224	int k;
225
226	for (k = 0; k < words; k++)
227		sh_msiof_write(p, TFDR, buf_8[k] << fs);
228}
229
230static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
231				       const void *tx_buf, int words, int fs)
232{
233	const u16 *buf_16 = tx_buf;
234	int k;
235
236	for (k = 0; k < words; k++)
237		sh_msiof_write(p, TFDR, buf_16[k] << fs);
238}
239
240static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
241					const void *tx_buf, int words, int fs)
242{
243	const u16 *buf_16 = tx_buf;
244	int k;
245
246	for (k = 0; k < words; k++)
247		sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
248}
249
250static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
251				       const void *tx_buf, int words, int fs)
252{
253	const u32 *buf_32 = tx_buf;
254	int k;
255
256	for (k = 0; k < words; k++)
257		sh_msiof_write(p, TFDR, buf_32[k] << fs);
258}
259
260static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
261					const void *tx_buf, int words, int fs)
262{
263	const u32 *buf_32 = tx_buf;
264	int k;
265
266	for (k = 0; k < words; k++)
267		sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
268}
269
270static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
271					const void *tx_buf, int words, int fs)
272{
273	const u32 *buf_32 = tx_buf;
274	int k;
275
276	for (k = 0; k < words; k++)
277		sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
278}
279
280static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
281					 const void *tx_buf, int words, int fs)
282{
283	const u32 *buf_32 = tx_buf;
284	int k;
285
286	for (k = 0; k < words; k++)
287		sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
288}
289
290static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
291				     void *rx_buf, int words, int fs)
292{
293	u8 *buf_8 = rx_buf;
294	int k;
295
296	for (k = 0; k < words; k++)
297		buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
298}
299
300static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
301				      void *rx_buf, int words, int fs)
302{
303	u16 *buf_16 = rx_buf;
304	int k;
305
306	for (k = 0; k < words; k++)
307		buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
308}
309
310static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
311				       void *rx_buf, int words, int fs)
312{
313	u16 *buf_16 = rx_buf;
314	int k;
315
316	for (k = 0; k < words; k++)
317		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
318}
319
320static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
321				      void *rx_buf, int words, int fs)
322{
323	u32 *buf_32 = rx_buf;
324	int k;
325
326	for (k = 0; k < words; k++)
327		buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
328}
329
330static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
331				       void *rx_buf, int words, int fs)
332{
333	u32 *buf_32 = rx_buf;
334	int k;
335
336	for (k = 0; k < words; k++)
337		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
338}
339
340static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
341				       void *rx_buf, int words, int fs)
342{
343	u32 *buf_32 = rx_buf;
344	int k;
345
346	for (k = 0; k < words; k++)
347		buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
348}
349
350static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
351				       void *rx_buf, int words, int fs)
352{
353	u32 *buf_32 = rx_buf;
354	int k;
355
356	for (k = 0; k < words; k++)
357		put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
358}
359
360static int sh_msiof_spi_bits(struct spi_device *spi, struct spi_transfer *t)
361{
362	int bits;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
363
364	bits = t ? t->bits_per_word : 0;
365	if (!bits)
366		bits = spi->bits_per_word;
367	return bits;
 
 
 
 
 
 
 
 
 
 
368}
369
370static unsigned long sh_msiof_spi_hz(struct spi_device *spi,
371				     struct spi_transfer *t)
372{
373	unsigned long hz;
374
375	hz = t ? t->speed_hz : 0;
376	if (!hz)
377		hz = spi->max_speed_hz;
378	return hz;
 
 
 
 
 
 
 
 
 
 
 
379}
380
381static int sh_msiof_spi_setup_transfer(struct spi_device *spi,
382				       struct spi_transfer *t)
383{
384	int bits;
 
385
386	/* noting to check hz values against since parent clock is disabled */
 
 
 
 
 
 
387
388	bits = sh_msiof_spi_bits(spi, t);
389	if (bits < 8)
390		return -EINVAL;
391	if (bits > 32)
392		return -EINVAL;
393
394	return spi_bitbang_setup_transfer(spi, t);
395}
396
397static void sh_msiof_spi_chipselect(struct spi_device *spi, int is_on)
398{
399	struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
400	int value;
401
402	/* chip select is active low unless SPI_CS_HIGH is set */
403	if (spi->mode & SPI_CS_HIGH)
404		value = (is_on == BITBANG_CS_ACTIVE) ? 1 : 0;
405	else
406		value = (is_on == BITBANG_CS_ACTIVE) ? 0 : 1;
 
 
 
 
407
408	if (is_on == BITBANG_CS_ACTIVE) {
409		if (!test_and_set_bit(0, &p->flags)) {
410			pm_runtime_get_sync(&p->pdev->dev);
411			clk_enable(p->clk);
412		}
413
414		/* Configure pins before asserting CS */
415		sh_msiof_spi_set_pin_regs(p, !!(spi->mode & SPI_CPOL),
416					  !!(spi->mode & SPI_CPHA),
417					  !!(spi->mode & SPI_3WIRE),
418					  !!(spi->mode & SPI_LSB_FIRST));
419	}
420
421	/* use spi->controller data for CS (same strategy as spi_gpio) */
422	gpio_set_value((unsigned)spi->controller_data, value);
 
 
423
424	if (is_on == BITBANG_CS_INACTIVE) {
425		if (test_and_clear_bit(0, &p->flags)) {
426			clk_disable(p->clk);
427			pm_runtime_put(&p->pdev->dev);
 
 
 
 
 
 
 
 
428		}
429	}
 
 
430}
431
432static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
433				  void (*tx_fifo)(struct sh_msiof_spi_priv *,
434						  const void *, int, int),
435				  void (*rx_fifo)(struct sh_msiof_spi_priv *,
436						  void *, int, int),
437				  const void *tx_buf, void *rx_buf,
438				  int words, int bits)
439{
440	int fifo_shift;
441	int ret;
442
443	/* limit maximum word transfer to rx/tx fifo size */
444	if (tx_buf)
445		words = min_t(int, words, p->tx_fifo_size);
446	if (rx_buf)
447		words = min_t(int, words, p->rx_fifo_size);
448
449	/* the fifo contents need shifting */
450	fifo_shift = 32 - bits;
451
 
 
 
452	/* setup msiof transfer mode registers */
453	sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
 
454
455	/* write tx fifo */
456	if (tx_buf)
457		tx_fifo(p, tx_buf, words, fifo_shift);
458
459	/* setup clock and rx/tx signals */
460	ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
461	if (rx_buf)
462		ret = ret ? ret : sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
463	ret = ret ? ret : sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
464
465	/* start by setting frame bit */
466	INIT_COMPLETION(p->done);
467	ret = ret ? ret : sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
468	if (ret) {
469		dev_err(&p->pdev->dev, "failed to start hardware\n");
470		goto err;
471	}
472
473	/* wait for tx fifo to be emptied / rx fifo to be filled */
474	wait_for_completion(&p->done);
 
 
475
476	/* read rx fifo */
477	if (rx_buf)
478		rx_fifo(p, rx_buf, words, fifo_shift);
479
480	/* clear status bits */
481	sh_msiof_reset_str(p);
482
483	/* shut down frame, tx/tx and clock signals */
484	ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
485	ret = ret ? ret : sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
486	if (rx_buf)
487		ret = ret ? ret : sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
488	ret = ret ? ret : sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
489	if (ret) {
490		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
491		goto err;
492	}
493
494	return words;
495
496 err:
 
 
 
497	sh_msiof_write(p, IER, 0);
498	return ret;
499}
500
501static int sh_msiof_spi_txrx(struct spi_device *spi, struct spi_transfer *t)
502{
503	struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
504	void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
505	void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
506	int bits;
507	int bytes_per_word;
508	int bytes_done;
509	int words;
 
 
510	int n;
511	bool swab;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
512
513	bits = sh_msiof_spi_bits(spi, t);
 
514
515	if (bits <= 8 && t->len > 15 && !(t->len & 3)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
516		bits = 32;
517		swab = true;
518	} else {
519		swab = false;
520	}
521
522	/* setup bytes per word and fifo read/write functions */
523	if (bits <= 8) {
524		bytes_per_word = 1;
525		tx_fifo = sh_msiof_spi_write_fifo_8;
526		rx_fifo = sh_msiof_spi_read_fifo_8;
527	} else if (bits <= 16) {
528		bytes_per_word = 2;
529		if ((unsigned long)t->tx_buf & 0x01)
530			tx_fifo = sh_msiof_spi_write_fifo_16u;
531		else
532			tx_fifo = sh_msiof_spi_write_fifo_16;
533
534		if ((unsigned long)t->rx_buf & 0x01)
535			rx_fifo = sh_msiof_spi_read_fifo_16u;
536		else
537			rx_fifo = sh_msiof_spi_read_fifo_16;
538	} else if (swab) {
539		bytes_per_word = 4;
540		if ((unsigned long)t->tx_buf & 0x03)
541			tx_fifo = sh_msiof_spi_write_fifo_s32u;
542		else
543			tx_fifo = sh_msiof_spi_write_fifo_s32;
544
545		if ((unsigned long)t->rx_buf & 0x03)
546			rx_fifo = sh_msiof_spi_read_fifo_s32u;
547		else
548			rx_fifo = sh_msiof_spi_read_fifo_s32;
549	} else {
550		bytes_per_word = 4;
551		if ((unsigned long)t->tx_buf & 0x03)
552			tx_fifo = sh_msiof_spi_write_fifo_32u;
553		else
554			tx_fifo = sh_msiof_spi_write_fifo_32;
555
556		if ((unsigned long)t->rx_buf & 0x03)
557			rx_fifo = sh_msiof_spi_read_fifo_32u;
558		else
559			rx_fifo = sh_msiof_spi_read_fifo_32;
560	}
561
562	/* setup clocks (clock already enabled in chipselect()) */
563	sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk),
564				  sh_msiof_spi_hz(spi, t));
565
566	/* transfer in fifo sized chunks */
567	words = t->len / bytes_per_word;
568	bytes_done = 0;
569
570	while (bytes_done < t->len) {
571		void *rx_buf = t->rx_buf ? t->rx_buf + bytes_done : NULL;
572		const void *tx_buf = t->tx_buf ? t->tx_buf + bytes_done : NULL;
573		n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo,
574					   tx_buf,
575					   rx_buf,
576					   words, bits);
577		if (n < 0)
578			break;
579
580		bytes_done += n * bytes_per_word;
 
 
 
581		words -= n;
582	}
583
584	return bytes_done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
585}
586
587static u32 sh_msiof_spi_txrx_word(struct spi_device *spi, unsigned nsecs,
588				  u32 word, u8 bits)
589{
590	BUG(); /* unused but needed by bitbang code */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
591	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
592}
593
594static int sh_msiof_spi_probe(struct platform_device *pdev)
595{
596	struct resource	*r;
597	struct spi_master *master;
 
 
598	struct sh_msiof_spi_priv *p;
599	char clk_name[16];
600	int i;
601	int ret;
602
603	master = spi_alloc_master(&pdev->dev, sizeof(struct sh_msiof_spi_priv));
604	if (master == NULL) {
605		dev_err(&pdev->dev, "failed to allocate spi master\n");
606		ret = -ENOMEM;
607		goto err0;
 
608	}
609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
610	p = spi_master_get_devdata(master);
611
612	platform_set_drvdata(pdev, p);
613	p->info = pdev->dev.platform_data;
 
 
 
614	init_completion(&p->done);
615
616	snprintf(clk_name, sizeof(clk_name), "msiof%d", pdev->id);
617	p->clk = clk_get(&pdev->dev, clk_name);
618	if (IS_ERR(p->clk)) {
619		dev_err(&pdev->dev, "cannot get clock \"%s\"\n", clk_name);
620		ret = PTR_ERR(p->clk);
621		goto err1;
622	}
623
624	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
625	i = platform_get_irq(pdev, 0);
626	if (!r || i < 0) {
627		dev_err(&pdev->dev, "cannot get platform resources\n");
628		ret = -ENOENT;
629		goto err2;
630	}
631	p->mapbase = ioremap_nocache(r->start, resource_size(r));
632	if (!p->mapbase) {
633		dev_err(&pdev->dev, "unable to ioremap\n");
634		ret = -ENXIO;
635		goto err2;
 
636	}
637
638	ret = request_irq(i, sh_msiof_spi_irq, IRQF_DISABLED,
639			  dev_name(&pdev->dev), p);
640	if (ret) {
641		dev_err(&pdev->dev, "unable to request irq\n");
642		goto err3;
643	}
644
645	p->pdev = pdev;
646	pm_runtime_enable(&pdev->dev);
647
648	/* The standard version of MSIOF use 64 word FIFOs */
649	p->tx_fifo_size = 64;
650	p->rx_fifo_size = 64;
651
652	/* Platform data may override FIFO sizes */
 
 
653	if (p->info->tx_fifo_override)
654		p->tx_fifo_size = p->info->tx_fifo_override;
655	if (p->info->rx_fifo_override)
656		p->rx_fifo_size = p->info->rx_fifo_override;
657
658	/* init master and bitbang code */
 
 
 
 
 
 
659	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
660	master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
661	master->flags = 0;
662	master->bus_num = pdev->id;
663	master->num_chipselect = p->info->num_chipselect;
664	master->setup = spi_bitbang_setup;
665	master->cleanup = spi_bitbang_cleanup;
666
667	p->bitbang.master = master;
668	p->bitbang.chipselect = sh_msiof_spi_chipselect;
669	p->bitbang.setup_transfer = sh_msiof_spi_setup_transfer;
670	p->bitbang.txrx_bufs = sh_msiof_spi_txrx;
671	p->bitbang.txrx_word[SPI_MODE_0] = sh_msiof_spi_txrx_word;
672	p->bitbang.txrx_word[SPI_MODE_1] = sh_msiof_spi_txrx_word;
673	p->bitbang.txrx_word[SPI_MODE_2] = sh_msiof_spi_txrx_word;
674	p->bitbang.txrx_word[SPI_MODE_3] = sh_msiof_spi_txrx_word;
 
 
 
 
 
675
676	ret = spi_bitbang_start(&p->bitbang);
677	if (ret == 0)
678		return 0;
679
680	pm_runtime_disable(&pdev->dev);
681 err3:
682	iounmap(p->mapbase);
683 err2:
684	clk_put(p->clk);
 
685 err1:
686	spi_master_put(master);
687 err0:
688	return ret;
689}
690
691static int sh_msiof_spi_remove(struct platform_device *pdev)
692{
693	struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
694	int ret;
695
696	ret = spi_bitbang_stop(&p->bitbang);
697	if (!ret) {
698		pm_runtime_disable(&pdev->dev);
699		free_irq(platform_get_irq(pdev, 0), p);
700		iounmap(p->mapbase);
701		clk_put(p->clk);
702		spi_master_put(p->bitbang.master);
703	}
704	return ret;
705}
706
707static int sh_msiof_spi_runtime_nop(struct device *dev)
708{
709	/* Runtime PM callback shared between ->runtime_suspend()
710	 * and ->runtime_resume(). Simply returns success.
711	 *
712	 * This driver re-initializes all registers after
713	 * pm_runtime_get_sync() anyway so there is no need
714	 * to save and restore registers here.
715	 */
716	return 0;
717}
718
719static struct dev_pm_ops sh_msiof_spi_dev_pm_ops = {
720	.runtime_suspend = sh_msiof_spi_runtime_nop,
721	.runtime_resume = sh_msiof_spi_runtime_nop,
722};
 
723
724static struct platform_driver sh_msiof_spi_drv = {
725	.probe		= sh_msiof_spi_probe,
726	.remove		= sh_msiof_spi_remove,
 
727	.driver		= {
728		.name		= "spi_sh_msiof",
729		.owner		= THIS_MODULE,
730		.pm		= &sh_msiof_spi_dev_pm_ops,
731	},
732};
733
734static int __init sh_msiof_spi_init(void)
735{
736	return platform_driver_register(&sh_msiof_spi_drv);
737}
738module_init(sh_msiof_spi_init);
739
740static void __exit sh_msiof_spi_exit(void)
741{
742	platform_driver_unregister(&sh_msiof_spi_drv);
743}
744module_exit(sh_msiof_spi_exit);
745
746MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
747MODULE_AUTHOR("Magnus Damm");
748MODULE_LICENSE("GPL v2");
749MODULE_ALIAS("platform:spi_sh_msiof");
v4.17
   1/*
   2 * SuperH MSIOF SPI Master Interface
   3 *
   4 * Copyright (c) 2009 Magnus Damm
   5 * Copyright (C) 2014 Renesas Electronics Corporation
   6 * Copyright (C) 2014-2017 Glider bvba
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 *
  12 */
  13
  14#include <linux/bitmap.h>
  15#include <linux/clk.h>
  16#include <linux/completion.h>
  17#include <linux/delay.h>
  18#include <linux/dma-mapping.h>
  19#include <linux/dmaengine.h>
  20#include <linux/err.h>
  21#include <linux/gpio.h>
  22#include <linux/gpio/consumer.h>
  23#include <linux/interrupt.h>
  24#include <linux/io.h>
  25#include <linux/kernel.h>
  26#include <linux/module.h>
  27#include <linux/of.h>
  28#include <linux/of_device.h>
  29#include <linux/platform_device.h>
  30#include <linux/pm_runtime.h>
  31#include <linux/sh_dma.h>
  32
  33#include <linux/spi/sh_msiof.h>
  34#include <linux/spi/spi.h>
 
  35
  36#include <asm/unaligned.h>
  37
  38struct sh_msiof_chipdata {
  39	u16 tx_fifo_size;
  40	u16 rx_fifo_size;
  41	u16 master_flags;
  42	u16 min_div;
  43};
  44
  45struct sh_msiof_spi_priv {
  46	struct spi_master *master;
  47	void __iomem *mapbase;
  48	struct clk *clk;
  49	struct platform_device *pdev;
  50	struct sh_msiof_spi_info *info;
  51	struct completion done;
  52	unsigned int tx_fifo_size;
  53	unsigned int rx_fifo_size;
  54	unsigned int min_div;
  55	void *tx_dma_page;
  56	void *rx_dma_page;
  57	dma_addr_t tx_dma_addr;
  58	dma_addr_t rx_dma_addr;
  59	unsigned short unused_ss;
  60	bool native_cs_inited;
  61	bool native_cs_high;
  62	bool slave_aborted;
  63};
  64
  65#define MAX_SS	3	/* Maximum number of native chip selects */
  66
  67#define TMDR1	0x00	/* Transmit Mode Register 1 */
  68#define TMDR2	0x04	/* Transmit Mode Register 2 */
  69#define TMDR3	0x08	/* Transmit Mode Register 3 */
  70#define RMDR1	0x10	/* Receive Mode Register 1 */
  71#define RMDR2	0x14	/* Receive Mode Register 2 */
  72#define RMDR3	0x18	/* Receive Mode Register 3 */
  73#define TSCR	0x20	/* Transmit Clock Select Register */
  74#define RSCR	0x22	/* Receive Clock Select Register (SH, A1, APE6) */
  75#define CTR	0x28	/* Control Register */
  76#define FCTR	0x30	/* FIFO Control Register */
  77#define STR	0x40	/* Status Register */
  78#define IER	0x44	/* Interrupt Enable Register */
  79#define TDR1	0x48	/* Transmit Control Data Register 1 (SH, A1) */
  80#define TDR2	0x4c	/* Transmit Control Data Register 2 (SH, A1) */
  81#define TFDR	0x50	/* Transmit FIFO Data Register */
  82#define RDR1	0x58	/* Receive Control Data Register 1 (SH, A1) */
  83#define RDR2	0x5c	/* Receive Control Data Register 2 (SH, A1) */
  84#define RFDR	0x60	/* Receive FIFO Data Register */
  85
  86/* TMDR1 and RMDR1 */
  87#define MDR1_TRMD	 0x80000000 /* Transfer Mode (1 = Master mode) */
  88#define MDR1_SYNCMD_MASK 0x30000000 /* SYNC Mode */
  89#define MDR1_SYNCMD_SPI	 0x20000000 /*   Level mode/SPI */
  90#define MDR1_SYNCMD_LR	 0x30000000 /*   L/R mode */
  91#define MDR1_SYNCAC_SHIFT	 25 /* Sync Polarity (1 = Active-low) */
  92#define MDR1_BITLSB_SHIFT	 24 /* MSB/LSB First (1 = LSB first) */
  93#define MDR1_DTDL_SHIFT		 20 /* Data Pin Bit Delay for MSIOF_SYNC */
  94#define MDR1_SYNCDL_SHIFT	 16 /* Frame Sync Signal Timing Delay */
  95#define MDR1_FLD_MASK	 0x0000000c /* Frame Sync Signal Interval (0-3) */
  96#define MDR1_FLD_SHIFT		  2
  97#define MDR1_XXSTP	 0x00000001 /* Transmission/Reception Stop on FIFO */
  98/* TMDR1 */
  99#define TMDR1_PCON	 0x40000000 /* Transfer Signal Connection */
 100#define TMDR1_SYNCCH_MASK 0xc000000 /* Synchronization Signal Channel Select */
 101#define TMDR1_SYNCCH_SHIFT	 26 /* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */
 102
 103/* TMDR2 and RMDR2 */
 104#define MDR2_BITLEN1(i)	(((i) - 1) << 24) /* Data Size (8-32 bits) */
 105#define MDR2_WDLEN1(i)	(((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
 106#define MDR2_GRPMASK1	0x00000001 /* Group Output Mask 1 (SH, A1) */
 107
 108/* TSCR and RSCR */
 109#define SCR_BRPS_MASK	    0x1f00 /* Prescaler Setting (1-32) */
 110#define SCR_BRPS(i)	(((i) - 1) << 8)
 111#define SCR_BRDV_MASK	    0x0007 /* Baud Rate Generator's Division Ratio */
 112#define SCR_BRDV_DIV_2	    0x0000
 113#define SCR_BRDV_DIV_4	    0x0001
 114#define SCR_BRDV_DIV_8	    0x0002
 115#define SCR_BRDV_DIV_16	    0x0003
 116#define SCR_BRDV_DIV_32	    0x0004
 117#define SCR_BRDV_DIV_1	    0x0007
 118
 119/* CTR */
 120#define CTR_TSCKIZ_MASK	0xc0000000 /* Transmit Clock I/O Polarity Select */
 121#define CTR_TSCKIZ_SCK	0x80000000 /*   Disable SCK when TX disabled */
 122#define CTR_TSCKIZ_POL_SHIFT	30 /*   Transmit Clock Polarity */
 123#define CTR_RSCKIZ_MASK	0x30000000 /* Receive Clock Polarity Select */
 124#define CTR_RSCKIZ_SCK	0x20000000 /*   Must match CTR_TSCKIZ_SCK */
 125#define CTR_RSCKIZ_POL_SHIFT	28 /*   Receive Clock Polarity */
 126#define CTR_TEDG_SHIFT		27 /* Transmit Timing (1 = falling edge) */
 127#define CTR_REDG_SHIFT		26 /* Receive Timing (1 = falling edge) */
 128#define CTR_TXDIZ_MASK	0x00c00000 /* Pin Output When TX is Disabled */
 129#define CTR_TXDIZ_LOW	0x00000000 /*   0 */
 130#define CTR_TXDIZ_HIGH	0x00400000 /*   1 */
 131#define CTR_TXDIZ_HIZ	0x00800000 /*   High-impedance */
 132#define CTR_TSCKE	0x00008000 /* Transmit Serial Clock Output Enable */
 133#define CTR_TFSE	0x00004000 /* Transmit Frame Sync Signal Output Enable */
 134#define CTR_TXE		0x00000200 /* Transmit Enable */
 135#define CTR_RXE		0x00000100 /* Receive Enable */
 136
 137/* FCTR */
 138#define FCTR_TFWM_MASK	0xe0000000 /* Transmit FIFO Watermark */
 139#define FCTR_TFWM_64	0x00000000 /*  Transfer Request when 64 empty stages */
 140#define FCTR_TFWM_32	0x20000000 /*  Transfer Request when 32 empty stages */
 141#define FCTR_TFWM_24	0x40000000 /*  Transfer Request when 24 empty stages */
 142#define FCTR_TFWM_16	0x60000000 /*  Transfer Request when 16 empty stages */
 143#define FCTR_TFWM_12	0x80000000 /*  Transfer Request when 12 empty stages */
 144#define FCTR_TFWM_8	0xa0000000 /*  Transfer Request when 8 empty stages */
 145#define FCTR_TFWM_4	0xc0000000 /*  Transfer Request when 4 empty stages */
 146#define FCTR_TFWM_1	0xe0000000 /*  Transfer Request when 1 empty stage */
 147#define FCTR_TFUA_MASK	0x07f00000 /* Transmit FIFO Usable Area */
 148#define FCTR_TFUA_SHIFT		20
 149#define FCTR_TFUA(i)	((i) << FCTR_TFUA_SHIFT)
 150#define FCTR_RFWM_MASK	0x0000e000 /* Receive FIFO Watermark */
 151#define FCTR_RFWM_1	0x00000000 /*  Transfer Request when 1 valid stages */
 152#define FCTR_RFWM_4	0x00002000 /*  Transfer Request when 4 valid stages */
 153#define FCTR_RFWM_8	0x00004000 /*  Transfer Request when 8 valid stages */
 154#define FCTR_RFWM_16	0x00006000 /*  Transfer Request when 16 valid stages */
 155#define FCTR_RFWM_32	0x00008000 /*  Transfer Request when 32 valid stages */
 156#define FCTR_RFWM_64	0x0000a000 /*  Transfer Request when 64 valid stages */
 157#define FCTR_RFWM_128	0x0000c000 /*  Transfer Request when 128 valid stages */
 158#define FCTR_RFWM_256	0x0000e000 /*  Transfer Request when 256 valid stages */
 159#define FCTR_RFUA_MASK	0x00001ff0 /* Receive FIFO Usable Area (0x40 = full) */
 160#define FCTR_RFUA_SHIFT		 4
 161#define FCTR_RFUA(i)	((i) << FCTR_RFUA_SHIFT)
 162
 163/* STR */
 164#define STR_TFEMP	0x20000000 /* Transmit FIFO Empty */
 165#define STR_TDREQ	0x10000000 /* Transmit Data Transfer Request */
 166#define STR_TEOF	0x00800000 /* Frame Transmission End */
 167#define STR_TFSERR	0x00200000 /* Transmit Frame Synchronization Error */
 168#define STR_TFOVF	0x00100000 /* Transmit FIFO Overflow */
 169#define STR_TFUDF	0x00080000 /* Transmit FIFO Underflow */
 170#define STR_RFFUL	0x00002000 /* Receive FIFO Full */
 171#define STR_RDREQ	0x00001000 /* Receive Data Transfer Request */
 172#define STR_REOF	0x00000080 /* Frame Reception End */
 173#define STR_RFSERR	0x00000020 /* Receive Frame Synchronization Error */
 174#define STR_RFUDF	0x00000010 /* Receive FIFO Underflow */
 175#define STR_RFOVF	0x00000008 /* Receive FIFO Overflow */
 176
 177/* IER */
 178#define IER_TDMAE	0x80000000 /* Transmit Data DMA Transfer Req. Enable */
 179#define IER_TFEMPE	0x20000000 /* Transmit FIFO Empty Enable */
 180#define IER_TDREQE	0x10000000 /* Transmit Data Transfer Request Enable */
 181#define IER_TEOFE	0x00800000 /* Frame Transmission End Enable */
 182#define IER_TFSERRE	0x00200000 /* Transmit Frame Sync Error Enable */
 183#define IER_TFOVFE	0x00100000 /* Transmit FIFO Overflow Enable */
 184#define IER_TFUDFE	0x00080000 /* Transmit FIFO Underflow Enable */
 185#define IER_RDMAE	0x00008000 /* Receive Data DMA Transfer Req. Enable */
 186#define IER_RFFULE	0x00002000 /* Receive FIFO Full Enable */
 187#define IER_RDREQE	0x00001000 /* Receive Data Transfer Request Enable */
 188#define IER_REOFE	0x00000080 /* Frame Reception End Enable */
 189#define IER_RFSERRE	0x00000020 /* Receive Frame Sync Error Enable */
 190#define IER_RFUDFE	0x00000010 /* Receive FIFO Underflow Enable */
 191#define IER_RFOVFE	0x00000008 /* Receive FIFO Overflow Enable */
 192
 
 
 193
 194static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
 195{
 196	switch (reg_offs) {
 197	case TSCR:
 198	case RSCR:
 199		return ioread16(p->mapbase + reg_offs);
 200	default:
 201		return ioread32(p->mapbase + reg_offs);
 202	}
 203}
 204
 205static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
 206			   u32 value)
 207{
 208	switch (reg_offs) {
 209	case TSCR:
 210	case RSCR:
 211		iowrite16(value, p->mapbase + reg_offs);
 212		break;
 213	default:
 214		iowrite32(value, p->mapbase + reg_offs);
 215		break;
 216	}
 217}
 218
 219static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
 220				    u32 clr, u32 set)
 221{
 222	u32 mask = clr | set;
 223	u32 data;
 224	int k;
 225
 226	data = sh_msiof_read(p, CTR);
 227	data &= ~clr;
 228	data |= set;
 229	sh_msiof_write(p, CTR, data);
 230
 231	for (k = 100; k > 0; k--) {
 232		if ((sh_msiof_read(p, CTR) & mask) == set)
 233			break;
 234
 235		udelay(10);
 236	}
 237
 238	return k > 0 ? 0 : -ETIMEDOUT;
 239}
 240
 241static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
 242{
 243	struct sh_msiof_spi_priv *p = data;
 244
 245	/* just disable the interrupt and wake up */
 246	sh_msiof_write(p, IER, 0);
 247	complete(&p->done);
 248
 249	return IRQ_HANDLED;
 250}
 251
 252static struct {
 253	unsigned short div;
 254	unsigned short brdv;
 255} const sh_msiof_spi_div_table[] = {
 256	{ 1,	SCR_BRDV_DIV_1 },
 257	{ 2,	SCR_BRDV_DIV_2 },
 258	{ 4,	SCR_BRDV_DIV_4 },
 259	{ 8,	SCR_BRDV_DIV_8 },
 260	{ 16,	SCR_BRDV_DIV_16 },
 261	{ 32,	SCR_BRDV_DIV_32 },
 
 
 
 
 
 262};
 263
 264static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
 265				      unsigned long parent_rate, u32 spi_hz)
 
 266{
 267	unsigned long div = 1024;
 268	u32 brps, scr;
 269	size_t k;
 270
 271	if (!WARN_ON(!spi_hz || !parent_rate))
 272		div = DIV_ROUND_UP(parent_rate, spi_hz);
 273
 274	div = max_t(unsigned long, div, p->min_div);
 275
 276	for (k = 0; k < ARRAY_SIZE(sh_msiof_spi_div_table); k++) {
 277		brps = DIV_ROUND_UP(div, sh_msiof_spi_div_table[k].div);
 278		/* SCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
 279		if (sh_msiof_spi_div_table[k].div == 1 && brps > 2)
 280			continue;
 281		if (brps <= 32) /* max of brdv is 32 */
 282			break;
 283	}
 284
 285	k = min_t(int, k, ARRAY_SIZE(sh_msiof_spi_div_table) - 1);
 286	brps = min_t(int, brps, 32);
 287
 288	scr = sh_msiof_spi_div_table[k].brdv | SCR_BRPS(brps);
 289	sh_msiof_write(p, TSCR, scr);
 290	if (!(p->master->flags & SPI_MASTER_MUST_TX))
 291		sh_msiof_write(p, RSCR, scr);
 292}
 293
 294static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
 295{
 296	/*
 297	 * DTDL/SYNCDL bit	: p->info->dtdl or p->info->syncdl
 298	 * b'000		: 0
 299	 * b'001		: 100
 300	 * b'010		: 200
 301	 * b'011 (SYNCDL only)	: 300
 302	 * b'101		: 50
 303	 * b'110		: 150
 304	 */
 305	if (dtdl_or_syncdl % 100)
 306		return dtdl_or_syncdl / 100 + 5;
 307	else
 308		return dtdl_or_syncdl / 100;
 309}
 310
 311static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
 312{
 313	u32 val;
 314
 315	if (!p->info)
 316		return 0;
 317
 318	/* check if DTDL and SYNCDL is allowed value */
 319	if (p->info->dtdl > 200 || p->info->syncdl > 300) {
 320		dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
 321		return 0;
 322	}
 323
 324	/* check if the sum of DTDL and SYNCDL becomes an integer value  */
 325	if ((p->info->dtdl + p->info->syncdl) % 100) {
 326		dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
 327		return 0;
 328	}
 329
 330	val = sh_msiof_get_delay_bit(p->info->dtdl) << MDR1_DTDL_SHIFT;
 331	val |= sh_msiof_get_delay_bit(p->info->syncdl) << MDR1_SYNCDL_SHIFT;
 332
 333	return val;
 334}
 335
 336static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss,
 337				      u32 cpol, u32 cpha,
 338				      u32 tx_hi_z, u32 lsb_first, u32 cs_high)
 339{
 340	u32 tmp;
 341	int edge;
 342
 343	/*
 344	 * CPOL CPHA     TSCKIZ RSCKIZ TEDG REDG
 345	 *    0    0         10     10    1    1
 346	 *    0    1         10     10    0    0
 347	 *    1    0         11     11    0    0
 348	 *    1    1         11     11    1    1
 349	 */
 350	tmp = MDR1_SYNCMD_SPI | 1 << MDR1_FLD_SHIFT | MDR1_XXSTP;
 351	tmp |= !cs_high << MDR1_SYNCAC_SHIFT;
 352	tmp |= lsb_first << MDR1_BITLSB_SHIFT;
 353	tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
 354	if (spi_controller_is_slave(p->master)) {
 355		sh_msiof_write(p, TMDR1, tmp | TMDR1_PCON);
 356	} else {
 357		sh_msiof_write(p, TMDR1,
 358			       tmp | MDR1_TRMD | TMDR1_PCON |
 359			       (ss < MAX_SS ? ss : 0) << TMDR1_SYNCCH_SHIFT);
 360	}
 361	if (p->master->flags & SPI_MASTER_MUST_TX) {
 362		/* These bits are reserved if RX needs TX */
 363		tmp &= ~0x0000ffff;
 364	}
 365	sh_msiof_write(p, RMDR1, tmp);
 366
 367	tmp = 0;
 368	tmp |= CTR_TSCKIZ_SCK | cpol << CTR_TSCKIZ_POL_SHIFT;
 369	tmp |= CTR_RSCKIZ_SCK | cpol << CTR_RSCKIZ_POL_SHIFT;
 370
 371	edge = cpol ^ !cpha;
 372
 373	tmp |= edge << CTR_TEDG_SHIFT;
 374	tmp |= edge << CTR_REDG_SHIFT;
 375	tmp |= tx_hi_z ? CTR_TXDIZ_HIZ : CTR_TXDIZ_LOW;
 376	sh_msiof_write(p, CTR, tmp);
 377}
 378
 379static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
 380				       const void *tx_buf, void *rx_buf,
 381				       u32 bits, u32 words)
 382{
 383	u32 dr2 = MDR2_BITLEN1(bits) | MDR2_WDLEN1(words);
 384
 385	if (tx_buf || (p->master->flags & SPI_MASTER_MUST_TX))
 386		sh_msiof_write(p, TMDR2, dr2);
 387	else
 388		sh_msiof_write(p, TMDR2, dr2 | MDR2_GRPMASK1);
 389
 390	if (rx_buf)
 391		sh_msiof_write(p, RMDR2, dr2);
 
 
 392}
 393
 394static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
 395{
 396	sh_msiof_write(p, STR, sh_msiof_read(p, STR));
 397}
 398
 399static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
 400				      const void *tx_buf, int words, int fs)
 401{
 402	const u8 *buf_8 = tx_buf;
 403	int k;
 404
 405	for (k = 0; k < words; k++)
 406		sh_msiof_write(p, TFDR, buf_8[k] << fs);
 407}
 408
 409static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
 410				       const void *tx_buf, int words, int fs)
 411{
 412	const u16 *buf_16 = tx_buf;
 413	int k;
 414
 415	for (k = 0; k < words; k++)
 416		sh_msiof_write(p, TFDR, buf_16[k] << fs);
 417}
 418
 419static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
 420					const void *tx_buf, int words, int fs)
 421{
 422	const u16 *buf_16 = tx_buf;
 423	int k;
 424
 425	for (k = 0; k < words; k++)
 426		sh_msiof_write(p, TFDR, get_unaligned(&buf_16[k]) << fs);
 427}
 428
 429static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
 430				       const void *tx_buf, int words, int fs)
 431{
 432	const u32 *buf_32 = tx_buf;
 433	int k;
 434
 435	for (k = 0; k < words; k++)
 436		sh_msiof_write(p, TFDR, buf_32[k] << fs);
 437}
 438
 439static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
 440					const void *tx_buf, int words, int fs)
 441{
 442	const u32 *buf_32 = tx_buf;
 443	int k;
 444
 445	for (k = 0; k < words; k++)
 446		sh_msiof_write(p, TFDR, get_unaligned(&buf_32[k]) << fs);
 447}
 448
 449static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
 450					const void *tx_buf, int words, int fs)
 451{
 452	const u32 *buf_32 = tx_buf;
 453	int k;
 454
 455	for (k = 0; k < words; k++)
 456		sh_msiof_write(p, TFDR, swab32(buf_32[k] << fs));
 457}
 458
 459static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
 460					 const void *tx_buf, int words, int fs)
 461{
 462	const u32 *buf_32 = tx_buf;
 463	int k;
 464
 465	for (k = 0; k < words; k++)
 466		sh_msiof_write(p, TFDR, swab32(get_unaligned(&buf_32[k]) << fs));
 467}
 468
 469static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
 470				     void *rx_buf, int words, int fs)
 471{
 472	u8 *buf_8 = rx_buf;
 473	int k;
 474
 475	for (k = 0; k < words; k++)
 476		buf_8[k] = sh_msiof_read(p, RFDR) >> fs;
 477}
 478
 479static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
 480				      void *rx_buf, int words, int fs)
 481{
 482	u16 *buf_16 = rx_buf;
 483	int k;
 484
 485	for (k = 0; k < words; k++)
 486		buf_16[k] = sh_msiof_read(p, RFDR) >> fs;
 487}
 488
 489static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
 490				       void *rx_buf, int words, int fs)
 491{
 492	u16 *buf_16 = rx_buf;
 493	int k;
 494
 495	for (k = 0; k < words; k++)
 496		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_16[k]);
 497}
 498
 499static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
 500				      void *rx_buf, int words, int fs)
 501{
 502	u32 *buf_32 = rx_buf;
 503	int k;
 504
 505	for (k = 0; k < words; k++)
 506		buf_32[k] = sh_msiof_read(p, RFDR) >> fs;
 507}
 508
 509static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
 510				       void *rx_buf, int words, int fs)
 511{
 512	u32 *buf_32 = rx_buf;
 513	int k;
 514
 515	for (k = 0; k < words; k++)
 516		put_unaligned(sh_msiof_read(p, RFDR) >> fs, &buf_32[k]);
 517}
 518
 519static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
 520				       void *rx_buf, int words, int fs)
 521{
 522	u32 *buf_32 = rx_buf;
 523	int k;
 524
 525	for (k = 0; k < words; k++)
 526		buf_32[k] = swab32(sh_msiof_read(p, RFDR) >> fs);
 527}
 528
 529static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
 530				       void *rx_buf, int words, int fs)
 531{
 532	u32 *buf_32 = rx_buf;
 533	int k;
 534
 535	for (k = 0; k < words; k++)
 536		put_unaligned(swab32(sh_msiof_read(p, RFDR) >> fs), &buf_32[k]);
 537}
 538
 539static int sh_msiof_spi_setup(struct spi_device *spi)
 540{
 541	struct device_node	*np = spi->master->dev.of_node;
 542	struct sh_msiof_spi_priv *p = spi_master_get_devdata(spi->master);
 543	u32 clr, set, tmp;
 544
 545	if (!np) {
 546		/*
 547		 * Use spi->controller_data for CS (same strategy as spi_gpio),
 548		 * if any. otherwise let HW control CS
 549		 */
 550		spi->cs_gpio = (uintptr_t)spi->controller_data;
 551	}
 552
 553	if (gpio_is_valid(spi->cs_gpio)) {
 554		gpio_direction_output(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
 555		return 0;
 556	}
 557
 558	if (spi_controller_is_slave(p->master))
 559		return 0;
 560
 561	if (p->native_cs_inited &&
 562	    (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH)))
 563		return 0;
 564
 565	/* Configure native chip select mode/polarity early */
 566	clr = MDR1_SYNCMD_MASK;
 567	set = MDR1_TRMD | TMDR1_PCON | MDR1_SYNCMD_SPI;
 568	if (spi->mode & SPI_CS_HIGH)
 569		clr |= BIT(MDR1_SYNCAC_SHIFT);
 570	else
 571		set |= BIT(MDR1_SYNCAC_SHIFT);
 572	pm_runtime_get_sync(&p->pdev->dev);
 573	tmp = sh_msiof_read(p, TMDR1) & ~clr;
 574	sh_msiof_write(p, TMDR1, tmp | set);
 575	pm_runtime_put(&p->pdev->dev);
 576	p->native_cs_high = spi->mode & SPI_CS_HIGH;
 577	p->native_cs_inited = true;
 578	return 0;
 579}
 580
 581static int sh_msiof_prepare_message(struct spi_master *master,
 582				    struct spi_message *msg)
 583{
 584	struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
 585	const struct spi_device *spi = msg->spi;
 586	u32 ss, cs_high;
 587
 588	/* Configure pins before asserting CS */
 589	if (gpio_is_valid(spi->cs_gpio)) {
 590		ss = p->unused_ss;
 591		cs_high = p->native_cs_high;
 592	} else {
 593		ss = spi->chip_select;
 594		cs_high = !!(spi->mode & SPI_CS_HIGH);
 595	}
 596	sh_msiof_spi_set_pin_regs(p, ss, !!(spi->mode & SPI_CPOL),
 597				  !!(spi->mode & SPI_CPHA),
 598				  !!(spi->mode & SPI_3WIRE),
 599				  !!(spi->mode & SPI_LSB_FIRST), cs_high);
 600	return 0;
 601}
 602
 603static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
 
 604{
 605	bool slave = spi_controller_is_slave(p->master);
 606	int ret = 0;
 607
 608	/* setup clock and rx/tx signals */
 609	if (!slave)
 610		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TSCKE);
 611	if (rx_buf && !ret)
 612		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_RXE);
 613	if (!ret)
 614		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TXE);
 615
 616	/* start by setting frame bit */
 617	if (!ret && !slave)
 618		ret = sh_msiof_modify_ctr_wait(p, 0, CTR_TFSE);
 
 
 619
 620	return ret;
 621}
 622
 623static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
 624{
 625	bool slave = spi_controller_is_slave(p->master);
 626	int ret = 0;
 627
 628	/* shut down frame, rx/tx and clock signals */
 629	if (!slave)
 630		ret = sh_msiof_modify_ctr_wait(p, CTR_TFSE, 0);
 631	if (!ret)
 632		ret = sh_msiof_modify_ctr_wait(p, CTR_TXE, 0);
 633	if (rx_buf && !ret)
 634		ret = sh_msiof_modify_ctr_wait(p, CTR_RXE, 0);
 635	if (!ret && !slave)
 636		ret = sh_msiof_modify_ctr_wait(p, CTR_TSCKE, 0);
 637
 638	return ret;
 639}
 
 
 
 640
 641static int sh_msiof_slave_abort(struct spi_master *master)
 642{
 643	struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
 
 
 
 644
 645	p->slave_aborted = true;
 646	complete(&p->done);
 647	return 0;
 648}
 649
 650static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p)
 651{
 652	if (spi_controller_is_slave(p->master)) {
 653		if (wait_for_completion_interruptible(&p->done) ||
 654		    p->slave_aborted) {
 655			dev_dbg(&p->pdev->dev, "interrupted\n");
 656			return -EINTR;
 657		}
 658	} else {
 659		if (!wait_for_completion_timeout(&p->done, HZ)) {
 660			dev_err(&p->pdev->dev, "timeout\n");
 661			return -ETIMEDOUT;
 662		}
 663	}
 664
 665	return 0;
 666}
 667
 668static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
 669				  void (*tx_fifo)(struct sh_msiof_spi_priv *,
 670						  const void *, int, int),
 671				  void (*rx_fifo)(struct sh_msiof_spi_priv *,
 672						  void *, int, int),
 673				  const void *tx_buf, void *rx_buf,
 674				  int words, int bits)
 675{
 676	int fifo_shift;
 677	int ret;
 678
 679	/* limit maximum word transfer to rx/tx fifo size */
 680	if (tx_buf)
 681		words = min_t(int, words, p->tx_fifo_size);
 682	if (rx_buf)
 683		words = min_t(int, words, p->rx_fifo_size);
 684
 685	/* the fifo contents need shifting */
 686	fifo_shift = 32 - bits;
 687
 688	/* default FIFO watermarks for PIO */
 689	sh_msiof_write(p, FCTR, 0);
 690
 691	/* setup msiof transfer mode registers */
 692	sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
 693	sh_msiof_write(p, IER, IER_TEOFE | IER_REOFE);
 694
 695	/* write tx fifo */
 696	if (tx_buf)
 697		tx_fifo(p, tx_buf, words, fifo_shift);
 698
 699	reinit_completion(&p->done);
 700	p->slave_aborted = false;
 
 
 
 701
 702	ret = sh_msiof_spi_start(p, rx_buf);
 
 
 703	if (ret) {
 704		dev_err(&p->pdev->dev, "failed to start hardware\n");
 705		goto stop_ier;
 706	}
 707
 708	/* wait for tx fifo to be emptied / rx fifo to be filled */
 709	ret = sh_msiof_wait_for_completion(p);
 710	if (ret)
 711		goto stop_reset;
 712
 713	/* read rx fifo */
 714	if (rx_buf)
 715		rx_fifo(p, rx_buf, words, fifo_shift);
 716
 717	/* clear status bits */
 718	sh_msiof_reset_str(p);
 719
 720	ret = sh_msiof_spi_stop(p, rx_buf);
 
 
 
 
 
 721	if (ret) {
 722		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
 723		return ret;
 724	}
 725
 726	return words;
 727
 728stop_reset:
 729	sh_msiof_reset_str(p);
 730	sh_msiof_spi_stop(p, rx_buf);
 731stop_ier:
 732	sh_msiof_write(p, IER, 0);
 733	return ret;
 734}
 735
 736static void sh_msiof_dma_complete(void *arg)
 737{
 738	struct sh_msiof_spi_priv *p = arg;
 739
 740	sh_msiof_write(p, IER, 0);
 741	complete(&p->done);
 742}
 743
 744static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
 745			     void *rx, unsigned int len)
 746{
 747	u32 ier_bits = 0;
 748	struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
 749	dma_cookie_t cookie;
 750	int ret;
 751
 752	/* First prepare and submit the DMA request(s), as this may fail */
 753	if (rx) {
 754		ier_bits |= IER_RDREQE | IER_RDMAE;
 755		desc_rx = dmaengine_prep_slave_single(p->master->dma_rx,
 756					p->rx_dma_addr, len, DMA_DEV_TO_MEM,
 757					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 758		if (!desc_rx)
 759			return -EAGAIN;
 760
 761		desc_rx->callback = sh_msiof_dma_complete;
 762		desc_rx->callback_param = p;
 763		cookie = dmaengine_submit(desc_rx);
 764		if (dma_submit_error(cookie))
 765			return cookie;
 766	}
 767
 768	if (tx) {
 769		ier_bits |= IER_TDREQE | IER_TDMAE;
 770		dma_sync_single_for_device(p->master->dma_tx->device->dev,
 771					   p->tx_dma_addr, len, DMA_TO_DEVICE);
 772		desc_tx = dmaengine_prep_slave_single(p->master->dma_tx,
 773					p->tx_dma_addr, len, DMA_MEM_TO_DEV,
 774					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 775		if (!desc_tx) {
 776			ret = -EAGAIN;
 777			goto no_dma_tx;
 778		}
 779
 780		if (rx) {
 781			/* No callback */
 782			desc_tx->callback = NULL;
 783		} else {
 784			desc_tx->callback = sh_msiof_dma_complete;
 785			desc_tx->callback_param = p;
 786		}
 787		cookie = dmaengine_submit(desc_tx);
 788		if (dma_submit_error(cookie)) {
 789			ret = cookie;
 790			goto no_dma_tx;
 791		}
 792	}
 793
 794	/* 1 stage FIFO watermarks for DMA */
 795	sh_msiof_write(p, FCTR, FCTR_TFWM_1 | FCTR_RFWM_1);
 796
 797	/* setup msiof transfer mode registers (32-bit words) */
 798	sh_msiof_spi_set_mode_regs(p, tx, rx, 32, len / 4);
 799
 800	sh_msiof_write(p, IER, ier_bits);
 801
 802	reinit_completion(&p->done);
 803	p->slave_aborted = false;
 804
 805	/* Now start DMA */
 806	if (rx)
 807		dma_async_issue_pending(p->master->dma_rx);
 808	if (tx)
 809		dma_async_issue_pending(p->master->dma_tx);
 810
 811	ret = sh_msiof_spi_start(p, rx);
 812	if (ret) {
 813		dev_err(&p->pdev->dev, "failed to start hardware\n");
 814		goto stop_dma;
 815	}
 816
 817	/* wait for tx/rx DMA completion */
 818	ret = sh_msiof_wait_for_completion(p);
 819	if (ret)
 820		goto stop_reset;
 821
 822	if (!rx) {
 823		reinit_completion(&p->done);
 824		sh_msiof_write(p, IER, IER_TEOFE);
 825
 826		/* wait for tx fifo to be emptied */
 827		ret = sh_msiof_wait_for_completion(p);
 828		if (ret)
 829			goto stop_reset;
 830	}
 831
 832	/* clear status bits */
 833	sh_msiof_reset_str(p);
 834
 835	ret = sh_msiof_spi_stop(p, rx);
 836	if (ret) {
 837		dev_err(&p->pdev->dev, "failed to shut down hardware\n");
 838		return ret;
 839	}
 840
 841	if (rx)
 842		dma_sync_single_for_cpu(p->master->dma_rx->device->dev,
 843					p->rx_dma_addr, len,
 844					DMA_FROM_DEVICE);
 845
 846	return 0;
 847
 848stop_reset:
 849	sh_msiof_reset_str(p);
 850	sh_msiof_spi_stop(p, rx);
 851stop_dma:
 852	if (tx)
 853		dmaengine_terminate_all(p->master->dma_tx);
 854no_dma_tx:
 855	if (rx)
 856		dmaengine_terminate_all(p->master->dma_rx);
 857	sh_msiof_write(p, IER, 0);
 858	return ret;
 859}
 860
 861static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
 862{
 863	/* src or dst can be unaligned, but not both */
 864	if ((unsigned long)src & 3) {
 865		while (words--) {
 866			*dst++ = swab32(get_unaligned(src));
 867			src++;
 868		}
 869	} else if ((unsigned long)dst & 3) {
 870		while (words--) {
 871			put_unaligned(swab32(*src++), dst);
 872			dst++;
 873		}
 874	} else {
 875		while (words--)
 876			*dst++ = swab32(*src++);
 877	}
 878}
 879
 880static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
 881{
 882	/* src or dst can be unaligned, but not both */
 883	if ((unsigned long)src & 3) {
 884		while (words--) {
 885			*dst++ = swahw32(get_unaligned(src));
 886			src++;
 887		}
 888	} else if ((unsigned long)dst & 3) {
 889		while (words--) {
 890			put_unaligned(swahw32(*src++), dst);
 891			dst++;
 892		}
 893	} else {
 894		while (words--)
 895			*dst++ = swahw32(*src++);
 896	}
 897}
 898
 899static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
 900{
 901	memcpy(dst, src, words * 4);
 902}
 903
 904static int sh_msiof_transfer_one(struct spi_master *master,
 905				 struct spi_device *spi,
 906				 struct spi_transfer *t)
 907{
 908	struct sh_msiof_spi_priv *p = spi_master_get_devdata(master);
 909	void (*copy32)(u32 *, const u32 *, unsigned int);
 910	void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
 911	void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
 912	const void *tx_buf = t->tx_buf;
 913	void *rx_buf = t->rx_buf;
 914	unsigned int len = t->len;
 915	unsigned int bits = t->bits_per_word;
 916	unsigned int bytes_per_word;
 917	unsigned int words;
 918	int n;
 919	bool swab;
 920	int ret;
 921
 922	/* setup clocks (clock already enabled in chipselect()) */
 923	if (!spi_controller_is_slave(p->master))
 924		sh_msiof_spi_set_clk_regs(p, clk_get_rate(p->clk), t->speed_hz);
 925
 926	while (master->dma_tx && len > 15) {
 927		/*
 928		 *  DMA supports 32-bit words only, hence pack 8-bit and 16-bit
 929		 *  words, with byte resp. word swapping.
 930		 */
 931		unsigned int l = 0;
 932
 933		if (tx_buf)
 934			l = min(len, p->tx_fifo_size * 4);
 935		if (rx_buf)
 936			l = min(len, p->rx_fifo_size * 4);
 937
 938		if (bits <= 8) {
 939			if (l & 3)
 940				break;
 941			copy32 = copy_bswap32;
 942		} else if (bits <= 16) {
 943			if (l & 3)
 944				break;
 945			copy32 = copy_wswap32;
 946		} else {
 947			copy32 = copy_plain32;
 948		}
 949
 950		if (tx_buf)
 951			copy32(p->tx_dma_page, tx_buf, l / 4);
 952
 953		ret = sh_msiof_dma_once(p, tx_buf, rx_buf, l);
 954		if (ret == -EAGAIN) {
 955			dev_warn_once(&p->pdev->dev,
 956				"DMA not available, falling back to PIO\n");
 957			break;
 958		}
 959		if (ret)
 960			return ret;
 961
 962		if (rx_buf) {
 963			copy32(rx_buf, p->rx_dma_page, l / 4);
 964			rx_buf += l;
 965		}
 966		if (tx_buf)
 967			tx_buf += l;
 968
 969		len -= l;
 970		if (!len)
 971			return 0;
 972	}
 973
 974	if (bits <= 8 && len > 15 && !(len & 3)) {
 975		bits = 32;
 976		swab = true;
 977	} else {
 978		swab = false;
 979	}
 980
 981	/* setup bytes per word and fifo read/write functions */
 982	if (bits <= 8) {
 983		bytes_per_word = 1;
 984		tx_fifo = sh_msiof_spi_write_fifo_8;
 985		rx_fifo = sh_msiof_spi_read_fifo_8;
 986	} else if (bits <= 16) {
 987		bytes_per_word = 2;
 988		if ((unsigned long)tx_buf & 0x01)
 989			tx_fifo = sh_msiof_spi_write_fifo_16u;
 990		else
 991			tx_fifo = sh_msiof_spi_write_fifo_16;
 992
 993		if ((unsigned long)rx_buf & 0x01)
 994			rx_fifo = sh_msiof_spi_read_fifo_16u;
 995		else
 996			rx_fifo = sh_msiof_spi_read_fifo_16;
 997	} else if (swab) {
 998		bytes_per_word = 4;
 999		if ((unsigned long)tx_buf & 0x03)
1000			tx_fifo = sh_msiof_spi_write_fifo_s32u;
1001		else
1002			tx_fifo = sh_msiof_spi_write_fifo_s32;
1003
1004		if ((unsigned long)rx_buf & 0x03)
1005			rx_fifo = sh_msiof_spi_read_fifo_s32u;
1006		else
1007			rx_fifo = sh_msiof_spi_read_fifo_s32;
1008	} else {
1009		bytes_per_word = 4;
1010		if ((unsigned long)tx_buf & 0x03)
1011			tx_fifo = sh_msiof_spi_write_fifo_32u;
1012		else
1013			tx_fifo = sh_msiof_spi_write_fifo_32;
1014
1015		if ((unsigned long)rx_buf & 0x03)
1016			rx_fifo = sh_msiof_spi_read_fifo_32u;
1017		else
1018			rx_fifo = sh_msiof_spi_read_fifo_32;
1019	}
1020
 
 
 
 
1021	/* transfer in fifo sized chunks */
1022	words = len / bytes_per_word;
 
1023
1024	while (words > 0) {
1025		n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
 
 
 
 
1026					   words, bits);
1027		if (n < 0)
1028			return n;
1029
1030		if (tx_buf)
1031			tx_buf += n * bytes_per_word;
1032		if (rx_buf)
1033			rx_buf += n * bytes_per_word;
1034		words -= n;
1035	}
1036
1037	return 0;
1038}
1039
1040static const struct sh_msiof_chipdata sh_data = {
1041	.tx_fifo_size = 64,
1042	.rx_fifo_size = 64,
1043	.master_flags = 0,
1044	.min_div = 1,
1045};
1046
1047static const struct sh_msiof_chipdata rcar_gen2_data = {
1048	.tx_fifo_size = 64,
1049	.rx_fifo_size = 64,
1050	.master_flags = SPI_MASTER_MUST_TX,
1051	.min_div = 1,
1052};
1053
1054static const struct sh_msiof_chipdata rcar_gen3_data = {
1055	.tx_fifo_size = 64,
1056	.rx_fifo_size = 64,
1057	.master_flags = SPI_MASTER_MUST_TX,
1058	.min_div = 2,
1059};
1060
1061static const struct of_device_id sh_msiof_match[] = {
1062	{ .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
1063	{ .compatible = "renesas,msiof-r8a7743",   .data = &rcar_gen2_data },
1064	{ .compatible = "renesas,msiof-r8a7745",   .data = &rcar_gen2_data },
1065	{ .compatible = "renesas,msiof-r8a7790",   .data = &rcar_gen2_data },
1066	{ .compatible = "renesas,msiof-r8a7791",   .data = &rcar_gen2_data },
1067	{ .compatible = "renesas,msiof-r8a7792",   .data = &rcar_gen2_data },
1068	{ .compatible = "renesas,msiof-r8a7793",   .data = &rcar_gen2_data },
1069	{ .compatible = "renesas,msiof-r8a7794",   .data = &rcar_gen2_data },
1070	{ .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data },
1071	{ .compatible = "renesas,msiof-r8a7796",   .data = &rcar_gen3_data },
1072	{ .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data },
1073	{ .compatible = "renesas,sh-msiof",        .data = &sh_data }, /* Deprecated */
1074	{},
1075};
1076MODULE_DEVICE_TABLE(of, sh_msiof_match);
1077
1078#ifdef CONFIG_OF
1079static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1080{
1081	struct sh_msiof_spi_info *info;
1082	struct device_node *np = dev->of_node;
1083	u32 num_cs = 1;
1084
1085	info = devm_kzalloc(dev, sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
1086	if (!info)
1087		return NULL;
1088
1089	info->mode = of_property_read_bool(np, "spi-slave") ? MSIOF_SPI_SLAVE
1090							    : MSIOF_SPI_MASTER;
1091
1092	/* Parse the MSIOF properties */
1093	if (info->mode == MSIOF_SPI_MASTER)
1094		of_property_read_u32(np, "num-cs", &num_cs);
1095	of_property_read_u32(np, "renesas,tx-fifo-size",
1096					&info->tx_fifo_override);
1097	of_property_read_u32(np, "renesas,rx-fifo-size",
1098					&info->rx_fifo_override);
1099	of_property_read_u32(np, "renesas,dtdl", &info->dtdl);
1100	of_property_read_u32(np, "renesas,syncdl", &info->syncdl);
1101
1102	info->num_chipselect = num_cs;
1103
1104	return info;
1105}
1106#else
1107static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1108{
1109	return NULL;
1110}
1111#endif
1112
1113static int sh_msiof_get_cs_gpios(struct sh_msiof_spi_priv *p)
1114{
1115	struct device *dev = &p->pdev->dev;
1116	unsigned int used_ss_mask = 0;
1117	unsigned int cs_gpios = 0;
1118	unsigned int num_cs, i;
1119	int ret;
1120
1121	ret = gpiod_count(dev, "cs");
1122	if (ret <= 0)
1123		return 0;
1124
1125	num_cs = max_t(unsigned int, ret, p->master->num_chipselect);
1126	for (i = 0; i < num_cs; i++) {
1127		struct gpio_desc *gpiod;
1128
1129		gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1130		if (!IS_ERR(gpiod)) {
1131			cs_gpios++;
1132			continue;
1133		}
1134
1135		if (PTR_ERR(gpiod) != -ENOENT)
1136			return PTR_ERR(gpiod);
1137
1138		if (i >= MAX_SS) {
1139			dev_err(dev, "Invalid native chip select %d\n", i);
1140			return -EINVAL;
1141		}
1142		used_ss_mask |= BIT(i);
1143	}
1144	p->unused_ss = ffz(used_ss_mask);
1145	if (cs_gpios && p->unused_ss >= MAX_SS) {
1146		dev_err(dev, "No unused native chip select available\n");
1147		return -EINVAL;
1148	}
1149	return 0;
1150}
1151
1152static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1153	enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1154{
1155	dma_cap_mask_t mask;
1156	struct dma_chan *chan;
1157	struct dma_slave_config cfg;
1158	int ret;
1159
1160	dma_cap_zero(mask);
1161	dma_cap_set(DMA_SLAVE, mask);
1162
1163	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1164				(void *)(unsigned long)id, dev,
1165				dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1166	if (!chan) {
1167		dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1168		return NULL;
1169	}
1170
1171	memset(&cfg, 0, sizeof(cfg));
1172	cfg.direction = dir;
1173	if (dir == DMA_MEM_TO_DEV) {
1174		cfg.dst_addr = port_addr;
1175		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1176	} else {
1177		cfg.src_addr = port_addr;
1178		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1179	}
1180
1181	ret = dmaengine_slave_config(chan, &cfg);
1182	if (ret) {
1183		dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1184		dma_release_channel(chan);
1185		return NULL;
1186	}
1187
1188	return chan;
1189}
1190
1191static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
 
1192{
1193	struct platform_device *pdev = p->pdev;
1194	struct device *dev = &pdev->dev;
1195	const struct sh_msiof_spi_info *info = dev_get_platdata(dev);
1196	unsigned int dma_tx_id, dma_rx_id;
1197	const struct resource *res;
1198	struct spi_master *master;
1199	struct device *tx_dev, *rx_dev;
1200
1201	if (dev->of_node) {
1202		/* In the OF case we will get the slave IDs from the DT */
1203		dma_tx_id = 0;
1204		dma_rx_id = 0;
1205	} else if (info && info->dma_tx_id && info->dma_rx_id) {
1206		dma_tx_id = info->dma_tx_id;
1207		dma_rx_id = info->dma_rx_id;
1208	} else {
1209		/* The driver assumes no error */
1210		return 0;
1211	}
1212
1213	/* The DMA engine uses the second register set, if present */
1214	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1215	if (!res)
1216		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1217
1218	master = p->master;
1219	master->dma_tx = sh_msiof_request_dma_chan(dev, DMA_MEM_TO_DEV,
1220						   dma_tx_id,
1221						   res->start + TFDR);
1222	if (!master->dma_tx)
1223		return -ENODEV;
1224
1225	master->dma_rx = sh_msiof_request_dma_chan(dev, DMA_DEV_TO_MEM,
1226						   dma_rx_id,
1227						   res->start + RFDR);
1228	if (!master->dma_rx)
1229		goto free_tx_chan;
1230
1231	p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1232	if (!p->tx_dma_page)
1233		goto free_rx_chan;
1234
1235	p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1236	if (!p->rx_dma_page)
1237		goto free_tx_page;
1238
1239	tx_dev = master->dma_tx->device->dev;
1240	p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1241					DMA_TO_DEVICE);
1242	if (dma_mapping_error(tx_dev, p->tx_dma_addr))
1243		goto free_rx_page;
1244
1245	rx_dev = master->dma_rx->device->dev;
1246	p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1247					DMA_FROM_DEVICE);
1248	if (dma_mapping_error(rx_dev, p->rx_dma_addr))
1249		goto unmap_tx_page;
1250
1251	dev_info(dev, "DMA available");
1252	return 0;
1253
1254unmap_tx_page:
1255	dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1256free_rx_page:
1257	free_page((unsigned long)p->rx_dma_page);
1258free_tx_page:
1259	free_page((unsigned long)p->tx_dma_page);
1260free_rx_chan:
1261	dma_release_channel(master->dma_rx);
1262free_tx_chan:
1263	dma_release_channel(master->dma_tx);
1264	master->dma_tx = NULL;
1265	return -ENODEV;
1266}
1267
1268static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1269{
1270	struct spi_master *master = p->master;
1271
1272	if (!master->dma_tx)
1273		return;
1274
1275	dma_unmap_single(master->dma_rx->device->dev, p->rx_dma_addr,
1276			 PAGE_SIZE, DMA_FROM_DEVICE);
1277	dma_unmap_single(master->dma_tx->device->dev, p->tx_dma_addr,
1278			 PAGE_SIZE, DMA_TO_DEVICE);
1279	free_page((unsigned long)p->rx_dma_page);
1280	free_page((unsigned long)p->tx_dma_page);
1281	dma_release_channel(master->dma_rx);
1282	dma_release_channel(master->dma_tx);
1283}
1284
1285static int sh_msiof_spi_probe(struct platform_device *pdev)
1286{
1287	struct resource	*r;
1288	struct spi_master *master;
1289	const struct sh_msiof_chipdata *chipdata;
1290	struct sh_msiof_spi_info *info;
1291	struct sh_msiof_spi_priv *p;
 
1292	int i;
1293	int ret;
1294
1295	chipdata = of_device_get_match_data(&pdev->dev);
1296	if (chipdata) {
1297		info = sh_msiof_spi_parse_dt(&pdev->dev);
1298	} else {
1299		chipdata = (const void *)pdev->id_entry->driver_data;
1300		info = dev_get_platdata(&pdev->dev);
1301	}
1302
1303	if (!info) {
1304		dev_err(&pdev->dev, "failed to obtain device info\n");
1305		return -ENXIO;
1306	}
1307
1308	if (info->mode == MSIOF_SPI_SLAVE)
1309		master = spi_alloc_slave(&pdev->dev,
1310					 sizeof(struct sh_msiof_spi_priv));
1311	else
1312		master = spi_alloc_master(&pdev->dev,
1313					  sizeof(struct sh_msiof_spi_priv));
1314	if (master == NULL)
1315		return -ENOMEM;
1316
1317	p = spi_master_get_devdata(master);
1318
1319	platform_set_drvdata(pdev, p);
1320	p->master = master;
1321	p->info = info;
1322	p->min_div = chipdata->min_div;
1323
1324	init_completion(&p->done);
1325
1326	p->clk = devm_clk_get(&pdev->dev, NULL);
 
1327	if (IS_ERR(p->clk)) {
1328		dev_err(&pdev->dev, "cannot get clock\n");
1329		ret = PTR_ERR(p->clk);
1330		goto err1;
1331	}
1332
 
1333	i = platform_get_irq(pdev, 0);
1334	if (i < 0) {
1335		dev_err(&pdev->dev, "cannot get platform IRQ\n");
1336		ret = -ENOENT;
1337		goto err1;
1338	}
1339
1340	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1341	p->mapbase = devm_ioremap_resource(&pdev->dev, r);
1342	if (IS_ERR(p->mapbase)) {
1343		ret = PTR_ERR(p->mapbase);
1344		goto err1;
1345	}
1346
1347	ret = devm_request_irq(&pdev->dev, i, sh_msiof_spi_irq, 0,
1348			       dev_name(&pdev->dev), p);
1349	if (ret) {
1350		dev_err(&pdev->dev, "unable to request irq\n");
1351		goto err1;
1352	}
1353
1354	p->pdev = pdev;
1355	pm_runtime_enable(&pdev->dev);
1356
 
 
 
 
1357	/* Platform data may override FIFO sizes */
1358	p->tx_fifo_size = chipdata->tx_fifo_size;
1359	p->rx_fifo_size = chipdata->rx_fifo_size;
1360	if (p->info->tx_fifo_override)
1361		p->tx_fifo_size = p->info->tx_fifo_override;
1362	if (p->info->rx_fifo_override)
1363		p->rx_fifo_size = p->info->rx_fifo_override;
1364
1365	/* Setup GPIO chip selects */
1366	master->num_chipselect = p->info->num_chipselect;
1367	ret = sh_msiof_get_cs_gpios(p);
1368	if (ret)
1369		goto err1;
1370
1371	/* init master code */
1372	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1373	master->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1374	master->flags = chipdata->master_flags;
1375	master->bus_num = pdev->id;
1376	master->dev.of_node = pdev->dev.of_node;
1377	master->setup = sh_msiof_spi_setup;
1378	master->prepare_message = sh_msiof_prepare_message;
1379	master->slave_abort = sh_msiof_slave_abort;
1380	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
1381	master->auto_runtime_pm = true;
1382	master->transfer_one = sh_msiof_transfer_one;
1383
1384	ret = sh_msiof_request_dma(p);
1385	if (ret < 0)
1386		dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1387
1388	ret = devm_spi_register_master(&pdev->dev, master);
1389	if (ret < 0) {
1390		dev_err(&pdev->dev, "spi_register_master error.\n");
1391		goto err2;
1392	}
1393
1394	return 0;
 
 
1395
 
 
 
1396 err2:
1397	sh_msiof_release_dma(p);
1398	pm_runtime_disable(&pdev->dev);
1399 err1:
1400	spi_master_put(master);
 
1401	return ret;
1402}
1403
1404static int sh_msiof_spi_remove(struct platform_device *pdev)
1405{
1406	struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
 
 
 
 
 
 
 
 
 
 
 
 
1407
1408	sh_msiof_release_dma(p);
1409	pm_runtime_disable(&pdev->dev);
 
 
 
 
 
 
 
1410	return 0;
1411}
1412
1413static const struct platform_device_id spi_driver_ids[] = {
1414	{ "spi_sh_msiof",	(kernel_ulong_t)&sh_data },
1415	{},
1416};
1417MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1418
1419static struct platform_driver sh_msiof_spi_drv = {
1420	.probe		= sh_msiof_spi_probe,
1421	.remove		= sh_msiof_spi_remove,
1422	.id_table	= spi_driver_ids,
1423	.driver		= {
1424		.name		= "spi_sh_msiof",
1425		.of_match_table = of_match_ptr(sh_msiof_match),
 
1426	},
1427};
1428module_platform_driver(sh_msiof_spi_drv);
 
 
 
 
 
 
 
 
 
 
 
1429
1430MODULE_DESCRIPTION("SuperH MSIOF SPI Master Interface Driver");
1431MODULE_AUTHOR("Magnus Damm");
1432MODULE_LICENSE("GPL v2");
1433MODULE_ALIAS("platform:spi_sh_msiof");