Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * This file is provided under a dual BSD/GPLv2 license.  When using or
   3 * redistributing this file, you may do so under either license.
   4 *
   5 * GPL LICENSE SUMMARY
   6 *
   7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of version 2 of the GNU General Public License as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  21 * The full GNU General Public License is included in this distribution
  22 * in the file called LICENSE.GPL.
  23 *
  24 * BSD LICENSE
  25 *
  26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
  27 * All rights reserved.
  28 *
  29 * Redistribution and use in source and binary forms, with or without
  30 * modification, are permitted provided that the following conditions
  31 * are met:
  32 *
  33 *   * Redistributions of source code must retain the above copyright
  34 *     notice, this list of conditions and the following disclaimer.
  35 *   * Redistributions in binary form must reproduce the above copyright
  36 *     notice, this list of conditions and the following disclaimer in
  37 *     the documentation and/or other materials provided with the
  38 *     distribution.
  39 *   * Neither the name of Intel Corporation nor the names of its
  40 *     contributors may be used to endorse or promote products derived
  41 *     from this software without specific prior written permission.
  42 *
  43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  54 */
  55
  56#include "isci.h"
  57#include "host.h"
  58#include "phy.h"
  59#include "scu_event_codes.h"
  60#include "probe_roms.h"
  61
 
 
 
 
 
 
 
 
 
 
  62/* Maximum arbitration wait time in micro-seconds */
  63#define SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME  (700)
  64
  65enum sas_linkrate sci_phy_linkrate(struct isci_phy *iphy)
  66{
  67	return iphy->max_negotiated_speed;
  68}
  69
 
 
 
 
 
 
 
 
 
 
 
 
 
  70static enum sci_status
  71sci_phy_transport_layer_initialization(struct isci_phy *iphy,
  72				       struct scu_transport_layer_registers __iomem *reg)
  73{
  74	u32 tl_control;
  75
  76	iphy->transport_layer_registers = reg;
  77
  78	writel(SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX,
  79		&iphy->transport_layer_registers->stp_rni);
  80
  81	/*
  82	 * Hardware team recommends that we enable the STP prefetch for all
  83	 * transports
  84	 */
  85	tl_control = readl(&iphy->transport_layer_registers->control);
  86	tl_control |= SCU_TLCR_GEN_BIT(STP_WRITE_DATA_PREFETCH);
  87	writel(tl_control, &iphy->transport_layer_registers->control);
  88
  89	return SCI_SUCCESS;
  90}
  91
  92static enum sci_status
  93sci_phy_link_layer_initialization(struct isci_phy *iphy,
  94				  struct scu_link_layer_registers __iomem *reg)
  95{
  96	struct isci_host *ihost = iphy->owning_port->owning_controller;
 
 
  97	int phy_idx = iphy->phy_index;
  98	struct sci_phy_user_params *phy_user = &ihost->user_parameters.phys[phy_idx];
  99	struct sci_phy_oem_params *phy_oem =
 100		&ihost->oem_parameters.phys[phy_idx];
 101	u32 phy_configuration;
 102	struct sci_phy_cap phy_cap;
 
 103	u32 parity_check = 0;
 104	u32 parity_count = 0;
 105	u32 llctl, link_rate;
 106	u32 clksm_value = 0;
 107	u32 sp_timeouts = 0;
 108
 109	iphy->link_layer_registers = reg;
 
 
 110
 111	/* Set our IDENTIFY frame data */
 112	#define SCI_END_DEVICE 0x01
 113
 114	writel(SCU_SAS_TIID_GEN_BIT(SMP_INITIATOR) |
 115	       SCU_SAS_TIID_GEN_BIT(SSP_INITIATOR) |
 116	       SCU_SAS_TIID_GEN_BIT(STP_INITIATOR) |
 117	       SCU_SAS_TIID_GEN_BIT(DA_SATA_HOST) |
 118	       SCU_SAS_TIID_GEN_VAL(DEVICE_TYPE, SCI_END_DEVICE),
 119	       &iphy->link_layer_registers->transmit_identification);
 120
 121	/* Write the device SAS Address */
 122	writel(0xFEDCBA98,
 123	       &iphy->link_layer_registers->sas_device_name_high);
 124	writel(phy_idx, &iphy->link_layer_registers->sas_device_name_low);
 125
 126	/* Write the source SAS Address */
 127	writel(phy_oem->sas_address.high,
 128		&iphy->link_layer_registers->source_sas_address_high);
 129	writel(phy_oem->sas_address.low,
 130		&iphy->link_layer_registers->source_sas_address_low);
 131
 132	/* Clear and Set the PHY Identifier */
 133	writel(0, &iphy->link_layer_registers->identify_frame_phy_id);
 134	writel(SCU_SAS_TIPID_GEN_VALUE(ID, phy_idx),
 135		&iphy->link_layer_registers->identify_frame_phy_id);
 136
 137	/* Change the initial state of the phy configuration register */
 138	phy_configuration =
 139		readl(&iphy->link_layer_registers->phy_configuration);
 140
 141	/* Hold OOB state machine in reset */
 142	phy_configuration |=  SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
 143	writel(phy_configuration,
 144		&iphy->link_layer_registers->phy_configuration);
 145
 146	/* Configure the SNW capabilities */
 147	phy_cap.all = 0;
 148	phy_cap.start = 1;
 149	phy_cap.gen3_no_ssc = 1;
 150	phy_cap.gen2_no_ssc = 1;
 151	phy_cap.gen1_no_ssc = 1;
 152	if (ihost->oem_parameters.controller.do_enable_ssc == true) {
 
 
 
 
 
 
 
 
 
 153		phy_cap.gen3_ssc = 1;
 154		phy_cap.gen2_ssc = 1;
 155		phy_cap.gen1_ssc = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 156	}
 157
 158	/*
 159	 * The SAS specification indicates that the phy_capabilities that
 160	 * are transmitted shall have an even parity.  Calculate the parity. */
 161	parity_check = phy_cap.all;
 162	while (parity_check != 0) {
 163		if (parity_check & 0x1)
 164			parity_count++;
 165		parity_check >>= 1;
 166	}
 167
 168	/*
 169	 * If parity indicates there are an odd number of bits set, then
 170	 * set the parity bit to 1 in the phy capabilities. */
 171	if ((parity_count % 2) != 0)
 172		phy_cap.parity = 1;
 173
 174	writel(phy_cap.all, &iphy->link_layer_registers->phy_capabilities);
 175
 176	/* Set the enable spinup period but disable the ability to send
 177	 * notify enable spinup
 178	 */
 179	writel(SCU_ENSPINUP_GEN_VAL(COUNT,
 180			phy_user->notify_enable_spin_up_insertion_frequency),
 181		&iphy->link_layer_registers->notify_enable_spinup_control);
 182
 183	/* Write the ALIGN Insertion Ferequency for connected phy and
 184	 * inpendent of connected state
 185	 */
 186	clksm_value = SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL(CONNECTED,
 187			phy_user->in_connection_align_insertion_frequency);
 188
 189	clksm_value |= SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL(GENERAL,
 190			phy_user->align_insertion_frequency);
 191
 192	writel(clksm_value, &iphy->link_layer_registers->clock_skew_management);
 193
 194	/* @todo Provide a way to write this register correctly */
 195	writel(0x02108421,
 196		&iphy->link_layer_registers->afe_lookup_table_control);
 
 
 197
 198	llctl = SCU_SAS_LLCTL_GEN_VAL(NO_OUTBOUND_TASK_TIMEOUT,
 199		(u8)ihost->user_parameters.no_outbound_task_timeout);
 200
 201	switch (phy_user->max_speed_generation) {
 202	case SCIC_SDS_PARM_GEN3_SPEED:
 203		link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN3;
 204		break;
 205	case SCIC_SDS_PARM_GEN2_SPEED:
 206		link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN2;
 207		break;
 208	default:
 209		link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN1;
 210		break;
 211	}
 212	llctl |= SCU_SAS_LLCTL_GEN_VAL(MAX_LINK_RATE, link_rate);
 213	writel(llctl, &iphy->link_layer_registers->link_layer_control);
 214
 215	sp_timeouts = readl(&iphy->link_layer_registers->sas_phy_timeouts);
 216
 217	/* Clear the default 0x36 (54us) RATE_CHANGE timeout value. */
 218	sp_timeouts &= ~SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0xFF);
 219
 220	/* Set RATE_CHANGE timeout value to 0x3B (59us).  This ensures SCU can
 221	 * lock with 3Gb drive when SCU max rate is set to 1.5Gb.
 222	 */
 223	sp_timeouts |= SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0x3B);
 224
 225	writel(sp_timeouts, &iphy->link_layer_registers->sas_phy_timeouts);
 226
 227	if (is_a2(ihost->pdev)) {
 228		/* Program the max ARB time for the PHY to 700us so we inter-operate with
 229		 * the PMC expander which shuts down PHYs if the expander PHY generates too
 230		 * many breaks.  This time value will guarantee that the initiator PHY will
 231		 * generate the break.
 
 232		 */
 233		writel(SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME,
 234			&iphy->link_layer_registers->maximum_arbitration_wait_timer_timeout);
 235	}
 236
 237	/* Disable link layer hang detection, rely on the OS timeout for I/O timeouts. */
 238	writel(0, &iphy->link_layer_registers->link_layer_hang_detection_timeout);
 
 
 239
 240	/* We can exit the initial state to the stopped state */
 241	sci_change_state(&iphy->sm, SCI_PHY_STOPPED);
 242
 243	return SCI_SUCCESS;
 244}
 245
 246static void phy_sata_timeout(unsigned long data)
 247{
 248	struct sci_timer *tmr = (struct sci_timer *)data;
 249	struct isci_phy *iphy = container_of(tmr, typeof(*iphy), sata_timer);
 250	struct isci_host *ihost = iphy->owning_port->owning_controller;
 251	unsigned long flags;
 252
 253	spin_lock_irqsave(&ihost->scic_lock, flags);
 254
 255	if (tmr->cancel)
 256		goto done;
 257
 258	dev_dbg(sciphy_to_dev(iphy),
 259		 "%s: SCIC SDS Phy 0x%p did not receive signature fis before "
 260		 "timeout.\n",
 261		 __func__,
 262		 iphy);
 263
 264	sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 265done:
 266	spin_unlock_irqrestore(&ihost->scic_lock, flags);
 267}
 268
 269/**
 270 * This method returns the port currently containing this phy. If the phy is
 271 *    currently contained by the dummy port, then the phy is considered to not
 272 *    be part of a port.
 273 * @sci_phy: This parameter specifies the phy for which to retrieve the
 274 *    containing port.
 275 *
 276 * This method returns a handle to a port that contains the supplied phy.
 277 * NULL This value is returned if the phy is not part of a real
 278 * port (i.e. it's contained in the dummy port). !NULL All other
 279 * values indicate a handle/pointer to the port containing the phy.
 280 */
 281struct isci_port *phy_get_non_dummy_port(struct isci_phy *iphy)
 282{
 283	struct isci_port *iport = iphy->owning_port;
 284
 285	if (iport->physical_port_index == SCIC_SDS_DUMMY_PORT)
 286		return NULL;
 287
 288	return iphy->owning_port;
 289}
 290
 291/**
 292 * This method will assign a port to the phy object.
 293 * @out]: iphy This parameter specifies the phy for which to assign a port
 294 *    object.
 295 *
 296 *
 297 */
 298void sci_phy_set_port(
 299	struct isci_phy *iphy,
 300	struct isci_port *iport)
 301{
 302	iphy->owning_port = iport;
 303
 304	if (iphy->bcn_received_while_port_unassigned) {
 305		iphy->bcn_received_while_port_unassigned = false;
 306		sci_port_broadcast_change_received(iphy->owning_port, iphy);
 307	}
 308}
 309
 310enum sci_status sci_phy_initialize(struct isci_phy *iphy,
 311				   struct scu_transport_layer_registers __iomem *tl,
 312				   struct scu_link_layer_registers __iomem *ll)
 313{
 314	/* Perfrom the initialization of the TL hardware */
 315	sci_phy_transport_layer_initialization(iphy, tl);
 316
 317	/* Perofrm the initialization of the PE hardware */
 318	sci_phy_link_layer_initialization(iphy, ll);
 319
 320	/* There is nothing that needs to be done in this state just
 321	 * transition to the stopped state
 322	 */
 323	sci_change_state(&iphy->sm, SCI_PHY_STOPPED);
 324
 325	return SCI_SUCCESS;
 326}
 327
 328/**
 329 * This method assigns the direct attached device ID for this phy.
 330 *
 331 * @iphy The phy for which the direct attached device id is to
 332 *       be assigned.
 333 * @device_id The direct attached device ID to assign to the phy.
 334 *       This will either be the RNi for the device or an invalid RNi if there
 335 *       is no current device assigned to the phy.
 336 */
 337void sci_phy_setup_transport(struct isci_phy *iphy, u32 device_id)
 338{
 339	u32 tl_control;
 340
 341	writel(device_id, &iphy->transport_layer_registers->stp_rni);
 342
 343	/*
 344	 * The read should guarantee that the first write gets posted
 345	 * before the next write
 346	 */
 347	tl_control = readl(&iphy->transport_layer_registers->control);
 348	tl_control |= SCU_TLCR_GEN_BIT(CLEAR_TCI_NCQ_MAPPING_TABLE);
 349	writel(tl_control, &iphy->transport_layer_registers->control);
 350}
 351
 352static void sci_phy_suspend(struct isci_phy *iphy)
 353{
 354	u32 scu_sas_pcfg_value;
 355
 356	scu_sas_pcfg_value =
 357		readl(&iphy->link_layer_registers->phy_configuration);
 358	scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE);
 359	writel(scu_sas_pcfg_value,
 360		&iphy->link_layer_registers->phy_configuration);
 361
 362	sci_phy_setup_transport(iphy, SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX);
 363}
 364
 365void sci_phy_resume(struct isci_phy *iphy)
 366{
 367	u32 scu_sas_pcfg_value;
 368
 369	scu_sas_pcfg_value =
 370		readl(&iphy->link_layer_registers->phy_configuration);
 371	scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE);
 372	writel(scu_sas_pcfg_value,
 373		&iphy->link_layer_registers->phy_configuration);
 374}
 375
 376void sci_phy_get_sas_address(struct isci_phy *iphy, struct sci_sas_address *sas)
 377{
 378	sas->high = readl(&iphy->link_layer_registers->source_sas_address_high);
 379	sas->low = readl(&iphy->link_layer_registers->source_sas_address_low);
 380}
 381
 382void sci_phy_get_attached_sas_address(struct isci_phy *iphy, struct sci_sas_address *sas)
 383{
 384	struct sas_identify_frame *iaf;
 385
 386	iaf = &iphy->frame_rcvd.iaf;
 387	memcpy(sas, iaf->sas_addr, SAS_ADDR_SIZE);
 388}
 389
 390void sci_phy_get_protocols(struct isci_phy *iphy, struct sci_phy_proto *proto)
 391{
 392	proto->all = readl(&iphy->link_layer_registers->transmit_identification);
 393}
 394
 395enum sci_status sci_phy_start(struct isci_phy *iphy)
 396{
 397	enum sci_phy_states state = iphy->sm.current_state_id;
 398
 399	if (state != SCI_PHY_STOPPED) {
 400		dev_dbg(sciphy_to_dev(iphy),
 401			 "%s: in wrong state: %d\n", __func__, state);
 402		return SCI_FAILURE_INVALID_STATE;
 403	}
 404
 405	sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 406	return SCI_SUCCESS;
 407}
 408
 409enum sci_status sci_phy_stop(struct isci_phy *iphy)
 410{
 411	enum sci_phy_states state = iphy->sm.current_state_id;
 412
 413	switch (state) {
 414	case SCI_PHY_SUB_INITIAL:
 415	case SCI_PHY_SUB_AWAIT_OSSP_EN:
 416	case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
 417	case SCI_PHY_SUB_AWAIT_SAS_POWER:
 418	case SCI_PHY_SUB_AWAIT_SATA_POWER:
 419	case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
 420	case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
 421	case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
 422	case SCI_PHY_SUB_FINAL:
 423	case SCI_PHY_READY:
 424		break;
 425	default:
 426		dev_dbg(sciphy_to_dev(iphy),
 427			"%s: in wrong state: %d\n", __func__, state);
 428		return SCI_FAILURE_INVALID_STATE;
 429	}
 430
 431	sci_change_state(&iphy->sm, SCI_PHY_STOPPED);
 432	return SCI_SUCCESS;
 433}
 434
 435enum sci_status sci_phy_reset(struct isci_phy *iphy)
 436{
 437	enum sci_phy_states state = iphy->sm.current_state_id;
 438
 439	if (state != SCI_PHY_READY) {
 440		dev_dbg(sciphy_to_dev(iphy),
 441			"%s: in wrong state: %d\n", __func__, state);
 442		return SCI_FAILURE_INVALID_STATE;
 443	}
 444
 445	sci_change_state(&iphy->sm, SCI_PHY_RESETTING);
 446	return SCI_SUCCESS;
 447}
 448
 449enum sci_status sci_phy_consume_power_handler(struct isci_phy *iphy)
 450{
 451	enum sci_phy_states state = iphy->sm.current_state_id;
 452
 453	switch (state) {
 454	case SCI_PHY_SUB_AWAIT_SAS_POWER: {
 455		u32 enable_spinup;
 456
 457		enable_spinup = readl(&iphy->link_layer_registers->notify_enable_spinup_control);
 458		enable_spinup |= SCU_ENSPINUP_GEN_BIT(ENABLE);
 459		writel(enable_spinup, &iphy->link_layer_registers->notify_enable_spinup_control);
 460
 461		/* Change state to the final state this substate machine has run to completion */
 462		sci_change_state(&iphy->sm, SCI_PHY_SUB_FINAL);
 463
 464		return SCI_SUCCESS;
 465	}
 466	case SCI_PHY_SUB_AWAIT_SATA_POWER: {
 467		u32 scu_sas_pcfg_value;
 468
 469		/* Release the spinup hold state and reset the OOB state machine */
 470		scu_sas_pcfg_value =
 471			readl(&iphy->link_layer_registers->phy_configuration);
 472		scu_sas_pcfg_value &=
 473			~(SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD) | SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE));
 474		scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
 475		writel(scu_sas_pcfg_value,
 476			&iphy->link_layer_registers->phy_configuration);
 477
 478		/* Now restart the OOB operation */
 479		scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
 480		scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
 481		writel(scu_sas_pcfg_value,
 482			&iphy->link_layer_registers->phy_configuration);
 483
 484		/* Change state to the final state this substate machine has run to completion */
 485		sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_PHY_EN);
 486
 487		return SCI_SUCCESS;
 488	}
 489	default:
 490		dev_dbg(sciphy_to_dev(iphy),
 491			"%s: in wrong state: %d\n", __func__, state);
 492		return SCI_FAILURE_INVALID_STATE;
 493	}
 494}
 495
 496static void sci_phy_start_sas_link_training(struct isci_phy *iphy)
 497{
 498	/* continue the link training for the phy as if it were a SAS PHY
 499	 * instead of a SATA PHY. This is done because the completion queue had a SAS
 500	 * PHY DETECTED event when the state machine was expecting a SATA PHY event.
 501	 */
 502	u32 phy_control;
 503
 504	phy_control = readl(&iphy->link_layer_registers->phy_configuration);
 505	phy_control |= SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD);
 506	writel(phy_control,
 507	       &iphy->link_layer_registers->phy_configuration);
 508
 509	sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SAS_SPEED_EN);
 510
 511	iphy->protocol = SCIC_SDS_PHY_PROTOCOL_SAS;
 512}
 513
 514static void sci_phy_start_sata_link_training(struct isci_phy *iphy)
 515{
 516	/* This method continues the link training for the phy as if it were a SATA PHY
 517	 * instead of a SAS PHY.  This is done because the completion queue had a SATA
 518	 * SPINUP HOLD event when the state machine was expecting a SAS PHY event. none
 519	 */
 520	sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_POWER);
 521
 522	iphy->protocol = SCIC_SDS_PHY_PROTOCOL_SATA;
 523}
 524
 525/**
 526 * sci_phy_complete_link_training - perform processing common to
 527 *    all protocols upon completion of link training.
 528 * @sci_phy: This parameter specifies the phy object for which link training
 529 *    has completed.
 530 * @max_link_rate: This parameter specifies the maximum link rate to be
 531 *    associated with this phy.
 532 * @next_state: This parameter specifies the next state for the phy's starting
 533 *    sub-state machine.
 534 *
 535 */
 536static void sci_phy_complete_link_training(struct isci_phy *iphy,
 537					   enum sas_linkrate max_link_rate,
 538					   u32 next_state)
 539{
 540	iphy->max_negotiated_speed = max_link_rate;
 541
 542	sci_change_state(&iphy->sm, next_state);
 543}
 544
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 545enum sci_status sci_phy_event_handler(struct isci_phy *iphy, u32 event_code)
 546{
 547	enum sci_phy_states state = iphy->sm.current_state_id;
 548
 549	switch (state) {
 550	case SCI_PHY_SUB_AWAIT_OSSP_EN:
 551		switch (scu_get_event_code(event_code)) {
 552		case SCU_EVENT_SAS_PHY_DETECTED:
 553			sci_phy_start_sas_link_training(iphy);
 554			iphy->is_in_link_training = true;
 555			break;
 556		case SCU_EVENT_SATA_SPINUP_HOLD:
 557			sci_phy_start_sata_link_training(iphy);
 558			iphy->is_in_link_training = true;
 559			break;
 
 
 
 
 
 
 
 560		default:
 561			dev_dbg(sciphy_to_dev(iphy),
 562				"%s: PHY starting substate machine received "
 563				"unexpected event_code %x\n",
 564				__func__,
 565				event_code);
 566			return SCI_FAILURE;
 567		}
 568		return SCI_SUCCESS;
 569	case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
 570		switch (scu_get_event_code(event_code)) {
 571		case SCU_EVENT_SAS_PHY_DETECTED:
 572			/*
 573			 * Why is this being reported again by the controller?
 574			 * We would re-enter this state so just stay here */
 575			break;
 576		case SCU_EVENT_SAS_15:
 577		case SCU_EVENT_SAS_15_SSC:
 578			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_1_5_GBPS,
 579						       SCI_PHY_SUB_AWAIT_IAF_UF);
 580			break;
 581		case SCU_EVENT_SAS_30:
 582		case SCU_EVENT_SAS_30_SSC:
 583			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_3_0_GBPS,
 584						       SCI_PHY_SUB_AWAIT_IAF_UF);
 585			break;
 586		case SCU_EVENT_SAS_60:
 587		case SCU_EVENT_SAS_60_SSC:
 588			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_6_0_GBPS,
 589						       SCI_PHY_SUB_AWAIT_IAF_UF);
 590			break;
 591		case SCU_EVENT_SATA_SPINUP_HOLD:
 592			/*
 593			 * We were doing SAS PHY link training and received a SATA PHY event
 594			 * continue OOB/SN as if this were a SATA PHY */
 595			sci_phy_start_sata_link_training(iphy);
 596			break;
 597		case SCU_EVENT_LINK_FAILURE:
 
 
 
 598			/* Link failure change state back to the starting state */
 599			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 600			break;
 601		default:
 602			dev_warn(sciphy_to_dev(iphy),
 603				 "%s: PHY starting substate machine received "
 604				 "unexpected event_code %x\n",
 605				 __func__, event_code);
 606
 
 
 
 
 
 607			return SCI_FAILURE;
 608			break;
 609		}
 610		return SCI_SUCCESS;
 611	case SCI_PHY_SUB_AWAIT_IAF_UF:
 612		switch (scu_get_event_code(event_code)) {
 613		case SCU_EVENT_SAS_PHY_DETECTED:
 614			/* Backup the state machine */
 615			sci_phy_start_sas_link_training(iphy);
 616			break;
 617		case SCU_EVENT_SATA_SPINUP_HOLD:
 618			/* We were doing SAS PHY link training and received a
 619			 * SATA PHY event continue OOB/SN as if this were a
 620			 * SATA PHY
 621			 */
 622			sci_phy_start_sata_link_training(iphy);
 623			break;
 624		case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
 
 
 
 
 
 
 625		case SCU_EVENT_LINK_FAILURE:
 
 626		case SCU_EVENT_HARD_RESET_RECEIVED:
 627			/* Start the oob/sn state machine over again */
 628			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 629			break;
 630		default:
 631			dev_warn(sciphy_to_dev(iphy),
 632				 "%s: PHY starting substate machine received "
 633				 "unexpected event_code %x\n",
 634				 __func__, event_code);
 635			return SCI_FAILURE;
 636		}
 637		return SCI_SUCCESS;
 638	case SCI_PHY_SUB_AWAIT_SAS_POWER:
 639		switch (scu_get_event_code(event_code)) {
 640		case SCU_EVENT_LINK_FAILURE:
 
 
 
 641			/* Link failure change state back to the starting state */
 642			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 643			break;
 644		default:
 645			dev_warn(sciphy_to_dev(iphy),
 646				"%s: PHY starting substate machine received unexpected "
 647				"event_code %x\n",
 648				__func__,
 649				event_code);
 650			return SCI_FAILURE;
 651		}
 652		return SCI_SUCCESS;
 653	case SCI_PHY_SUB_AWAIT_SATA_POWER:
 654		switch (scu_get_event_code(event_code)) {
 655		case SCU_EVENT_LINK_FAILURE:
 
 
 
 656			/* Link failure change state back to the starting state */
 657			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 658			break;
 659		case SCU_EVENT_SATA_SPINUP_HOLD:
 660			/* These events are received every 10ms and are
 661			 * expected while in this state
 662			 */
 663			break;
 664
 665		case SCU_EVENT_SAS_PHY_DETECTED:
 666			/* There has been a change in the phy type before OOB/SN for the
 667			 * SATA finished start down the SAS link traning path.
 668			 */
 669			sci_phy_start_sas_link_training(iphy);
 670			break;
 671
 672		default:
 673			dev_warn(sciphy_to_dev(iphy),
 674				 "%s: PHY starting substate machine received "
 675				 "unexpected event_code %x\n",
 676				 __func__, event_code);
 677
 678			return SCI_FAILURE;
 679		}
 680		return SCI_SUCCESS;
 681	case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
 682		switch (scu_get_event_code(event_code)) {
 683		case SCU_EVENT_LINK_FAILURE:
 
 
 
 684			/* Link failure change state back to the starting state */
 685			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 686			break;
 687		case SCU_EVENT_SATA_SPINUP_HOLD:
 688			/* These events might be received since we dont know how many may be in
 689			 * the completion queue while waiting for power
 690			 */
 691			break;
 692		case SCU_EVENT_SATA_PHY_DETECTED:
 693			iphy->protocol = SCIC_SDS_PHY_PROTOCOL_SATA;
 694
 695			/* We have received the SATA PHY notification change state */
 696			sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_SPEED_EN);
 697			break;
 698		case SCU_EVENT_SAS_PHY_DETECTED:
 699			/* There has been a change in the phy type before OOB/SN for the
 700			 * SATA finished start down the SAS link traning path.
 701			 */
 702			sci_phy_start_sas_link_training(iphy);
 703			break;
 704		default:
 705			dev_warn(sciphy_to_dev(iphy),
 706				 "%s: PHY starting substate machine received "
 707				 "unexpected event_code %x\n",
 708				 __func__,
 709				 event_code);
 710
 711			return SCI_FAILURE;;
 712		}
 713		return SCI_SUCCESS;
 714	case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
 715		switch (scu_get_event_code(event_code)) {
 716		case SCU_EVENT_SATA_PHY_DETECTED:
 717			/*
 718			 * The hardware reports multiple SATA PHY detected events
 719			 * ignore the extras */
 720			break;
 721		case SCU_EVENT_SATA_15:
 722		case SCU_EVENT_SATA_15_SSC:
 723			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_1_5_GBPS,
 724						       SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
 725			break;
 726		case SCU_EVENT_SATA_30:
 727		case SCU_EVENT_SATA_30_SSC:
 728			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_3_0_GBPS,
 729						       SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
 730			break;
 731		case SCU_EVENT_SATA_60:
 732		case SCU_EVENT_SATA_60_SSC:
 733			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_6_0_GBPS,
 734						       SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
 735			break;
 736		case SCU_EVENT_LINK_FAILURE:
 
 
 
 737			/* Link failure change state back to the starting state */
 738			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 739			break;
 740		case SCU_EVENT_SAS_PHY_DETECTED:
 741			/*
 742			 * There has been a change in the phy type before OOB/SN for the
 743			 * SATA finished start down the SAS link traning path. */
 744			sci_phy_start_sas_link_training(iphy);
 745			break;
 746		default:
 747			dev_warn(sciphy_to_dev(iphy),
 748				 "%s: PHY starting substate machine received "
 749				 "unexpected event_code %x\n",
 750				 __func__, event_code);
 751
 752			return SCI_FAILURE;
 753		}
 754
 755		return SCI_SUCCESS;
 756	case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
 757		switch (scu_get_event_code(event_code)) {
 758		case SCU_EVENT_SATA_PHY_DETECTED:
 759			/* Backup the state machine */
 760			sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_SPEED_EN);
 761			break;
 762
 763		case SCU_EVENT_LINK_FAILURE:
 
 
 
 764			/* Link failure change state back to the starting state */
 765			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 766			break;
 767
 768		default:
 769			dev_warn(sciphy_to_dev(iphy),
 770				 "%s: PHY starting substate machine received "
 771				 "unexpected event_code %x\n",
 772				 __func__,
 773				 event_code);
 774
 775			return SCI_FAILURE;
 776		}
 777		return SCI_SUCCESS;
 778	case SCI_PHY_READY:
 779		switch (scu_get_event_code(event_code)) {
 780		case SCU_EVENT_LINK_FAILURE:
 
 
 
 781			/* Link failure change state back to the starting state */
 782			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 783			break;
 784		case SCU_EVENT_BROADCAST_CHANGE:
 
 
 
 
 
 785			/* Broadcast change received. Notify the port. */
 786			if (phy_get_non_dummy_port(iphy) != NULL)
 787				sci_port_broadcast_change_received(iphy->owning_port, iphy);
 788			else
 789				iphy->bcn_received_while_port_unassigned = true;
 790			break;
 
 
 791		default:
 792			dev_warn(sciphy_to_dev(iphy),
 793				 "%sP SCIC PHY 0x%p ready state machine received "
 794				 "unexpected event_code %x\n",
 795				 __func__, iphy, event_code);
 796			return SCI_FAILURE_INVALID_STATE;
 797		}
 798		return SCI_SUCCESS;
 799	case SCI_PHY_RESETTING:
 800		switch (scu_get_event_code(event_code)) {
 801		case SCU_EVENT_HARD_RESET_TRANSMITTED:
 802			/* Link failure change state back to the starting state */
 803			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 804			break;
 805		default:
 806			dev_warn(sciphy_to_dev(iphy),
 807				 "%s: SCIC PHY 0x%p resetting state machine received "
 808				 "unexpected event_code %x\n",
 809				 __func__, iphy, event_code);
 810
 811			return SCI_FAILURE_INVALID_STATE;
 812			break;
 813		}
 814		return SCI_SUCCESS;
 815	default:
 816		dev_dbg(sciphy_to_dev(iphy),
 817			"%s: in wrong state: %d\n", __func__, state);
 818		return SCI_FAILURE_INVALID_STATE;
 819	}
 820}
 821
 822enum sci_status sci_phy_frame_handler(struct isci_phy *iphy, u32 frame_index)
 823{
 824	enum sci_phy_states state = iphy->sm.current_state_id;
 825	struct isci_host *ihost = iphy->owning_port->owning_controller;
 826	enum sci_status result;
 827	unsigned long flags;
 828
 829	switch (state) {
 830	case SCI_PHY_SUB_AWAIT_IAF_UF: {
 831		u32 *frame_words;
 832		struct sas_identify_frame iaf;
 833
 834		result = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
 835								  frame_index,
 836								  (void **)&frame_words);
 837
 838		if (result != SCI_SUCCESS)
 839			return result;
 840
 841		sci_swab32_cpy(&iaf, frame_words, sizeof(iaf) / sizeof(u32));
 842		if (iaf.frame_type == 0) {
 843			u32 state;
 844
 845			spin_lock_irqsave(&iphy->sas_phy.frame_rcvd_lock, flags);
 846			memcpy(&iphy->frame_rcvd.iaf, &iaf, sizeof(iaf));
 847			spin_unlock_irqrestore(&iphy->sas_phy.frame_rcvd_lock, flags);
 848			if (iaf.smp_tport) {
 849				/* We got the IAF for an expander PHY go to the final
 850				 * state since there are no power requirements for
 851				 * expander phys.
 852				 */
 853				state = SCI_PHY_SUB_FINAL;
 854			} else {
 855				/* We got the IAF we can now go to the await spinup
 856				 * semaphore state
 857				 */
 858				state = SCI_PHY_SUB_AWAIT_SAS_POWER;
 859			}
 860			sci_change_state(&iphy->sm, state);
 861			result = SCI_SUCCESS;
 862		} else
 863			dev_warn(sciphy_to_dev(iphy),
 864				"%s: PHY starting substate machine received "
 865				"unexpected frame id %x\n",
 866				__func__, frame_index);
 867
 868		sci_controller_release_frame(ihost, frame_index);
 869		return result;
 870	}
 871	case SCI_PHY_SUB_AWAIT_SIG_FIS_UF: {
 872		struct dev_to_host_fis *frame_header;
 873		u32 *fis_frame_data;
 874
 875		result = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
 876								  frame_index,
 877								  (void **)&frame_header);
 878
 879		if (result != SCI_SUCCESS)
 880			return result;
 881
 882		if ((frame_header->fis_type == FIS_REGD2H) &&
 883		    !(frame_header->status & ATA_BUSY)) {
 884			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
 885								 frame_index,
 886								 (void **)&fis_frame_data);
 887
 888			spin_lock_irqsave(&iphy->sas_phy.frame_rcvd_lock, flags);
 889			sci_controller_copy_sata_response(&iphy->frame_rcvd.fis,
 890							  frame_header,
 891							  fis_frame_data);
 892			spin_unlock_irqrestore(&iphy->sas_phy.frame_rcvd_lock, flags);
 893
 894			/* got IAF we can now go to the await spinup semaphore state */
 895			sci_change_state(&iphy->sm, SCI_PHY_SUB_FINAL);
 896
 897			result = SCI_SUCCESS;
 898		} else
 899			dev_warn(sciphy_to_dev(iphy),
 900				 "%s: PHY starting substate machine received "
 901				 "unexpected frame id %x\n",
 902				 __func__, frame_index);
 903
 904		/* Regardless of the result we are done with this frame with it */
 905		sci_controller_release_frame(ihost, frame_index);
 906
 907		return result;
 908	}
 909	default:
 910		dev_dbg(sciphy_to_dev(iphy),
 911			"%s: in wrong state: %d\n", __func__, state);
 912		return SCI_FAILURE_INVALID_STATE;
 913	}
 914
 915}
 916
 917static void sci_phy_starting_initial_substate_enter(struct sci_base_state_machine *sm)
 918{
 919	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
 920
 921	/* This is just an temporary state go off to the starting state */
 922	sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_OSSP_EN);
 923}
 924
 925static void sci_phy_starting_await_sas_power_substate_enter(struct sci_base_state_machine *sm)
 926{
 927	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
 928	struct isci_host *ihost = iphy->owning_port->owning_controller;
 929
 930	sci_controller_power_control_queue_insert(ihost, iphy);
 931}
 932
 933static void sci_phy_starting_await_sas_power_substate_exit(struct sci_base_state_machine *sm)
 934{
 935	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
 936	struct isci_host *ihost = iphy->owning_port->owning_controller;
 937
 938	sci_controller_power_control_queue_remove(ihost, iphy);
 939}
 940
 941static void sci_phy_starting_await_sata_power_substate_enter(struct sci_base_state_machine *sm)
 942{
 943	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
 944	struct isci_host *ihost = iphy->owning_port->owning_controller;
 945
 946	sci_controller_power_control_queue_insert(ihost, iphy);
 947}
 948
 949static void sci_phy_starting_await_sata_power_substate_exit(struct sci_base_state_machine *sm)
 950{
 951	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
 952	struct isci_host *ihost = iphy->owning_port->owning_controller;
 953
 954	sci_controller_power_control_queue_remove(ihost, iphy);
 955}
 956
 957static void sci_phy_starting_await_sata_phy_substate_enter(struct sci_base_state_machine *sm)
 958{
 959	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
 960
 961	sci_mod_timer(&iphy->sata_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT);
 962}
 963
 964static void sci_phy_starting_await_sata_phy_substate_exit(struct sci_base_state_machine *sm)
 965{
 966	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
 967
 968	sci_del_timer(&iphy->sata_timer);
 969}
 970
 971static void sci_phy_starting_await_sata_speed_substate_enter(struct sci_base_state_machine *sm)
 972{
 973	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
 974
 975	sci_mod_timer(&iphy->sata_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT);
 976}
 977
 978static void sci_phy_starting_await_sata_speed_substate_exit(struct sci_base_state_machine *sm)
 979{
 980	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
 981
 982	sci_del_timer(&iphy->sata_timer);
 983}
 984
 985static void sci_phy_starting_await_sig_fis_uf_substate_enter(struct sci_base_state_machine *sm)
 986{
 987	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
 988
 989	if (sci_port_link_detected(iphy->owning_port, iphy)) {
 990
 991		/*
 992		 * Clear the PE suspend condition so we can actually
 993		 * receive SIG FIS
 994		 * The hardware will not respond to the XRDY until the PE
 995		 * suspend condition is cleared.
 996		 */
 997		sci_phy_resume(iphy);
 998
 999		sci_mod_timer(&iphy->sata_timer,
1000			      SCIC_SDS_SIGNATURE_FIS_TIMEOUT);
1001	} else
1002		iphy->is_in_link_training = false;
1003}
1004
1005static void sci_phy_starting_await_sig_fis_uf_substate_exit(struct sci_base_state_machine *sm)
1006{
1007	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1008
1009	sci_del_timer(&iphy->sata_timer);
1010}
1011
1012static void sci_phy_starting_final_substate_enter(struct sci_base_state_machine *sm)
1013{
1014	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1015
1016	/* State machine has run to completion so exit out and change
1017	 * the base state machine to the ready state
1018	 */
1019	sci_change_state(&iphy->sm, SCI_PHY_READY);
1020}
1021
1022/**
1023 *
1024 * @sci_phy: This is the struct isci_phy object to stop.
1025 *
1026 * This method will stop the struct isci_phy object. This does not reset the
1027 * protocol engine it just suspends it and places it in a state where it will
1028 * not cause the end device to power up. none
1029 */
1030static void scu_link_layer_stop_protocol_engine(
1031	struct isci_phy *iphy)
1032{
1033	u32 scu_sas_pcfg_value;
1034	u32 enable_spinup_value;
1035
1036	/* Suspend the protocol engine and place it in a sata spinup hold state */
1037	scu_sas_pcfg_value =
1038		readl(&iphy->link_layer_registers->phy_configuration);
1039	scu_sas_pcfg_value |=
1040		(SCU_SAS_PCFG_GEN_BIT(OOB_RESET) |
1041		 SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE) |
1042		 SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD));
1043	writel(scu_sas_pcfg_value,
1044	       &iphy->link_layer_registers->phy_configuration);
1045
1046	/* Disable the notify enable spinup primitives */
1047	enable_spinup_value = readl(&iphy->link_layer_registers->notify_enable_spinup_control);
1048	enable_spinup_value &= ~SCU_ENSPINUP_GEN_BIT(ENABLE);
1049	writel(enable_spinup_value, &iphy->link_layer_registers->notify_enable_spinup_control);
1050}
1051
1052/**
1053 *
1054 *
1055 * This method will start the OOB/SN state machine for this struct isci_phy object.
1056 */
1057static void scu_link_layer_start_oob(
1058	struct isci_phy *iphy)
1059{
1060	u32 scu_sas_pcfg_value;
 
1061
1062	scu_sas_pcfg_value =
1063		readl(&iphy->link_layer_registers->phy_configuration);
1064	scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
1065	scu_sas_pcfg_value &=
1066		~(SCU_SAS_PCFG_GEN_BIT(OOB_RESET) |
1067		SCU_SAS_PCFG_GEN_BIT(HARD_RESET));
1068	writel(scu_sas_pcfg_value,
1069	       &iphy->link_layer_registers->phy_configuration);
 
 
 
 
 
 
 
1070}
1071
1072/**
1073 *
1074 *
1075 * This method will transmit a hard reset request on the specified phy. The SCU
1076 * hardware requires that we reset the OOB state machine and set the hard reset
1077 * bit in the phy configuration register. We then must start OOB over with the
1078 * hard reset bit set.
1079 */
1080static void scu_link_layer_tx_hard_reset(
1081	struct isci_phy *iphy)
1082{
1083	u32 phy_configuration_value;
1084
1085	/*
1086	 * SAS Phys must wait for the HARD_RESET_TX event notification to transition
1087	 * to the starting state. */
1088	phy_configuration_value =
1089		readl(&iphy->link_layer_registers->phy_configuration);
 
1090	phy_configuration_value |=
1091		(SCU_SAS_PCFG_GEN_BIT(HARD_RESET) |
1092		 SCU_SAS_PCFG_GEN_BIT(OOB_RESET));
1093	writel(phy_configuration_value,
1094	       &iphy->link_layer_registers->phy_configuration);
1095
1096	/* Now take the OOB state machine out of reset */
1097	phy_configuration_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
1098	phy_configuration_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
1099	writel(phy_configuration_value,
1100	       &iphy->link_layer_registers->phy_configuration);
1101}
1102
1103static void sci_phy_stopped_state_enter(struct sci_base_state_machine *sm)
1104{
1105	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1106	struct isci_port *iport = iphy->owning_port;
1107	struct isci_host *ihost = iport->owning_controller;
1108
1109	/*
1110	 * @todo We need to get to the controller to place this PE in a
1111	 * reset state
1112	 */
1113	sci_del_timer(&iphy->sata_timer);
1114
1115	scu_link_layer_stop_protocol_engine(iphy);
1116
1117	if (iphy->sm.previous_state_id != SCI_PHY_INITIAL)
1118		sci_controller_link_down(ihost, phy_get_non_dummy_port(iphy), iphy);
1119}
1120
1121static void sci_phy_starting_state_enter(struct sci_base_state_machine *sm)
1122{
1123	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1124	struct isci_port *iport = iphy->owning_port;
1125	struct isci_host *ihost = iport->owning_controller;
1126
1127	scu_link_layer_stop_protocol_engine(iphy);
1128	scu_link_layer_start_oob(iphy);
1129
1130	/* We don't know what kind of phy we are going to be just yet */
1131	iphy->protocol = SCIC_SDS_PHY_PROTOCOL_UNKNOWN;
1132	iphy->bcn_received_while_port_unassigned = false;
1133
1134	if (iphy->sm.previous_state_id == SCI_PHY_READY)
1135		sci_controller_link_down(ihost, phy_get_non_dummy_port(iphy), iphy);
1136
1137	sci_change_state(&iphy->sm, SCI_PHY_SUB_INITIAL);
1138}
1139
1140static void sci_phy_ready_state_enter(struct sci_base_state_machine *sm)
1141{
1142	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1143	struct isci_port *iport = iphy->owning_port;
1144	struct isci_host *ihost = iport->owning_controller;
1145
1146	sci_controller_link_up(ihost, phy_get_non_dummy_port(iphy), iphy);
1147}
1148
1149static void sci_phy_ready_state_exit(struct sci_base_state_machine *sm)
1150{
1151	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1152
1153	sci_phy_suspend(iphy);
1154}
1155
1156static void sci_phy_resetting_state_enter(struct sci_base_state_machine *sm)
1157{
1158	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1159
1160	/* The phy is being reset, therefore deactivate it from the port.  In
1161	 * the resetting state we don't notify the user regarding link up and
1162	 * link down notifications
1163	 */
1164	sci_port_deactivate_phy(iphy->owning_port, iphy, false);
1165
1166	if (iphy->protocol == SCIC_SDS_PHY_PROTOCOL_SAS) {
1167		scu_link_layer_tx_hard_reset(iphy);
1168	} else {
1169		/* The SCU does not need to have a discrete reset state so
1170		 * just go back to the starting state.
1171		 */
1172		sci_change_state(&iphy->sm, SCI_PHY_STARTING);
1173	}
1174}
1175
1176static const struct sci_base_state sci_phy_state_table[] = {
1177	[SCI_PHY_INITIAL] = { },
1178	[SCI_PHY_STOPPED] = {
1179		.enter_state = sci_phy_stopped_state_enter,
1180	},
1181	[SCI_PHY_STARTING] = {
1182		.enter_state = sci_phy_starting_state_enter,
1183	},
1184	[SCI_PHY_SUB_INITIAL] = {
1185		.enter_state = sci_phy_starting_initial_substate_enter,
1186	},
1187	[SCI_PHY_SUB_AWAIT_OSSP_EN] = { },
1188	[SCI_PHY_SUB_AWAIT_SAS_SPEED_EN] = { },
1189	[SCI_PHY_SUB_AWAIT_IAF_UF] = { },
1190	[SCI_PHY_SUB_AWAIT_SAS_POWER] = {
1191		.enter_state = sci_phy_starting_await_sas_power_substate_enter,
1192		.exit_state  = sci_phy_starting_await_sas_power_substate_exit,
1193	},
1194	[SCI_PHY_SUB_AWAIT_SATA_POWER] = {
1195		.enter_state = sci_phy_starting_await_sata_power_substate_enter,
1196		.exit_state  = sci_phy_starting_await_sata_power_substate_exit
1197	},
1198	[SCI_PHY_SUB_AWAIT_SATA_PHY_EN] = {
1199		.enter_state = sci_phy_starting_await_sata_phy_substate_enter,
1200		.exit_state  = sci_phy_starting_await_sata_phy_substate_exit
1201	},
1202	[SCI_PHY_SUB_AWAIT_SATA_SPEED_EN] = {
1203		.enter_state = sci_phy_starting_await_sata_speed_substate_enter,
1204		.exit_state  = sci_phy_starting_await_sata_speed_substate_exit
1205	},
1206	[SCI_PHY_SUB_AWAIT_SIG_FIS_UF] = {
1207		.enter_state = sci_phy_starting_await_sig_fis_uf_substate_enter,
1208		.exit_state  = sci_phy_starting_await_sig_fis_uf_substate_exit
1209	},
1210	[SCI_PHY_SUB_FINAL] = {
1211		.enter_state = sci_phy_starting_final_substate_enter,
1212	},
1213	[SCI_PHY_READY] = {
1214		.enter_state = sci_phy_ready_state_enter,
1215		.exit_state = sci_phy_ready_state_exit,
1216	},
1217	[SCI_PHY_RESETTING] = {
1218		.enter_state = sci_phy_resetting_state_enter,
1219	},
1220	[SCI_PHY_FINAL] = { },
1221};
1222
1223void sci_phy_construct(struct isci_phy *iphy,
1224			    struct isci_port *iport, u8 phy_index)
1225{
1226	sci_init_sm(&iphy->sm, sci_phy_state_table, SCI_PHY_INITIAL);
1227
1228	/* Copy the rest of the input data to our locals */
1229	iphy->owning_port = iport;
1230	iphy->phy_index = phy_index;
1231	iphy->bcn_received_while_port_unassigned = false;
1232	iphy->protocol = SCIC_SDS_PHY_PROTOCOL_UNKNOWN;
1233	iphy->link_layer_registers = NULL;
1234	iphy->max_negotiated_speed = SAS_LINK_RATE_UNKNOWN;
1235
1236	/* Create the SIGNATURE FIS Timeout timer for this phy */
1237	sci_init_timer(&iphy->sata_timer, phy_sata_timeout);
1238}
1239
1240void isci_phy_init(struct isci_phy *iphy, struct isci_host *ihost, int index)
1241{
1242	struct sci_oem_params *oem = &ihost->oem_parameters;
1243	u64 sci_sas_addr;
1244	__be64 sas_addr;
1245
1246	sci_sas_addr = oem->phys[index].sas_address.high;
1247	sci_sas_addr <<= 32;
1248	sci_sas_addr |= oem->phys[index].sas_address.low;
1249	sas_addr = cpu_to_be64(sci_sas_addr);
1250	memcpy(iphy->sas_addr, &sas_addr, sizeof(sas_addr));
1251
1252	iphy->isci_port = NULL;
1253	iphy->sas_phy.enabled = 0;
1254	iphy->sas_phy.id = index;
1255	iphy->sas_phy.sas_addr = &iphy->sas_addr[0];
1256	iphy->sas_phy.frame_rcvd = (u8 *)&iphy->frame_rcvd;
1257	iphy->sas_phy.ha = &ihost->sas_ha;
1258	iphy->sas_phy.lldd_phy = iphy;
1259	iphy->sas_phy.enabled = 1;
1260	iphy->sas_phy.class = SAS;
1261	iphy->sas_phy.iproto = SAS_PROTOCOL_ALL;
1262	iphy->sas_phy.tproto = 0;
1263	iphy->sas_phy.type = PHY_TYPE_PHYSICAL;
1264	iphy->sas_phy.role = PHY_ROLE_INITIATOR;
1265	iphy->sas_phy.oob_mode = OOB_NOT_CONNECTED;
1266	iphy->sas_phy.linkrate = SAS_LINK_RATE_UNKNOWN;
1267	memset(&iphy->frame_rcvd, 0, sizeof(iphy->frame_rcvd));
1268}
1269
1270
1271/**
1272 * isci_phy_control() - This function is one of the SAS Domain Template
1273 *    functions. This is a phy management function.
1274 * @phy: This parameter specifies the sphy being controlled.
1275 * @func: This parameter specifies the phy control function being invoked.
1276 * @buf: This parameter is specific to the phy function being invoked.
1277 *
1278 * status, zero indicates success.
1279 */
1280int isci_phy_control(struct asd_sas_phy *sas_phy,
1281		     enum phy_func func,
1282		     void *buf)
1283{
1284	int ret = 0;
1285	struct isci_phy *iphy = sas_phy->lldd_phy;
1286	struct isci_port *iport = iphy->isci_port;
1287	struct isci_host *ihost = sas_phy->ha->lldd_ha;
1288	unsigned long flags;
1289
1290	dev_dbg(&ihost->pdev->dev,
1291		"%s: phy %p; func %d; buf %p; isci phy %p, port %p\n",
1292		__func__, sas_phy, func, buf, iphy, iport);
1293
1294	switch (func) {
1295	case PHY_FUNC_DISABLE:
1296		spin_lock_irqsave(&ihost->scic_lock, flags);
 
1297		sci_phy_stop(iphy);
1298		spin_unlock_irqrestore(&ihost->scic_lock, flags);
1299		break;
1300
1301	case PHY_FUNC_LINK_RESET:
1302		spin_lock_irqsave(&ihost->scic_lock, flags);
 
1303		sci_phy_stop(iphy);
1304		sci_phy_start(iphy);
1305		spin_unlock_irqrestore(&ihost->scic_lock, flags);
1306		break;
1307
1308	case PHY_FUNC_HARD_RESET:
1309		if (!iport)
1310			return -ENODEV;
1311
1312		/* Perform the port reset. */
1313		ret = isci_port_perform_hard_reset(ihost, iport, iphy);
1314
1315		break;
 
 
 
 
 
 
 
 
 
 
 
1316
1317	default:
1318		dev_dbg(&ihost->pdev->dev,
1319			   "%s: phy %p; func %d NOT IMPLEMENTED!\n",
1320			   __func__, sas_phy, func);
1321		ret = -ENOSYS;
1322		break;
1323	}
1324	return ret;
1325}
v4.17
   1/*
   2 * This file is provided under a dual BSD/GPLv2 license.  When using or
   3 * redistributing this file, you may do so under either license.
   4 *
   5 * GPL LICENSE SUMMARY
   6 *
   7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of version 2 of the GNU General Public License as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  21 * The full GNU General Public License is included in this distribution
  22 * in the file called LICENSE.GPL.
  23 *
  24 * BSD LICENSE
  25 *
  26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
  27 * All rights reserved.
  28 *
  29 * Redistribution and use in source and binary forms, with or without
  30 * modification, are permitted provided that the following conditions
  31 * are met:
  32 *
  33 *   * Redistributions of source code must retain the above copyright
  34 *     notice, this list of conditions and the following disclaimer.
  35 *   * Redistributions in binary form must reproduce the above copyright
  36 *     notice, this list of conditions and the following disclaimer in
  37 *     the documentation and/or other materials provided with the
  38 *     distribution.
  39 *   * Neither the name of Intel Corporation nor the names of its
  40 *     contributors may be used to endorse or promote products derived
  41 *     from this software without specific prior written permission.
  42 *
  43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  54 */
  55
  56#include "isci.h"
  57#include "host.h"
  58#include "phy.h"
  59#include "scu_event_codes.h"
  60#include "probe_roms.h"
  61
  62#undef C
  63#define C(a) (#a)
  64static const char *phy_state_name(enum sci_phy_states state)
  65{
  66	static const char * const strings[] = PHY_STATES;
  67
  68	return strings[state];
  69}
  70#undef C
  71
  72/* Maximum arbitration wait time in micro-seconds */
  73#define SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME  (700)
  74
  75enum sas_linkrate sci_phy_linkrate(struct isci_phy *iphy)
  76{
  77	return iphy->max_negotiated_speed;
  78}
  79
  80static struct isci_host *phy_to_host(struct isci_phy *iphy)
  81{
  82	struct isci_phy *table = iphy - iphy->phy_index;
  83	struct isci_host *ihost = container_of(table, typeof(*ihost), phys[0]);
  84
  85	return ihost;
  86}
  87
  88static struct device *sciphy_to_dev(struct isci_phy *iphy)
  89{
  90	return &phy_to_host(iphy)->pdev->dev;
  91}
  92
  93static enum sci_status
  94sci_phy_transport_layer_initialization(struct isci_phy *iphy,
  95				       struct scu_transport_layer_registers __iomem *reg)
  96{
  97	u32 tl_control;
  98
  99	iphy->transport_layer_registers = reg;
 100
 101	writel(SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX,
 102		&iphy->transport_layer_registers->stp_rni);
 103
 104	/*
 105	 * Hardware team recommends that we enable the STP prefetch for all
 106	 * transports
 107	 */
 108	tl_control = readl(&iphy->transport_layer_registers->control);
 109	tl_control |= SCU_TLCR_GEN_BIT(STP_WRITE_DATA_PREFETCH);
 110	writel(tl_control, &iphy->transport_layer_registers->control);
 111
 112	return SCI_SUCCESS;
 113}
 114
 115static enum sci_status
 116sci_phy_link_layer_initialization(struct isci_phy *iphy,
 117				  struct scu_link_layer_registers __iomem *llr)
 118{
 119	struct isci_host *ihost = iphy->owning_port->owning_controller;
 120	struct sci_phy_user_params *phy_user;
 121	struct sci_phy_oem_params *phy_oem;
 122	int phy_idx = iphy->phy_index;
 
 
 
 
 123	struct sci_phy_cap phy_cap;
 124	u32 phy_configuration;
 125	u32 parity_check = 0;
 126	u32 parity_count = 0;
 127	u32 llctl, link_rate;
 128	u32 clksm_value = 0;
 129	u32 sp_timeouts = 0;
 130
 131	phy_user = &ihost->user_parameters.phys[phy_idx];
 132	phy_oem = &ihost->oem_parameters.phys[phy_idx];
 133	iphy->link_layer_registers = llr;
 134
 135	/* Set our IDENTIFY frame data */
 136	#define SCI_END_DEVICE 0x01
 137
 138	writel(SCU_SAS_TIID_GEN_BIT(SMP_INITIATOR) |
 139	       SCU_SAS_TIID_GEN_BIT(SSP_INITIATOR) |
 140	       SCU_SAS_TIID_GEN_BIT(STP_INITIATOR) |
 141	       SCU_SAS_TIID_GEN_BIT(DA_SATA_HOST) |
 142	       SCU_SAS_TIID_GEN_VAL(DEVICE_TYPE, SCI_END_DEVICE),
 143	       &llr->transmit_identification);
 144
 145	/* Write the device SAS Address */
 146	writel(0xFEDCBA98, &llr->sas_device_name_high);
 147	writel(phy_idx, &llr->sas_device_name_low);
 
 148
 149	/* Write the source SAS Address */
 150	writel(phy_oem->sas_address.high, &llr->source_sas_address_high);
 151	writel(phy_oem->sas_address.low, &llr->source_sas_address_low);
 
 
 152
 153	/* Clear and Set the PHY Identifier */
 154	writel(0, &llr->identify_frame_phy_id);
 155	writel(SCU_SAS_TIPID_GEN_VALUE(ID, phy_idx), &llr->identify_frame_phy_id);
 
 156
 157	/* Change the initial state of the phy configuration register */
 158	phy_configuration = readl(&llr->phy_configuration);
 
 159
 160	/* Hold OOB state machine in reset */
 161	phy_configuration |=  SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
 162	writel(phy_configuration, &llr->phy_configuration);
 
 163
 164	/* Configure the SNW capabilities */
 165	phy_cap.all = 0;
 166	phy_cap.start = 1;
 167	phy_cap.gen3_no_ssc = 1;
 168	phy_cap.gen2_no_ssc = 1;
 169	phy_cap.gen1_no_ssc = 1;
 170	if (ihost->oem_parameters.controller.do_enable_ssc) {
 171		struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe;
 172		struct scu_afe_transceiver __iomem *xcvr = &afe->scu_afe_xcvr[phy_idx];
 173		struct isci_pci_info *pci_info = to_pci_info(ihost->pdev);
 174		bool en_sas = false;
 175		bool en_sata = false;
 176		u32 sas_type = 0;
 177		u32 sata_spread = 0x2;
 178		u32 sas_spread = 0x2;
 179
 180		phy_cap.gen3_ssc = 1;
 181		phy_cap.gen2_ssc = 1;
 182		phy_cap.gen1_ssc = 1;
 183
 184		if (pci_info->orom->hdr.version < ISCI_ROM_VER_1_1)
 185			en_sas = en_sata = true;
 186		else {
 187			sata_spread = ihost->oem_parameters.controller.ssc_sata_tx_spread_level;
 188			sas_spread = ihost->oem_parameters.controller.ssc_sas_tx_spread_level;
 189
 190			if (sata_spread)
 191				en_sata = true;
 192
 193			if (sas_spread) {
 194				en_sas = true;
 195				sas_type = ihost->oem_parameters.controller.ssc_sas_tx_type;
 196			}
 197
 198		}
 199
 200		if (en_sas) {
 201			u32 reg;
 202
 203			reg = readl(&xcvr->afe_xcvr_control0);
 204			reg |= (0x00100000 | (sas_type << 19));
 205			writel(reg, &xcvr->afe_xcvr_control0);
 206
 207			reg = readl(&xcvr->afe_tx_ssc_control);
 208			reg |= sas_spread << 8;
 209			writel(reg, &xcvr->afe_tx_ssc_control);
 210		}
 211
 212		if (en_sata) {
 213			u32 reg;
 214
 215			reg = readl(&xcvr->afe_tx_ssc_control);
 216			reg |= sata_spread;
 217			writel(reg, &xcvr->afe_tx_ssc_control);
 218
 219			reg = readl(&llr->stp_control);
 220			reg |= 1 << 12;
 221			writel(reg, &llr->stp_control);
 222		}
 223	}
 224
 225	/* The SAS specification indicates that the phy_capabilities that
 226	 * are transmitted shall have an even parity.  Calculate the parity.
 227	 */
 228	parity_check = phy_cap.all;
 229	while (parity_check != 0) {
 230		if (parity_check & 0x1)
 231			parity_count++;
 232		parity_check >>= 1;
 233	}
 234
 235	/* If parity indicates there are an odd number of bits set, then
 236	 * set the parity bit to 1 in the phy capabilities.
 237	 */
 238	if ((parity_count % 2) != 0)
 239		phy_cap.parity = 1;
 240
 241	writel(phy_cap.all, &llr->phy_capabilities);
 242
 243	/* Set the enable spinup period but disable the ability to send
 244	 * notify enable spinup
 245	 */
 246	writel(SCU_ENSPINUP_GEN_VAL(COUNT,
 247			phy_user->notify_enable_spin_up_insertion_frequency),
 248		&llr->notify_enable_spinup_control);
 249
 250	/* Write the ALIGN Insertion Ferequency for connected phy and
 251	 * inpendent of connected state
 252	 */
 253	clksm_value = SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL(CONNECTED,
 254			phy_user->in_connection_align_insertion_frequency);
 255
 256	clksm_value |= SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL(GENERAL,
 257			phy_user->align_insertion_frequency);
 258
 259	writel(clksm_value, &llr->clock_skew_management);
 260
 261	if (is_c0(ihost->pdev) || is_c1(ihost->pdev)) {
 262		writel(0x04210400, &llr->afe_lookup_table_control);
 263		writel(0x020A7C05, &llr->sas_primitive_timeout);
 264	} else
 265		writel(0x02108421, &llr->afe_lookup_table_control);
 266
 267	llctl = SCU_SAS_LLCTL_GEN_VAL(NO_OUTBOUND_TASK_TIMEOUT,
 268		(u8)ihost->user_parameters.no_outbound_task_timeout);
 269
 270	switch (phy_user->max_speed_generation) {
 271	case SCIC_SDS_PARM_GEN3_SPEED:
 272		link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN3;
 273		break;
 274	case SCIC_SDS_PARM_GEN2_SPEED:
 275		link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN2;
 276		break;
 277	default:
 278		link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN1;
 279		break;
 280	}
 281	llctl |= SCU_SAS_LLCTL_GEN_VAL(MAX_LINK_RATE, link_rate);
 282	writel(llctl, &llr->link_layer_control);
 283
 284	sp_timeouts = readl(&llr->sas_phy_timeouts);
 285
 286	/* Clear the default 0x36 (54us) RATE_CHANGE timeout value. */
 287	sp_timeouts &= ~SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0xFF);
 288
 289	/* Set RATE_CHANGE timeout value to 0x3B (59us).  This ensures SCU can
 290	 * lock with 3Gb drive when SCU max rate is set to 1.5Gb.
 291	 */
 292	sp_timeouts |= SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0x3B);
 293
 294	writel(sp_timeouts, &llr->sas_phy_timeouts);
 295
 296	if (is_a2(ihost->pdev)) {
 297		/* Program the max ARB time for the PHY to 700us so we
 298		 * inter-operate with the PMC expander which shuts down
 299		 * PHYs if the expander PHY generates too many breaks.
 300		 * This time value will guarantee that the initiator PHY
 301		 * will generate the break.
 302		 */
 303		writel(SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME,
 304		       &llr->maximum_arbitration_wait_timer_timeout);
 305	}
 306
 307	/* Disable link layer hang detection, rely on the OS timeout for
 308	 * I/O timeouts.
 309	 */
 310	writel(0, &llr->link_layer_hang_detection_timeout);
 311
 312	/* We can exit the initial state to the stopped state */
 313	sci_change_state(&iphy->sm, SCI_PHY_STOPPED);
 314
 315	return SCI_SUCCESS;
 316}
 317
 318static void phy_sata_timeout(struct timer_list *t)
 319{
 320	struct sci_timer *tmr = from_timer(tmr, t, timer);
 321	struct isci_phy *iphy = container_of(tmr, typeof(*iphy), sata_timer);
 322	struct isci_host *ihost = iphy->owning_port->owning_controller;
 323	unsigned long flags;
 324
 325	spin_lock_irqsave(&ihost->scic_lock, flags);
 326
 327	if (tmr->cancel)
 328		goto done;
 329
 330	dev_dbg(sciphy_to_dev(iphy),
 331		 "%s: SCIC SDS Phy 0x%p did not receive signature fis before "
 332		 "timeout.\n",
 333		 __func__,
 334		 iphy);
 335
 336	sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 337done:
 338	spin_unlock_irqrestore(&ihost->scic_lock, flags);
 339}
 340
 341/**
 342 * This method returns the port currently containing this phy. If the phy is
 343 *    currently contained by the dummy port, then the phy is considered to not
 344 *    be part of a port.
 345 * @sci_phy: This parameter specifies the phy for which to retrieve the
 346 *    containing port.
 347 *
 348 * This method returns a handle to a port that contains the supplied phy.
 349 * NULL This value is returned if the phy is not part of a real
 350 * port (i.e. it's contained in the dummy port). !NULL All other
 351 * values indicate a handle/pointer to the port containing the phy.
 352 */
 353struct isci_port *phy_get_non_dummy_port(struct isci_phy *iphy)
 354{
 355	struct isci_port *iport = iphy->owning_port;
 356
 357	if (iport->physical_port_index == SCIC_SDS_DUMMY_PORT)
 358		return NULL;
 359
 360	return iphy->owning_port;
 361}
 362
 363/**
 364 * This method will assign a port to the phy object.
 365 * @out]: iphy This parameter specifies the phy for which to assign a port
 366 *    object.
 367 *
 368 *
 369 */
 370void sci_phy_set_port(
 371	struct isci_phy *iphy,
 372	struct isci_port *iport)
 373{
 374	iphy->owning_port = iport;
 375
 376	if (iphy->bcn_received_while_port_unassigned) {
 377		iphy->bcn_received_while_port_unassigned = false;
 378		sci_port_broadcast_change_received(iphy->owning_port, iphy);
 379	}
 380}
 381
 382enum sci_status sci_phy_initialize(struct isci_phy *iphy,
 383				   struct scu_transport_layer_registers __iomem *tl,
 384				   struct scu_link_layer_registers __iomem *ll)
 385{
 386	/* Perfrom the initialization of the TL hardware */
 387	sci_phy_transport_layer_initialization(iphy, tl);
 388
 389	/* Perofrm the initialization of the PE hardware */
 390	sci_phy_link_layer_initialization(iphy, ll);
 391
 392	/* There is nothing that needs to be done in this state just
 393	 * transition to the stopped state
 394	 */
 395	sci_change_state(&iphy->sm, SCI_PHY_STOPPED);
 396
 397	return SCI_SUCCESS;
 398}
 399
 400/**
 401 * This method assigns the direct attached device ID for this phy.
 402 *
 403 * @iphy The phy for which the direct attached device id is to
 404 *       be assigned.
 405 * @device_id The direct attached device ID to assign to the phy.
 406 *       This will either be the RNi for the device or an invalid RNi if there
 407 *       is no current device assigned to the phy.
 408 */
 409void sci_phy_setup_transport(struct isci_phy *iphy, u32 device_id)
 410{
 411	u32 tl_control;
 412
 413	writel(device_id, &iphy->transport_layer_registers->stp_rni);
 414
 415	/*
 416	 * The read should guarantee that the first write gets posted
 417	 * before the next write
 418	 */
 419	tl_control = readl(&iphy->transport_layer_registers->control);
 420	tl_control |= SCU_TLCR_GEN_BIT(CLEAR_TCI_NCQ_MAPPING_TABLE);
 421	writel(tl_control, &iphy->transport_layer_registers->control);
 422}
 423
 424static void sci_phy_suspend(struct isci_phy *iphy)
 425{
 426	u32 scu_sas_pcfg_value;
 427
 428	scu_sas_pcfg_value =
 429		readl(&iphy->link_layer_registers->phy_configuration);
 430	scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE);
 431	writel(scu_sas_pcfg_value,
 432		&iphy->link_layer_registers->phy_configuration);
 433
 434	sci_phy_setup_transport(iphy, SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX);
 435}
 436
 437void sci_phy_resume(struct isci_phy *iphy)
 438{
 439	u32 scu_sas_pcfg_value;
 440
 441	scu_sas_pcfg_value =
 442		readl(&iphy->link_layer_registers->phy_configuration);
 443	scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE);
 444	writel(scu_sas_pcfg_value,
 445		&iphy->link_layer_registers->phy_configuration);
 446}
 447
 448void sci_phy_get_sas_address(struct isci_phy *iphy, struct sci_sas_address *sas)
 449{
 450	sas->high = readl(&iphy->link_layer_registers->source_sas_address_high);
 451	sas->low = readl(&iphy->link_layer_registers->source_sas_address_low);
 452}
 453
 454void sci_phy_get_attached_sas_address(struct isci_phy *iphy, struct sci_sas_address *sas)
 455{
 456	struct sas_identify_frame *iaf;
 457
 458	iaf = &iphy->frame_rcvd.iaf;
 459	memcpy(sas, iaf->sas_addr, SAS_ADDR_SIZE);
 460}
 461
 462void sci_phy_get_protocols(struct isci_phy *iphy, struct sci_phy_proto *proto)
 463{
 464	proto->all = readl(&iphy->link_layer_registers->transmit_identification);
 465}
 466
 467enum sci_status sci_phy_start(struct isci_phy *iphy)
 468{
 469	enum sci_phy_states state = iphy->sm.current_state_id;
 470
 471	if (state != SCI_PHY_STOPPED) {
 472		dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
 473			__func__, phy_state_name(state));
 474		return SCI_FAILURE_INVALID_STATE;
 475	}
 476
 477	sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 478	return SCI_SUCCESS;
 479}
 480
 481enum sci_status sci_phy_stop(struct isci_phy *iphy)
 482{
 483	enum sci_phy_states state = iphy->sm.current_state_id;
 484
 485	switch (state) {
 486	case SCI_PHY_SUB_INITIAL:
 487	case SCI_PHY_SUB_AWAIT_OSSP_EN:
 488	case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
 489	case SCI_PHY_SUB_AWAIT_SAS_POWER:
 490	case SCI_PHY_SUB_AWAIT_SATA_POWER:
 491	case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
 492	case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
 493	case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
 494	case SCI_PHY_SUB_FINAL:
 495	case SCI_PHY_READY:
 496		break;
 497	default:
 498		dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
 499			__func__, phy_state_name(state));
 500		return SCI_FAILURE_INVALID_STATE;
 501	}
 502
 503	sci_change_state(&iphy->sm, SCI_PHY_STOPPED);
 504	return SCI_SUCCESS;
 505}
 506
 507enum sci_status sci_phy_reset(struct isci_phy *iphy)
 508{
 509	enum sci_phy_states state = iphy->sm.current_state_id;
 510
 511	if (state != SCI_PHY_READY) {
 512		dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
 513			__func__, phy_state_name(state));
 514		return SCI_FAILURE_INVALID_STATE;
 515	}
 516
 517	sci_change_state(&iphy->sm, SCI_PHY_RESETTING);
 518	return SCI_SUCCESS;
 519}
 520
 521enum sci_status sci_phy_consume_power_handler(struct isci_phy *iphy)
 522{
 523	enum sci_phy_states state = iphy->sm.current_state_id;
 524
 525	switch (state) {
 526	case SCI_PHY_SUB_AWAIT_SAS_POWER: {
 527		u32 enable_spinup;
 528
 529		enable_spinup = readl(&iphy->link_layer_registers->notify_enable_spinup_control);
 530		enable_spinup |= SCU_ENSPINUP_GEN_BIT(ENABLE);
 531		writel(enable_spinup, &iphy->link_layer_registers->notify_enable_spinup_control);
 532
 533		/* Change state to the final state this substate machine has run to completion */
 534		sci_change_state(&iphy->sm, SCI_PHY_SUB_FINAL);
 535
 536		return SCI_SUCCESS;
 537	}
 538	case SCI_PHY_SUB_AWAIT_SATA_POWER: {
 539		u32 scu_sas_pcfg_value;
 540
 541		/* Release the spinup hold state and reset the OOB state machine */
 542		scu_sas_pcfg_value =
 543			readl(&iphy->link_layer_registers->phy_configuration);
 544		scu_sas_pcfg_value &=
 545			~(SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD) | SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE));
 546		scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
 547		writel(scu_sas_pcfg_value,
 548			&iphy->link_layer_registers->phy_configuration);
 549
 550		/* Now restart the OOB operation */
 551		scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
 552		scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
 553		writel(scu_sas_pcfg_value,
 554			&iphy->link_layer_registers->phy_configuration);
 555
 556		/* Change state to the final state this substate machine has run to completion */
 557		sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_PHY_EN);
 558
 559		return SCI_SUCCESS;
 560	}
 561	default:
 562		dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
 563			__func__, phy_state_name(state));
 564		return SCI_FAILURE_INVALID_STATE;
 565	}
 566}
 567
 568static void sci_phy_start_sas_link_training(struct isci_phy *iphy)
 569{
 570	/* continue the link training for the phy as if it were a SAS PHY
 571	 * instead of a SATA PHY. This is done because the completion queue had a SAS
 572	 * PHY DETECTED event when the state machine was expecting a SATA PHY event.
 573	 */
 574	u32 phy_control;
 575
 576	phy_control = readl(&iphy->link_layer_registers->phy_configuration);
 577	phy_control |= SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD);
 578	writel(phy_control,
 579	       &iphy->link_layer_registers->phy_configuration);
 580
 581	sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SAS_SPEED_EN);
 582
 583	iphy->protocol = SAS_PROTOCOL_SSP;
 584}
 585
 586static void sci_phy_start_sata_link_training(struct isci_phy *iphy)
 587{
 588	/* This method continues the link training for the phy as if it were a SATA PHY
 589	 * instead of a SAS PHY.  This is done because the completion queue had a SATA
 590	 * SPINUP HOLD event when the state machine was expecting a SAS PHY event. none
 591	 */
 592	sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_POWER);
 593
 594	iphy->protocol = SAS_PROTOCOL_SATA;
 595}
 596
 597/**
 598 * sci_phy_complete_link_training - perform processing common to
 599 *    all protocols upon completion of link training.
 600 * @sci_phy: This parameter specifies the phy object for which link training
 601 *    has completed.
 602 * @max_link_rate: This parameter specifies the maximum link rate to be
 603 *    associated with this phy.
 604 * @next_state: This parameter specifies the next state for the phy's starting
 605 *    sub-state machine.
 606 *
 607 */
 608static void sci_phy_complete_link_training(struct isci_phy *iphy,
 609					   enum sas_linkrate max_link_rate,
 610					   u32 next_state)
 611{
 612	iphy->max_negotiated_speed = max_link_rate;
 613
 614	sci_change_state(&iphy->sm, next_state);
 615}
 616
 617static const char *phy_event_name(u32 event_code)
 618{
 619	switch (scu_get_event_code(event_code)) {
 620	case SCU_EVENT_PORT_SELECTOR_DETECTED:
 621		return "port selector";
 622	case SCU_EVENT_SENT_PORT_SELECTION:
 623		return "port selection";
 624	case SCU_EVENT_HARD_RESET_TRANSMITTED:
 625		return "tx hard reset";
 626	case SCU_EVENT_HARD_RESET_RECEIVED:
 627		return "rx hard reset";
 628	case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
 629		return "identify timeout";
 630	case SCU_EVENT_LINK_FAILURE:
 631		return "link fail";
 632	case SCU_EVENT_SATA_SPINUP_HOLD:
 633		return "sata spinup hold";
 634	case SCU_EVENT_SAS_15_SSC:
 635	case SCU_EVENT_SAS_15:
 636		return "sas 1.5";
 637	case SCU_EVENT_SAS_30_SSC:
 638	case SCU_EVENT_SAS_30:
 639		return "sas 3.0";
 640	case SCU_EVENT_SAS_60_SSC:
 641	case SCU_EVENT_SAS_60:
 642		return "sas 6.0";
 643	case SCU_EVENT_SATA_15_SSC:
 644	case SCU_EVENT_SATA_15:
 645		return "sata 1.5";
 646	case SCU_EVENT_SATA_30_SSC:
 647	case SCU_EVENT_SATA_30:
 648		return "sata 3.0";
 649	case SCU_EVENT_SATA_60_SSC:
 650	case SCU_EVENT_SATA_60:
 651		return "sata 6.0";
 652	case SCU_EVENT_SAS_PHY_DETECTED:
 653		return "sas detect";
 654	case SCU_EVENT_SATA_PHY_DETECTED:
 655		return "sata detect";
 656	default:
 657		return "unknown";
 658	}
 659}
 660
 661#define phy_event_dbg(iphy, state, code) \
 662	dev_dbg(sciphy_to_dev(iphy), "phy-%d:%d: %s event: %s (%x)\n", \
 663		phy_to_host(iphy)->id, iphy->phy_index, \
 664		phy_state_name(state), phy_event_name(code), code)
 665
 666#define phy_event_warn(iphy, state, code) \
 667	dev_warn(sciphy_to_dev(iphy), "phy-%d:%d: %s event: %s (%x)\n", \
 668		phy_to_host(iphy)->id, iphy->phy_index, \
 669		phy_state_name(state), phy_event_name(code), code)
 670
 671
 672void scu_link_layer_set_txcomsas_timeout(struct isci_phy *iphy, u32 timeout)
 673{
 674	u32 val;
 675
 676	/* Extend timeout */
 677	val = readl(&iphy->link_layer_registers->transmit_comsas_signal);
 678	val &= ~SCU_SAS_LLTXCOMSAS_GEN_VAL(NEGTIME, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_MASK);
 679	val |= SCU_SAS_LLTXCOMSAS_GEN_VAL(NEGTIME, timeout);
 680
 681	writel(val, &iphy->link_layer_registers->transmit_comsas_signal);
 682}
 683
 684enum sci_status sci_phy_event_handler(struct isci_phy *iphy, u32 event_code)
 685{
 686	enum sci_phy_states state = iphy->sm.current_state_id;
 687
 688	switch (state) {
 689	case SCI_PHY_SUB_AWAIT_OSSP_EN:
 690		switch (scu_get_event_code(event_code)) {
 691		case SCU_EVENT_SAS_PHY_DETECTED:
 692			sci_phy_start_sas_link_training(iphy);
 693			iphy->is_in_link_training = true;
 694			break;
 695		case SCU_EVENT_SATA_SPINUP_HOLD:
 696			sci_phy_start_sata_link_training(iphy);
 697			iphy->is_in_link_training = true;
 698			break;
 699		case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
 700		       /* Extend timeout value */
 701		       scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_EXTENDED);
 702
 703		       /* Start the oob/sn state machine over again */
 704		       sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 705		       break;
 706		default:
 707			phy_event_dbg(iphy, state, event_code);
 
 
 
 
 708			return SCI_FAILURE;
 709		}
 710		return SCI_SUCCESS;
 711	case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
 712		switch (scu_get_event_code(event_code)) {
 713		case SCU_EVENT_SAS_PHY_DETECTED:
 714			/*
 715			 * Why is this being reported again by the controller?
 716			 * We would re-enter this state so just stay here */
 717			break;
 718		case SCU_EVENT_SAS_15:
 719		case SCU_EVENT_SAS_15_SSC:
 720			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_1_5_GBPS,
 721						       SCI_PHY_SUB_AWAIT_IAF_UF);
 722			break;
 723		case SCU_EVENT_SAS_30:
 724		case SCU_EVENT_SAS_30_SSC:
 725			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_3_0_GBPS,
 726						       SCI_PHY_SUB_AWAIT_IAF_UF);
 727			break;
 728		case SCU_EVENT_SAS_60:
 729		case SCU_EVENT_SAS_60_SSC:
 730			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_6_0_GBPS,
 731						       SCI_PHY_SUB_AWAIT_IAF_UF);
 732			break;
 733		case SCU_EVENT_SATA_SPINUP_HOLD:
 734			/*
 735			 * We were doing SAS PHY link training and received a SATA PHY event
 736			 * continue OOB/SN as if this were a SATA PHY */
 737			sci_phy_start_sata_link_training(iphy);
 738			break;
 739		case SCU_EVENT_LINK_FAILURE:
 740			/* Change the timeout value to default */
 741			scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
 742
 743			/* Link failure change state back to the starting state */
 744			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 745			break;
 746		case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
 747		       /* Extend the timeout value */
 748		       scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_EXTENDED);
 
 
 749
 750		       /* Start the oob/sn state machine over again */
 751		       sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 752		       break;
 753		default:
 754			phy_event_warn(iphy, state, event_code);
 755			return SCI_FAILURE;
 756			break;
 757		}
 758		return SCI_SUCCESS;
 759	case SCI_PHY_SUB_AWAIT_IAF_UF:
 760		switch (scu_get_event_code(event_code)) {
 761		case SCU_EVENT_SAS_PHY_DETECTED:
 762			/* Backup the state machine */
 763			sci_phy_start_sas_link_training(iphy);
 764			break;
 765		case SCU_EVENT_SATA_SPINUP_HOLD:
 766			/* We were doing SAS PHY link training and received a
 767			 * SATA PHY event continue OOB/SN as if this were a
 768			 * SATA PHY
 769			 */
 770			sci_phy_start_sata_link_training(iphy);
 771			break;
 772		case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
 773			/* Extend the timeout value */
 774			scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_EXTENDED);
 775
 776			/* Start the oob/sn state machine over again */
 777			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 778			break;
 779		case SCU_EVENT_LINK_FAILURE:
 780			scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
 781		case SCU_EVENT_HARD_RESET_RECEIVED:
 782			/* Start the oob/sn state machine over again */
 783			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 784			break;
 785		default:
 786			phy_event_warn(iphy, state, event_code);
 
 
 
 787			return SCI_FAILURE;
 788		}
 789		return SCI_SUCCESS;
 790	case SCI_PHY_SUB_AWAIT_SAS_POWER:
 791		switch (scu_get_event_code(event_code)) {
 792		case SCU_EVENT_LINK_FAILURE:
 793			/* Change the timeout value to default */
 794			scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
 795
 796			/* Link failure change state back to the starting state */
 797			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 798			break;
 799		default:
 800			phy_event_warn(iphy, state, event_code);
 
 
 
 
 801			return SCI_FAILURE;
 802		}
 803		return SCI_SUCCESS;
 804	case SCI_PHY_SUB_AWAIT_SATA_POWER:
 805		switch (scu_get_event_code(event_code)) {
 806		case SCU_EVENT_LINK_FAILURE:
 807			/* Change the timeout value to default */
 808			scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
 809
 810			/* Link failure change state back to the starting state */
 811			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 812			break;
 813		case SCU_EVENT_SATA_SPINUP_HOLD:
 814			/* These events are received every 10ms and are
 815			 * expected while in this state
 816			 */
 817			break;
 818
 819		case SCU_EVENT_SAS_PHY_DETECTED:
 820			/* There has been a change in the phy type before OOB/SN for the
 821			 * SATA finished start down the SAS link traning path.
 822			 */
 823			sci_phy_start_sas_link_training(iphy);
 824			break;
 825
 826		default:
 827			phy_event_warn(iphy, state, event_code);
 
 
 
 
 828			return SCI_FAILURE;
 829		}
 830		return SCI_SUCCESS;
 831	case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
 832		switch (scu_get_event_code(event_code)) {
 833		case SCU_EVENT_LINK_FAILURE:
 834			/* Change the timeout value to default */
 835			scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
 836
 837			/* Link failure change state back to the starting state */
 838			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 839			break;
 840		case SCU_EVENT_SATA_SPINUP_HOLD:
 841			/* These events might be received since we dont know how many may be in
 842			 * the completion queue while waiting for power
 843			 */
 844			break;
 845		case SCU_EVENT_SATA_PHY_DETECTED:
 846			iphy->protocol = SAS_PROTOCOL_SATA;
 847
 848			/* We have received the SATA PHY notification change state */
 849			sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_SPEED_EN);
 850			break;
 851		case SCU_EVENT_SAS_PHY_DETECTED:
 852			/* There has been a change in the phy type before OOB/SN for the
 853			 * SATA finished start down the SAS link traning path.
 854			 */
 855			sci_phy_start_sas_link_training(iphy);
 856			break;
 857		default:
 858			phy_event_warn(iphy, state, event_code);
 859			return SCI_FAILURE;
 
 
 
 
 
 860		}
 861		return SCI_SUCCESS;
 862	case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
 863		switch (scu_get_event_code(event_code)) {
 864		case SCU_EVENT_SATA_PHY_DETECTED:
 865			/*
 866			 * The hardware reports multiple SATA PHY detected events
 867			 * ignore the extras */
 868			break;
 869		case SCU_EVENT_SATA_15:
 870		case SCU_EVENT_SATA_15_SSC:
 871			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_1_5_GBPS,
 872						       SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
 873			break;
 874		case SCU_EVENT_SATA_30:
 875		case SCU_EVENT_SATA_30_SSC:
 876			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_3_0_GBPS,
 877						       SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
 878			break;
 879		case SCU_EVENT_SATA_60:
 880		case SCU_EVENT_SATA_60_SSC:
 881			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_6_0_GBPS,
 882						       SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
 883			break;
 884		case SCU_EVENT_LINK_FAILURE:
 885			/* Change the timeout value to default */
 886			scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
 887
 888			/* Link failure change state back to the starting state */
 889			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 890			break;
 891		case SCU_EVENT_SAS_PHY_DETECTED:
 892			/*
 893			 * There has been a change in the phy type before OOB/SN for the
 894			 * SATA finished start down the SAS link traning path. */
 895			sci_phy_start_sas_link_training(iphy);
 896			break;
 897		default:
 898			phy_event_warn(iphy, state, event_code);
 
 
 
 
 899			return SCI_FAILURE;
 900		}
 901
 902		return SCI_SUCCESS;
 903	case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
 904		switch (scu_get_event_code(event_code)) {
 905		case SCU_EVENT_SATA_PHY_DETECTED:
 906			/* Backup the state machine */
 907			sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_SPEED_EN);
 908			break;
 909
 910		case SCU_EVENT_LINK_FAILURE:
 911			/* Change the timeout value to default */
 912			scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
 913
 914			/* Link failure change state back to the starting state */
 915			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 916			break;
 917
 918		default:
 919			phy_event_warn(iphy, state, event_code);
 
 
 
 
 
 920			return SCI_FAILURE;
 921		}
 922		return SCI_SUCCESS;
 923	case SCI_PHY_READY:
 924		switch (scu_get_event_code(event_code)) {
 925		case SCU_EVENT_LINK_FAILURE:
 926			/* Set default timeout */
 927			scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
 928
 929			/* Link failure change state back to the starting state */
 930			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 931			break;
 932		case SCU_EVENT_BROADCAST_CHANGE:
 933		case SCU_EVENT_BROADCAST_SES:
 934		case SCU_EVENT_BROADCAST_RESERVED0:
 935		case SCU_EVENT_BROADCAST_RESERVED1:
 936		case SCU_EVENT_BROADCAST_EXPANDER:
 937		case SCU_EVENT_BROADCAST_AEN:
 938			/* Broadcast change received. Notify the port. */
 939			if (phy_get_non_dummy_port(iphy) != NULL)
 940				sci_port_broadcast_change_received(iphy->owning_port, iphy);
 941			else
 942				iphy->bcn_received_while_port_unassigned = true;
 943			break;
 944		case SCU_EVENT_BROADCAST_RESERVED3:
 945		case SCU_EVENT_BROADCAST_RESERVED4:
 946		default:
 947			phy_event_warn(iphy, state, event_code);
 
 
 
 948			return SCI_FAILURE_INVALID_STATE;
 949		}
 950		return SCI_SUCCESS;
 951	case SCI_PHY_RESETTING:
 952		switch (scu_get_event_code(event_code)) {
 953		case SCU_EVENT_HARD_RESET_TRANSMITTED:
 954			/* Link failure change state back to the starting state */
 955			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
 956			break;
 957		default:
 958			phy_event_warn(iphy, state, event_code);
 
 
 
 
 959			return SCI_FAILURE_INVALID_STATE;
 960			break;
 961		}
 962		return SCI_SUCCESS;
 963	default:
 964		dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
 965			__func__, phy_state_name(state));
 966		return SCI_FAILURE_INVALID_STATE;
 967	}
 968}
 969
 970enum sci_status sci_phy_frame_handler(struct isci_phy *iphy, u32 frame_index)
 971{
 972	enum sci_phy_states state = iphy->sm.current_state_id;
 973	struct isci_host *ihost = iphy->owning_port->owning_controller;
 974	enum sci_status result;
 975	unsigned long flags;
 976
 977	switch (state) {
 978	case SCI_PHY_SUB_AWAIT_IAF_UF: {
 979		u32 *frame_words;
 980		struct sas_identify_frame iaf;
 981
 982		result = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
 983								  frame_index,
 984								  (void **)&frame_words);
 985
 986		if (result != SCI_SUCCESS)
 987			return result;
 988
 989		sci_swab32_cpy(&iaf, frame_words, sizeof(iaf) / sizeof(u32));
 990		if (iaf.frame_type == 0) {
 991			u32 state;
 992
 993			spin_lock_irqsave(&iphy->sas_phy.frame_rcvd_lock, flags);
 994			memcpy(&iphy->frame_rcvd.iaf, &iaf, sizeof(iaf));
 995			spin_unlock_irqrestore(&iphy->sas_phy.frame_rcvd_lock, flags);
 996			if (iaf.smp_tport) {
 997				/* We got the IAF for an expander PHY go to the final
 998				 * state since there are no power requirements for
 999				 * expander phys.
1000				 */
1001				state = SCI_PHY_SUB_FINAL;
1002			} else {
1003				/* We got the IAF we can now go to the await spinup
1004				 * semaphore state
1005				 */
1006				state = SCI_PHY_SUB_AWAIT_SAS_POWER;
1007			}
1008			sci_change_state(&iphy->sm, state);
1009			result = SCI_SUCCESS;
1010		} else
1011			dev_warn(sciphy_to_dev(iphy),
1012				"%s: PHY starting substate machine received "
1013				"unexpected frame id %x\n",
1014				__func__, frame_index);
1015
1016		sci_controller_release_frame(ihost, frame_index);
1017		return result;
1018	}
1019	case SCI_PHY_SUB_AWAIT_SIG_FIS_UF: {
1020		struct dev_to_host_fis *frame_header;
1021		u32 *fis_frame_data;
1022
1023		result = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1024								  frame_index,
1025								  (void **)&frame_header);
1026
1027		if (result != SCI_SUCCESS)
1028			return result;
1029
1030		if ((frame_header->fis_type == FIS_REGD2H) &&
1031		    !(frame_header->status & ATA_BUSY)) {
1032			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1033								 frame_index,
1034								 (void **)&fis_frame_data);
1035
1036			spin_lock_irqsave(&iphy->sas_phy.frame_rcvd_lock, flags);
1037			sci_controller_copy_sata_response(&iphy->frame_rcvd.fis,
1038							  frame_header,
1039							  fis_frame_data);
1040			spin_unlock_irqrestore(&iphy->sas_phy.frame_rcvd_lock, flags);
1041
1042			/* got IAF we can now go to the await spinup semaphore state */
1043			sci_change_state(&iphy->sm, SCI_PHY_SUB_FINAL);
1044
1045			result = SCI_SUCCESS;
1046		} else
1047			dev_warn(sciphy_to_dev(iphy),
1048				 "%s: PHY starting substate machine received "
1049				 "unexpected frame id %x\n",
1050				 __func__, frame_index);
1051
1052		/* Regardless of the result we are done with this frame with it */
1053		sci_controller_release_frame(ihost, frame_index);
1054
1055		return result;
1056	}
1057	default:
1058		dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
1059			__func__, phy_state_name(state));
1060		return SCI_FAILURE_INVALID_STATE;
1061	}
1062
1063}
1064
1065static void sci_phy_starting_initial_substate_enter(struct sci_base_state_machine *sm)
1066{
1067	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1068
1069	/* This is just an temporary state go off to the starting state */
1070	sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_OSSP_EN);
1071}
1072
1073static void sci_phy_starting_await_sas_power_substate_enter(struct sci_base_state_machine *sm)
1074{
1075	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1076	struct isci_host *ihost = iphy->owning_port->owning_controller;
1077
1078	sci_controller_power_control_queue_insert(ihost, iphy);
1079}
1080
1081static void sci_phy_starting_await_sas_power_substate_exit(struct sci_base_state_machine *sm)
1082{
1083	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1084	struct isci_host *ihost = iphy->owning_port->owning_controller;
1085
1086	sci_controller_power_control_queue_remove(ihost, iphy);
1087}
1088
1089static void sci_phy_starting_await_sata_power_substate_enter(struct sci_base_state_machine *sm)
1090{
1091	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1092	struct isci_host *ihost = iphy->owning_port->owning_controller;
1093
1094	sci_controller_power_control_queue_insert(ihost, iphy);
1095}
1096
1097static void sci_phy_starting_await_sata_power_substate_exit(struct sci_base_state_machine *sm)
1098{
1099	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1100	struct isci_host *ihost = iphy->owning_port->owning_controller;
1101
1102	sci_controller_power_control_queue_remove(ihost, iphy);
1103}
1104
1105static void sci_phy_starting_await_sata_phy_substate_enter(struct sci_base_state_machine *sm)
1106{
1107	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1108
1109	sci_mod_timer(&iphy->sata_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT);
1110}
1111
1112static void sci_phy_starting_await_sata_phy_substate_exit(struct sci_base_state_machine *sm)
1113{
1114	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1115
1116	sci_del_timer(&iphy->sata_timer);
1117}
1118
1119static void sci_phy_starting_await_sata_speed_substate_enter(struct sci_base_state_machine *sm)
1120{
1121	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1122
1123	sci_mod_timer(&iphy->sata_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT);
1124}
1125
1126static void sci_phy_starting_await_sata_speed_substate_exit(struct sci_base_state_machine *sm)
1127{
1128	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1129
1130	sci_del_timer(&iphy->sata_timer);
1131}
1132
1133static void sci_phy_starting_await_sig_fis_uf_substate_enter(struct sci_base_state_machine *sm)
1134{
1135	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1136
1137	if (sci_port_link_detected(iphy->owning_port, iphy)) {
1138
1139		/*
1140		 * Clear the PE suspend condition so we can actually
1141		 * receive SIG FIS
1142		 * The hardware will not respond to the XRDY until the PE
1143		 * suspend condition is cleared.
1144		 */
1145		sci_phy_resume(iphy);
1146
1147		sci_mod_timer(&iphy->sata_timer,
1148			      SCIC_SDS_SIGNATURE_FIS_TIMEOUT);
1149	} else
1150		iphy->is_in_link_training = false;
1151}
1152
1153static void sci_phy_starting_await_sig_fis_uf_substate_exit(struct sci_base_state_machine *sm)
1154{
1155	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1156
1157	sci_del_timer(&iphy->sata_timer);
1158}
1159
1160static void sci_phy_starting_final_substate_enter(struct sci_base_state_machine *sm)
1161{
1162	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1163
1164	/* State machine has run to completion so exit out and change
1165	 * the base state machine to the ready state
1166	 */
1167	sci_change_state(&iphy->sm, SCI_PHY_READY);
1168}
1169
1170/**
1171 *
1172 * @sci_phy: This is the struct isci_phy object to stop.
1173 *
1174 * This method will stop the struct isci_phy object. This does not reset the
1175 * protocol engine it just suspends it and places it in a state where it will
1176 * not cause the end device to power up. none
1177 */
1178static void scu_link_layer_stop_protocol_engine(
1179	struct isci_phy *iphy)
1180{
1181	u32 scu_sas_pcfg_value;
1182	u32 enable_spinup_value;
1183
1184	/* Suspend the protocol engine and place it in a sata spinup hold state */
1185	scu_sas_pcfg_value =
1186		readl(&iphy->link_layer_registers->phy_configuration);
1187	scu_sas_pcfg_value |=
1188		(SCU_SAS_PCFG_GEN_BIT(OOB_RESET) |
1189		 SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE) |
1190		 SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD));
1191	writel(scu_sas_pcfg_value,
1192	       &iphy->link_layer_registers->phy_configuration);
1193
1194	/* Disable the notify enable spinup primitives */
1195	enable_spinup_value = readl(&iphy->link_layer_registers->notify_enable_spinup_control);
1196	enable_spinup_value &= ~SCU_ENSPINUP_GEN_BIT(ENABLE);
1197	writel(enable_spinup_value, &iphy->link_layer_registers->notify_enable_spinup_control);
1198}
1199
1200static void scu_link_layer_start_oob(struct isci_phy *iphy)
 
 
 
 
 
 
1201{
1202	struct scu_link_layer_registers __iomem *ll = iphy->link_layer_registers;
1203	u32 val;
1204
1205	/** Reset OOB sequence - start */
1206	val = readl(&ll->phy_configuration);
1207	val &= ~(SCU_SAS_PCFG_GEN_BIT(OOB_RESET) |
1208		 SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE) |
1209		 SCU_SAS_PCFG_GEN_BIT(HARD_RESET));
1210	writel(val, &ll->phy_configuration);
1211	readl(&ll->phy_configuration); /* flush */
1212	/** Reset OOB sequence - end */
1213
1214	/** Start OOB sequence - start */
1215	val = readl(&ll->phy_configuration);
1216	val |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
1217	writel(val, &ll->phy_configuration);
1218	readl(&ll->phy_configuration); /* flush */
1219	/** Start OOB sequence - end */
1220}
1221
1222/**
1223 *
1224 *
1225 * This method will transmit a hard reset request on the specified phy. The SCU
1226 * hardware requires that we reset the OOB state machine and set the hard reset
1227 * bit in the phy configuration register. We then must start OOB over with the
1228 * hard reset bit set.
1229 */
1230static void scu_link_layer_tx_hard_reset(
1231	struct isci_phy *iphy)
1232{
1233	u32 phy_configuration_value;
1234
1235	/*
1236	 * SAS Phys must wait for the HARD_RESET_TX event notification to transition
1237	 * to the starting state. */
1238	phy_configuration_value =
1239		readl(&iphy->link_layer_registers->phy_configuration);
1240	phy_configuration_value &= ~(SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE));
1241	phy_configuration_value |=
1242		(SCU_SAS_PCFG_GEN_BIT(HARD_RESET) |
1243		 SCU_SAS_PCFG_GEN_BIT(OOB_RESET));
1244	writel(phy_configuration_value,
1245	       &iphy->link_layer_registers->phy_configuration);
1246
1247	/* Now take the OOB state machine out of reset */
1248	phy_configuration_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
1249	phy_configuration_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
1250	writel(phy_configuration_value,
1251	       &iphy->link_layer_registers->phy_configuration);
1252}
1253
1254static void sci_phy_stopped_state_enter(struct sci_base_state_machine *sm)
1255{
1256	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1257	struct isci_port *iport = iphy->owning_port;
1258	struct isci_host *ihost = iport->owning_controller;
1259
1260	/*
1261	 * @todo We need to get to the controller to place this PE in a
1262	 * reset state
1263	 */
1264	sci_del_timer(&iphy->sata_timer);
1265
1266	scu_link_layer_stop_protocol_engine(iphy);
1267
1268	if (iphy->sm.previous_state_id != SCI_PHY_INITIAL)
1269		sci_controller_link_down(ihost, phy_get_non_dummy_port(iphy), iphy);
1270}
1271
1272static void sci_phy_starting_state_enter(struct sci_base_state_machine *sm)
1273{
1274	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1275	struct isci_port *iport = iphy->owning_port;
1276	struct isci_host *ihost = iport->owning_controller;
1277
1278	scu_link_layer_stop_protocol_engine(iphy);
1279	scu_link_layer_start_oob(iphy);
1280
1281	/* We don't know what kind of phy we are going to be just yet */
1282	iphy->protocol = SAS_PROTOCOL_NONE;
1283	iphy->bcn_received_while_port_unassigned = false;
1284
1285	if (iphy->sm.previous_state_id == SCI_PHY_READY)
1286		sci_controller_link_down(ihost, phy_get_non_dummy_port(iphy), iphy);
1287
1288	sci_change_state(&iphy->sm, SCI_PHY_SUB_INITIAL);
1289}
1290
1291static void sci_phy_ready_state_enter(struct sci_base_state_machine *sm)
1292{
1293	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1294	struct isci_port *iport = iphy->owning_port;
1295	struct isci_host *ihost = iport->owning_controller;
1296
1297	sci_controller_link_up(ihost, phy_get_non_dummy_port(iphy), iphy);
1298}
1299
1300static void sci_phy_ready_state_exit(struct sci_base_state_machine *sm)
1301{
1302	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1303
1304	sci_phy_suspend(iphy);
1305}
1306
1307static void sci_phy_resetting_state_enter(struct sci_base_state_machine *sm)
1308{
1309	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1310
1311	/* The phy is being reset, therefore deactivate it from the port.  In
1312	 * the resetting state we don't notify the user regarding link up and
1313	 * link down notifications
1314	 */
1315	sci_port_deactivate_phy(iphy->owning_port, iphy, false);
1316
1317	if (iphy->protocol == SAS_PROTOCOL_SSP) {
1318		scu_link_layer_tx_hard_reset(iphy);
1319	} else {
1320		/* The SCU does not need to have a discrete reset state so
1321		 * just go back to the starting state.
1322		 */
1323		sci_change_state(&iphy->sm, SCI_PHY_STARTING);
1324	}
1325}
1326
1327static const struct sci_base_state sci_phy_state_table[] = {
1328	[SCI_PHY_INITIAL] = { },
1329	[SCI_PHY_STOPPED] = {
1330		.enter_state = sci_phy_stopped_state_enter,
1331	},
1332	[SCI_PHY_STARTING] = {
1333		.enter_state = sci_phy_starting_state_enter,
1334	},
1335	[SCI_PHY_SUB_INITIAL] = {
1336		.enter_state = sci_phy_starting_initial_substate_enter,
1337	},
1338	[SCI_PHY_SUB_AWAIT_OSSP_EN] = { },
1339	[SCI_PHY_SUB_AWAIT_SAS_SPEED_EN] = { },
1340	[SCI_PHY_SUB_AWAIT_IAF_UF] = { },
1341	[SCI_PHY_SUB_AWAIT_SAS_POWER] = {
1342		.enter_state = sci_phy_starting_await_sas_power_substate_enter,
1343		.exit_state  = sci_phy_starting_await_sas_power_substate_exit,
1344	},
1345	[SCI_PHY_SUB_AWAIT_SATA_POWER] = {
1346		.enter_state = sci_phy_starting_await_sata_power_substate_enter,
1347		.exit_state  = sci_phy_starting_await_sata_power_substate_exit
1348	},
1349	[SCI_PHY_SUB_AWAIT_SATA_PHY_EN] = {
1350		.enter_state = sci_phy_starting_await_sata_phy_substate_enter,
1351		.exit_state  = sci_phy_starting_await_sata_phy_substate_exit
1352	},
1353	[SCI_PHY_SUB_AWAIT_SATA_SPEED_EN] = {
1354		.enter_state = sci_phy_starting_await_sata_speed_substate_enter,
1355		.exit_state  = sci_phy_starting_await_sata_speed_substate_exit
1356	},
1357	[SCI_PHY_SUB_AWAIT_SIG_FIS_UF] = {
1358		.enter_state = sci_phy_starting_await_sig_fis_uf_substate_enter,
1359		.exit_state  = sci_phy_starting_await_sig_fis_uf_substate_exit
1360	},
1361	[SCI_PHY_SUB_FINAL] = {
1362		.enter_state = sci_phy_starting_final_substate_enter,
1363	},
1364	[SCI_PHY_READY] = {
1365		.enter_state = sci_phy_ready_state_enter,
1366		.exit_state = sci_phy_ready_state_exit,
1367	},
1368	[SCI_PHY_RESETTING] = {
1369		.enter_state = sci_phy_resetting_state_enter,
1370	},
1371	[SCI_PHY_FINAL] = { },
1372};
1373
1374void sci_phy_construct(struct isci_phy *iphy,
1375			    struct isci_port *iport, u8 phy_index)
1376{
1377	sci_init_sm(&iphy->sm, sci_phy_state_table, SCI_PHY_INITIAL);
1378
1379	/* Copy the rest of the input data to our locals */
1380	iphy->owning_port = iport;
1381	iphy->phy_index = phy_index;
1382	iphy->bcn_received_while_port_unassigned = false;
1383	iphy->protocol = SAS_PROTOCOL_NONE;
1384	iphy->link_layer_registers = NULL;
1385	iphy->max_negotiated_speed = SAS_LINK_RATE_UNKNOWN;
1386
1387	/* Create the SIGNATURE FIS Timeout timer for this phy */
1388	sci_init_timer(&iphy->sata_timer, phy_sata_timeout);
1389}
1390
1391void isci_phy_init(struct isci_phy *iphy, struct isci_host *ihost, int index)
1392{
1393	struct sci_oem_params *oem = &ihost->oem_parameters;
1394	u64 sci_sas_addr;
1395	__be64 sas_addr;
1396
1397	sci_sas_addr = oem->phys[index].sas_address.high;
1398	sci_sas_addr <<= 32;
1399	sci_sas_addr |= oem->phys[index].sas_address.low;
1400	sas_addr = cpu_to_be64(sci_sas_addr);
1401	memcpy(iphy->sas_addr, &sas_addr, sizeof(sas_addr));
1402
 
1403	iphy->sas_phy.enabled = 0;
1404	iphy->sas_phy.id = index;
1405	iphy->sas_phy.sas_addr = &iphy->sas_addr[0];
1406	iphy->sas_phy.frame_rcvd = (u8 *)&iphy->frame_rcvd;
1407	iphy->sas_phy.ha = &ihost->sas_ha;
1408	iphy->sas_phy.lldd_phy = iphy;
1409	iphy->sas_phy.enabled = 1;
1410	iphy->sas_phy.class = SAS;
1411	iphy->sas_phy.iproto = SAS_PROTOCOL_ALL;
1412	iphy->sas_phy.tproto = 0;
1413	iphy->sas_phy.type = PHY_TYPE_PHYSICAL;
1414	iphy->sas_phy.role = PHY_ROLE_INITIATOR;
1415	iphy->sas_phy.oob_mode = OOB_NOT_CONNECTED;
1416	iphy->sas_phy.linkrate = SAS_LINK_RATE_UNKNOWN;
1417	memset(&iphy->frame_rcvd, 0, sizeof(iphy->frame_rcvd));
1418}
1419
1420
1421/**
1422 * isci_phy_control() - This function is one of the SAS Domain Template
1423 *    functions. This is a phy management function.
1424 * @phy: This parameter specifies the sphy being controlled.
1425 * @func: This parameter specifies the phy control function being invoked.
1426 * @buf: This parameter is specific to the phy function being invoked.
1427 *
1428 * status, zero indicates success.
1429 */
1430int isci_phy_control(struct asd_sas_phy *sas_phy,
1431		     enum phy_func func,
1432		     void *buf)
1433{
1434	int ret = 0;
1435	struct isci_phy *iphy = sas_phy->lldd_phy;
1436	struct asd_sas_port *port = sas_phy->port;
1437	struct isci_host *ihost = sas_phy->ha->lldd_ha;
1438	unsigned long flags;
1439
1440	dev_dbg(&ihost->pdev->dev,
1441		"%s: phy %p; func %d; buf %p; isci phy %p, port %p\n",
1442		__func__, sas_phy, func, buf, iphy, port);
1443
1444	switch (func) {
1445	case PHY_FUNC_DISABLE:
1446		spin_lock_irqsave(&ihost->scic_lock, flags);
1447		scu_link_layer_start_oob(iphy);
1448		sci_phy_stop(iphy);
1449		spin_unlock_irqrestore(&ihost->scic_lock, flags);
1450		break;
1451
1452	case PHY_FUNC_LINK_RESET:
1453		spin_lock_irqsave(&ihost->scic_lock, flags);
1454		scu_link_layer_start_oob(iphy);
1455		sci_phy_stop(iphy);
1456		sci_phy_start(iphy);
1457		spin_unlock_irqrestore(&ihost->scic_lock, flags);
1458		break;
1459
1460	case PHY_FUNC_HARD_RESET:
1461		if (!port)
1462			return -ENODEV;
1463
1464		ret = isci_port_perform_hard_reset(ihost, port->lldd_port, iphy);
 
1465
1466		break;
1467	case PHY_FUNC_GET_EVENTS: {
1468		struct scu_link_layer_registers __iomem *r;
1469		struct sas_phy *phy = sas_phy->phy;
1470
1471		r = iphy->link_layer_registers;
1472		phy->running_disparity_error_count = readl(&r->running_disparity_error_count);
1473		phy->loss_of_dword_sync_count = readl(&r->loss_of_sync_error_count);
1474		phy->phy_reset_problem_count = readl(&r->phy_reset_problem_count);
1475		phy->invalid_dword_count = readl(&r->invalid_dword_counter);
1476		break;
1477	}
1478
1479	default:
1480		dev_dbg(&ihost->pdev->dev,
1481			   "%s: phy %p; func %d NOT IMPLEMENTED!\n",
1482			   __func__, sas_phy, func);
1483		ret = -ENOSYS;
1484		break;
1485	}
1486	return ret;
1487}