Loading...
1/*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
4 *
5 * GPL LICENSE SUMMARY
6 *
7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
23 *
24 * BSD LICENSE
25 *
26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27 * All rights reserved.
28 *
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
31 * are met:
32 *
33 * * Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * * Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in
37 * the documentation and/or other materials provided with the
38 * distribution.
39 * * Neither the name of Intel Corporation nor the names of its
40 * contributors may be used to endorse or promote products derived
41 * from this software without specific prior written permission.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54 */
55
56#include "isci.h"
57#include "host.h"
58#include "phy.h"
59#include "scu_event_codes.h"
60#include "probe_roms.h"
61
62/* Maximum arbitration wait time in micro-seconds */
63#define SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME (700)
64
65enum sas_linkrate sci_phy_linkrate(struct isci_phy *iphy)
66{
67 return iphy->max_negotiated_speed;
68}
69
70static enum sci_status
71sci_phy_transport_layer_initialization(struct isci_phy *iphy,
72 struct scu_transport_layer_registers __iomem *reg)
73{
74 u32 tl_control;
75
76 iphy->transport_layer_registers = reg;
77
78 writel(SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX,
79 &iphy->transport_layer_registers->stp_rni);
80
81 /*
82 * Hardware team recommends that we enable the STP prefetch for all
83 * transports
84 */
85 tl_control = readl(&iphy->transport_layer_registers->control);
86 tl_control |= SCU_TLCR_GEN_BIT(STP_WRITE_DATA_PREFETCH);
87 writel(tl_control, &iphy->transport_layer_registers->control);
88
89 return SCI_SUCCESS;
90}
91
92static enum sci_status
93sci_phy_link_layer_initialization(struct isci_phy *iphy,
94 struct scu_link_layer_registers __iomem *reg)
95{
96 struct isci_host *ihost = iphy->owning_port->owning_controller;
97 int phy_idx = iphy->phy_index;
98 struct sci_phy_user_params *phy_user = &ihost->user_parameters.phys[phy_idx];
99 struct sci_phy_oem_params *phy_oem =
100 &ihost->oem_parameters.phys[phy_idx];
101 u32 phy_configuration;
102 struct sci_phy_cap phy_cap;
103 u32 parity_check = 0;
104 u32 parity_count = 0;
105 u32 llctl, link_rate;
106 u32 clksm_value = 0;
107 u32 sp_timeouts = 0;
108
109 iphy->link_layer_registers = reg;
110
111 /* Set our IDENTIFY frame data */
112 #define SCI_END_DEVICE 0x01
113
114 writel(SCU_SAS_TIID_GEN_BIT(SMP_INITIATOR) |
115 SCU_SAS_TIID_GEN_BIT(SSP_INITIATOR) |
116 SCU_SAS_TIID_GEN_BIT(STP_INITIATOR) |
117 SCU_SAS_TIID_GEN_BIT(DA_SATA_HOST) |
118 SCU_SAS_TIID_GEN_VAL(DEVICE_TYPE, SCI_END_DEVICE),
119 &iphy->link_layer_registers->transmit_identification);
120
121 /* Write the device SAS Address */
122 writel(0xFEDCBA98,
123 &iphy->link_layer_registers->sas_device_name_high);
124 writel(phy_idx, &iphy->link_layer_registers->sas_device_name_low);
125
126 /* Write the source SAS Address */
127 writel(phy_oem->sas_address.high,
128 &iphy->link_layer_registers->source_sas_address_high);
129 writel(phy_oem->sas_address.low,
130 &iphy->link_layer_registers->source_sas_address_low);
131
132 /* Clear and Set the PHY Identifier */
133 writel(0, &iphy->link_layer_registers->identify_frame_phy_id);
134 writel(SCU_SAS_TIPID_GEN_VALUE(ID, phy_idx),
135 &iphy->link_layer_registers->identify_frame_phy_id);
136
137 /* Change the initial state of the phy configuration register */
138 phy_configuration =
139 readl(&iphy->link_layer_registers->phy_configuration);
140
141 /* Hold OOB state machine in reset */
142 phy_configuration |= SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
143 writel(phy_configuration,
144 &iphy->link_layer_registers->phy_configuration);
145
146 /* Configure the SNW capabilities */
147 phy_cap.all = 0;
148 phy_cap.start = 1;
149 phy_cap.gen3_no_ssc = 1;
150 phy_cap.gen2_no_ssc = 1;
151 phy_cap.gen1_no_ssc = 1;
152 if (ihost->oem_parameters.controller.do_enable_ssc == true) {
153 phy_cap.gen3_ssc = 1;
154 phy_cap.gen2_ssc = 1;
155 phy_cap.gen1_ssc = 1;
156 }
157
158 /*
159 * The SAS specification indicates that the phy_capabilities that
160 * are transmitted shall have an even parity. Calculate the parity. */
161 parity_check = phy_cap.all;
162 while (parity_check != 0) {
163 if (parity_check & 0x1)
164 parity_count++;
165 parity_check >>= 1;
166 }
167
168 /*
169 * If parity indicates there are an odd number of bits set, then
170 * set the parity bit to 1 in the phy capabilities. */
171 if ((parity_count % 2) != 0)
172 phy_cap.parity = 1;
173
174 writel(phy_cap.all, &iphy->link_layer_registers->phy_capabilities);
175
176 /* Set the enable spinup period but disable the ability to send
177 * notify enable spinup
178 */
179 writel(SCU_ENSPINUP_GEN_VAL(COUNT,
180 phy_user->notify_enable_spin_up_insertion_frequency),
181 &iphy->link_layer_registers->notify_enable_spinup_control);
182
183 /* Write the ALIGN Insertion Ferequency for connected phy and
184 * inpendent of connected state
185 */
186 clksm_value = SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL(CONNECTED,
187 phy_user->in_connection_align_insertion_frequency);
188
189 clksm_value |= SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL(GENERAL,
190 phy_user->align_insertion_frequency);
191
192 writel(clksm_value, &iphy->link_layer_registers->clock_skew_management);
193
194 /* @todo Provide a way to write this register correctly */
195 writel(0x02108421,
196 &iphy->link_layer_registers->afe_lookup_table_control);
197
198 llctl = SCU_SAS_LLCTL_GEN_VAL(NO_OUTBOUND_TASK_TIMEOUT,
199 (u8)ihost->user_parameters.no_outbound_task_timeout);
200
201 switch (phy_user->max_speed_generation) {
202 case SCIC_SDS_PARM_GEN3_SPEED:
203 link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN3;
204 break;
205 case SCIC_SDS_PARM_GEN2_SPEED:
206 link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN2;
207 break;
208 default:
209 link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN1;
210 break;
211 }
212 llctl |= SCU_SAS_LLCTL_GEN_VAL(MAX_LINK_RATE, link_rate);
213 writel(llctl, &iphy->link_layer_registers->link_layer_control);
214
215 sp_timeouts = readl(&iphy->link_layer_registers->sas_phy_timeouts);
216
217 /* Clear the default 0x36 (54us) RATE_CHANGE timeout value. */
218 sp_timeouts &= ~SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0xFF);
219
220 /* Set RATE_CHANGE timeout value to 0x3B (59us). This ensures SCU can
221 * lock with 3Gb drive when SCU max rate is set to 1.5Gb.
222 */
223 sp_timeouts |= SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0x3B);
224
225 writel(sp_timeouts, &iphy->link_layer_registers->sas_phy_timeouts);
226
227 if (is_a2(ihost->pdev)) {
228 /* Program the max ARB time for the PHY to 700us so we inter-operate with
229 * the PMC expander which shuts down PHYs if the expander PHY generates too
230 * many breaks. This time value will guarantee that the initiator PHY will
231 * generate the break.
232 */
233 writel(SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME,
234 &iphy->link_layer_registers->maximum_arbitration_wait_timer_timeout);
235 }
236
237 /* Disable link layer hang detection, rely on the OS timeout for I/O timeouts. */
238 writel(0, &iphy->link_layer_registers->link_layer_hang_detection_timeout);
239
240 /* We can exit the initial state to the stopped state */
241 sci_change_state(&iphy->sm, SCI_PHY_STOPPED);
242
243 return SCI_SUCCESS;
244}
245
246static void phy_sata_timeout(unsigned long data)
247{
248 struct sci_timer *tmr = (struct sci_timer *)data;
249 struct isci_phy *iphy = container_of(tmr, typeof(*iphy), sata_timer);
250 struct isci_host *ihost = iphy->owning_port->owning_controller;
251 unsigned long flags;
252
253 spin_lock_irqsave(&ihost->scic_lock, flags);
254
255 if (tmr->cancel)
256 goto done;
257
258 dev_dbg(sciphy_to_dev(iphy),
259 "%s: SCIC SDS Phy 0x%p did not receive signature fis before "
260 "timeout.\n",
261 __func__,
262 iphy);
263
264 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
265done:
266 spin_unlock_irqrestore(&ihost->scic_lock, flags);
267}
268
269/**
270 * This method returns the port currently containing this phy. If the phy is
271 * currently contained by the dummy port, then the phy is considered to not
272 * be part of a port.
273 * @sci_phy: This parameter specifies the phy for which to retrieve the
274 * containing port.
275 *
276 * This method returns a handle to a port that contains the supplied phy.
277 * NULL This value is returned if the phy is not part of a real
278 * port (i.e. it's contained in the dummy port). !NULL All other
279 * values indicate a handle/pointer to the port containing the phy.
280 */
281struct isci_port *phy_get_non_dummy_port(struct isci_phy *iphy)
282{
283 struct isci_port *iport = iphy->owning_port;
284
285 if (iport->physical_port_index == SCIC_SDS_DUMMY_PORT)
286 return NULL;
287
288 return iphy->owning_port;
289}
290
291/**
292 * This method will assign a port to the phy object.
293 * @out]: iphy This parameter specifies the phy for which to assign a port
294 * object.
295 *
296 *
297 */
298void sci_phy_set_port(
299 struct isci_phy *iphy,
300 struct isci_port *iport)
301{
302 iphy->owning_port = iport;
303
304 if (iphy->bcn_received_while_port_unassigned) {
305 iphy->bcn_received_while_port_unassigned = false;
306 sci_port_broadcast_change_received(iphy->owning_port, iphy);
307 }
308}
309
310enum sci_status sci_phy_initialize(struct isci_phy *iphy,
311 struct scu_transport_layer_registers __iomem *tl,
312 struct scu_link_layer_registers __iomem *ll)
313{
314 /* Perfrom the initialization of the TL hardware */
315 sci_phy_transport_layer_initialization(iphy, tl);
316
317 /* Perofrm the initialization of the PE hardware */
318 sci_phy_link_layer_initialization(iphy, ll);
319
320 /* There is nothing that needs to be done in this state just
321 * transition to the stopped state
322 */
323 sci_change_state(&iphy->sm, SCI_PHY_STOPPED);
324
325 return SCI_SUCCESS;
326}
327
328/**
329 * This method assigns the direct attached device ID for this phy.
330 *
331 * @iphy The phy for which the direct attached device id is to
332 * be assigned.
333 * @device_id The direct attached device ID to assign to the phy.
334 * This will either be the RNi for the device or an invalid RNi if there
335 * is no current device assigned to the phy.
336 */
337void sci_phy_setup_transport(struct isci_phy *iphy, u32 device_id)
338{
339 u32 tl_control;
340
341 writel(device_id, &iphy->transport_layer_registers->stp_rni);
342
343 /*
344 * The read should guarantee that the first write gets posted
345 * before the next write
346 */
347 tl_control = readl(&iphy->transport_layer_registers->control);
348 tl_control |= SCU_TLCR_GEN_BIT(CLEAR_TCI_NCQ_MAPPING_TABLE);
349 writel(tl_control, &iphy->transport_layer_registers->control);
350}
351
352static void sci_phy_suspend(struct isci_phy *iphy)
353{
354 u32 scu_sas_pcfg_value;
355
356 scu_sas_pcfg_value =
357 readl(&iphy->link_layer_registers->phy_configuration);
358 scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE);
359 writel(scu_sas_pcfg_value,
360 &iphy->link_layer_registers->phy_configuration);
361
362 sci_phy_setup_transport(iphy, SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX);
363}
364
365void sci_phy_resume(struct isci_phy *iphy)
366{
367 u32 scu_sas_pcfg_value;
368
369 scu_sas_pcfg_value =
370 readl(&iphy->link_layer_registers->phy_configuration);
371 scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE);
372 writel(scu_sas_pcfg_value,
373 &iphy->link_layer_registers->phy_configuration);
374}
375
376void sci_phy_get_sas_address(struct isci_phy *iphy, struct sci_sas_address *sas)
377{
378 sas->high = readl(&iphy->link_layer_registers->source_sas_address_high);
379 sas->low = readl(&iphy->link_layer_registers->source_sas_address_low);
380}
381
382void sci_phy_get_attached_sas_address(struct isci_phy *iphy, struct sci_sas_address *sas)
383{
384 struct sas_identify_frame *iaf;
385
386 iaf = &iphy->frame_rcvd.iaf;
387 memcpy(sas, iaf->sas_addr, SAS_ADDR_SIZE);
388}
389
390void sci_phy_get_protocols(struct isci_phy *iphy, struct sci_phy_proto *proto)
391{
392 proto->all = readl(&iphy->link_layer_registers->transmit_identification);
393}
394
395enum sci_status sci_phy_start(struct isci_phy *iphy)
396{
397 enum sci_phy_states state = iphy->sm.current_state_id;
398
399 if (state != SCI_PHY_STOPPED) {
400 dev_dbg(sciphy_to_dev(iphy),
401 "%s: in wrong state: %d\n", __func__, state);
402 return SCI_FAILURE_INVALID_STATE;
403 }
404
405 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
406 return SCI_SUCCESS;
407}
408
409enum sci_status sci_phy_stop(struct isci_phy *iphy)
410{
411 enum sci_phy_states state = iphy->sm.current_state_id;
412
413 switch (state) {
414 case SCI_PHY_SUB_INITIAL:
415 case SCI_PHY_SUB_AWAIT_OSSP_EN:
416 case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
417 case SCI_PHY_SUB_AWAIT_SAS_POWER:
418 case SCI_PHY_SUB_AWAIT_SATA_POWER:
419 case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
420 case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
421 case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
422 case SCI_PHY_SUB_FINAL:
423 case SCI_PHY_READY:
424 break;
425 default:
426 dev_dbg(sciphy_to_dev(iphy),
427 "%s: in wrong state: %d\n", __func__, state);
428 return SCI_FAILURE_INVALID_STATE;
429 }
430
431 sci_change_state(&iphy->sm, SCI_PHY_STOPPED);
432 return SCI_SUCCESS;
433}
434
435enum sci_status sci_phy_reset(struct isci_phy *iphy)
436{
437 enum sci_phy_states state = iphy->sm.current_state_id;
438
439 if (state != SCI_PHY_READY) {
440 dev_dbg(sciphy_to_dev(iphy),
441 "%s: in wrong state: %d\n", __func__, state);
442 return SCI_FAILURE_INVALID_STATE;
443 }
444
445 sci_change_state(&iphy->sm, SCI_PHY_RESETTING);
446 return SCI_SUCCESS;
447}
448
449enum sci_status sci_phy_consume_power_handler(struct isci_phy *iphy)
450{
451 enum sci_phy_states state = iphy->sm.current_state_id;
452
453 switch (state) {
454 case SCI_PHY_SUB_AWAIT_SAS_POWER: {
455 u32 enable_spinup;
456
457 enable_spinup = readl(&iphy->link_layer_registers->notify_enable_spinup_control);
458 enable_spinup |= SCU_ENSPINUP_GEN_BIT(ENABLE);
459 writel(enable_spinup, &iphy->link_layer_registers->notify_enable_spinup_control);
460
461 /* Change state to the final state this substate machine has run to completion */
462 sci_change_state(&iphy->sm, SCI_PHY_SUB_FINAL);
463
464 return SCI_SUCCESS;
465 }
466 case SCI_PHY_SUB_AWAIT_SATA_POWER: {
467 u32 scu_sas_pcfg_value;
468
469 /* Release the spinup hold state and reset the OOB state machine */
470 scu_sas_pcfg_value =
471 readl(&iphy->link_layer_registers->phy_configuration);
472 scu_sas_pcfg_value &=
473 ~(SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD) | SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE));
474 scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
475 writel(scu_sas_pcfg_value,
476 &iphy->link_layer_registers->phy_configuration);
477
478 /* Now restart the OOB operation */
479 scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
480 scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
481 writel(scu_sas_pcfg_value,
482 &iphy->link_layer_registers->phy_configuration);
483
484 /* Change state to the final state this substate machine has run to completion */
485 sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_PHY_EN);
486
487 return SCI_SUCCESS;
488 }
489 default:
490 dev_dbg(sciphy_to_dev(iphy),
491 "%s: in wrong state: %d\n", __func__, state);
492 return SCI_FAILURE_INVALID_STATE;
493 }
494}
495
496static void sci_phy_start_sas_link_training(struct isci_phy *iphy)
497{
498 /* continue the link training for the phy as if it were a SAS PHY
499 * instead of a SATA PHY. This is done because the completion queue had a SAS
500 * PHY DETECTED event when the state machine was expecting a SATA PHY event.
501 */
502 u32 phy_control;
503
504 phy_control = readl(&iphy->link_layer_registers->phy_configuration);
505 phy_control |= SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD);
506 writel(phy_control,
507 &iphy->link_layer_registers->phy_configuration);
508
509 sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SAS_SPEED_EN);
510
511 iphy->protocol = SCIC_SDS_PHY_PROTOCOL_SAS;
512}
513
514static void sci_phy_start_sata_link_training(struct isci_phy *iphy)
515{
516 /* This method continues the link training for the phy as if it were a SATA PHY
517 * instead of a SAS PHY. This is done because the completion queue had a SATA
518 * SPINUP HOLD event when the state machine was expecting a SAS PHY event. none
519 */
520 sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_POWER);
521
522 iphy->protocol = SCIC_SDS_PHY_PROTOCOL_SATA;
523}
524
525/**
526 * sci_phy_complete_link_training - perform processing common to
527 * all protocols upon completion of link training.
528 * @sci_phy: This parameter specifies the phy object for which link training
529 * has completed.
530 * @max_link_rate: This parameter specifies the maximum link rate to be
531 * associated with this phy.
532 * @next_state: This parameter specifies the next state for the phy's starting
533 * sub-state machine.
534 *
535 */
536static void sci_phy_complete_link_training(struct isci_phy *iphy,
537 enum sas_linkrate max_link_rate,
538 u32 next_state)
539{
540 iphy->max_negotiated_speed = max_link_rate;
541
542 sci_change_state(&iphy->sm, next_state);
543}
544
545enum sci_status sci_phy_event_handler(struct isci_phy *iphy, u32 event_code)
546{
547 enum sci_phy_states state = iphy->sm.current_state_id;
548
549 switch (state) {
550 case SCI_PHY_SUB_AWAIT_OSSP_EN:
551 switch (scu_get_event_code(event_code)) {
552 case SCU_EVENT_SAS_PHY_DETECTED:
553 sci_phy_start_sas_link_training(iphy);
554 iphy->is_in_link_training = true;
555 break;
556 case SCU_EVENT_SATA_SPINUP_HOLD:
557 sci_phy_start_sata_link_training(iphy);
558 iphy->is_in_link_training = true;
559 break;
560 default:
561 dev_dbg(sciphy_to_dev(iphy),
562 "%s: PHY starting substate machine received "
563 "unexpected event_code %x\n",
564 __func__,
565 event_code);
566 return SCI_FAILURE;
567 }
568 return SCI_SUCCESS;
569 case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
570 switch (scu_get_event_code(event_code)) {
571 case SCU_EVENT_SAS_PHY_DETECTED:
572 /*
573 * Why is this being reported again by the controller?
574 * We would re-enter this state so just stay here */
575 break;
576 case SCU_EVENT_SAS_15:
577 case SCU_EVENT_SAS_15_SSC:
578 sci_phy_complete_link_training(iphy, SAS_LINK_RATE_1_5_GBPS,
579 SCI_PHY_SUB_AWAIT_IAF_UF);
580 break;
581 case SCU_EVENT_SAS_30:
582 case SCU_EVENT_SAS_30_SSC:
583 sci_phy_complete_link_training(iphy, SAS_LINK_RATE_3_0_GBPS,
584 SCI_PHY_SUB_AWAIT_IAF_UF);
585 break;
586 case SCU_EVENT_SAS_60:
587 case SCU_EVENT_SAS_60_SSC:
588 sci_phy_complete_link_training(iphy, SAS_LINK_RATE_6_0_GBPS,
589 SCI_PHY_SUB_AWAIT_IAF_UF);
590 break;
591 case SCU_EVENT_SATA_SPINUP_HOLD:
592 /*
593 * We were doing SAS PHY link training and received a SATA PHY event
594 * continue OOB/SN as if this were a SATA PHY */
595 sci_phy_start_sata_link_training(iphy);
596 break;
597 case SCU_EVENT_LINK_FAILURE:
598 /* Link failure change state back to the starting state */
599 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
600 break;
601 default:
602 dev_warn(sciphy_to_dev(iphy),
603 "%s: PHY starting substate machine received "
604 "unexpected event_code %x\n",
605 __func__, event_code);
606
607 return SCI_FAILURE;
608 break;
609 }
610 return SCI_SUCCESS;
611 case SCI_PHY_SUB_AWAIT_IAF_UF:
612 switch (scu_get_event_code(event_code)) {
613 case SCU_EVENT_SAS_PHY_DETECTED:
614 /* Backup the state machine */
615 sci_phy_start_sas_link_training(iphy);
616 break;
617 case SCU_EVENT_SATA_SPINUP_HOLD:
618 /* We were doing SAS PHY link training and received a
619 * SATA PHY event continue OOB/SN as if this were a
620 * SATA PHY
621 */
622 sci_phy_start_sata_link_training(iphy);
623 break;
624 case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
625 case SCU_EVENT_LINK_FAILURE:
626 case SCU_EVENT_HARD_RESET_RECEIVED:
627 /* Start the oob/sn state machine over again */
628 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
629 break;
630 default:
631 dev_warn(sciphy_to_dev(iphy),
632 "%s: PHY starting substate machine received "
633 "unexpected event_code %x\n",
634 __func__, event_code);
635 return SCI_FAILURE;
636 }
637 return SCI_SUCCESS;
638 case SCI_PHY_SUB_AWAIT_SAS_POWER:
639 switch (scu_get_event_code(event_code)) {
640 case SCU_EVENT_LINK_FAILURE:
641 /* Link failure change state back to the starting state */
642 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
643 break;
644 default:
645 dev_warn(sciphy_to_dev(iphy),
646 "%s: PHY starting substate machine received unexpected "
647 "event_code %x\n",
648 __func__,
649 event_code);
650 return SCI_FAILURE;
651 }
652 return SCI_SUCCESS;
653 case SCI_PHY_SUB_AWAIT_SATA_POWER:
654 switch (scu_get_event_code(event_code)) {
655 case SCU_EVENT_LINK_FAILURE:
656 /* Link failure change state back to the starting state */
657 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
658 break;
659 case SCU_EVENT_SATA_SPINUP_HOLD:
660 /* These events are received every 10ms and are
661 * expected while in this state
662 */
663 break;
664
665 case SCU_EVENT_SAS_PHY_DETECTED:
666 /* There has been a change in the phy type before OOB/SN for the
667 * SATA finished start down the SAS link traning path.
668 */
669 sci_phy_start_sas_link_training(iphy);
670 break;
671
672 default:
673 dev_warn(sciphy_to_dev(iphy),
674 "%s: PHY starting substate machine received "
675 "unexpected event_code %x\n",
676 __func__, event_code);
677
678 return SCI_FAILURE;
679 }
680 return SCI_SUCCESS;
681 case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
682 switch (scu_get_event_code(event_code)) {
683 case SCU_EVENT_LINK_FAILURE:
684 /* Link failure change state back to the starting state */
685 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
686 break;
687 case SCU_EVENT_SATA_SPINUP_HOLD:
688 /* These events might be received since we dont know how many may be in
689 * the completion queue while waiting for power
690 */
691 break;
692 case SCU_EVENT_SATA_PHY_DETECTED:
693 iphy->protocol = SCIC_SDS_PHY_PROTOCOL_SATA;
694
695 /* We have received the SATA PHY notification change state */
696 sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_SPEED_EN);
697 break;
698 case SCU_EVENT_SAS_PHY_DETECTED:
699 /* There has been a change in the phy type before OOB/SN for the
700 * SATA finished start down the SAS link traning path.
701 */
702 sci_phy_start_sas_link_training(iphy);
703 break;
704 default:
705 dev_warn(sciphy_to_dev(iphy),
706 "%s: PHY starting substate machine received "
707 "unexpected event_code %x\n",
708 __func__,
709 event_code);
710
711 return SCI_FAILURE;;
712 }
713 return SCI_SUCCESS;
714 case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
715 switch (scu_get_event_code(event_code)) {
716 case SCU_EVENT_SATA_PHY_DETECTED:
717 /*
718 * The hardware reports multiple SATA PHY detected events
719 * ignore the extras */
720 break;
721 case SCU_EVENT_SATA_15:
722 case SCU_EVENT_SATA_15_SSC:
723 sci_phy_complete_link_training(iphy, SAS_LINK_RATE_1_5_GBPS,
724 SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
725 break;
726 case SCU_EVENT_SATA_30:
727 case SCU_EVENT_SATA_30_SSC:
728 sci_phy_complete_link_training(iphy, SAS_LINK_RATE_3_0_GBPS,
729 SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
730 break;
731 case SCU_EVENT_SATA_60:
732 case SCU_EVENT_SATA_60_SSC:
733 sci_phy_complete_link_training(iphy, SAS_LINK_RATE_6_0_GBPS,
734 SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
735 break;
736 case SCU_EVENT_LINK_FAILURE:
737 /* Link failure change state back to the starting state */
738 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
739 break;
740 case SCU_EVENT_SAS_PHY_DETECTED:
741 /*
742 * There has been a change in the phy type before OOB/SN for the
743 * SATA finished start down the SAS link traning path. */
744 sci_phy_start_sas_link_training(iphy);
745 break;
746 default:
747 dev_warn(sciphy_to_dev(iphy),
748 "%s: PHY starting substate machine received "
749 "unexpected event_code %x\n",
750 __func__, event_code);
751
752 return SCI_FAILURE;
753 }
754
755 return SCI_SUCCESS;
756 case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
757 switch (scu_get_event_code(event_code)) {
758 case SCU_EVENT_SATA_PHY_DETECTED:
759 /* Backup the state machine */
760 sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_SPEED_EN);
761 break;
762
763 case SCU_EVENT_LINK_FAILURE:
764 /* Link failure change state back to the starting state */
765 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
766 break;
767
768 default:
769 dev_warn(sciphy_to_dev(iphy),
770 "%s: PHY starting substate machine received "
771 "unexpected event_code %x\n",
772 __func__,
773 event_code);
774
775 return SCI_FAILURE;
776 }
777 return SCI_SUCCESS;
778 case SCI_PHY_READY:
779 switch (scu_get_event_code(event_code)) {
780 case SCU_EVENT_LINK_FAILURE:
781 /* Link failure change state back to the starting state */
782 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
783 break;
784 case SCU_EVENT_BROADCAST_CHANGE:
785 /* Broadcast change received. Notify the port. */
786 if (phy_get_non_dummy_port(iphy) != NULL)
787 sci_port_broadcast_change_received(iphy->owning_port, iphy);
788 else
789 iphy->bcn_received_while_port_unassigned = true;
790 break;
791 default:
792 dev_warn(sciphy_to_dev(iphy),
793 "%sP SCIC PHY 0x%p ready state machine received "
794 "unexpected event_code %x\n",
795 __func__, iphy, event_code);
796 return SCI_FAILURE_INVALID_STATE;
797 }
798 return SCI_SUCCESS;
799 case SCI_PHY_RESETTING:
800 switch (scu_get_event_code(event_code)) {
801 case SCU_EVENT_HARD_RESET_TRANSMITTED:
802 /* Link failure change state back to the starting state */
803 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
804 break;
805 default:
806 dev_warn(sciphy_to_dev(iphy),
807 "%s: SCIC PHY 0x%p resetting state machine received "
808 "unexpected event_code %x\n",
809 __func__, iphy, event_code);
810
811 return SCI_FAILURE_INVALID_STATE;
812 break;
813 }
814 return SCI_SUCCESS;
815 default:
816 dev_dbg(sciphy_to_dev(iphy),
817 "%s: in wrong state: %d\n", __func__, state);
818 return SCI_FAILURE_INVALID_STATE;
819 }
820}
821
822enum sci_status sci_phy_frame_handler(struct isci_phy *iphy, u32 frame_index)
823{
824 enum sci_phy_states state = iphy->sm.current_state_id;
825 struct isci_host *ihost = iphy->owning_port->owning_controller;
826 enum sci_status result;
827 unsigned long flags;
828
829 switch (state) {
830 case SCI_PHY_SUB_AWAIT_IAF_UF: {
831 u32 *frame_words;
832 struct sas_identify_frame iaf;
833
834 result = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
835 frame_index,
836 (void **)&frame_words);
837
838 if (result != SCI_SUCCESS)
839 return result;
840
841 sci_swab32_cpy(&iaf, frame_words, sizeof(iaf) / sizeof(u32));
842 if (iaf.frame_type == 0) {
843 u32 state;
844
845 spin_lock_irqsave(&iphy->sas_phy.frame_rcvd_lock, flags);
846 memcpy(&iphy->frame_rcvd.iaf, &iaf, sizeof(iaf));
847 spin_unlock_irqrestore(&iphy->sas_phy.frame_rcvd_lock, flags);
848 if (iaf.smp_tport) {
849 /* We got the IAF for an expander PHY go to the final
850 * state since there are no power requirements for
851 * expander phys.
852 */
853 state = SCI_PHY_SUB_FINAL;
854 } else {
855 /* We got the IAF we can now go to the await spinup
856 * semaphore state
857 */
858 state = SCI_PHY_SUB_AWAIT_SAS_POWER;
859 }
860 sci_change_state(&iphy->sm, state);
861 result = SCI_SUCCESS;
862 } else
863 dev_warn(sciphy_to_dev(iphy),
864 "%s: PHY starting substate machine received "
865 "unexpected frame id %x\n",
866 __func__, frame_index);
867
868 sci_controller_release_frame(ihost, frame_index);
869 return result;
870 }
871 case SCI_PHY_SUB_AWAIT_SIG_FIS_UF: {
872 struct dev_to_host_fis *frame_header;
873 u32 *fis_frame_data;
874
875 result = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
876 frame_index,
877 (void **)&frame_header);
878
879 if (result != SCI_SUCCESS)
880 return result;
881
882 if ((frame_header->fis_type == FIS_REGD2H) &&
883 !(frame_header->status & ATA_BUSY)) {
884 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
885 frame_index,
886 (void **)&fis_frame_data);
887
888 spin_lock_irqsave(&iphy->sas_phy.frame_rcvd_lock, flags);
889 sci_controller_copy_sata_response(&iphy->frame_rcvd.fis,
890 frame_header,
891 fis_frame_data);
892 spin_unlock_irqrestore(&iphy->sas_phy.frame_rcvd_lock, flags);
893
894 /* got IAF we can now go to the await spinup semaphore state */
895 sci_change_state(&iphy->sm, SCI_PHY_SUB_FINAL);
896
897 result = SCI_SUCCESS;
898 } else
899 dev_warn(sciphy_to_dev(iphy),
900 "%s: PHY starting substate machine received "
901 "unexpected frame id %x\n",
902 __func__, frame_index);
903
904 /* Regardless of the result we are done with this frame with it */
905 sci_controller_release_frame(ihost, frame_index);
906
907 return result;
908 }
909 default:
910 dev_dbg(sciphy_to_dev(iphy),
911 "%s: in wrong state: %d\n", __func__, state);
912 return SCI_FAILURE_INVALID_STATE;
913 }
914
915}
916
917static void sci_phy_starting_initial_substate_enter(struct sci_base_state_machine *sm)
918{
919 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
920
921 /* This is just an temporary state go off to the starting state */
922 sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_OSSP_EN);
923}
924
925static void sci_phy_starting_await_sas_power_substate_enter(struct sci_base_state_machine *sm)
926{
927 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
928 struct isci_host *ihost = iphy->owning_port->owning_controller;
929
930 sci_controller_power_control_queue_insert(ihost, iphy);
931}
932
933static void sci_phy_starting_await_sas_power_substate_exit(struct sci_base_state_machine *sm)
934{
935 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
936 struct isci_host *ihost = iphy->owning_port->owning_controller;
937
938 sci_controller_power_control_queue_remove(ihost, iphy);
939}
940
941static void sci_phy_starting_await_sata_power_substate_enter(struct sci_base_state_machine *sm)
942{
943 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
944 struct isci_host *ihost = iphy->owning_port->owning_controller;
945
946 sci_controller_power_control_queue_insert(ihost, iphy);
947}
948
949static void sci_phy_starting_await_sata_power_substate_exit(struct sci_base_state_machine *sm)
950{
951 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
952 struct isci_host *ihost = iphy->owning_port->owning_controller;
953
954 sci_controller_power_control_queue_remove(ihost, iphy);
955}
956
957static void sci_phy_starting_await_sata_phy_substate_enter(struct sci_base_state_machine *sm)
958{
959 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
960
961 sci_mod_timer(&iphy->sata_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT);
962}
963
964static void sci_phy_starting_await_sata_phy_substate_exit(struct sci_base_state_machine *sm)
965{
966 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
967
968 sci_del_timer(&iphy->sata_timer);
969}
970
971static void sci_phy_starting_await_sata_speed_substate_enter(struct sci_base_state_machine *sm)
972{
973 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
974
975 sci_mod_timer(&iphy->sata_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT);
976}
977
978static void sci_phy_starting_await_sata_speed_substate_exit(struct sci_base_state_machine *sm)
979{
980 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
981
982 sci_del_timer(&iphy->sata_timer);
983}
984
985static void sci_phy_starting_await_sig_fis_uf_substate_enter(struct sci_base_state_machine *sm)
986{
987 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
988
989 if (sci_port_link_detected(iphy->owning_port, iphy)) {
990
991 /*
992 * Clear the PE suspend condition so we can actually
993 * receive SIG FIS
994 * The hardware will not respond to the XRDY until the PE
995 * suspend condition is cleared.
996 */
997 sci_phy_resume(iphy);
998
999 sci_mod_timer(&iphy->sata_timer,
1000 SCIC_SDS_SIGNATURE_FIS_TIMEOUT);
1001 } else
1002 iphy->is_in_link_training = false;
1003}
1004
1005static void sci_phy_starting_await_sig_fis_uf_substate_exit(struct sci_base_state_machine *sm)
1006{
1007 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1008
1009 sci_del_timer(&iphy->sata_timer);
1010}
1011
1012static void sci_phy_starting_final_substate_enter(struct sci_base_state_machine *sm)
1013{
1014 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1015
1016 /* State machine has run to completion so exit out and change
1017 * the base state machine to the ready state
1018 */
1019 sci_change_state(&iphy->sm, SCI_PHY_READY);
1020}
1021
1022/**
1023 *
1024 * @sci_phy: This is the struct isci_phy object to stop.
1025 *
1026 * This method will stop the struct isci_phy object. This does not reset the
1027 * protocol engine it just suspends it and places it in a state where it will
1028 * not cause the end device to power up. none
1029 */
1030static void scu_link_layer_stop_protocol_engine(
1031 struct isci_phy *iphy)
1032{
1033 u32 scu_sas_pcfg_value;
1034 u32 enable_spinup_value;
1035
1036 /* Suspend the protocol engine and place it in a sata spinup hold state */
1037 scu_sas_pcfg_value =
1038 readl(&iphy->link_layer_registers->phy_configuration);
1039 scu_sas_pcfg_value |=
1040 (SCU_SAS_PCFG_GEN_BIT(OOB_RESET) |
1041 SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE) |
1042 SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD));
1043 writel(scu_sas_pcfg_value,
1044 &iphy->link_layer_registers->phy_configuration);
1045
1046 /* Disable the notify enable spinup primitives */
1047 enable_spinup_value = readl(&iphy->link_layer_registers->notify_enable_spinup_control);
1048 enable_spinup_value &= ~SCU_ENSPINUP_GEN_BIT(ENABLE);
1049 writel(enable_spinup_value, &iphy->link_layer_registers->notify_enable_spinup_control);
1050}
1051
1052/**
1053 *
1054 *
1055 * This method will start the OOB/SN state machine for this struct isci_phy object.
1056 */
1057static void scu_link_layer_start_oob(
1058 struct isci_phy *iphy)
1059{
1060 u32 scu_sas_pcfg_value;
1061
1062 scu_sas_pcfg_value =
1063 readl(&iphy->link_layer_registers->phy_configuration);
1064 scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
1065 scu_sas_pcfg_value &=
1066 ~(SCU_SAS_PCFG_GEN_BIT(OOB_RESET) |
1067 SCU_SAS_PCFG_GEN_BIT(HARD_RESET));
1068 writel(scu_sas_pcfg_value,
1069 &iphy->link_layer_registers->phy_configuration);
1070}
1071
1072/**
1073 *
1074 *
1075 * This method will transmit a hard reset request on the specified phy. The SCU
1076 * hardware requires that we reset the OOB state machine and set the hard reset
1077 * bit in the phy configuration register. We then must start OOB over with the
1078 * hard reset bit set.
1079 */
1080static void scu_link_layer_tx_hard_reset(
1081 struct isci_phy *iphy)
1082{
1083 u32 phy_configuration_value;
1084
1085 /*
1086 * SAS Phys must wait for the HARD_RESET_TX event notification to transition
1087 * to the starting state. */
1088 phy_configuration_value =
1089 readl(&iphy->link_layer_registers->phy_configuration);
1090 phy_configuration_value |=
1091 (SCU_SAS_PCFG_GEN_BIT(HARD_RESET) |
1092 SCU_SAS_PCFG_GEN_BIT(OOB_RESET));
1093 writel(phy_configuration_value,
1094 &iphy->link_layer_registers->phy_configuration);
1095
1096 /* Now take the OOB state machine out of reset */
1097 phy_configuration_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
1098 phy_configuration_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
1099 writel(phy_configuration_value,
1100 &iphy->link_layer_registers->phy_configuration);
1101}
1102
1103static void sci_phy_stopped_state_enter(struct sci_base_state_machine *sm)
1104{
1105 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1106 struct isci_port *iport = iphy->owning_port;
1107 struct isci_host *ihost = iport->owning_controller;
1108
1109 /*
1110 * @todo We need to get to the controller to place this PE in a
1111 * reset state
1112 */
1113 sci_del_timer(&iphy->sata_timer);
1114
1115 scu_link_layer_stop_protocol_engine(iphy);
1116
1117 if (iphy->sm.previous_state_id != SCI_PHY_INITIAL)
1118 sci_controller_link_down(ihost, phy_get_non_dummy_port(iphy), iphy);
1119}
1120
1121static void sci_phy_starting_state_enter(struct sci_base_state_machine *sm)
1122{
1123 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1124 struct isci_port *iport = iphy->owning_port;
1125 struct isci_host *ihost = iport->owning_controller;
1126
1127 scu_link_layer_stop_protocol_engine(iphy);
1128 scu_link_layer_start_oob(iphy);
1129
1130 /* We don't know what kind of phy we are going to be just yet */
1131 iphy->protocol = SCIC_SDS_PHY_PROTOCOL_UNKNOWN;
1132 iphy->bcn_received_while_port_unassigned = false;
1133
1134 if (iphy->sm.previous_state_id == SCI_PHY_READY)
1135 sci_controller_link_down(ihost, phy_get_non_dummy_port(iphy), iphy);
1136
1137 sci_change_state(&iphy->sm, SCI_PHY_SUB_INITIAL);
1138}
1139
1140static void sci_phy_ready_state_enter(struct sci_base_state_machine *sm)
1141{
1142 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1143 struct isci_port *iport = iphy->owning_port;
1144 struct isci_host *ihost = iport->owning_controller;
1145
1146 sci_controller_link_up(ihost, phy_get_non_dummy_port(iphy), iphy);
1147}
1148
1149static void sci_phy_ready_state_exit(struct sci_base_state_machine *sm)
1150{
1151 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1152
1153 sci_phy_suspend(iphy);
1154}
1155
1156static void sci_phy_resetting_state_enter(struct sci_base_state_machine *sm)
1157{
1158 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1159
1160 /* The phy is being reset, therefore deactivate it from the port. In
1161 * the resetting state we don't notify the user regarding link up and
1162 * link down notifications
1163 */
1164 sci_port_deactivate_phy(iphy->owning_port, iphy, false);
1165
1166 if (iphy->protocol == SCIC_SDS_PHY_PROTOCOL_SAS) {
1167 scu_link_layer_tx_hard_reset(iphy);
1168 } else {
1169 /* The SCU does not need to have a discrete reset state so
1170 * just go back to the starting state.
1171 */
1172 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
1173 }
1174}
1175
1176static const struct sci_base_state sci_phy_state_table[] = {
1177 [SCI_PHY_INITIAL] = { },
1178 [SCI_PHY_STOPPED] = {
1179 .enter_state = sci_phy_stopped_state_enter,
1180 },
1181 [SCI_PHY_STARTING] = {
1182 .enter_state = sci_phy_starting_state_enter,
1183 },
1184 [SCI_PHY_SUB_INITIAL] = {
1185 .enter_state = sci_phy_starting_initial_substate_enter,
1186 },
1187 [SCI_PHY_SUB_AWAIT_OSSP_EN] = { },
1188 [SCI_PHY_SUB_AWAIT_SAS_SPEED_EN] = { },
1189 [SCI_PHY_SUB_AWAIT_IAF_UF] = { },
1190 [SCI_PHY_SUB_AWAIT_SAS_POWER] = {
1191 .enter_state = sci_phy_starting_await_sas_power_substate_enter,
1192 .exit_state = sci_phy_starting_await_sas_power_substate_exit,
1193 },
1194 [SCI_PHY_SUB_AWAIT_SATA_POWER] = {
1195 .enter_state = sci_phy_starting_await_sata_power_substate_enter,
1196 .exit_state = sci_phy_starting_await_sata_power_substate_exit
1197 },
1198 [SCI_PHY_SUB_AWAIT_SATA_PHY_EN] = {
1199 .enter_state = sci_phy_starting_await_sata_phy_substate_enter,
1200 .exit_state = sci_phy_starting_await_sata_phy_substate_exit
1201 },
1202 [SCI_PHY_SUB_AWAIT_SATA_SPEED_EN] = {
1203 .enter_state = sci_phy_starting_await_sata_speed_substate_enter,
1204 .exit_state = sci_phy_starting_await_sata_speed_substate_exit
1205 },
1206 [SCI_PHY_SUB_AWAIT_SIG_FIS_UF] = {
1207 .enter_state = sci_phy_starting_await_sig_fis_uf_substate_enter,
1208 .exit_state = sci_phy_starting_await_sig_fis_uf_substate_exit
1209 },
1210 [SCI_PHY_SUB_FINAL] = {
1211 .enter_state = sci_phy_starting_final_substate_enter,
1212 },
1213 [SCI_PHY_READY] = {
1214 .enter_state = sci_phy_ready_state_enter,
1215 .exit_state = sci_phy_ready_state_exit,
1216 },
1217 [SCI_PHY_RESETTING] = {
1218 .enter_state = sci_phy_resetting_state_enter,
1219 },
1220 [SCI_PHY_FINAL] = { },
1221};
1222
1223void sci_phy_construct(struct isci_phy *iphy,
1224 struct isci_port *iport, u8 phy_index)
1225{
1226 sci_init_sm(&iphy->sm, sci_phy_state_table, SCI_PHY_INITIAL);
1227
1228 /* Copy the rest of the input data to our locals */
1229 iphy->owning_port = iport;
1230 iphy->phy_index = phy_index;
1231 iphy->bcn_received_while_port_unassigned = false;
1232 iphy->protocol = SCIC_SDS_PHY_PROTOCOL_UNKNOWN;
1233 iphy->link_layer_registers = NULL;
1234 iphy->max_negotiated_speed = SAS_LINK_RATE_UNKNOWN;
1235
1236 /* Create the SIGNATURE FIS Timeout timer for this phy */
1237 sci_init_timer(&iphy->sata_timer, phy_sata_timeout);
1238}
1239
1240void isci_phy_init(struct isci_phy *iphy, struct isci_host *ihost, int index)
1241{
1242 struct sci_oem_params *oem = &ihost->oem_parameters;
1243 u64 sci_sas_addr;
1244 __be64 sas_addr;
1245
1246 sci_sas_addr = oem->phys[index].sas_address.high;
1247 sci_sas_addr <<= 32;
1248 sci_sas_addr |= oem->phys[index].sas_address.low;
1249 sas_addr = cpu_to_be64(sci_sas_addr);
1250 memcpy(iphy->sas_addr, &sas_addr, sizeof(sas_addr));
1251
1252 iphy->isci_port = NULL;
1253 iphy->sas_phy.enabled = 0;
1254 iphy->sas_phy.id = index;
1255 iphy->sas_phy.sas_addr = &iphy->sas_addr[0];
1256 iphy->sas_phy.frame_rcvd = (u8 *)&iphy->frame_rcvd;
1257 iphy->sas_phy.ha = &ihost->sas_ha;
1258 iphy->sas_phy.lldd_phy = iphy;
1259 iphy->sas_phy.enabled = 1;
1260 iphy->sas_phy.class = SAS;
1261 iphy->sas_phy.iproto = SAS_PROTOCOL_ALL;
1262 iphy->sas_phy.tproto = 0;
1263 iphy->sas_phy.type = PHY_TYPE_PHYSICAL;
1264 iphy->sas_phy.role = PHY_ROLE_INITIATOR;
1265 iphy->sas_phy.oob_mode = OOB_NOT_CONNECTED;
1266 iphy->sas_phy.linkrate = SAS_LINK_RATE_UNKNOWN;
1267 memset(&iphy->frame_rcvd, 0, sizeof(iphy->frame_rcvd));
1268}
1269
1270
1271/**
1272 * isci_phy_control() - This function is one of the SAS Domain Template
1273 * functions. This is a phy management function.
1274 * @phy: This parameter specifies the sphy being controlled.
1275 * @func: This parameter specifies the phy control function being invoked.
1276 * @buf: This parameter is specific to the phy function being invoked.
1277 *
1278 * status, zero indicates success.
1279 */
1280int isci_phy_control(struct asd_sas_phy *sas_phy,
1281 enum phy_func func,
1282 void *buf)
1283{
1284 int ret = 0;
1285 struct isci_phy *iphy = sas_phy->lldd_phy;
1286 struct isci_port *iport = iphy->isci_port;
1287 struct isci_host *ihost = sas_phy->ha->lldd_ha;
1288 unsigned long flags;
1289
1290 dev_dbg(&ihost->pdev->dev,
1291 "%s: phy %p; func %d; buf %p; isci phy %p, port %p\n",
1292 __func__, sas_phy, func, buf, iphy, iport);
1293
1294 switch (func) {
1295 case PHY_FUNC_DISABLE:
1296 spin_lock_irqsave(&ihost->scic_lock, flags);
1297 sci_phy_stop(iphy);
1298 spin_unlock_irqrestore(&ihost->scic_lock, flags);
1299 break;
1300
1301 case PHY_FUNC_LINK_RESET:
1302 spin_lock_irqsave(&ihost->scic_lock, flags);
1303 sci_phy_stop(iphy);
1304 sci_phy_start(iphy);
1305 spin_unlock_irqrestore(&ihost->scic_lock, flags);
1306 break;
1307
1308 case PHY_FUNC_HARD_RESET:
1309 if (!iport)
1310 return -ENODEV;
1311
1312 /* Perform the port reset. */
1313 ret = isci_port_perform_hard_reset(ihost, iport, iphy);
1314
1315 break;
1316
1317 default:
1318 dev_dbg(&ihost->pdev->dev,
1319 "%s: phy %p; func %d NOT IMPLEMENTED!\n",
1320 __func__, sas_phy, func);
1321 ret = -ENOSYS;
1322 break;
1323 }
1324 return ret;
1325}
1/*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
4 *
5 * GPL LICENSE SUMMARY
6 *
7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
23 *
24 * BSD LICENSE
25 *
26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27 * All rights reserved.
28 *
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
31 * are met:
32 *
33 * * Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * * Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in
37 * the documentation and/or other materials provided with the
38 * distribution.
39 * * Neither the name of Intel Corporation nor the names of its
40 * contributors may be used to endorse or promote products derived
41 * from this software without specific prior written permission.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54 */
55
56#include "isci.h"
57#include "host.h"
58#include "phy.h"
59#include "scu_event_codes.h"
60#include "probe_roms.h"
61
62#undef C
63#define C(a) (#a)
64static const char *phy_state_name(enum sci_phy_states state)
65{
66 static const char * const strings[] = PHY_STATES;
67
68 return strings[state];
69}
70#undef C
71
72/* Maximum arbitration wait time in micro-seconds */
73#define SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME (700)
74
75enum sas_linkrate sci_phy_linkrate(struct isci_phy *iphy)
76{
77 return iphy->max_negotiated_speed;
78}
79
80static struct isci_host *phy_to_host(struct isci_phy *iphy)
81{
82 struct isci_phy *table = iphy - iphy->phy_index;
83 struct isci_host *ihost = container_of(table, typeof(*ihost), phys[0]);
84
85 return ihost;
86}
87
88static struct device *sciphy_to_dev(struct isci_phy *iphy)
89{
90 return &phy_to_host(iphy)->pdev->dev;
91}
92
93static enum sci_status
94sci_phy_transport_layer_initialization(struct isci_phy *iphy,
95 struct scu_transport_layer_registers __iomem *reg)
96{
97 u32 tl_control;
98
99 iphy->transport_layer_registers = reg;
100
101 writel(SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX,
102 &iphy->transport_layer_registers->stp_rni);
103
104 /*
105 * Hardware team recommends that we enable the STP prefetch for all
106 * transports
107 */
108 tl_control = readl(&iphy->transport_layer_registers->control);
109 tl_control |= SCU_TLCR_GEN_BIT(STP_WRITE_DATA_PREFETCH);
110 writel(tl_control, &iphy->transport_layer_registers->control);
111
112 return SCI_SUCCESS;
113}
114
115static enum sci_status
116sci_phy_link_layer_initialization(struct isci_phy *iphy,
117 struct scu_link_layer_registers __iomem *llr)
118{
119 struct isci_host *ihost = iphy->owning_port->owning_controller;
120 struct sci_phy_user_params *phy_user;
121 struct sci_phy_oem_params *phy_oem;
122 int phy_idx = iphy->phy_index;
123 struct sci_phy_cap phy_cap;
124 u32 phy_configuration;
125 u32 parity_check = 0;
126 u32 parity_count = 0;
127 u32 llctl, link_rate;
128 u32 clksm_value = 0;
129 u32 sp_timeouts = 0;
130
131 phy_user = &ihost->user_parameters.phys[phy_idx];
132 phy_oem = &ihost->oem_parameters.phys[phy_idx];
133 iphy->link_layer_registers = llr;
134
135 /* Set our IDENTIFY frame data */
136 #define SCI_END_DEVICE 0x01
137
138 writel(SCU_SAS_TIID_GEN_BIT(SMP_INITIATOR) |
139 SCU_SAS_TIID_GEN_BIT(SSP_INITIATOR) |
140 SCU_SAS_TIID_GEN_BIT(STP_INITIATOR) |
141 SCU_SAS_TIID_GEN_BIT(DA_SATA_HOST) |
142 SCU_SAS_TIID_GEN_VAL(DEVICE_TYPE, SCI_END_DEVICE),
143 &llr->transmit_identification);
144
145 /* Write the device SAS Address */
146 writel(0xFEDCBA98, &llr->sas_device_name_high);
147 writel(phy_idx, &llr->sas_device_name_low);
148
149 /* Write the source SAS Address */
150 writel(phy_oem->sas_address.high, &llr->source_sas_address_high);
151 writel(phy_oem->sas_address.low, &llr->source_sas_address_low);
152
153 /* Clear and Set the PHY Identifier */
154 writel(0, &llr->identify_frame_phy_id);
155 writel(SCU_SAS_TIPID_GEN_VALUE(ID, phy_idx), &llr->identify_frame_phy_id);
156
157 /* Change the initial state of the phy configuration register */
158 phy_configuration = readl(&llr->phy_configuration);
159
160 /* Hold OOB state machine in reset */
161 phy_configuration |= SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
162 writel(phy_configuration, &llr->phy_configuration);
163
164 /* Configure the SNW capabilities */
165 phy_cap.all = 0;
166 phy_cap.start = 1;
167 phy_cap.gen3_no_ssc = 1;
168 phy_cap.gen2_no_ssc = 1;
169 phy_cap.gen1_no_ssc = 1;
170 if (ihost->oem_parameters.controller.do_enable_ssc) {
171 struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe;
172 struct scu_afe_transceiver __iomem *xcvr = &afe->scu_afe_xcvr[phy_idx];
173 struct isci_pci_info *pci_info = to_pci_info(ihost->pdev);
174 bool en_sas = false;
175 bool en_sata = false;
176 u32 sas_type = 0;
177 u32 sata_spread = 0x2;
178 u32 sas_spread = 0x2;
179
180 phy_cap.gen3_ssc = 1;
181 phy_cap.gen2_ssc = 1;
182 phy_cap.gen1_ssc = 1;
183
184 if (pci_info->orom->hdr.version < ISCI_ROM_VER_1_1)
185 en_sas = en_sata = true;
186 else {
187 sata_spread = ihost->oem_parameters.controller.ssc_sata_tx_spread_level;
188 sas_spread = ihost->oem_parameters.controller.ssc_sas_tx_spread_level;
189
190 if (sata_spread)
191 en_sata = true;
192
193 if (sas_spread) {
194 en_sas = true;
195 sas_type = ihost->oem_parameters.controller.ssc_sas_tx_type;
196 }
197
198 }
199
200 if (en_sas) {
201 u32 reg;
202
203 reg = readl(&xcvr->afe_xcvr_control0);
204 reg |= (0x00100000 | (sas_type << 19));
205 writel(reg, &xcvr->afe_xcvr_control0);
206
207 reg = readl(&xcvr->afe_tx_ssc_control);
208 reg |= sas_spread << 8;
209 writel(reg, &xcvr->afe_tx_ssc_control);
210 }
211
212 if (en_sata) {
213 u32 reg;
214
215 reg = readl(&xcvr->afe_tx_ssc_control);
216 reg |= sata_spread;
217 writel(reg, &xcvr->afe_tx_ssc_control);
218
219 reg = readl(&llr->stp_control);
220 reg |= 1 << 12;
221 writel(reg, &llr->stp_control);
222 }
223 }
224
225 /* The SAS specification indicates that the phy_capabilities that
226 * are transmitted shall have an even parity. Calculate the parity.
227 */
228 parity_check = phy_cap.all;
229 while (parity_check != 0) {
230 if (parity_check & 0x1)
231 parity_count++;
232 parity_check >>= 1;
233 }
234
235 /* If parity indicates there are an odd number of bits set, then
236 * set the parity bit to 1 in the phy capabilities.
237 */
238 if ((parity_count % 2) != 0)
239 phy_cap.parity = 1;
240
241 writel(phy_cap.all, &llr->phy_capabilities);
242
243 /* Set the enable spinup period but disable the ability to send
244 * notify enable spinup
245 */
246 writel(SCU_ENSPINUP_GEN_VAL(COUNT,
247 phy_user->notify_enable_spin_up_insertion_frequency),
248 &llr->notify_enable_spinup_control);
249
250 /* Write the ALIGN Insertion Ferequency for connected phy and
251 * inpendent of connected state
252 */
253 clksm_value = SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL(CONNECTED,
254 phy_user->in_connection_align_insertion_frequency);
255
256 clksm_value |= SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL(GENERAL,
257 phy_user->align_insertion_frequency);
258
259 writel(clksm_value, &llr->clock_skew_management);
260
261 if (is_c0(ihost->pdev) || is_c1(ihost->pdev)) {
262 writel(0x04210400, &llr->afe_lookup_table_control);
263 writel(0x020A7C05, &llr->sas_primitive_timeout);
264 } else
265 writel(0x02108421, &llr->afe_lookup_table_control);
266
267 llctl = SCU_SAS_LLCTL_GEN_VAL(NO_OUTBOUND_TASK_TIMEOUT,
268 (u8)ihost->user_parameters.no_outbound_task_timeout);
269
270 switch (phy_user->max_speed_generation) {
271 case SCIC_SDS_PARM_GEN3_SPEED:
272 link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN3;
273 break;
274 case SCIC_SDS_PARM_GEN2_SPEED:
275 link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN2;
276 break;
277 default:
278 link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN1;
279 break;
280 }
281 llctl |= SCU_SAS_LLCTL_GEN_VAL(MAX_LINK_RATE, link_rate);
282 writel(llctl, &llr->link_layer_control);
283
284 sp_timeouts = readl(&llr->sas_phy_timeouts);
285
286 /* Clear the default 0x36 (54us) RATE_CHANGE timeout value. */
287 sp_timeouts &= ~SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0xFF);
288
289 /* Set RATE_CHANGE timeout value to 0x3B (59us). This ensures SCU can
290 * lock with 3Gb drive when SCU max rate is set to 1.5Gb.
291 */
292 sp_timeouts |= SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0x3B);
293
294 writel(sp_timeouts, &llr->sas_phy_timeouts);
295
296 if (is_a2(ihost->pdev)) {
297 /* Program the max ARB time for the PHY to 700us so we
298 * inter-operate with the PMC expander which shuts down
299 * PHYs if the expander PHY generates too many breaks.
300 * This time value will guarantee that the initiator PHY
301 * will generate the break.
302 */
303 writel(SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME,
304 &llr->maximum_arbitration_wait_timer_timeout);
305 }
306
307 /* Disable link layer hang detection, rely on the OS timeout for
308 * I/O timeouts.
309 */
310 writel(0, &llr->link_layer_hang_detection_timeout);
311
312 /* We can exit the initial state to the stopped state */
313 sci_change_state(&iphy->sm, SCI_PHY_STOPPED);
314
315 return SCI_SUCCESS;
316}
317
318static void phy_sata_timeout(struct timer_list *t)
319{
320 struct sci_timer *tmr = from_timer(tmr, t, timer);
321 struct isci_phy *iphy = container_of(tmr, typeof(*iphy), sata_timer);
322 struct isci_host *ihost = iphy->owning_port->owning_controller;
323 unsigned long flags;
324
325 spin_lock_irqsave(&ihost->scic_lock, flags);
326
327 if (tmr->cancel)
328 goto done;
329
330 dev_dbg(sciphy_to_dev(iphy),
331 "%s: SCIC SDS Phy 0x%p did not receive signature fis before "
332 "timeout.\n",
333 __func__,
334 iphy);
335
336 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
337done:
338 spin_unlock_irqrestore(&ihost->scic_lock, flags);
339}
340
341/**
342 * This method returns the port currently containing this phy. If the phy is
343 * currently contained by the dummy port, then the phy is considered to not
344 * be part of a port.
345 * @sci_phy: This parameter specifies the phy for which to retrieve the
346 * containing port.
347 *
348 * This method returns a handle to a port that contains the supplied phy.
349 * NULL This value is returned if the phy is not part of a real
350 * port (i.e. it's contained in the dummy port). !NULL All other
351 * values indicate a handle/pointer to the port containing the phy.
352 */
353struct isci_port *phy_get_non_dummy_port(struct isci_phy *iphy)
354{
355 struct isci_port *iport = iphy->owning_port;
356
357 if (iport->physical_port_index == SCIC_SDS_DUMMY_PORT)
358 return NULL;
359
360 return iphy->owning_port;
361}
362
363/**
364 * This method will assign a port to the phy object.
365 * @out]: iphy This parameter specifies the phy for which to assign a port
366 * object.
367 *
368 *
369 */
370void sci_phy_set_port(
371 struct isci_phy *iphy,
372 struct isci_port *iport)
373{
374 iphy->owning_port = iport;
375
376 if (iphy->bcn_received_while_port_unassigned) {
377 iphy->bcn_received_while_port_unassigned = false;
378 sci_port_broadcast_change_received(iphy->owning_port, iphy);
379 }
380}
381
382enum sci_status sci_phy_initialize(struct isci_phy *iphy,
383 struct scu_transport_layer_registers __iomem *tl,
384 struct scu_link_layer_registers __iomem *ll)
385{
386 /* Perfrom the initialization of the TL hardware */
387 sci_phy_transport_layer_initialization(iphy, tl);
388
389 /* Perofrm the initialization of the PE hardware */
390 sci_phy_link_layer_initialization(iphy, ll);
391
392 /* There is nothing that needs to be done in this state just
393 * transition to the stopped state
394 */
395 sci_change_state(&iphy->sm, SCI_PHY_STOPPED);
396
397 return SCI_SUCCESS;
398}
399
400/**
401 * This method assigns the direct attached device ID for this phy.
402 *
403 * @iphy The phy for which the direct attached device id is to
404 * be assigned.
405 * @device_id The direct attached device ID to assign to the phy.
406 * This will either be the RNi for the device or an invalid RNi if there
407 * is no current device assigned to the phy.
408 */
409void sci_phy_setup_transport(struct isci_phy *iphy, u32 device_id)
410{
411 u32 tl_control;
412
413 writel(device_id, &iphy->transport_layer_registers->stp_rni);
414
415 /*
416 * The read should guarantee that the first write gets posted
417 * before the next write
418 */
419 tl_control = readl(&iphy->transport_layer_registers->control);
420 tl_control |= SCU_TLCR_GEN_BIT(CLEAR_TCI_NCQ_MAPPING_TABLE);
421 writel(tl_control, &iphy->transport_layer_registers->control);
422}
423
424static void sci_phy_suspend(struct isci_phy *iphy)
425{
426 u32 scu_sas_pcfg_value;
427
428 scu_sas_pcfg_value =
429 readl(&iphy->link_layer_registers->phy_configuration);
430 scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE);
431 writel(scu_sas_pcfg_value,
432 &iphy->link_layer_registers->phy_configuration);
433
434 sci_phy_setup_transport(iphy, SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX);
435}
436
437void sci_phy_resume(struct isci_phy *iphy)
438{
439 u32 scu_sas_pcfg_value;
440
441 scu_sas_pcfg_value =
442 readl(&iphy->link_layer_registers->phy_configuration);
443 scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE);
444 writel(scu_sas_pcfg_value,
445 &iphy->link_layer_registers->phy_configuration);
446}
447
448void sci_phy_get_sas_address(struct isci_phy *iphy, struct sci_sas_address *sas)
449{
450 sas->high = readl(&iphy->link_layer_registers->source_sas_address_high);
451 sas->low = readl(&iphy->link_layer_registers->source_sas_address_low);
452}
453
454void sci_phy_get_attached_sas_address(struct isci_phy *iphy, struct sci_sas_address *sas)
455{
456 struct sas_identify_frame *iaf;
457
458 iaf = &iphy->frame_rcvd.iaf;
459 memcpy(sas, iaf->sas_addr, SAS_ADDR_SIZE);
460}
461
462void sci_phy_get_protocols(struct isci_phy *iphy, struct sci_phy_proto *proto)
463{
464 proto->all = readl(&iphy->link_layer_registers->transmit_identification);
465}
466
467enum sci_status sci_phy_start(struct isci_phy *iphy)
468{
469 enum sci_phy_states state = iphy->sm.current_state_id;
470
471 if (state != SCI_PHY_STOPPED) {
472 dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
473 __func__, phy_state_name(state));
474 return SCI_FAILURE_INVALID_STATE;
475 }
476
477 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
478 return SCI_SUCCESS;
479}
480
481enum sci_status sci_phy_stop(struct isci_phy *iphy)
482{
483 enum sci_phy_states state = iphy->sm.current_state_id;
484
485 switch (state) {
486 case SCI_PHY_SUB_INITIAL:
487 case SCI_PHY_SUB_AWAIT_OSSP_EN:
488 case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
489 case SCI_PHY_SUB_AWAIT_SAS_POWER:
490 case SCI_PHY_SUB_AWAIT_SATA_POWER:
491 case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
492 case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
493 case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
494 case SCI_PHY_SUB_FINAL:
495 case SCI_PHY_READY:
496 break;
497 default:
498 dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
499 __func__, phy_state_name(state));
500 return SCI_FAILURE_INVALID_STATE;
501 }
502
503 sci_change_state(&iphy->sm, SCI_PHY_STOPPED);
504 return SCI_SUCCESS;
505}
506
507enum sci_status sci_phy_reset(struct isci_phy *iphy)
508{
509 enum sci_phy_states state = iphy->sm.current_state_id;
510
511 if (state != SCI_PHY_READY) {
512 dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
513 __func__, phy_state_name(state));
514 return SCI_FAILURE_INVALID_STATE;
515 }
516
517 sci_change_state(&iphy->sm, SCI_PHY_RESETTING);
518 return SCI_SUCCESS;
519}
520
521enum sci_status sci_phy_consume_power_handler(struct isci_phy *iphy)
522{
523 enum sci_phy_states state = iphy->sm.current_state_id;
524
525 switch (state) {
526 case SCI_PHY_SUB_AWAIT_SAS_POWER: {
527 u32 enable_spinup;
528
529 enable_spinup = readl(&iphy->link_layer_registers->notify_enable_spinup_control);
530 enable_spinup |= SCU_ENSPINUP_GEN_BIT(ENABLE);
531 writel(enable_spinup, &iphy->link_layer_registers->notify_enable_spinup_control);
532
533 /* Change state to the final state this substate machine has run to completion */
534 sci_change_state(&iphy->sm, SCI_PHY_SUB_FINAL);
535
536 return SCI_SUCCESS;
537 }
538 case SCI_PHY_SUB_AWAIT_SATA_POWER: {
539 u32 scu_sas_pcfg_value;
540
541 /* Release the spinup hold state and reset the OOB state machine */
542 scu_sas_pcfg_value =
543 readl(&iphy->link_layer_registers->phy_configuration);
544 scu_sas_pcfg_value &=
545 ~(SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD) | SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE));
546 scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
547 writel(scu_sas_pcfg_value,
548 &iphy->link_layer_registers->phy_configuration);
549
550 /* Now restart the OOB operation */
551 scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
552 scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
553 writel(scu_sas_pcfg_value,
554 &iphy->link_layer_registers->phy_configuration);
555
556 /* Change state to the final state this substate machine has run to completion */
557 sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_PHY_EN);
558
559 return SCI_SUCCESS;
560 }
561 default:
562 dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
563 __func__, phy_state_name(state));
564 return SCI_FAILURE_INVALID_STATE;
565 }
566}
567
568static void sci_phy_start_sas_link_training(struct isci_phy *iphy)
569{
570 /* continue the link training for the phy as if it were a SAS PHY
571 * instead of a SATA PHY. This is done because the completion queue had a SAS
572 * PHY DETECTED event when the state machine was expecting a SATA PHY event.
573 */
574 u32 phy_control;
575
576 phy_control = readl(&iphy->link_layer_registers->phy_configuration);
577 phy_control |= SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD);
578 writel(phy_control,
579 &iphy->link_layer_registers->phy_configuration);
580
581 sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SAS_SPEED_EN);
582
583 iphy->protocol = SAS_PROTOCOL_SSP;
584}
585
586static void sci_phy_start_sata_link_training(struct isci_phy *iphy)
587{
588 /* This method continues the link training for the phy as if it were a SATA PHY
589 * instead of a SAS PHY. This is done because the completion queue had a SATA
590 * SPINUP HOLD event when the state machine was expecting a SAS PHY event. none
591 */
592 sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_POWER);
593
594 iphy->protocol = SAS_PROTOCOL_SATA;
595}
596
597/**
598 * sci_phy_complete_link_training - perform processing common to
599 * all protocols upon completion of link training.
600 * @sci_phy: This parameter specifies the phy object for which link training
601 * has completed.
602 * @max_link_rate: This parameter specifies the maximum link rate to be
603 * associated with this phy.
604 * @next_state: This parameter specifies the next state for the phy's starting
605 * sub-state machine.
606 *
607 */
608static void sci_phy_complete_link_training(struct isci_phy *iphy,
609 enum sas_linkrate max_link_rate,
610 u32 next_state)
611{
612 iphy->max_negotiated_speed = max_link_rate;
613
614 sci_change_state(&iphy->sm, next_state);
615}
616
617static const char *phy_event_name(u32 event_code)
618{
619 switch (scu_get_event_code(event_code)) {
620 case SCU_EVENT_PORT_SELECTOR_DETECTED:
621 return "port selector";
622 case SCU_EVENT_SENT_PORT_SELECTION:
623 return "port selection";
624 case SCU_EVENT_HARD_RESET_TRANSMITTED:
625 return "tx hard reset";
626 case SCU_EVENT_HARD_RESET_RECEIVED:
627 return "rx hard reset";
628 case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
629 return "identify timeout";
630 case SCU_EVENT_LINK_FAILURE:
631 return "link fail";
632 case SCU_EVENT_SATA_SPINUP_HOLD:
633 return "sata spinup hold";
634 case SCU_EVENT_SAS_15_SSC:
635 case SCU_EVENT_SAS_15:
636 return "sas 1.5";
637 case SCU_EVENT_SAS_30_SSC:
638 case SCU_EVENT_SAS_30:
639 return "sas 3.0";
640 case SCU_EVENT_SAS_60_SSC:
641 case SCU_EVENT_SAS_60:
642 return "sas 6.0";
643 case SCU_EVENT_SATA_15_SSC:
644 case SCU_EVENT_SATA_15:
645 return "sata 1.5";
646 case SCU_EVENT_SATA_30_SSC:
647 case SCU_EVENT_SATA_30:
648 return "sata 3.0";
649 case SCU_EVENT_SATA_60_SSC:
650 case SCU_EVENT_SATA_60:
651 return "sata 6.0";
652 case SCU_EVENT_SAS_PHY_DETECTED:
653 return "sas detect";
654 case SCU_EVENT_SATA_PHY_DETECTED:
655 return "sata detect";
656 default:
657 return "unknown";
658 }
659}
660
661#define phy_event_dbg(iphy, state, code) \
662 dev_dbg(sciphy_to_dev(iphy), "phy-%d:%d: %s event: %s (%x)\n", \
663 phy_to_host(iphy)->id, iphy->phy_index, \
664 phy_state_name(state), phy_event_name(code), code)
665
666#define phy_event_warn(iphy, state, code) \
667 dev_warn(sciphy_to_dev(iphy), "phy-%d:%d: %s event: %s (%x)\n", \
668 phy_to_host(iphy)->id, iphy->phy_index, \
669 phy_state_name(state), phy_event_name(code), code)
670
671
672void scu_link_layer_set_txcomsas_timeout(struct isci_phy *iphy, u32 timeout)
673{
674 u32 val;
675
676 /* Extend timeout */
677 val = readl(&iphy->link_layer_registers->transmit_comsas_signal);
678 val &= ~SCU_SAS_LLTXCOMSAS_GEN_VAL(NEGTIME, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_MASK);
679 val |= SCU_SAS_LLTXCOMSAS_GEN_VAL(NEGTIME, timeout);
680
681 writel(val, &iphy->link_layer_registers->transmit_comsas_signal);
682}
683
684enum sci_status sci_phy_event_handler(struct isci_phy *iphy, u32 event_code)
685{
686 enum sci_phy_states state = iphy->sm.current_state_id;
687
688 switch (state) {
689 case SCI_PHY_SUB_AWAIT_OSSP_EN:
690 switch (scu_get_event_code(event_code)) {
691 case SCU_EVENT_SAS_PHY_DETECTED:
692 sci_phy_start_sas_link_training(iphy);
693 iphy->is_in_link_training = true;
694 break;
695 case SCU_EVENT_SATA_SPINUP_HOLD:
696 sci_phy_start_sata_link_training(iphy);
697 iphy->is_in_link_training = true;
698 break;
699 case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
700 /* Extend timeout value */
701 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_EXTENDED);
702
703 /* Start the oob/sn state machine over again */
704 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
705 break;
706 default:
707 phy_event_dbg(iphy, state, event_code);
708 return SCI_FAILURE;
709 }
710 return SCI_SUCCESS;
711 case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
712 switch (scu_get_event_code(event_code)) {
713 case SCU_EVENT_SAS_PHY_DETECTED:
714 /*
715 * Why is this being reported again by the controller?
716 * We would re-enter this state so just stay here */
717 break;
718 case SCU_EVENT_SAS_15:
719 case SCU_EVENT_SAS_15_SSC:
720 sci_phy_complete_link_training(iphy, SAS_LINK_RATE_1_5_GBPS,
721 SCI_PHY_SUB_AWAIT_IAF_UF);
722 break;
723 case SCU_EVENT_SAS_30:
724 case SCU_EVENT_SAS_30_SSC:
725 sci_phy_complete_link_training(iphy, SAS_LINK_RATE_3_0_GBPS,
726 SCI_PHY_SUB_AWAIT_IAF_UF);
727 break;
728 case SCU_EVENT_SAS_60:
729 case SCU_EVENT_SAS_60_SSC:
730 sci_phy_complete_link_training(iphy, SAS_LINK_RATE_6_0_GBPS,
731 SCI_PHY_SUB_AWAIT_IAF_UF);
732 break;
733 case SCU_EVENT_SATA_SPINUP_HOLD:
734 /*
735 * We were doing SAS PHY link training and received a SATA PHY event
736 * continue OOB/SN as if this were a SATA PHY */
737 sci_phy_start_sata_link_training(iphy);
738 break;
739 case SCU_EVENT_LINK_FAILURE:
740 /* Change the timeout value to default */
741 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
742
743 /* Link failure change state back to the starting state */
744 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
745 break;
746 case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
747 /* Extend the timeout value */
748 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_EXTENDED);
749
750 /* Start the oob/sn state machine over again */
751 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
752 break;
753 default:
754 phy_event_warn(iphy, state, event_code);
755 return SCI_FAILURE;
756 break;
757 }
758 return SCI_SUCCESS;
759 case SCI_PHY_SUB_AWAIT_IAF_UF:
760 switch (scu_get_event_code(event_code)) {
761 case SCU_EVENT_SAS_PHY_DETECTED:
762 /* Backup the state machine */
763 sci_phy_start_sas_link_training(iphy);
764 break;
765 case SCU_EVENT_SATA_SPINUP_HOLD:
766 /* We were doing SAS PHY link training and received a
767 * SATA PHY event continue OOB/SN as if this were a
768 * SATA PHY
769 */
770 sci_phy_start_sata_link_training(iphy);
771 break;
772 case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
773 /* Extend the timeout value */
774 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_EXTENDED);
775
776 /* Start the oob/sn state machine over again */
777 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
778 break;
779 case SCU_EVENT_LINK_FAILURE:
780 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
781 case SCU_EVENT_HARD_RESET_RECEIVED:
782 /* Start the oob/sn state machine over again */
783 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
784 break;
785 default:
786 phy_event_warn(iphy, state, event_code);
787 return SCI_FAILURE;
788 }
789 return SCI_SUCCESS;
790 case SCI_PHY_SUB_AWAIT_SAS_POWER:
791 switch (scu_get_event_code(event_code)) {
792 case SCU_EVENT_LINK_FAILURE:
793 /* Change the timeout value to default */
794 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
795
796 /* Link failure change state back to the starting state */
797 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
798 break;
799 default:
800 phy_event_warn(iphy, state, event_code);
801 return SCI_FAILURE;
802 }
803 return SCI_SUCCESS;
804 case SCI_PHY_SUB_AWAIT_SATA_POWER:
805 switch (scu_get_event_code(event_code)) {
806 case SCU_EVENT_LINK_FAILURE:
807 /* Change the timeout value to default */
808 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
809
810 /* Link failure change state back to the starting state */
811 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
812 break;
813 case SCU_EVENT_SATA_SPINUP_HOLD:
814 /* These events are received every 10ms and are
815 * expected while in this state
816 */
817 break;
818
819 case SCU_EVENT_SAS_PHY_DETECTED:
820 /* There has been a change in the phy type before OOB/SN for the
821 * SATA finished start down the SAS link traning path.
822 */
823 sci_phy_start_sas_link_training(iphy);
824 break;
825
826 default:
827 phy_event_warn(iphy, state, event_code);
828 return SCI_FAILURE;
829 }
830 return SCI_SUCCESS;
831 case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
832 switch (scu_get_event_code(event_code)) {
833 case SCU_EVENT_LINK_FAILURE:
834 /* Change the timeout value to default */
835 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
836
837 /* Link failure change state back to the starting state */
838 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
839 break;
840 case SCU_EVENT_SATA_SPINUP_HOLD:
841 /* These events might be received since we dont know how many may be in
842 * the completion queue while waiting for power
843 */
844 break;
845 case SCU_EVENT_SATA_PHY_DETECTED:
846 iphy->protocol = SAS_PROTOCOL_SATA;
847
848 /* We have received the SATA PHY notification change state */
849 sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_SPEED_EN);
850 break;
851 case SCU_EVENT_SAS_PHY_DETECTED:
852 /* There has been a change in the phy type before OOB/SN for the
853 * SATA finished start down the SAS link traning path.
854 */
855 sci_phy_start_sas_link_training(iphy);
856 break;
857 default:
858 phy_event_warn(iphy, state, event_code);
859 return SCI_FAILURE;
860 }
861 return SCI_SUCCESS;
862 case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
863 switch (scu_get_event_code(event_code)) {
864 case SCU_EVENT_SATA_PHY_DETECTED:
865 /*
866 * The hardware reports multiple SATA PHY detected events
867 * ignore the extras */
868 break;
869 case SCU_EVENT_SATA_15:
870 case SCU_EVENT_SATA_15_SSC:
871 sci_phy_complete_link_training(iphy, SAS_LINK_RATE_1_5_GBPS,
872 SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
873 break;
874 case SCU_EVENT_SATA_30:
875 case SCU_EVENT_SATA_30_SSC:
876 sci_phy_complete_link_training(iphy, SAS_LINK_RATE_3_0_GBPS,
877 SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
878 break;
879 case SCU_EVENT_SATA_60:
880 case SCU_EVENT_SATA_60_SSC:
881 sci_phy_complete_link_training(iphy, SAS_LINK_RATE_6_0_GBPS,
882 SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
883 break;
884 case SCU_EVENT_LINK_FAILURE:
885 /* Change the timeout value to default */
886 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
887
888 /* Link failure change state back to the starting state */
889 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
890 break;
891 case SCU_EVENT_SAS_PHY_DETECTED:
892 /*
893 * There has been a change in the phy type before OOB/SN for the
894 * SATA finished start down the SAS link traning path. */
895 sci_phy_start_sas_link_training(iphy);
896 break;
897 default:
898 phy_event_warn(iphy, state, event_code);
899 return SCI_FAILURE;
900 }
901
902 return SCI_SUCCESS;
903 case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
904 switch (scu_get_event_code(event_code)) {
905 case SCU_EVENT_SATA_PHY_DETECTED:
906 /* Backup the state machine */
907 sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_SPEED_EN);
908 break;
909
910 case SCU_EVENT_LINK_FAILURE:
911 /* Change the timeout value to default */
912 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
913
914 /* Link failure change state back to the starting state */
915 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
916 break;
917
918 default:
919 phy_event_warn(iphy, state, event_code);
920 return SCI_FAILURE;
921 }
922 return SCI_SUCCESS;
923 case SCI_PHY_READY:
924 switch (scu_get_event_code(event_code)) {
925 case SCU_EVENT_LINK_FAILURE:
926 /* Set default timeout */
927 scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
928
929 /* Link failure change state back to the starting state */
930 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
931 break;
932 case SCU_EVENT_BROADCAST_CHANGE:
933 case SCU_EVENT_BROADCAST_SES:
934 case SCU_EVENT_BROADCAST_RESERVED0:
935 case SCU_EVENT_BROADCAST_RESERVED1:
936 case SCU_EVENT_BROADCAST_EXPANDER:
937 case SCU_EVENT_BROADCAST_AEN:
938 /* Broadcast change received. Notify the port. */
939 if (phy_get_non_dummy_port(iphy) != NULL)
940 sci_port_broadcast_change_received(iphy->owning_port, iphy);
941 else
942 iphy->bcn_received_while_port_unassigned = true;
943 break;
944 case SCU_EVENT_BROADCAST_RESERVED3:
945 case SCU_EVENT_BROADCAST_RESERVED4:
946 default:
947 phy_event_warn(iphy, state, event_code);
948 return SCI_FAILURE_INVALID_STATE;
949 }
950 return SCI_SUCCESS;
951 case SCI_PHY_RESETTING:
952 switch (scu_get_event_code(event_code)) {
953 case SCU_EVENT_HARD_RESET_TRANSMITTED:
954 /* Link failure change state back to the starting state */
955 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
956 break;
957 default:
958 phy_event_warn(iphy, state, event_code);
959 return SCI_FAILURE_INVALID_STATE;
960 break;
961 }
962 return SCI_SUCCESS;
963 default:
964 dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
965 __func__, phy_state_name(state));
966 return SCI_FAILURE_INVALID_STATE;
967 }
968}
969
970enum sci_status sci_phy_frame_handler(struct isci_phy *iphy, u32 frame_index)
971{
972 enum sci_phy_states state = iphy->sm.current_state_id;
973 struct isci_host *ihost = iphy->owning_port->owning_controller;
974 enum sci_status result;
975 unsigned long flags;
976
977 switch (state) {
978 case SCI_PHY_SUB_AWAIT_IAF_UF: {
979 u32 *frame_words;
980 struct sas_identify_frame iaf;
981
982 result = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
983 frame_index,
984 (void **)&frame_words);
985
986 if (result != SCI_SUCCESS)
987 return result;
988
989 sci_swab32_cpy(&iaf, frame_words, sizeof(iaf) / sizeof(u32));
990 if (iaf.frame_type == 0) {
991 u32 state;
992
993 spin_lock_irqsave(&iphy->sas_phy.frame_rcvd_lock, flags);
994 memcpy(&iphy->frame_rcvd.iaf, &iaf, sizeof(iaf));
995 spin_unlock_irqrestore(&iphy->sas_phy.frame_rcvd_lock, flags);
996 if (iaf.smp_tport) {
997 /* We got the IAF for an expander PHY go to the final
998 * state since there are no power requirements for
999 * expander phys.
1000 */
1001 state = SCI_PHY_SUB_FINAL;
1002 } else {
1003 /* We got the IAF we can now go to the await spinup
1004 * semaphore state
1005 */
1006 state = SCI_PHY_SUB_AWAIT_SAS_POWER;
1007 }
1008 sci_change_state(&iphy->sm, state);
1009 result = SCI_SUCCESS;
1010 } else
1011 dev_warn(sciphy_to_dev(iphy),
1012 "%s: PHY starting substate machine received "
1013 "unexpected frame id %x\n",
1014 __func__, frame_index);
1015
1016 sci_controller_release_frame(ihost, frame_index);
1017 return result;
1018 }
1019 case SCI_PHY_SUB_AWAIT_SIG_FIS_UF: {
1020 struct dev_to_host_fis *frame_header;
1021 u32 *fis_frame_data;
1022
1023 result = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1024 frame_index,
1025 (void **)&frame_header);
1026
1027 if (result != SCI_SUCCESS)
1028 return result;
1029
1030 if ((frame_header->fis_type == FIS_REGD2H) &&
1031 !(frame_header->status & ATA_BUSY)) {
1032 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1033 frame_index,
1034 (void **)&fis_frame_data);
1035
1036 spin_lock_irqsave(&iphy->sas_phy.frame_rcvd_lock, flags);
1037 sci_controller_copy_sata_response(&iphy->frame_rcvd.fis,
1038 frame_header,
1039 fis_frame_data);
1040 spin_unlock_irqrestore(&iphy->sas_phy.frame_rcvd_lock, flags);
1041
1042 /* got IAF we can now go to the await spinup semaphore state */
1043 sci_change_state(&iphy->sm, SCI_PHY_SUB_FINAL);
1044
1045 result = SCI_SUCCESS;
1046 } else
1047 dev_warn(sciphy_to_dev(iphy),
1048 "%s: PHY starting substate machine received "
1049 "unexpected frame id %x\n",
1050 __func__, frame_index);
1051
1052 /* Regardless of the result we are done with this frame with it */
1053 sci_controller_release_frame(ihost, frame_index);
1054
1055 return result;
1056 }
1057 default:
1058 dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
1059 __func__, phy_state_name(state));
1060 return SCI_FAILURE_INVALID_STATE;
1061 }
1062
1063}
1064
1065static void sci_phy_starting_initial_substate_enter(struct sci_base_state_machine *sm)
1066{
1067 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1068
1069 /* This is just an temporary state go off to the starting state */
1070 sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_OSSP_EN);
1071}
1072
1073static void sci_phy_starting_await_sas_power_substate_enter(struct sci_base_state_machine *sm)
1074{
1075 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1076 struct isci_host *ihost = iphy->owning_port->owning_controller;
1077
1078 sci_controller_power_control_queue_insert(ihost, iphy);
1079}
1080
1081static void sci_phy_starting_await_sas_power_substate_exit(struct sci_base_state_machine *sm)
1082{
1083 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1084 struct isci_host *ihost = iphy->owning_port->owning_controller;
1085
1086 sci_controller_power_control_queue_remove(ihost, iphy);
1087}
1088
1089static void sci_phy_starting_await_sata_power_substate_enter(struct sci_base_state_machine *sm)
1090{
1091 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1092 struct isci_host *ihost = iphy->owning_port->owning_controller;
1093
1094 sci_controller_power_control_queue_insert(ihost, iphy);
1095}
1096
1097static void sci_phy_starting_await_sata_power_substate_exit(struct sci_base_state_machine *sm)
1098{
1099 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1100 struct isci_host *ihost = iphy->owning_port->owning_controller;
1101
1102 sci_controller_power_control_queue_remove(ihost, iphy);
1103}
1104
1105static void sci_phy_starting_await_sata_phy_substate_enter(struct sci_base_state_machine *sm)
1106{
1107 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1108
1109 sci_mod_timer(&iphy->sata_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT);
1110}
1111
1112static void sci_phy_starting_await_sata_phy_substate_exit(struct sci_base_state_machine *sm)
1113{
1114 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1115
1116 sci_del_timer(&iphy->sata_timer);
1117}
1118
1119static void sci_phy_starting_await_sata_speed_substate_enter(struct sci_base_state_machine *sm)
1120{
1121 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1122
1123 sci_mod_timer(&iphy->sata_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT);
1124}
1125
1126static void sci_phy_starting_await_sata_speed_substate_exit(struct sci_base_state_machine *sm)
1127{
1128 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1129
1130 sci_del_timer(&iphy->sata_timer);
1131}
1132
1133static void sci_phy_starting_await_sig_fis_uf_substate_enter(struct sci_base_state_machine *sm)
1134{
1135 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1136
1137 if (sci_port_link_detected(iphy->owning_port, iphy)) {
1138
1139 /*
1140 * Clear the PE suspend condition so we can actually
1141 * receive SIG FIS
1142 * The hardware will not respond to the XRDY until the PE
1143 * suspend condition is cleared.
1144 */
1145 sci_phy_resume(iphy);
1146
1147 sci_mod_timer(&iphy->sata_timer,
1148 SCIC_SDS_SIGNATURE_FIS_TIMEOUT);
1149 } else
1150 iphy->is_in_link_training = false;
1151}
1152
1153static void sci_phy_starting_await_sig_fis_uf_substate_exit(struct sci_base_state_machine *sm)
1154{
1155 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1156
1157 sci_del_timer(&iphy->sata_timer);
1158}
1159
1160static void sci_phy_starting_final_substate_enter(struct sci_base_state_machine *sm)
1161{
1162 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1163
1164 /* State machine has run to completion so exit out and change
1165 * the base state machine to the ready state
1166 */
1167 sci_change_state(&iphy->sm, SCI_PHY_READY);
1168}
1169
1170/**
1171 *
1172 * @sci_phy: This is the struct isci_phy object to stop.
1173 *
1174 * This method will stop the struct isci_phy object. This does not reset the
1175 * protocol engine it just suspends it and places it in a state where it will
1176 * not cause the end device to power up. none
1177 */
1178static void scu_link_layer_stop_protocol_engine(
1179 struct isci_phy *iphy)
1180{
1181 u32 scu_sas_pcfg_value;
1182 u32 enable_spinup_value;
1183
1184 /* Suspend the protocol engine and place it in a sata spinup hold state */
1185 scu_sas_pcfg_value =
1186 readl(&iphy->link_layer_registers->phy_configuration);
1187 scu_sas_pcfg_value |=
1188 (SCU_SAS_PCFG_GEN_BIT(OOB_RESET) |
1189 SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE) |
1190 SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD));
1191 writel(scu_sas_pcfg_value,
1192 &iphy->link_layer_registers->phy_configuration);
1193
1194 /* Disable the notify enable spinup primitives */
1195 enable_spinup_value = readl(&iphy->link_layer_registers->notify_enable_spinup_control);
1196 enable_spinup_value &= ~SCU_ENSPINUP_GEN_BIT(ENABLE);
1197 writel(enable_spinup_value, &iphy->link_layer_registers->notify_enable_spinup_control);
1198}
1199
1200static void scu_link_layer_start_oob(struct isci_phy *iphy)
1201{
1202 struct scu_link_layer_registers __iomem *ll = iphy->link_layer_registers;
1203 u32 val;
1204
1205 /** Reset OOB sequence - start */
1206 val = readl(&ll->phy_configuration);
1207 val &= ~(SCU_SAS_PCFG_GEN_BIT(OOB_RESET) |
1208 SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE) |
1209 SCU_SAS_PCFG_GEN_BIT(HARD_RESET));
1210 writel(val, &ll->phy_configuration);
1211 readl(&ll->phy_configuration); /* flush */
1212 /** Reset OOB sequence - end */
1213
1214 /** Start OOB sequence - start */
1215 val = readl(&ll->phy_configuration);
1216 val |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
1217 writel(val, &ll->phy_configuration);
1218 readl(&ll->phy_configuration); /* flush */
1219 /** Start OOB sequence - end */
1220}
1221
1222/**
1223 *
1224 *
1225 * This method will transmit a hard reset request on the specified phy. The SCU
1226 * hardware requires that we reset the OOB state machine and set the hard reset
1227 * bit in the phy configuration register. We then must start OOB over with the
1228 * hard reset bit set.
1229 */
1230static void scu_link_layer_tx_hard_reset(
1231 struct isci_phy *iphy)
1232{
1233 u32 phy_configuration_value;
1234
1235 /*
1236 * SAS Phys must wait for the HARD_RESET_TX event notification to transition
1237 * to the starting state. */
1238 phy_configuration_value =
1239 readl(&iphy->link_layer_registers->phy_configuration);
1240 phy_configuration_value &= ~(SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE));
1241 phy_configuration_value |=
1242 (SCU_SAS_PCFG_GEN_BIT(HARD_RESET) |
1243 SCU_SAS_PCFG_GEN_BIT(OOB_RESET));
1244 writel(phy_configuration_value,
1245 &iphy->link_layer_registers->phy_configuration);
1246
1247 /* Now take the OOB state machine out of reset */
1248 phy_configuration_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
1249 phy_configuration_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
1250 writel(phy_configuration_value,
1251 &iphy->link_layer_registers->phy_configuration);
1252}
1253
1254static void sci_phy_stopped_state_enter(struct sci_base_state_machine *sm)
1255{
1256 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1257 struct isci_port *iport = iphy->owning_port;
1258 struct isci_host *ihost = iport->owning_controller;
1259
1260 /*
1261 * @todo We need to get to the controller to place this PE in a
1262 * reset state
1263 */
1264 sci_del_timer(&iphy->sata_timer);
1265
1266 scu_link_layer_stop_protocol_engine(iphy);
1267
1268 if (iphy->sm.previous_state_id != SCI_PHY_INITIAL)
1269 sci_controller_link_down(ihost, phy_get_non_dummy_port(iphy), iphy);
1270}
1271
1272static void sci_phy_starting_state_enter(struct sci_base_state_machine *sm)
1273{
1274 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1275 struct isci_port *iport = iphy->owning_port;
1276 struct isci_host *ihost = iport->owning_controller;
1277
1278 scu_link_layer_stop_protocol_engine(iphy);
1279 scu_link_layer_start_oob(iphy);
1280
1281 /* We don't know what kind of phy we are going to be just yet */
1282 iphy->protocol = SAS_PROTOCOL_NONE;
1283 iphy->bcn_received_while_port_unassigned = false;
1284
1285 if (iphy->sm.previous_state_id == SCI_PHY_READY)
1286 sci_controller_link_down(ihost, phy_get_non_dummy_port(iphy), iphy);
1287
1288 sci_change_state(&iphy->sm, SCI_PHY_SUB_INITIAL);
1289}
1290
1291static void sci_phy_ready_state_enter(struct sci_base_state_machine *sm)
1292{
1293 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1294 struct isci_port *iport = iphy->owning_port;
1295 struct isci_host *ihost = iport->owning_controller;
1296
1297 sci_controller_link_up(ihost, phy_get_non_dummy_port(iphy), iphy);
1298}
1299
1300static void sci_phy_ready_state_exit(struct sci_base_state_machine *sm)
1301{
1302 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1303
1304 sci_phy_suspend(iphy);
1305}
1306
1307static void sci_phy_resetting_state_enter(struct sci_base_state_machine *sm)
1308{
1309 struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1310
1311 /* The phy is being reset, therefore deactivate it from the port. In
1312 * the resetting state we don't notify the user regarding link up and
1313 * link down notifications
1314 */
1315 sci_port_deactivate_phy(iphy->owning_port, iphy, false);
1316
1317 if (iphy->protocol == SAS_PROTOCOL_SSP) {
1318 scu_link_layer_tx_hard_reset(iphy);
1319 } else {
1320 /* The SCU does not need to have a discrete reset state so
1321 * just go back to the starting state.
1322 */
1323 sci_change_state(&iphy->sm, SCI_PHY_STARTING);
1324 }
1325}
1326
1327static const struct sci_base_state sci_phy_state_table[] = {
1328 [SCI_PHY_INITIAL] = { },
1329 [SCI_PHY_STOPPED] = {
1330 .enter_state = sci_phy_stopped_state_enter,
1331 },
1332 [SCI_PHY_STARTING] = {
1333 .enter_state = sci_phy_starting_state_enter,
1334 },
1335 [SCI_PHY_SUB_INITIAL] = {
1336 .enter_state = sci_phy_starting_initial_substate_enter,
1337 },
1338 [SCI_PHY_SUB_AWAIT_OSSP_EN] = { },
1339 [SCI_PHY_SUB_AWAIT_SAS_SPEED_EN] = { },
1340 [SCI_PHY_SUB_AWAIT_IAF_UF] = { },
1341 [SCI_PHY_SUB_AWAIT_SAS_POWER] = {
1342 .enter_state = sci_phy_starting_await_sas_power_substate_enter,
1343 .exit_state = sci_phy_starting_await_sas_power_substate_exit,
1344 },
1345 [SCI_PHY_SUB_AWAIT_SATA_POWER] = {
1346 .enter_state = sci_phy_starting_await_sata_power_substate_enter,
1347 .exit_state = sci_phy_starting_await_sata_power_substate_exit
1348 },
1349 [SCI_PHY_SUB_AWAIT_SATA_PHY_EN] = {
1350 .enter_state = sci_phy_starting_await_sata_phy_substate_enter,
1351 .exit_state = sci_phy_starting_await_sata_phy_substate_exit
1352 },
1353 [SCI_PHY_SUB_AWAIT_SATA_SPEED_EN] = {
1354 .enter_state = sci_phy_starting_await_sata_speed_substate_enter,
1355 .exit_state = sci_phy_starting_await_sata_speed_substate_exit
1356 },
1357 [SCI_PHY_SUB_AWAIT_SIG_FIS_UF] = {
1358 .enter_state = sci_phy_starting_await_sig_fis_uf_substate_enter,
1359 .exit_state = sci_phy_starting_await_sig_fis_uf_substate_exit
1360 },
1361 [SCI_PHY_SUB_FINAL] = {
1362 .enter_state = sci_phy_starting_final_substate_enter,
1363 },
1364 [SCI_PHY_READY] = {
1365 .enter_state = sci_phy_ready_state_enter,
1366 .exit_state = sci_phy_ready_state_exit,
1367 },
1368 [SCI_PHY_RESETTING] = {
1369 .enter_state = sci_phy_resetting_state_enter,
1370 },
1371 [SCI_PHY_FINAL] = { },
1372};
1373
1374void sci_phy_construct(struct isci_phy *iphy,
1375 struct isci_port *iport, u8 phy_index)
1376{
1377 sci_init_sm(&iphy->sm, sci_phy_state_table, SCI_PHY_INITIAL);
1378
1379 /* Copy the rest of the input data to our locals */
1380 iphy->owning_port = iport;
1381 iphy->phy_index = phy_index;
1382 iphy->bcn_received_while_port_unassigned = false;
1383 iphy->protocol = SAS_PROTOCOL_NONE;
1384 iphy->link_layer_registers = NULL;
1385 iphy->max_negotiated_speed = SAS_LINK_RATE_UNKNOWN;
1386
1387 /* Create the SIGNATURE FIS Timeout timer for this phy */
1388 sci_init_timer(&iphy->sata_timer, phy_sata_timeout);
1389}
1390
1391void isci_phy_init(struct isci_phy *iphy, struct isci_host *ihost, int index)
1392{
1393 struct sci_oem_params *oem = &ihost->oem_parameters;
1394 u64 sci_sas_addr;
1395 __be64 sas_addr;
1396
1397 sci_sas_addr = oem->phys[index].sas_address.high;
1398 sci_sas_addr <<= 32;
1399 sci_sas_addr |= oem->phys[index].sas_address.low;
1400 sas_addr = cpu_to_be64(sci_sas_addr);
1401 memcpy(iphy->sas_addr, &sas_addr, sizeof(sas_addr));
1402
1403 iphy->sas_phy.enabled = 0;
1404 iphy->sas_phy.id = index;
1405 iphy->sas_phy.sas_addr = &iphy->sas_addr[0];
1406 iphy->sas_phy.frame_rcvd = (u8 *)&iphy->frame_rcvd;
1407 iphy->sas_phy.ha = &ihost->sas_ha;
1408 iphy->sas_phy.lldd_phy = iphy;
1409 iphy->sas_phy.enabled = 1;
1410 iphy->sas_phy.class = SAS;
1411 iphy->sas_phy.iproto = SAS_PROTOCOL_ALL;
1412 iphy->sas_phy.tproto = 0;
1413 iphy->sas_phy.type = PHY_TYPE_PHYSICAL;
1414 iphy->sas_phy.role = PHY_ROLE_INITIATOR;
1415 iphy->sas_phy.oob_mode = OOB_NOT_CONNECTED;
1416 iphy->sas_phy.linkrate = SAS_LINK_RATE_UNKNOWN;
1417 memset(&iphy->frame_rcvd, 0, sizeof(iphy->frame_rcvd));
1418}
1419
1420
1421/**
1422 * isci_phy_control() - This function is one of the SAS Domain Template
1423 * functions. This is a phy management function.
1424 * @phy: This parameter specifies the sphy being controlled.
1425 * @func: This parameter specifies the phy control function being invoked.
1426 * @buf: This parameter is specific to the phy function being invoked.
1427 *
1428 * status, zero indicates success.
1429 */
1430int isci_phy_control(struct asd_sas_phy *sas_phy,
1431 enum phy_func func,
1432 void *buf)
1433{
1434 int ret = 0;
1435 struct isci_phy *iphy = sas_phy->lldd_phy;
1436 struct asd_sas_port *port = sas_phy->port;
1437 struct isci_host *ihost = sas_phy->ha->lldd_ha;
1438 unsigned long flags;
1439
1440 dev_dbg(&ihost->pdev->dev,
1441 "%s: phy %p; func %d; buf %p; isci phy %p, port %p\n",
1442 __func__, sas_phy, func, buf, iphy, port);
1443
1444 switch (func) {
1445 case PHY_FUNC_DISABLE:
1446 spin_lock_irqsave(&ihost->scic_lock, flags);
1447 scu_link_layer_start_oob(iphy);
1448 sci_phy_stop(iphy);
1449 spin_unlock_irqrestore(&ihost->scic_lock, flags);
1450 break;
1451
1452 case PHY_FUNC_LINK_RESET:
1453 spin_lock_irqsave(&ihost->scic_lock, flags);
1454 scu_link_layer_start_oob(iphy);
1455 sci_phy_stop(iphy);
1456 sci_phy_start(iphy);
1457 spin_unlock_irqrestore(&ihost->scic_lock, flags);
1458 break;
1459
1460 case PHY_FUNC_HARD_RESET:
1461 if (!port)
1462 return -ENODEV;
1463
1464 ret = isci_port_perform_hard_reset(ihost, port->lldd_port, iphy);
1465
1466 break;
1467 case PHY_FUNC_GET_EVENTS: {
1468 struct scu_link_layer_registers __iomem *r;
1469 struct sas_phy *phy = sas_phy->phy;
1470
1471 r = iphy->link_layer_registers;
1472 phy->running_disparity_error_count = readl(&r->running_disparity_error_count);
1473 phy->loss_of_dword_sync_count = readl(&r->loss_of_sync_error_count);
1474 phy->phy_reset_problem_count = readl(&r->phy_reset_problem_count);
1475 phy->invalid_dword_count = readl(&r->invalid_dword_counter);
1476 break;
1477 }
1478
1479 default:
1480 dev_dbg(&ihost->pdev->dev,
1481 "%s: phy %p; func %d NOT IMPLEMENTED!\n",
1482 __func__, sas_phy, func);
1483 ret = -ENOSYS;
1484 break;
1485 }
1486 return ret;
1487}