Loading...
1/*
2 * linux/drivers/s390/crypto/ap_bus.c
3 *
4 * Copyright (C) 2006 IBM Corporation
5 * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
6 * Martin Schwidefsky <schwidefsky@de.ibm.com>
7 * Ralph Wuerthner <rwuerthn@de.ibm.com>
8 * Felix Beck <felix.beck@de.ibm.com>
9 * Holger Dengler <hd@linux.vnet.ibm.com>
10 *
11 * Adjunct processor bus.
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 */
27
28#define KMSG_COMPONENT "ap"
29#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
30
31#include <linux/kernel_stat.h>
32#include <linux/module.h>
33#include <linux/init.h>
34#include <linux/delay.h>
35#include <linux/err.h>
36#include <linux/interrupt.h>
37#include <linux/workqueue.h>
38#include <linux/slab.h>
39#include <linux/notifier.h>
40#include <linux/kthread.h>
41#include <linux/mutex.h>
42#include <asm/reset.h>
43#include <asm/airq.h>
44#include <linux/atomic.h>
45#include <asm/system.h>
46#include <asm/isc.h>
47#include <linux/hrtimer.h>
48#include <linux/ktime.h>
49
50#include "ap_bus.h"
51
52/* Some prototypes. */
53static void ap_scan_bus(struct work_struct *);
54static void ap_poll_all(unsigned long);
55static enum hrtimer_restart ap_poll_timeout(struct hrtimer *);
56static int ap_poll_thread_start(void);
57static void ap_poll_thread_stop(void);
58static void ap_request_timeout(unsigned long);
59static inline void ap_schedule_poll_timer(void);
60static int __ap_poll_device(struct ap_device *ap_dev, unsigned long *flags);
61static int ap_device_remove(struct device *dev);
62static int ap_device_probe(struct device *dev);
63static void ap_interrupt_handler(void *unused1, void *unused2);
64static void ap_reset(struct ap_device *ap_dev);
65static void ap_config_timeout(unsigned long ptr);
66static int ap_select_domain(void);
67
68/*
69 * Module description.
70 */
71MODULE_AUTHOR("IBM Corporation");
72MODULE_DESCRIPTION("Adjunct Processor Bus driver, "
73 "Copyright 2006 IBM Corporation");
74MODULE_LICENSE("GPL");
75
76/*
77 * Module parameter
78 */
79int ap_domain_index = -1; /* Adjunct Processor Domain Index */
80module_param_named(domain, ap_domain_index, int, 0000);
81MODULE_PARM_DESC(domain, "domain index for ap devices");
82EXPORT_SYMBOL(ap_domain_index);
83
84static int ap_thread_flag = 0;
85module_param_named(poll_thread, ap_thread_flag, int, 0000);
86MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
87
88static struct device *ap_root_device = NULL;
89static DEFINE_SPINLOCK(ap_device_list_lock);
90static LIST_HEAD(ap_device_list);
91
92/*
93 * Workqueue & timer for bus rescan.
94 */
95static struct workqueue_struct *ap_work_queue;
96static struct timer_list ap_config_timer;
97static int ap_config_time = AP_CONFIG_TIME;
98static DECLARE_WORK(ap_config_work, ap_scan_bus);
99
100/*
101 * Tasklet & timer for AP request polling and interrupts
102 */
103static DECLARE_TASKLET(ap_tasklet, ap_poll_all, 0);
104static atomic_t ap_poll_requests = ATOMIC_INIT(0);
105static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
106static struct task_struct *ap_poll_kthread = NULL;
107static DEFINE_MUTEX(ap_poll_thread_mutex);
108static DEFINE_SPINLOCK(ap_poll_timer_lock);
109static void *ap_interrupt_indicator;
110static struct hrtimer ap_poll_timer;
111/* In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
112 * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.*/
113static unsigned long long poll_timeout = 250000;
114
115/* Suspend flag */
116static int ap_suspend_flag;
117/* Flag to check if domain was set through module parameter domain=. This is
118 * important when supsend and resume is done in a z/VM environment where the
119 * domain might change. */
120static int user_set_domain = 0;
121static struct bus_type ap_bus_type;
122
123/**
124 * ap_using_interrupts() - Returns non-zero if interrupt support is
125 * available.
126 */
127static inline int ap_using_interrupts(void)
128{
129 return ap_interrupt_indicator != NULL;
130}
131
132/**
133 * ap_intructions_available() - Test if AP instructions are available.
134 *
135 * Returns 0 if the AP instructions are installed.
136 */
137static inline int ap_instructions_available(void)
138{
139 register unsigned long reg0 asm ("0") = AP_MKQID(0,0);
140 register unsigned long reg1 asm ("1") = -ENODEV;
141 register unsigned long reg2 asm ("2") = 0UL;
142
143 asm volatile(
144 " .long 0xb2af0000\n" /* PQAP(TAPQ) */
145 "0: la %1,0\n"
146 "1:\n"
147 EX_TABLE(0b, 1b)
148 : "+d" (reg0), "+d" (reg1), "+d" (reg2) : : "cc" );
149 return reg1;
150}
151
152/**
153 * ap_interrupts_available(): Test if AP interrupts are available.
154 *
155 * Returns 1 if AP interrupts are available.
156 */
157static int ap_interrupts_available(void)
158{
159 return test_facility(2) && test_facility(65);
160}
161
162/**
163 * ap_test_queue(): Test adjunct processor queue.
164 * @qid: The AP queue number
165 * @queue_depth: Pointer to queue depth value
166 * @device_type: Pointer to device type value
167 *
168 * Returns AP queue status structure.
169 */
170static inline struct ap_queue_status
171ap_test_queue(ap_qid_t qid, int *queue_depth, int *device_type)
172{
173 register unsigned long reg0 asm ("0") = qid;
174 register struct ap_queue_status reg1 asm ("1");
175 register unsigned long reg2 asm ("2") = 0UL;
176
177 asm volatile(".long 0xb2af0000" /* PQAP(TAPQ) */
178 : "+d" (reg0), "=d" (reg1), "+d" (reg2) : : "cc");
179 *device_type = (int) (reg2 >> 24);
180 *queue_depth = (int) (reg2 & 0xff);
181 return reg1;
182}
183
184/**
185 * ap_reset_queue(): Reset adjunct processor queue.
186 * @qid: The AP queue number
187 *
188 * Returns AP queue status structure.
189 */
190static inline struct ap_queue_status ap_reset_queue(ap_qid_t qid)
191{
192 register unsigned long reg0 asm ("0") = qid | 0x01000000UL;
193 register struct ap_queue_status reg1 asm ("1");
194 register unsigned long reg2 asm ("2") = 0UL;
195
196 asm volatile(
197 ".long 0xb2af0000" /* PQAP(RAPQ) */
198 : "+d" (reg0), "=d" (reg1), "+d" (reg2) : : "cc");
199 return reg1;
200}
201
202#ifdef CONFIG_64BIT
203/**
204 * ap_queue_interruption_control(): Enable interruption for a specific AP.
205 * @qid: The AP queue number
206 * @ind: The notification indicator byte
207 *
208 * Returns AP queue status.
209 */
210static inline struct ap_queue_status
211ap_queue_interruption_control(ap_qid_t qid, void *ind)
212{
213 register unsigned long reg0 asm ("0") = qid | 0x03000000UL;
214 register unsigned long reg1_in asm ("1") = 0x0000800000000000UL | AP_ISC;
215 register struct ap_queue_status reg1_out asm ("1");
216 register void *reg2 asm ("2") = ind;
217 asm volatile(
218 ".long 0xb2af0000" /* PQAP(RAPQ) */
219 : "+d" (reg0), "+d" (reg1_in), "=d" (reg1_out), "+d" (reg2)
220 :
221 : "cc" );
222 return reg1_out;
223}
224#endif
225
226#ifdef CONFIG_64BIT
227static inline struct ap_queue_status
228__ap_query_functions(ap_qid_t qid, unsigned int *functions)
229{
230 register unsigned long reg0 asm ("0") = 0UL | qid | (1UL << 23);
231 register struct ap_queue_status reg1 asm ("1") = AP_QUEUE_STATUS_INVALID;
232 register unsigned long reg2 asm ("2");
233
234 asm volatile(
235 ".long 0xb2af0000\n"
236 "0:\n"
237 EX_TABLE(0b, 0b)
238 : "+d" (reg0), "+d" (reg1), "=d" (reg2)
239 :
240 : "cc");
241
242 *functions = (unsigned int)(reg2 >> 32);
243 return reg1;
244}
245#endif
246
247/**
248 * ap_query_functions(): Query supported functions.
249 * @qid: The AP queue number
250 * @functions: Pointer to functions field.
251 *
252 * Returns
253 * 0 on success.
254 * -ENODEV if queue not valid.
255 * -EBUSY if device busy.
256 * -EINVAL if query function is not supported
257 */
258static int ap_query_functions(ap_qid_t qid, unsigned int *functions)
259{
260#ifdef CONFIG_64BIT
261 struct ap_queue_status status;
262 int i;
263 status = __ap_query_functions(qid, functions);
264
265 for (i = 0; i < AP_MAX_RESET; i++) {
266 if (ap_queue_status_invalid_test(&status))
267 return -ENODEV;
268
269 switch (status.response_code) {
270 case AP_RESPONSE_NORMAL:
271 return 0;
272 case AP_RESPONSE_RESET_IN_PROGRESS:
273 case AP_RESPONSE_BUSY:
274 break;
275 case AP_RESPONSE_Q_NOT_AVAIL:
276 case AP_RESPONSE_DECONFIGURED:
277 case AP_RESPONSE_CHECKSTOPPED:
278 case AP_RESPONSE_INVALID_ADDRESS:
279 return -ENODEV;
280 case AP_RESPONSE_OTHERWISE_CHANGED:
281 break;
282 default:
283 break;
284 }
285 if (i < AP_MAX_RESET - 1) {
286 udelay(5);
287 status = __ap_query_functions(qid, functions);
288 }
289 }
290 return -EBUSY;
291#else
292 return -EINVAL;
293#endif
294}
295
296/**
297 * ap_4096_commands_availablen(): Check for availability of 4096 bit RSA
298 * support.
299 * @qid: The AP queue number
300 *
301 * Returns 1 if 4096 bit RSA keys are support fo the AP, returns 0 if not.
302 */
303int ap_4096_commands_available(ap_qid_t qid)
304{
305 unsigned int functions;
306
307 if (ap_query_functions(qid, &functions))
308 return 0;
309
310 return test_ap_facility(functions, 1) &&
311 test_ap_facility(functions, 2);
312}
313EXPORT_SYMBOL(ap_4096_commands_available);
314
315/**
316 * ap_queue_enable_interruption(): Enable interruption on an AP.
317 * @qid: The AP queue number
318 * @ind: the notification indicator byte
319 *
320 * Enables interruption on AP queue via ap_queue_interruption_control(). Based
321 * on the return value it waits a while and tests the AP queue if interrupts
322 * have been switched on using ap_test_queue().
323 */
324static int ap_queue_enable_interruption(ap_qid_t qid, void *ind)
325{
326#ifdef CONFIG_64BIT
327 struct ap_queue_status status;
328 int t_depth, t_device_type, rc, i;
329
330 rc = -EBUSY;
331 status = ap_queue_interruption_control(qid, ind);
332
333 for (i = 0; i < AP_MAX_RESET; i++) {
334 switch (status.response_code) {
335 case AP_RESPONSE_NORMAL:
336 if (status.int_enabled)
337 return 0;
338 break;
339 case AP_RESPONSE_RESET_IN_PROGRESS:
340 case AP_RESPONSE_BUSY:
341 break;
342 case AP_RESPONSE_Q_NOT_AVAIL:
343 case AP_RESPONSE_DECONFIGURED:
344 case AP_RESPONSE_CHECKSTOPPED:
345 case AP_RESPONSE_INVALID_ADDRESS:
346 return -ENODEV;
347 case AP_RESPONSE_OTHERWISE_CHANGED:
348 if (status.int_enabled)
349 return 0;
350 break;
351 default:
352 break;
353 }
354 if (i < AP_MAX_RESET - 1) {
355 udelay(5);
356 status = ap_test_queue(qid, &t_depth, &t_device_type);
357 }
358 }
359 return rc;
360#else
361 return -EINVAL;
362#endif
363}
364
365/**
366 * __ap_send(): Send message to adjunct processor queue.
367 * @qid: The AP queue number
368 * @psmid: The program supplied message identifier
369 * @msg: The message text
370 * @length: The message length
371 * @special: Special Bit
372 *
373 * Returns AP queue status structure.
374 * Condition code 1 on NQAP can't happen because the L bit is 1.
375 * Condition code 2 on NQAP also means the send is incomplete,
376 * because a segment boundary was reached. The NQAP is repeated.
377 */
378static inline struct ap_queue_status
379__ap_send(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length,
380 unsigned int special)
381{
382 typedef struct { char _[length]; } msgblock;
383 register unsigned long reg0 asm ("0") = qid | 0x40000000UL;
384 register struct ap_queue_status reg1 asm ("1");
385 register unsigned long reg2 asm ("2") = (unsigned long) msg;
386 register unsigned long reg3 asm ("3") = (unsigned long) length;
387 register unsigned long reg4 asm ("4") = (unsigned int) (psmid >> 32);
388 register unsigned long reg5 asm ("5") = (unsigned int) psmid;
389
390 if (special == 1)
391 reg0 |= 0x400000UL;
392
393 asm volatile (
394 "0: .long 0xb2ad0042\n" /* DQAP */
395 " brc 2,0b"
396 : "+d" (reg0), "=d" (reg1), "+d" (reg2), "+d" (reg3)
397 : "d" (reg4), "d" (reg5), "m" (*(msgblock *) msg)
398 : "cc" );
399 return reg1;
400}
401
402int ap_send(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length)
403{
404 struct ap_queue_status status;
405
406 status = __ap_send(qid, psmid, msg, length, 0);
407 switch (status.response_code) {
408 case AP_RESPONSE_NORMAL:
409 return 0;
410 case AP_RESPONSE_Q_FULL:
411 case AP_RESPONSE_RESET_IN_PROGRESS:
412 return -EBUSY;
413 case AP_RESPONSE_REQ_FAC_NOT_INST:
414 return -EINVAL;
415 default: /* Device is gone. */
416 return -ENODEV;
417 }
418}
419EXPORT_SYMBOL(ap_send);
420
421/**
422 * __ap_recv(): Receive message from adjunct processor queue.
423 * @qid: The AP queue number
424 * @psmid: Pointer to program supplied message identifier
425 * @msg: The message text
426 * @length: The message length
427 *
428 * Returns AP queue status structure.
429 * Condition code 1 on DQAP means the receive has taken place
430 * but only partially. The response is incomplete, hence the
431 * DQAP is repeated.
432 * Condition code 2 on DQAP also means the receive is incomplete,
433 * this time because a segment boundary was reached. Again, the
434 * DQAP is repeated.
435 * Note that gpr2 is used by the DQAP instruction to keep track of
436 * any 'residual' length, in case the instruction gets interrupted.
437 * Hence it gets zeroed before the instruction.
438 */
439static inline struct ap_queue_status
440__ap_recv(ap_qid_t qid, unsigned long long *psmid, void *msg, size_t length)
441{
442 typedef struct { char _[length]; } msgblock;
443 register unsigned long reg0 asm("0") = qid | 0x80000000UL;
444 register struct ap_queue_status reg1 asm ("1");
445 register unsigned long reg2 asm("2") = 0UL;
446 register unsigned long reg4 asm("4") = (unsigned long) msg;
447 register unsigned long reg5 asm("5") = (unsigned long) length;
448 register unsigned long reg6 asm("6") = 0UL;
449 register unsigned long reg7 asm("7") = 0UL;
450
451
452 asm volatile(
453 "0: .long 0xb2ae0064\n"
454 " brc 6,0b\n"
455 : "+d" (reg0), "=d" (reg1), "+d" (reg2),
456 "+d" (reg4), "+d" (reg5), "+d" (reg6), "+d" (reg7),
457 "=m" (*(msgblock *) msg) : : "cc" );
458 *psmid = (((unsigned long long) reg6) << 32) + reg7;
459 return reg1;
460}
461
462int ap_recv(ap_qid_t qid, unsigned long long *psmid, void *msg, size_t length)
463{
464 struct ap_queue_status status;
465
466 status = __ap_recv(qid, psmid, msg, length);
467 switch (status.response_code) {
468 case AP_RESPONSE_NORMAL:
469 return 0;
470 case AP_RESPONSE_NO_PENDING_REPLY:
471 if (status.queue_empty)
472 return -ENOENT;
473 return -EBUSY;
474 case AP_RESPONSE_RESET_IN_PROGRESS:
475 return -EBUSY;
476 default:
477 return -ENODEV;
478 }
479}
480EXPORT_SYMBOL(ap_recv);
481
482/**
483 * ap_query_queue(): Check if an AP queue is available.
484 * @qid: The AP queue number
485 * @queue_depth: Pointer to queue depth value
486 * @device_type: Pointer to device type value
487 *
488 * The test is repeated for AP_MAX_RESET times.
489 */
490static int ap_query_queue(ap_qid_t qid, int *queue_depth, int *device_type)
491{
492 struct ap_queue_status status;
493 int t_depth, t_device_type, rc, i;
494
495 rc = -EBUSY;
496 for (i = 0; i < AP_MAX_RESET; i++) {
497 status = ap_test_queue(qid, &t_depth, &t_device_type);
498 switch (status.response_code) {
499 case AP_RESPONSE_NORMAL:
500 *queue_depth = t_depth + 1;
501 *device_type = t_device_type;
502 rc = 0;
503 break;
504 case AP_RESPONSE_Q_NOT_AVAIL:
505 rc = -ENODEV;
506 break;
507 case AP_RESPONSE_RESET_IN_PROGRESS:
508 break;
509 case AP_RESPONSE_DECONFIGURED:
510 rc = -ENODEV;
511 break;
512 case AP_RESPONSE_CHECKSTOPPED:
513 rc = -ENODEV;
514 break;
515 case AP_RESPONSE_INVALID_ADDRESS:
516 rc = -ENODEV;
517 break;
518 case AP_RESPONSE_OTHERWISE_CHANGED:
519 break;
520 case AP_RESPONSE_BUSY:
521 break;
522 default:
523 BUG();
524 }
525 if (rc != -EBUSY)
526 break;
527 if (i < AP_MAX_RESET - 1)
528 udelay(5);
529 }
530 return rc;
531}
532
533/**
534 * ap_init_queue(): Reset an AP queue.
535 * @qid: The AP queue number
536 *
537 * Reset an AP queue and wait for it to become available again.
538 */
539static int ap_init_queue(ap_qid_t qid)
540{
541 struct ap_queue_status status;
542 int rc, dummy, i;
543
544 rc = -ENODEV;
545 status = ap_reset_queue(qid);
546 for (i = 0; i < AP_MAX_RESET; i++) {
547 switch (status.response_code) {
548 case AP_RESPONSE_NORMAL:
549 if (status.queue_empty)
550 rc = 0;
551 break;
552 case AP_RESPONSE_Q_NOT_AVAIL:
553 case AP_RESPONSE_DECONFIGURED:
554 case AP_RESPONSE_CHECKSTOPPED:
555 i = AP_MAX_RESET; /* return with -ENODEV */
556 break;
557 case AP_RESPONSE_RESET_IN_PROGRESS:
558 rc = -EBUSY;
559 case AP_RESPONSE_BUSY:
560 default:
561 break;
562 }
563 if (rc != -ENODEV && rc != -EBUSY)
564 break;
565 if (i < AP_MAX_RESET - 1) {
566 udelay(5);
567 status = ap_test_queue(qid, &dummy, &dummy);
568 }
569 }
570 if (rc == 0 && ap_using_interrupts()) {
571 rc = ap_queue_enable_interruption(qid, ap_interrupt_indicator);
572 /* If interruption mode is supported by the machine,
573 * but an AP can not be enabled for interruption then
574 * the AP will be discarded. */
575 if (rc)
576 pr_err("Registering adapter interrupts for "
577 "AP %d failed\n", AP_QID_DEVICE(qid));
578 }
579 return rc;
580}
581
582/**
583 * ap_increase_queue_count(): Arm request timeout.
584 * @ap_dev: Pointer to an AP device.
585 *
586 * Arm request timeout if an AP device was idle and a new request is submitted.
587 */
588static void ap_increase_queue_count(struct ap_device *ap_dev)
589{
590 int timeout = ap_dev->drv->request_timeout;
591
592 ap_dev->queue_count++;
593 if (ap_dev->queue_count == 1) {
594 mod_timer(&ap_dev->timeout, jiffies + timeout);
595 ap_dev->reset = AP_RESET_ARMED;
596 }
597}
598
599/**
600 * ap_decrease_queue_count(): Decrease queue count.
601 * @ap_dev: Pointer to an AP device.
602 *
603 * If AP device is still alive, re-schedule request timeout if there are still
604 * pending requests.
605 */
606static void ap_decrease_queue_count(struct ap_device *ap_dev)
607{
608 int timeout = ap_dev->drv->request_timeout;
609
610 ap_dev->queue_count--;
611 if (ap_dev->queue_count > 0)
612 mod_timer(&ap_dev->timeout, jiffies + timeout);
613 else
614 /*
615 * The timeout timer should to be disabled now - since
616 * del_timer_sync() is very expensive, we just tell via the
617 * reset flag to ignore the pending timeout timer.
618 */
619 ap_dev->reset = AP_RESET_IGNORE;
620}
621
622/*
623 * AP device related attributes.
624 */
625static ssize_t ap_hwtype_show(struct device *dev,
626 struct device_attribute *attr, char *buf)
627{
628 struct ap_device *ap_dev = to_ap_dev(dev);
629 return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->device_type);
630}
631
632static DEVICE_ATTR(hwtype, 0444, ap_hwtype_show, NULL);
633static ssize_t ap_depth_show(struct device *dev, struct device_attribute *attr,
634 char *buf)
635{
636 struct ap_device *ap_dev = to_ap_dev(dev);
637 return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->queue_depth);
638}
639
640static DEVICE_ATTR(depth, 0444, ap_depth_show, NULL);
641static ssize_t ap_request_count_show(struct device *dev,
642 struct device_attribute *attr,
643 char *buf)
644{
645 struct ap_device *ap_dev = to_ap_dev(dev);
646 int rc;
647
648 spin_lock_bh(&ap_dev->lock);
649 rc = snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->total_request_count);
650 spin_unlock_bh(&ap_dev->lock);
651 return rc;
652}
653
654static DEVICE_ATTR(request_count, 0444, ap_request_count_show, NULL);
655
656static ssize_t ap_modalias_show(struct device *dev,
657 struct device_attribute *attr, char *buf)
658{
659 return sprintf(buf, "ap:t%02X", to_ap_dev(dev)->device_type);
660}
661
662static DEVICE_ATTR(modalias, 0444, ap_modalias_show, NULL);
663
664static struct attribute *ap_dev_attrs[] = {
665 &dev_attr_hwtype.attr,
666 &dev_attr_depth.attr,
667 &dev_attr_request_count.attr,
668 &dev_attr_modalias.attr,
669 NULL
670};
671static struct attribute_group ap_dev_attr_group = {
672 .attrs = ap_dev_attrs
673};
674
675/**
676 * ap_bus_match()
677 * @dev: Pointer to device
678 * @drv: Pointer to device_driver
679 *
680 * AP bus driver registration/unregistration.
681 */
682static int ap_bus_match(struct device *dev, struct device_driver *drv)
683{
684 struct ap_device *ap_dev = to_ap_dev(dev);
685 struct ap_driver *ap_drv = to_ap_drv(drv);
686 struct ap_device_id *id;
687
688 /*
689 * Compare device type of the device with the list of
690 * supported types of the device_driver.
691 */
692 for (id = ap_drv->ids; id->match_flags; id++) {
693 if ((id->match_flags & AP_DEVICE_ID_MATCH_DEVICE_TYPE) &&
694 (id->dev_type != ap_dev->device_type))
695 continue;
696 return 1;
697 }
698 return 0;
699}
700
701/**
702 * ap_uevent(): Uevent function for AP devices.
703 * @dev: Pointer to device
704 * @env: Pointer to kobj_uevent_env
705 *
706 * It sets up a single environment variable DEV_TYPE which contains the
707 * hardware device type.
708 */
709static int ap_uevent (struct device *dev, struct kobj_uevent_env *env)
710{
711 struct ap_device *ap_dev = to_ap_dev(dev);
712 int retval = 0;
713
714 if (!ap_dev)
715 return -ENODEV;
716
717 /* Set up DEV_TYPE environment variable. */
718 retval = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
719 if (retval)
720 return retval;
721
722 /* Add MODALIAS= */
723 retval = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
724
725 return retval;
726}
727
728static int ap_bus_suspend(struct device *dev, pm_message_t state)
729{
730 struct ap_device *ap_dev = to_ap_dev(dev);
731 unsigned long flags;
732
733 if (!ap_suspend_flag) {
734 ap_suspend_flag = 1;
735
736 /* Disable scanning for devices, thus we do not want to scan
737 * for them after removing.
738 */
739 del_timer_sync(&ap_config_timer);
740 if (ap_work_queue != NULL) {
741 destroy_workqueue(ap_work_queue);
742 ap_work_queue = NULL;
743 }
744
745 tasklet_disable(&ap_tasklet);
746 }
747 /* Poll on the device until all requests are finished. */
748 do {
749 flags = 0;
750 spin_lock_bh(&ap_dev->lock);
751 __ap_poll_device(ap_dev, &flags);
752 spin_unlock_bh(&ap_dev->lock);
753 } while ((flags & 1) || (flags & 2));
754
755 spin_lock_bh(&ap_dev->lock);
756 ap_dev->unregistered = 1;
757 spin_unlock_bh(&ap_dev->lock);
758
759 return 0;
760}
761
762static int ap_bus_resume(struct device *dev)
763{
764 int rc = 0;
765 struct ap_device *ap_dev = to_ap_dev(dev);
766
767 if (ap_suspend_flag) {
768 ap_suspend_flag = 0;
769 if (!ap_interrupts_available())
770 ap_interrupt_indicator = NULL;
771 if (!user_set_domain) {
772 ap_domain_index = -1;
773 ap_select_domain();
774 }
775 init_timer(&ap_config_timer);
776 ap_config_timer.function = ap_config_timeout;
777 ap_config_timer.data = 0;
778 ap_config_timer.expires = jiffies + ap_config_time * HZ;
779 add_timer(&ap_config_timer);
780 ap_work_queue = create_singlethread_workqueue("kapwork");
781 if (!ap_work_queue)
782 return -ENOMEM;
783 tasklet_enable(&ap_tasklet);
784 if (!ap_using_interrupts())
785 ap_schedule_poll_timer();
786 else
787 tasklet_schedule(&ap_tasklet);
788 if (ap_thread_flag)
789 rc = ap_poll_thread_start();
790 }
791 if (AP_QID_QUEUE(ap_dev->qid) != ap_domain_index) {
792 spin_lock_bh(&ap_dev->lock);
793 ap_dev->qid = AP_MKQID(AP_QID_DEVICE(ap_dev->qid),
794 ap_domain_index);
795 spin_unlock_bh(&ap_dev->lock);
796 }
797 queue_work(ap_work_queue, &ap_config_work);
798
799 return rc;
800}
801
802static struct bus_type ap_bus_type = {
803 .name = "ap",
804 .match = &ap_bus_match,
805 .uevent = &ap_uevent,
806 .suspend = ap_bus_suspend,
807 .resume = ap_bus_resume
808};
809
810static int ap_device_probe(struct device *dev)
811{
812 struct ap_device *ap_dev = to_ap_dev(dev);
813 struct ap_driver *ap_drv = to_ap_drv(dev->driver);
814 int rc;
815
816 ap_dev->drv = ap_drv;
817 rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
818 if (!rc) {
819 spin_lock_bh(&ap_device_list_lock);
820 list_add(&ap_dev->list, &ap_device_list);
821 spin_unlock_bh(&ap_device_list_lock);
822 }
823 return rc;
824}
825
826/**
827 * __ap_flush_queue(): Flush requests.
828 * @ap_dev: Pointer to the AP device
829 *
830 * Flush all requests from the request/pending queue of an AP device.
831 */
832static void __ap_flush_queue(struct ap_device *ap_dev)
833{
834 struct ap_message *ap_msg, *next;
835
836 list_for_each_entry_safe(ap_msg, next, &ap_dev->pendingq, list) {
837 list_del_init(&ap_msg->list);
838 ap_dev->pendingq_count--;
839 ap_dev->drv->receive(ap_dev, ap_msg, ERR_PTR(-ENODEV));
840 }
841 list_for_each_entry_safe(ap_msg, next, &ap_dev->requestq, list) {
842 list_del_init(&ap_msg->list);
843 ap_dev->requestq_count--;
844 ap_dev->drv->receive(ap_dev, ap_msg, ERR_PTR(-ENODEV));
845 }
846}
847
848void ap_flush_queue(struct ap_device *ap_dev)
849{
850 spin_lock_bh(&ap_dev->lock);
851 __ap_flush_queue(ap_dev);
852 spin_unlock_bh(&ap_dev->lock);
853}
854EXPORT_SYMBOL(ap_flush_queue);
855
856static int ap_device_remove(struct device *dev)
857{
858 struct ap_device *ap_dev = to_ap_dev(dev);
859 struct ap_driver *ap_drv = ap_dev->drv;
860
861 ap_flush_queue(ap_dev);
862 del_timer_sync(&ap_dev->timeout);
863 spin_lock_bh(&ap_device_list_lock);
864 list_del_init(&ap_dev->list);
865 spin_unlock_bh(&ap_device_list_lock);
866 if (ap_drv->remove)
867 ap_drv->remove(ap_dev);
868 spin_lock_bh(&ap_dev->lock);
869 atomic_sub(ap_dev->queue_count, &ap_poll_requests);
870 spin_unlock_bh(&ap_dev->lock);
871 return 0;
872}
873
874int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
875 char *name)
876{
877 struct device_driver *drv = &ap_drv->driver;
878
879 drv->bus = &ap_bus_type;
880 drv->probe = ap_device_probe;
881 drv->remove = ap_device_remove;
882 drv->owner = owner;
883 drv->name = name;
884 return driver_register(drv);
885}
886EXPORT_SYMBOL(ap_driver_register);
887
888void ap_driver_unregister(struct ap_driver *ap_drv)
889{
890 driver_unregister(&ap_drv->driver);
891}
892EXPORT_SYMBOL(ap_driver_unregister);
893
894/*
895 * AP bus attributes.
896 */
897static ssize_t ap_domain_show(struct bus_type *bus, char *buf)
898{
899 return snprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index);
900}
901
902static BUS_ATTR(ap_domain, 0444, ap_domain_show, NULL);
903
904static ssize_t ap_config_time_show(struct bus_type *bus, char *buf)
905{
906 return snprintf(buf, PAGE_SIZE, "%d\n", ap_config_time);
907}
908
909static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf)
910{
911 return snprintf(buf, PAGE_SIZE, "%d\n",
912 ap_using_interrupts() ? 1 : 0);
913}
914
915static BUS_ATTR(ap_interrupts, 0444, ap_interrupts_show, NULL);
916
917static ssize_t ap_config_time_store(struct bus_type *bus,
918 const char *buf, size_t count)
919{
920 int time;
921
922 if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
923 return -EINVAL;
924 ap_config_time = time;
925 if (!timer_pending(&ap_config_timer) ||
926 !mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ)) {
927 ap_config_timer.expires = jiffies + ap_config_time * HZ;
928 add_timer(&ap_config_timer);
929 }
930 return count;
931}
932
933static BUS_ATTR(config_time, 0644, ap_config_time_show, ap_config_time_store);
934
935static ssize_t ap_poll_thread_show(struct bus_type *bus, char *buf)
936{
937 return snprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0);
938}
939
940static ssize_t ap_poll_thread_store(struct bus_type *bus,
941 const char *buf, size_t count)
942{
943 int flag, rc;
944
945 if (sscanf(buf, "%d\n", &flag) != 1)
946 return -EINVAL;
947 if (flag) {
948 rc = ap_poll_thread_start();
949 if (rc)
950 return rc;
951 }
952 else
953 ap_poll_thread_stop();
954 return count;
955}
956
957static BUS_ATTR(poll_thread, 0644, ap_poll_thread_show, ap_poll_thread_store);
958
959static ssize_t poll_timeout_show(struct bus_type *bus, char *buf)
960{
961 return snprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout);
962}
963
964static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf,
965 size_t count)
966{
967 unsigned long long time;
968 ktime_t hr_time;
969
970 /* 120 seconds = maximum poll interval */
971 if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 ||
972 time > 120000000000ULL)
973 return -EINVAL;
974 poll_timeout = time;
975 hr_time = ktime_set(0, poll_timeout);
976
977 if (!hrtimer_is_queued(&ap_poll_timer) ||
978 !hrtimer_forward(&ap_poll_timer, hrtimer_get_expires(&ap_poll_timer), hr_time)) {
979 hrtimer_set_expires(&ap_poll_timer, hr_time);
980 hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
981 }
982 return count;
983}
984
985static BUS_ATTR(poll_timeout, 0644, poll_timeout_show, poll_timeout_store);
986
987static struct bus_attribute *const ap_bus_attrs[] = {
988 &bus_attr_ap_domain,
989 &bus_attr_config_time,
990 &bus_attr_poll_thread,
991 &bus_attr_ap_interrupts,
992 &bus_attr_poll_timeout,
993 NULL,
994};
995
996/**
997 * ap_select_domain(): Select an AP domain.
998 *
999 * Pick one of the 16 AP domains.
1000 */
1001static int ap_select_domain(void)
1002{
1003 int queue_depth, device_type, count, max_count, best_domain;
1004 int rc, i, j;
1005
1006 /*
1007 * We want to use a single domain. Either the one specified with
1008 * the "domain=" parameter or the domain with the maximum number
1009 * of devices.
1010 */
1011 if (ap_domain_index >= 0 && ap_domain_index < AP_DOMAINS)
1012 /* Domain has already been selected. */
1013 return 0;
1014 best_domain = -1;
1015 max_count = 0;
1016 for (i = 0; i < AP_DOMAINS; i++) {
1017 count = 0;
1018 for (j = 0; j < AP_DEVICES; j++) {
1019 ap_qid_t qid = AP_MKQID(j, i);
1020 rc = ap_query_queue(qid, &queue_depth, &device_type);
1021 if (rc)
1022 continue;
1023 count++;
1024 }
1025 if (count > max_count) {
1026 max_count = count;
1027 best_domain = i;
1028 }
1029 }
1030 if (best_domain >= 0){
1031 ap_domain_index = best_domain;
1032 return 0;
1033 }
1034 return -ENODEV;
1035}
1036
1037/**
1038 * ap_probe_device_type(): Find the device type of an AP.
1039 * @ap_dev: pointer to the AP device.
1040 *
1041 * Find the device type if query queue returned a device type of 0.
1042 */
1043static int ap_probe_device_type(struct ap_device *ap_dev)
1044{
1045 static unsigned char msg[] = {
1046 0x00,0x06,0x00,0x00,0x00,0x00,0x00,0x00,
1047 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1048 0x00,0x00,0x00,0x58,0x00,0x00,0x00,0x00,
1049 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1050 0x01,0x00,0x43,0x43,0x41,0x2d,0x41,0x50,
1051 0x50,0x4c,0x20,0x20,0x20,0x01,0x01,0x01,
1052 0x00,0x00,0x00,0x00,0x50,0x4b,0x00,0x00,
1053 0x00,0x00,0x01,0x1c,0x00,0x00,0x00,0x00,
1054 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1055 0x00,0x00,0x05,0xb8,0x00,0x00,0x00,0x00,
1056 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1057 0x70,0x00,0x41,0x00,0x00,0x00,0x00,0x00,
1058 0x00,0x00,0x54,0x32,0x01,0x00,0xa0,0x00,
1059 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1060 0x00,0x00,0x00,0x00,0xb8,0x05,0x00,0x00,
1061 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1062 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1063 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1064 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1065 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1066 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1067 0x00,0x00,0x0a,0x00,0x00,0x00,0x00,0x00,
1068 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
1069 0x00,0x00,0x00,0x00,0x00,0x00,0x08,0x00,
1070 0x49,0x43,0x53,0x46,0x20,0x20,0x20,0x20,
1071 0x50,0x4b,0x0a,0x00,0x50,0x4b,0x43,0x53,
1072 0x2d,0x31,0x2e,0x32,0x37,0x00,0x11,0x22,
1073 0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00,
1074 0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,
1075 0x99,0x00,0x11,0x22,0x33,0x44,0x55,0x66,
1076 0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x44,
1077 0x55,0x66,0x77,0x88,0x99,0x00,0x11,0x22,
1078 0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00,
1079 0x11,0x22,0x33,0x5d,0x00,0x5b,0x00,0x77,
1080 0x88,0x1e,0x00,0x00,0x57,0x00,0x00,0x00,
1081 0x00,0x04,0x00,0x00,0x4f,0x00,0x00,0x00,
1082 0x03,0x02,0x00,0x00,0x40,0x01,0x00,0x01,
1083 0xce,0x02,0x68,0x2d,0x5f,0xa9,0xde,0x0c,
1084 0xf6,0xd2,0x7b,0x58,0x4b,0xf9,0x28,0x68,
1085 0x3d,0xb4,0xf4,0xef,0x78,0xd5,0xbe,0x66,
1086 0x63,0x42,0xef,0xf8,0xfd,0xa4,0xf8,0xb0,
1087 0x8e,0x29,0xc2,0xc9,0x2e,0xd8,0x45,0xb8,
1088 0x53,0x8c,0x6f,0x4e,0x72,0x8f,0x6c,0x04,
1089 0x9c,0x88,0xfc,0x1e,0xc5,0x83,0x55,0x57,
1090 0xf7,0xdd,0xfd,0x4f,0x11,0x36,0x95,0x5d,
1091 };
1092 struct ap_queue_status status;
1093 unsigned long long psmid;
1094 char *reply;
1095 int rc, i;
1096
1097 reply = (void *) get_zeroed_page(GFP_KERNEL);
1098 if (!reply) {
1099 rc = -ENOMEM;
1100 goto out;
1101 }
1102
1103 status = __ap_send(ap_dev->qid, 0x0102030405060708ULL,
1104 msg, sizeof(msg), 0);
1105 if (status.response_code != AP_RESPONSE_NORMAL) {
1106 rc = -ENODEV;
1107 goto out_free;
1108 }
1109
1110 /* Wait for the test message to complete. */
1111 for (i = 0; i < 6; i++) {
1112 mdelay(300);
1113 status = __ap_recv(ap_dev->qid, &psmid, reply, 4096);
1114 if (status.response_code == AP_RESPONSE_NORMAL &&
1115 psmid == 0x0102030405060708ULL)
1116 break;
1117 }
1118 if (i < 6) {
1119 /* Got an answer. */
1120 if (reply[0] == 0x00 && reply[1] == 0x86)
1121 ap_dev->device_type = AP_DEVICE_TYPE_PCICC;
1122 else
1123 ap_dev->device_type = AP_DEVICE_TYPE_PCICA;
1124 rc = 0;
1125 } else
1126 rc = -ENODEV;
1127
1128out_free:
1129 free_page((unsigned long) reply);
1130out:
1131 return rc;
1132}
1133
1134static void ap_interrupt_handler(void *unused1, void *unused2)
1135{
1136 kstat_cpu(smp_processor_id()).irqs[IOINT_APB]++;
1137 tasklet_schedule(&ap_tasklet);
1138}
1139
1140/**
1141 * __ap_scan_bus(): Scan the AP bus.
1142 * @dev: Pointer to device
1143 * @data: Pointer to data
1144 *
1145 * Scan the AP bus for new devices.
1146 */
1147static int __ap_scan_bus(struct device *dev, void *data)
1148{
1149 return to_ap_dev(dev)->qid == (ap_qid_t)(unsigned long) data;
1150}
1151
1152static void ap_device_release(struct device *dev)
1153{
1154 struct ap_device *ap_dev = to_ap_dev(dev);
1155
1156 kfree(ap_dev);
1157}
1158
1159static void ap_scan_bus(struct work_struct *unused)
1160{
1161 struct ap_device *ap_dev;
1162 struct device *dev;
1163 ap_qid_t qid;
1164 int queue_depth, device_type;
1165 unsigned int device_functions;
1166 int rc, i;
1167
1168 if (ap_select_domain() != 0)
1169 return;
1170 for (i = 0; i < AP_DEVICES; i++) {
1171 qid = AP_MKQID(i, ap_domain_index);
1172 dev = bus_find_device(&ap_bus_type, NULL,
1173 (void *)(unsigned long)qid,
1174 __ap_scan_bus);
1175 rc = ap_query_queue(qid, &queue_depth, &device_type);
1176 if (dev) {
1177 if (rc == -EBUSY) {
1178 set_current_state(TASK_UNINTERRUPTIBLE);
1179 schedule_timeout(AP_RESET_TIMEOUT);
1180 rc = ap_query_queue(qid, &queue_depth,
1181 &device_type);
1182 }
1183 ap_dev = to_ap_dev(dev);
1184 spin_lock_bh(&ap_dev->lock);
1185 if (rc || ap_dev->unregistered) {
1186 spin_unlock_bh(&ap_dev->lock);
1187 if (ap_dev->unregistered)
1188 i--;
1189 device_unregister(dev);
1190 put_device(dev);
1191 continue;
1192 }
1193 spin_unlock_bh(&ap_dev->lock);
1194 put_device(dev);
1195 continue;
1196 }
1197 if (rc)
1198 continue;
1199 rc = ap_init_queue(qid);
1200 if (rc)
1201 continue;
1202 ap_dev = kzalloc(sizeof(*ap_dev), GFP_KERNEL);
1203 if (!ap_dev)
1204 break;
1205 ap_dev->qid = qid;
1206 ap_dev->queue_depth = queue_depth;
1207 ap_dev->unregistered = 1;
1208 spin_lock_init(&ap_dev->lock);
1209 INIT_LIST_HEAD(&ap_dev->pendingq);
1210 INIT_LIST_HEAD(&ap_dev->requestq);
1211 INIT_LIST_HEAD(&ap_dev->list);
1212 setup_timer(&ap_dev->timeout, ap_request_timeout,
1213 (unsigned long) ap_dev);
1214 switch (device_type) {
1215 case 0:
1216 if (ap_probe_device_type(ap_dev)) {
1217 kfree(ap_dev);
1218 continue;
1219 }
1220 break;
1221 case 10:
1222 if (ap_query_functions(qid, &device_functions)) {
1223 kfree(ap_dev);
1224 continue;
1225 }
1226 if (test_ap_facility(device_functions, 3))
1227 ap_dev->device_type = AP_DEVICE_TYPE_CEX3C;
1228 else if (test_ap_facility(device_functions, 4))
1229 ap_dev->device_type = AP_DEVICE_TYPE_CEX3A;
1230 else {
1231 kfree(ap_dev);
1232 continue;
1233 }
1234 break;
1235 default:
1236 ap_dev->device_type = device_type;
1237 }
1238
1239 ap_dev->device.bus = &ap_bus_type;
1240 ap_dev->device.parent = ap_root_device;
1241 if (dev_set_name(&ap_dev->device, "card%02x",
1242 AP_QID_DEVICE(ap_dev->qid))) {
1243 kfree(ap_dev);
1244 continue;
1245 }
1246 ap_dev->device.release = ap_device_release;
1247 rc = device_register(&ap_dev->device);
1248 if (rc) {
1249 put_device(&ap_dev->device);
1250 continue;
1251 }
1252 /* Add device attributes. */
1253 rc = sysfs_create_group(&ap_dev->device.kobj,
1254 &ap_dev_attr_group);
1255 if (!rc) {
1256 spin_lock_bh(&ap_dev->lock);
1257 ap_dev->unregistered = 0;
1258 spin_unlock_bh(&ap_dev->lock);
1259 }
1260 else
1261 device_unregister(&ap_dev->device);
1262 }
1263}
1264
1265static void
1266ap_config_timeout(unsigned long ptr)
1267{
1268 queue_work(ap_work_queue, &ap_config_work);
1269 ap_config_timer.expires = jiffies + ap_config_time * HZ;
1270 add_timer(&ap_config_timer);
1271}
1272
1273/**
1274 * ap_schedule_poll_timer(): Schedule poll timer.
1275 *
1276 * Set up the timer to run the poll tasklet
1277 */
1278static inline void ap_schedule_poll_timer(void)
1279{
1280 ktime_t hr_time;
1281
1282 spin_lock_bh(&ap_poll_timer_lock);
1283 if (ap_using_interrupts() || ap_suspend_flag)
1284 goto out;
1285 if (hrtimer_is_queued(&ap_poll_timer))
1286 goto out;
1287 if (ktime_to_ns(hrtimer_expires_remaining(&ap_poll_timer)) <= 0) {
1288 hr_time = ktime_set(0, poll_timeout);
1289 hrtimer_forward_now(&ap_poll_timer, hr_time);
1290 hrtimer_restart(&ap_poll_timer);
1291 }
1292out:
1293 spin_unlock_bh(&ap_poll_timer_lock);
1294}
1295
1296/**
1297 * ap_poll_read(): Receive pending reply messages from an AP device.
1298 * @ap_dev: pointer to the AP device
1299 * @flags: pointer to control flags, bit 2^0 is set if another poll is
1300 * required, bit 2^1 is set if the poll timer needs to get armed
1301 *
1302 * Returns 0 if the device is still present, -ENODEV if not.
1303 */
1304static int ap_poll_read(struct ap_device *ap_dev, unsigned long *flags)
1305{
1306 struct ap_queue_status status;
1307 struct ap_message *ap_msg;
1308
1309 if (ap_dev->queue_count <= 0)
1310 return 0;
1311 status = __ap_recv(ap_dev->qid, &ap_dev->reply->psmid,
1312 ap_dev->reply->message, ap_dev->reply->length);
1313 switch (status.response_code) {
1314 case AP_RESPONSE_NORMAL:
1315 atomic_dec(&ap_poll_requests);
1316 ap_decrease_queue_count(ap_dev);
1317 list_for_each_entry(ap_msg, &ap_dev->pendingq, list) {
1318 if (ap_msg->psmid != ap_dev->reply->psmid)
1319 continue;
1320 list_del_init(&ap_msg->list);
1321 ap_dev->pendingq_count--;
1322 ap_dev->drv->receive(ap_dev, ap_msg, ap_dev->reply);
1323 break;
1324 }
1325 if (ap_dev->queue_count > 0)
1326 *flags |= 1;
1327 break;
1328 case AP_RESPONSE_NO_PENDING_REPLY:
1329 if (status.queue_empty) {
1330 /* The card shouldn't forget requests but who knows. */
1331 atomic_sub(ap_dev->queue_count, &ap_poll_requests);
1332 ap_dev->queue_count = 0;
1333 list_splice_init(&ap_dev->pendingq, &ap_dev->requestq);
1334 ap_dev->requestq_count += ap_dev->pendingq_count;
1335 ap_dev->pendingq_count = 0;
1336 } else
1337 *flags |= 2;
1338 break;
1339 default:
1340 return -ENODEV;
1341 }
1342 return 0;
1343}
1344
1345/**
1346 * ap_poll_write(): Send messages from the request queue to an AP device.
1347 * @ap_dev: pointer to the AP device
1348 * @flags: pointer to control flags, bit 2^0 is set if another poll is
1349 * required, bit 2^1 is set if the poll timer needs to get armed
1350 *
1351 * Returns 0 if the device is still present, -ENODEV if not.
1352 */
1353static int ap_poll_write(struct ap_device *ap_dev, unsigned long *flags)
1354{
1355 struct ap_queue_status status;
1356 struct ap_message *ap_msg;
1357
1358 if (ap_dev->requestq_count <= 0 ||
1359 ap_dev->queue_count >= ap_dev->queue_depth)
1360 return 0;
1361 /* Start the next request on the queue. */
1362 ap_msg = list_entry(ap_dev->requestq.next, struct ap_message, list);
1363 status = __ap_send(ap_dev->qid, ap_msg->psmid,
1364 ap_msg->message, ap_msg->length, ap_msg->special);
1365 switch (status.response_code) {
1366 case AP_RESPONSE_NORMAL:
1367 atomic_inc(&ap_poll_requests);
1368 ap_increase_queue_count(ap_dev);
1369 list_move_tail(&ap_msg->list, &ap_dev->pendingq);
1370 ap_dev->requestq_count--;
1371 ap_dev->pendingq_count++;
1372 if (ap_dev->queue_count < ap_dev->queue_depth &&
1373 ap_dev->requestq_count > 0)
1374 *flags |= 1;
1375 *flags |= 2;
1376 break;
1377 case AP_RESPONSE_Q_FULL:
1378 case AP_RESPONSE_RESET_IN_PROGRESS:
1379 *flags |= 2;
1380 break;
1381 case AP_RESPONSE_MESSAGE_TOO_BIG:
1382 case AP_RESPONSE_REQ_FAC_NOT_INST:
1383 return -EINVAL;
1384 default:
1385 return -ENODEV;
1386 }
1387 return 0;
1388}
1389
1390/**
1391 * ap_poll_queue(): Poll AP device for pending replies and send new messages.
1392 * @ap_dev: pointer to the bus device
1393 * @flags: pointer to control flags, bit 2^0 is set if another poll is
1394 * required, bit 2^1 is set if the poll timer needs to get armed
1395 *
1396 * Poll AP device for pending replies and send new messages. If either
1397 * ap_poll_read or ap_poll_write returns -ENODEV unregister the device.
1398 * Returns 0.
1399 */
1400static inline int ap_poll_queue(struct ap_device *ap_dev, unsigned long *flags)
1401{
1402 int rc;
1403
1404 rc = ap_poll_read(ap_dev, flags);
1405 if (rc)
1406 return rc;
1407 return ap_poll_write(ap_dev, flags);
1408}
1409
1410/**
1411 * __ap_queue_message(): Queue a message to a device.
1412 * @ap_dev: pointer to the AP device
1413 * @ap_msg: the message to be queued
1414 *
1415 * Queue a message to a device. Returns 0 if successful.
1416 */
1417static int __ap_queue_message(struct ap_device *ap_dev, struct ap_message *ap_msg)
1418{
1419 struct ap_queue_status status;
1420
1421 if (list_empty(&ap_dev->requestq) &&
1422 ap_dev->queue_count < ap_dev->queue_depth) {
1423 status = __ap_send(ap_dev->qid, ap_msg->psmid,
1424 ap_msg->message, ap_msg->length,
1425 ap_msg->special);
1426 switch (status.response_code) {
1427 case AP_RESPONSE_NORMAL:
1428 list_add_tail(&ap_msg->list, &ap_dev->pendingq);
1429 atomic_inc(&ap_poll_requests);
1430 ap_dev->pendingq_count++;
1431 ap_increase_queue_count(ap_dev);
1432 ap_dev->total_request_count++;
1433 break;
1434 case AP_RESPONSE_Q_FULL:
1435 case AP_RESPONSE_RESET_IN_PROGRESS:
1436 list_add_tail(&ap_msg->list, &ap_dev->requestq);
1437 ap_dev->requestq_count++;
1438 ap_dev->total_request_count++;
1439 return -EBUSY;
1440 case AP_RESPONSE_REQ_FAC_NOT_INST:
1441 case AP_RESPONSE_MESSAGE_TOO_BIG:
1442 ap_dev->drv->receive(ap_dev, ap_msg, ERR_PTR(-EINVAL));
1443 return -EINVAL;
1444 default: /* Device is gone. */
1445 ap_dev->drv->receive(ap_dev, ap_msg, ERR_PTR(-ENODEV));
1446 return -ENODEV;
1447 }
1448 } else {
1449 list_add_tail(&ap_msg->list, &ap_dev->requestq);
1450 ap_dev->requestq_count++;
1451 ap_dev->total_request_count++;
1452 return -EBUSY;
1453 }
1454 ap_schedule_poll_timer();
1455 return 0;
1456}
1457
1458void ap_queue_message(struct ap_device *ap_dev, struct ap_message *ap_msg)
1459{
1460 unsigned long flags;
1461 int rc;
1462
1463 spin_lock_bh(&ap_dev->lock);
1464 if (!ap_dev->unregistered) {
1465 /* Make room on the queue by polling for finished requests. */
1466 rc = ap_poll_queue(ap_dev, &flags);
1467 if (!rc)
1468 rc = __ap_queue_message(ap_dev, ap_msg);
1469 if (!rc)
1470 wake_up(&ap_poll_wait);
1471 if (rc == -ENODEV)
1472 ap_dev->unregistered = 1;
1473 } else {
1474 ap_dev->drv->receive(ap_dev, ap_msg, ERR_PTR(-ENODEV));
1475 rc = -ENODEV;
1476 }
1477 spin_unlock_bh(&ap_dev->lock);
1478 if (rc == -ENODEV)
1479 device_unregister(&ap_dev->device);
1480}
1481EXPORT_SYMBOL(ap_queue_message);
1482
1483/**
1484 * ap_cancel_message(): Cancel a crypto request.
1485 * @ap_dev: The AP device that has the message queued
1486 * @ap_msg: The message that is to be removed
1487 *
1488 * Cancel a crypto request. This is done by removing the request
1489 * from the device pending or request queue. Note that the
1490 * request stays on the AP queue. When it finishes the message
1491 * reply will be discarded because the psmid can't be found.
1492 */
1493void ap_cancel_message(struct ap_device *ap_dev, struct ap_message *ap_msg)
1494{
1495 struct ap_message *tmp;
1496
1497 spin_lock_bh(&ap_dev->lock);
1498 if (!list_empty(&ap_msg->list)) {
1499 list_for_each_entry(tmp, &ap_dev->pendingq, list)
1500 if (tmp->psmid == ap_msg->psmid) {
1501 ap_dev->pendingq_count--;
1502 goto found;
1503 }
1504 ap_dev->requestq_count--;
1505 found:
1506 list_del_init(&ap_msg->list);
1507 }
1508 spin_unlock_bh(&ap_dev->lock);
1509}
1510EXPORT_SYMBOL(ap_cancel_message);
1511
1512/**
1513 * ap_poll_timeout(): AP receive polling for finished AP requests.
1514 * @unused: Unused pointer.
1515 *
1516 * Schedules the AP tasklet using a high resolution timer.
1517 */
1518static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
1519{
1520 tasklet_schedule(&ap_tasklet);
1521 return HRTIMER_NORESTART;
1522}
1523
1524/**
1525 * ap_reset(): Reset a not responding AP device.
1526 * @ap_dev: Pointer to the AP device
1527 *
1528 * Reset a not responding AP device and move all requests from the
1529 * pending queue to the request queue.
1530 */
1531static void ap_reset(struct ap_device *ap_dev)
1532{
1533 int rc;
1534
1535 ap_dev->reset = AP_RESET_IGNORE;
1536 atomic_sub(ap_dev->queue_count, &ap_poll_requests);
1537 ap_dev->queue_count = 0;
1538 list_splice_init(&ap_dev->pendingq, &ap_dev->requestq);
1539 ap_dev->requestq_count += ap_dev->pendingq_count;
1540 ap_dev->pendingq_count = 0;
1541 rc = ap_init_queue(ap_dev->qid);
1542 if (rc == -ENODEV)
1543 ap_dev->unregistered = 1;
1544}
1545
1546static int __ap_poll_device(struct ap_device *ap_dev, unsigned long *flags)
1547{
1548 if (!ap_dev->unregistered) {
1549 if (ap_poll_queue(ap_dev, flags))
1550 ap_dev->unregistered = 1;
1551 if (ap_dev->reset == AP_RESET_DO)
1552 ap_reset(ap_dev);
1553 }
1554 return 0;
1555}
1556
1557/**
1558 * ap_poll_all(): Poll all AP devices.
1559 * @dummy: Unused variable
1560 *
1561 * Poll all AP devices on the bus in a round robin fashion. Continue
1562 * polling until bit 2^0 of the control flags is not set. If bit 2^1
1563 * of the control flags has been set arm the poll timer.
1564 */
1565static void ap_poll_all(unsigned long dummy)
1566{
1567 unsigned long flags;
1568 struct ap_device *ap_dev;
1569
1570 /* Reset the indicator if interrupts are used. Thus new interrupts can
1571 * be received. Doing it in the beginning of the tasklet is therefor
1572 * important that no requests on any AP get lost.
1573 */
1574 if (ap_using_interrupts())
1575 xchg((u8 *)ap_interrupt_indicator, 0);
1576 do {
1577 flags = 0;
1578 spin_lock(&ap_device_list_lock);
1579 list_for_each_entry(ap_dev, &ap_device_list, list) {
1580 spin_lock(&ap_dev->lock);
1581 __ap_poll_device(ap_dev, &flags);
1582 spin_unlock(&ap_dev->lock);
1583 }
1584 spin_unlock(&ap_device_list_lock);
1585 } while (flags & 1);
1586 if (flags & 2)
1587 ap_schedule_poll_timer();
1588}
1589
1590/**
1591 * ap_poll_thread(): Thread that polls for finished requests.
1592 * @data: Unused pointer
1593 *
1594 * AP bus poll thread. The purpose of this thread is to poll for
1595 * finished requests in a loop if there is a "free" cpu - that is
1596 * a cpu that doesn't have anything better to do. The polling stops
1597 * as soon as there is another task or if all messages have been
1598 * delivered.
1599 */
1600static int ap_poll_thread(void *data)
1601{
1602 DECLARE_WAITQUEUE(wait, current);
1603 unsigned long flags;
1604 int requests;
1605 struct ap_device *ap_dev;
1606
1607 set_user_nice(current, 19);
1608 while (1) {
1609 if (ap_suspend_flag)
1610 return 0;
1611 if (need_resched()) {
1612 schedule();
1613 continue;
1614 }
1615 add_wait_queue(&ap_poll_wait, &wait);
1616 set_current_state(TASK_INTERRUPTIBLE);
1617 if (kthread_should_stop())
1618 break;
1619 requests = atomic_read(&ap_poll_requests);
1620 if (requests <= 0)
1621 schedule();
1622 set_current_state(TASK_RUNNING);
1623 remove_wait_queue(&ap_poll_wait, &wait);
1624
1625 flags = 0;
1626 spin_lock_bh(&ap_device_list_lock);
1627 list_for_each_entry(ap_dev, &ap_device_list, list) {
1628 spin_lock(&ap_dev->lock);
1629 __ap_poll_device(ap_dev, &flags);
1630 spin_unlock(&ap_dev->lock);
1631 }
1632 spin_unlock_bh(&ap_device_list_lock);
1633 }
1634 set_current_state(TASK_RUNNING);
1635 remove_wait_queue(&ap_poll_wait, &wait);
1636 return 0;
1637}
1638
1639static int ap_poll_thread_start(void)
1640{
1641 int rc;
1642
1643 if (ap_using_interrupts() || ap_suspend_flag)
1644 return 0;
1645 mutex_lock(&ap_poll_thread_mutex);
1646 if (!ap_poll_kthread) {
1647 ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
1648 rc = IS_ERR(ap_poll_kthread) ? PTR_ERR(ap_poll_kthread) : 0;
1649 if (rc)
1650 ap_poll_kthread = NULL;
1651 }
1652 else
1653 rc = 0;
1654 mutex_unlock(&ap_poll_thread_mutex);
1655 return rc;
1656}
1657
1658static void ap_poll_thread_stop(void)
1659{
1660 mutex_lock(&ap_poll_thread_mutex);
1661 if (ap_poll_kthread) {
1662 kthread_stop(ap_poll_kthread);
1663 ap_poll_kthread = NULL;
1664 }
1665 mutex_unlock(&ap_poll_thread_mutex);
1666}
1667
1668/**
1669 * ap_request_timeout(): Handling of request timeouts
1670 * @data: Holds the AP device.
1671 *
1672 * Handles request timeouts.
1673 */
1674static void ap_request_timeout(unsigned long data)
1675{
1676 struct ap_device *ap_dev = (struct ap_device *) data;
1677
1678 if (ap_dev->reset == AP_RESET_ARMED) {
1679 ap_dev->reset = AP_RESET_DO;
1680
1681 if (ap_using_interrupts())
1682 tasklet_schedule(&ap_tasklet);
1683 }
1684}
1685
1686static void ap_reset_domain(void)
1687{
1688 int i;
1689
1690 if (ap_domain_index != -1)
1691 for (i = 0; i < AP_DEVICES; i++)
1692 ap_reset_queue(AP_MKQID(i, ap_domain_index));
1693}
1694
1695static void ap_reset_all(void)
1696{
1697 int i, j;
1698
1699 for (i = 0; i < AP_DOMAINS; i++)
1700 for (j = 0; j < AP_DEVICES; j++)
1701 ap_reset_queue(AP_MKQID(j, i));
1702}
1703
1704static struct reset_call ap_reset_call = {
1705 .fn = ap_reset_all,
1706};
1707
1708/**
1709 * ap_module_init(): The module initialization code.
1710 *
1711 * Initializes the module.
1712 */
1713int __init ap_module_init(void)
1714{
1715 int rc, i;
1716
1717 if (ap_domain_index < -1 || ap_domain_index >= AP_DOMAINS) {
1718 pr_warning("%d is not a valid cryptographic domain\n",
1719 ap_domain_index);
1720 return -EINVAL;
1721 }
1722 /* In resume callback we need to know if the user had set the domain.
1723 * If so, we can not just reset it.
1724 */
1725 if (ap_domain_index >= 0)
1726 user_set_domain = 1;
1727
1728 if (ap_instructions_available() != 0) {
1729 pr_warning("The hardware system does not support "
1730 "AP instructions\n");
1731 return -ENODEV;
1732 }
1733 if (ap_interrupts_available()) {
1734 isc_register(AP_ISC);
1735 ap_interrupt_indicator = s390_register_adapter_interrupt(
1736 &ap_interrupt_handler, NULL, AP_ISC);
1737 if (IS_ERR(ap_interrupt_indicator)) {
1738 ap_interrupt_indicator = NULL;
1739 isc_unregister(AP_ISC);
1740 }
1741 }
1742
1743 register_reset_call(&ap_reset_call);
1744
1745 /* Create /sys/bus/ap. */
1746 rc = bus_register(&ap_bus_type);
1747 if (rc)
1748 goto out;
1749 for (i = 0; ap_bus_attrs[i]; i++) {
1750 rc = bus_create_file(&ap_bus_type, ap_bus_attrs[i]);
1751 if (rc)
1752 goto out_bus;
1753 }
1754
1755 /* Create /sys/devices/ap. */
1756 ap_root_device = root_device_register("ap");
1757 rc = IS_ERR(ap_root_device) ? PTR_ERR(ap_root_device) : 0;
1758 if (rc)
1759 goto out_bus;
1760
1761 ap_work_queue = create_singlethread_workqueue("kapwork");
1762 if (!ap_work_queue) {
1763 rc = -ENOMEM;
1764 goto out_root;
1765 }
1766
1767 if (ap_select_domain() == 0)
1768 ap_scan_bus(NULL);
1769
1770 /* Setup the AP bus rescan timer. */
1771 init_timer(&ap_config_timer);
1772 ap_config_timer.function = ap_config_timeout;
1773 ap_config_timer.data = 0;
1774 ap_config_timer.expires = jiffies + ap_config_time * HZ;
1775 add_timer(&ap_config_timer);
1776
1777 /* Setup the high resultion poll timer.
1778 * If we are running under z/VM adjust polling to z/VM polling rate.
1779 */
1780 if (MACHINE_IS_VM)
1781 poll_timeout = 1500000;
1782 spin_lock_init(&ap_poll_timer_lock);
1783 hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1784 ap_poll_timer.function = ap_poll_timeout;
1785
1786 /* Start the low priority AP bus poll thread. */
1787 if (ap_thread_flag) {
1788 rc = ap_poll_thread_start();
1789 if (rc)
1790 goto out_work;
1791 }
1792
1793 return 0;
1794
1795out_work:
1796 del_timer_sync(&ap_config_timer);
1797 hrtimer_cancel(&ap_poll_timer);
1798 destroy_workqueue(ap_work_queue);
1799out_root:
1800 root_device_unregister(ap_root_device);
1801out_bus:
1802 while (i--)
1803 bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
1804 bus_unregister(&ap_bus_type);
1805out:
1806 unregister_reset_call(&ap_reset_call);
1807 if (ap_using_interrupts()) {
1808 s390_unregister_adapter_interrupt(ap_interrupt_indicator, AP_ISC);
1809 isc_unregister(AP_ISC);
1810 }
1811 return rc;
1812}
1813
1814static int __ap_match_all(struct device *dev, void *data)
1815{
1816 return 1;
1817}
1818
1819/**
1820 * ap_modules_exit(): The module termination code
1821 *
1822 * Terminates the module.
1823 */
1824void ap_module_exit(void)
1825{
1826 int i;
1827 struct device *dev;
1828
1829 ap_reset_domain();
1830 ap_poll_thread_stop();
1831 del_timer_sync(&ap_config_timer);
1832 hrtimer_cancel(&ap_poll_timer);
1833 destroy_workqueue(ap_work_queue);
1834 tasklet_kill(&ap_tasklet);
1835 root_device_unregister(ap_root_device);
1836 while ((dev = bus_find_device(&ap_bus_type, NULL, NULL,
1837 __ap_match_all)))
1838 {
1839 device_unregister(dev);
1840 put_device(dev);
1841 }
1842 for (i = 0; ap_bus_attrs[i]; i++)
1843 bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
1844 bus_unregister(&ap_bus_type);
1845 unregister_reset_call(&ap_reset_call);
1846 if (ap_using_interrupts()) {
1847 s390_unregister_adapter_interrupt(ap_interrupt_indicator, AP_ISC);
1848 isc_unregister(AP_ISC);
1849 }
1850}
1851
1852#ifndef CONFIG_ZCRYPT_MONOLITHIC
1853module_init(ap_module_init);
1854module_exit(ap_module_exit);
1855#endif
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright IBM Corp. 2006, 2012
4 * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
5 * Martin Schwidefsky <schwidefsky@de.ibm.com>
6 * Ralph Wuerthner <rwuerthn@de.ibm.com>
7 * Felix Beck <felix.beck@de.ibm.com>
8 * Holger Dengler <hd@linux.vnet.ibm.com>
9 *
10 * Adjunct processor bus.
11 */
12
13#define KMSG_COMPONENT "ap"
14#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
15
16#include <linux/kernel_stat.h>
17#include <linux/moduleparam.h>
18#include <linux/init.h>
19#include <linux/delay.h>
20#include <linux/err.h>
21#include <linux/interrupt.h>
22#include <linux/workqueue.h>
23#include <linux/slab.h>
24#include <linux/notifier.h>
25#include <linux/kthread.h>
26#include <linux/mutex.h>
27#include <linux/suspend.h>
28#include <asm/airq.h>
29#include <linux/atomic.h>
30#include <asm/isc.h>
31#include <linux/hrtimer.h>
32#include <linux/ktime.h>
33#include <asm/facility.h>
34#include <linux/crypto.h>
35#include <linux/mod_devicetable.h>
36#include <linux/debugfs.h>
37
38#include "ap_bus.h"
39#include "ap_asm.h"
40#include "ap_debug.h"
41
42/*
43 * Module parameters; note though this file itself isn't modular.
44 */
45int ap_domain_index = -1; /* Adjunct Processor Domain Index */
46static DEFINE_SPINLOCK(ap_domain_lock);
47module_param_named(domain, ap_domain_index, int, S_IRUSR|S_IRGRP);
48MODULE_PARM_DESC(domain, "domain index for ap devices");
49EXPORT_SYMBOL(ap_domain_index);
50
51static int ap_thread_flag = 0;
52module_param_named(poll_thread, ap_thread_flag, int, S_IRUSR|S_IRGRP);
53MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
54
55static struct device *ap_root_device;
56
57DEFINE_SPINLOCK(ap_list_lock);
58LIST_HEAD(ap_card_list);
59
60static struct ap_config_info *ap_configuration;
61static bool initialised;
62
63/*
64 * AP bus related debug feature things.
65 */
66debug_info_t *ap_dbf_info;
67
68/*
69 * Workqueue timer for bus rescan.
70 */
71static struct timer_list ap_config_timer;
72static int ap_config_time = AP_CONFIG_TIME;
73static void ap_scan_bus(struct work_struct *);
74static DECLARE_WORK(ap_scan_work, ap_scan_bus);
75
76/*
77 * Tasklet & timer for AP request polling and interrupts
78 */
79static void ap_tasklet_fn(unsigned long);
80static DECLARE_TASKLET(ap_tasklet, ap_tasklet_fn, 0);
81static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
82static struct task_struct *ap_poll_kthread = NULL;
83static DEFINE_MUTEX(ap_poll_thread_mutex);
84static DEFINE_SPINLOCK(ap_poll_timer_lock);
85static struct hrtimer ap_poll_timer;
86/* In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
87 * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.*/
88static unsigned long long poll_timeout = 250000;
89
90/* Suspend flag */
91static int ap_suspend_flag;
92/* Maximum domain id */
93static int ap_max_domain_id;
94/* Flag to check if domain was set through module parameter domain=. This is
95 * important when supsend and resume is done in a z/VM environment where the
96 * domain might change. */
97static int user_set_domain = 0;
98static struct bus_type ap_bus_type;
99
100/* Adapter interrupt definitions */
101static void ap_interrupt_handler(struct airq_struct *airq);
102
103static int ap_airq_flag;
104
105static struct airq_struct ap_airq = {
106 .handler = ap_interrupt_handler,
107 .isc = AP_ISC,
108};
109
110/**
111 * ap_using_interrupts() - Returns non-zero if interrupt support is
112 * available.
113 */
114static inline int ap_using_interrupts(void)
115{
116 return ap_airq_flag;
117}
118
119/**
120 * ap_airq_ptr() - Get the address of the adapter interrupt indicator
121 *
122 * Returns the address of the local-summary-indicator of the adapter
123 * interrupt handler for AP, or NULL if adapter interrupts are not
124 * available.
125 */
126void *ap_airq_ptr(void)
127{
128 if (ap_using_interrupts())
129 return ap_airq.lsi_ptr;
130 return NULL;
131}
132
133/**
134 * ap_interrupts_available(): Test if AP interrupts are available.
135 *
136 * Returns 1 if AP interrupts are available.
137 */
138static int ap_interrupts_available(void)
139{
140 return test_facility(65);
141}
142
143/**
144 * ap_configuration_available(): Test if AP configuration
145 * information is available.
146 *
147 * Returns 1 if AP configuration information is available.
148 */
149static int ap_configuration_available(void)
150{
151 return test_facility(12);
152}
153
154/**
155 * ap_apft_available(): Test if AP facilities test (APFT)
156 * facility is available.
157 *
158 * Returns 1 if APFT is is available.
159 */
160static int ap_apft_available(void)
161{
162 return test_facility(15);
163}
164
165/*
166 * ap_qact_available(): Test if the PQAP(QACT) subfunction is available.
167 *
168 * Returns 1 if the QACT subfunction is available.
169 */
170static inline int ap_qact_available(void)
171{
172 if (ap_configuration)
173 return ap_configuration->qact;
174 return 0;
175}
176
177/**
178 * ap_test_queue(): Test adjunct processor queue.
179 * @qid: The AP queue number
180 * @tbit: Test facilities bit
181 * @info: Pointer to queue descriptor
182 *
183 * Returns AP queue status structure.
184 */
185struct ap_queue_status ap_test_queue(ap_qid_t qid,
186 int tbit,
187 unsigned long *info)
188{
189 if (tbit)
190 qid |= 1UL << 23; /* set T bit*/
191 return ap_tapq(qid, info);
192}
193EXPORT_SYMBOL(ap_test_queue);
194
195/*
196 * ap_query_configuration(): Fetch cryptographic config info
197 *
198 * Returns the ap configuration info fetched via PQAP(QCI).
199 * On success 0 is returned, on failure a negative errno
200 * is returned, e.g. if the PQAP(QCI) instruction is not
201 * available, the return value will be -EOPNOTSUPP.
202 */
203int ap_query_configuration(struct ap_config_info *info)
204{
205 if (!ap_configuration_available())
206 return -EOPNOTSUPP;
207 if (!info)
208 return -EINVAL;
209 return ap_qci(info);
210}
211EXPORT_SYMBOL(ap_query_configuration);
212
213/**
214 * ap_init_configuration(): Allocate and query configuration array.
215 */
216static void ap_init_configuration(void)
217{
218 if (!ap_configuration_available())
219 return;
220
221 ap_configuration = kzalloc(sizeof(*ap_configuration), GFP_KERNEL);
222 if (!ap_configuration)
223 return;
224 if (ap_query_configuration(ap_configuration) != 0) {
225 kfree(ap_configuration);
226 ap_configuration = NULL;
227 return;
228 }
229}
230
231/*
232 * ap_test_config(): helper function to extract the nrth bit
233 * within the unsigned int array field.
234 */
235static inline int ap_test_config(unsigned int *field, unsigned int nr)
236{
237 return ap_test_bit((field + (nr >> 5)), (nr & 0x1f));
238}
239
240/*
241 * ap_test_config_card_id(): Test, whether an AP card ID is configured.
242 * @id AP card ID
243 *
244 * Returns 0 if the card is not configured
245 * 1 if the card is configured or
246 * if the configuration information is not available
247 */
248static inline int ap_test_config_card_id(unsigned int id)
249{
250 if (!ap_configuration) /* QCI not supported */
251 return 1;
252 return ap_test_config(ap_configuration->apm, id);
253}
254
255/*
256 * ap_test_config_domain(): Test, whether an AP usage domain is configured.
257 * @domain AP usage domain ID
258 *
259 * Returns 0 if the usage domain is not configured
260 * 1 if the usage domain is configured or
261 * if the configuration information is not available
262 */
263static inline int ap_test_config_domain(unsigned int domain)
264{
265 if (!ap_configuration) /* QCI not supported */
266 return domain < 16;
267 return ap_test_config(ap_configuration->aqm, domain);
268}
269
270/**
271 * ap_query_queue(): Check if an AP queue is available.
272 * @qid: The AP queue number
273 * @queue_depth: Pointer to queue depth value
274 * @device_type: Pointer to device type value
275 * @facilities: Pointer to facility indicator
276 */
277static int ap_query_queue(ap_qid_t qid, int *queue_depth, int *device_type,
278 unsigned int *facilities)
279{
280 struct ap_queue_status status;
281 unsigned long info;
282 int nd;
283
284 if (!ap_test_config_card_id(AP_QID_CARD(qid)))
285 return -ENODEV;
286
287 status = ap_test_queue(qid, ap_apft_available(), &info);
288 switch (status.response_code) {
289 case AP_RESPONSE_NORMAL:
290 *queue_depth = (int)(info & 0xff);
291 *device_type = (int)((info >> 24) & 0xff);
292 *facilities = (unsigned int)(info >> 32);
293 /* Update maximum domain id */
294 nd = (info >> 16) & 0xff;
295 /* if N bit is available, z13 and newer */
296 if ((info & (1UL << 57)) && nd > 0)
297 ap_max_domain_id = nd;
298 else /* older machine types */
299 ap_max_domain_id = 15;
300 switch (*device_type) {
301 /* For CEX2 and CEX3 the available functions
302 * are not refrected by the facilities bits.
303 * Instead it is coded into the type. So here
304 * modify the function bits based on the type.
305 */
306 case AP_DEVICE_TYPE_CEX2A:
307 case AP_DEVICE_TYPE_CEX3A:
308 *facilities |= 0x08000000;
309 break;
310 case AP_DEVICE_TYPE_CEX2C:
311 case AP_DEVICE_TYPE_CEX3C:
312 *facilities |= 0x10000000;
313 break;
314 default:
315 break;
316 }
317 return 0;
318 case AP_RESPONSE_Q_NOT_AVAIL:
319 case AP_RESPONSE_DECONFIGURED:
320 case AP_RESPONSE_CHECKSTOPPED:
321 case AP_RESPONSE_INVALID_ADDRESS:
322 return -ENODEV;
323 case AP_RESPONSE_RESET_IN_PROGRESS:
324 case AP_RESPONSE_OTHERWISE_CHANGED:
325 case AP_RESPONSE_BUSY:
326 return -EBUSY;
327 default:
328 BUG();
329 }
330}
331
332void ap_wait(enum ap_wait wait)
333{
334 ktime_t hr_time;
335
336 switch (wait) {
337 case AP_WAIT_AGAIN:
338 case AP_WAIT_INTERRUPT:
339 if (ap_using_interrupts())
340 break;
341 if (ap_poll_kthread) {
342 wake_up(&ap_poll_wait);
343 break;
344 }
345 /* Fall through */
346 case AP_WAIT_TIMEOUT:
347 spin_lock_bh(&ap_poll_timer_lock);
348 if (!hrtimer_is_queued(&ap_poll_timer)) {
349 hr_time = poll_timeout;
350 hrtimer_forward_now(&ap_poll_timer, hr_time);
351 hrtimer_restart(&ap_poll_timer);
352 }
353 spin_unlock_bh(&ap_poll_timer_lock);
354 break;
355 case AP_WAIT_NONE:
356 default:
357 break;
358 }
359}
360
361/**
362 * ap_request_timeout(): Handling of request timeouts
363 * @t: timer making this callback
364 *
365 * Handles request timeouts.
366 */
367void ap_request_timeout(struct timer_list *t)
368{
369 struct ap_queue *aq = from_timer(aq, t, timeout);
370
371 if (ap_suspend_flag)
372 return;
373 spin_lock_bh(&aq->lock);
374 ap_wait(ap_sm_event(aq, AP_EVENT_TIMEOUT));
375 spin_unlock_bh(&aq->lock);
376}
377
378/**
379 * ap_poll_timeout(): AP receive polling for finished AP requests.
380 * @unused: Unused pointer.
381 *
382 * Schedules the AP tasklet using a high resolution timer.
383 */
384static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
385{
386 if (!ap_suspend_flag)
387 tasklet_schedule(&ap_tasklet);
388 return HRTIMER_NORESTART;
389}
390
391/**
392 * ap_interrupt_handler() - Schedule ap_tasklet on interrupt
393 * @airq: pointer to adapter interrupt descriptor
394 */
395static void ap_interrupt_handler(struct airq_struct *airq)
396{
397 inc_irq_stat(IRQIO_APB);
398 if (!ap_suspend_flag)
399 tasklet_schedule(&ap_tasklet);
400}
401
402/**
403 * ap_tasklet_fn(): Tasklet to poll all AP devices.
404 * @dummy: Unused variable
405 *
406 * Poll all AP devices on the bus.
407 */
408static void ap_tasklet_fn(unsigned long dummy)
409{
410 struct ap_card *ac;
411 struct ap_queue *aq;
412 enum ap_wait wait = AP_WAIT_NONE;
413
414 /* Reset the indicator if interrupts are used. Thus new interrupts can
415 * be received. Doing it in the beginning of the tasklet is therefor
416 * important that no requests on any AP get lost.
417 */
418 if (ap_using_interrupts())
419 xchg(ap_airq.lsi_ptr, 0);
420
421 spin_lock_bh(&ap_list_lock);
422 for_each_ap_card(ac) {
423 for_each_ap_queue(aq, ac) {
424 spin_lock_bh(&aq->lock);
425 wait = min(wait, ap_sm_event_loop(aq, AP_EVENT_POLL));
426 spin_unlock_bh(&aq->lock);
427 }
428 }
429 spin_unlock_bh(&ap_list_lock);
430
431 ap_wait(wait);
432}
433
434static int ap_pending_requests(void)
435{
436 struct ap_card *ac;
437 struct ap_queue *aq;
438
439 spin_lock_bh(&ap_list_lock);
440 for_each_ap_card(ac) {
441 for_each_ap_queue(aq, ac) {
442 if (aq->queue_count == 0)
443 continue;
444 spin_unlock_bh(&ap_list_lock);
445 return 1;
446 }
447 }
448 spin_unlock_bh(&ap_list_lock);
449 return 0;
450}
451
452/**
453 * ap_poll_thread(): Thread that polls for finished requests.
454 * @data: Unused pointer
455 *
456 * AP bus poll thread. The purpose of this thread is to poll for
457 * finished requests in a loop if there is a "free" cpu - that is
458 * a cpu that doesn't have anything better to do. The polling stops
459 * as soon as there is another task or if all messages have been
460 * delivered.
461 */
462static int ap_poll_thread(void *data)
463{
464 DECLARE_WAITQUEUE(wait, current);
465
466 set_user_nice(current, MAX_NICE);
467 set_freezable();
468 while (!kthread_should_stop()) {
469 add_wait_queue(&ap_poll_wait, &wait);
470 set_current_state(TASK_INTERRUPTIBLE);
471 if (ap_suspend_flag || !ap_pending_requests()) {
472 schedule();
473 try_to_freeze();
474 }
475 set_current_state(TASK_RUNNING);
476 remove_wait_queue(&ap_poll_wait, &wait);
477 if (need_resched()) {
478 schedule();
479 try_to_freeze();
480 continue;
481 }
482 ap_tasklet_fn(0);
483 }
484
485 return 0;
486}
487
488static int ap_poll_thread_start(void)
489{
490 int rc;
491
492 if (ap_using_interrupts() || ap_poll_kthread)
493 return 0;
494 mutex_lock(&ap_poll_thread_mutex);
495 ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
496 rc = PTR_RET(ap_poll_kthread);
497 if (rc)
498 ap_poll_kthread = NULL;
499 mutex_unlock(&ap_poll_thread_mutex);
500 return rc;
501}
502
503static void ap_poll_thread_stop(void)
504{
505 if (!ap_poll_kthread)
506 return;
507 mutex_lock(&ap_poll_thread_mutex);
508 kthread_stop(ap_poll_kthread);
509 ap_poll_kthread = NULL;
510 mutex_unlock(&ap_poll_thread_mutex);
511}
512
513#define is_card_dev(x) ((x)->parent == ap_root_device)
514#define is_queue_dev(x) ((x)->parent != ap_root_device)
515
516/**
517 * ap_bus_match()
518 * @dev: Pointer to device
519 * @drv: Pointer to device_driver
520 *
521 * AP bus driver registration/unregistration.
522 */
523static int ap_bus_match(struct device *dev, struct device_driver *drv)
524{
525 struct ap_driver *ap_drv = to_ap_drv(drv);
526 struct ap_device_id *id;
527
528 /*
529 * Compare device type of the device with the list of
530 * supported types of the device_driver.
531 */
532 for (id = ap_drv->ids; id->match_flags; id++) {
533 if (is_card_dev(dev) &&
534 id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE &&
535 id->dev_type == to_ap_dev(dev)->device_type)
536 return 1;
537 if (is_queue_dev(dev) &&
538 id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE &&
539 id->dev_type == to_ap_dev(dev)->device_type)
540 return 1;
541 }
542 return 0;
543}
544
545/**
546 * ap_uevent(): Uevent function for AP devices.
547 * @dev: Pointer to device
548 * @env: Pointer to kobj_uevent_env
549 *
550 * It sets up a single environment variable DEV_TYPE which contains the
551 * hardware device type.
552 */
553static int ap_uevent (struct device *dev, struct kobj_uevent_env *env)
554{
555 struct ap_device *ap_dev = to_ap_dev(dev);
556 int retval = 0;
557
558 if (!ap_dev)
559 return -ENODEV;
560
561 /* Set up DEV_TYPE environment variable. */
562 retval = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
563 if (retval)
564 return retval;
565
566 /* Add MODALIAS= */
567 retval = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
568
569 return retval;
570}
571
572static int ap_dev_suspend(struct device *dev)
573{
574 struct ap_device *ap_dev = to_ap_dev(dev);
575
576 if (ap_dev->drv && ap_dev->drv->suspend)
577 ap_dev->drv->suspend(ap_dev);
578 return 0;
579}
580
581static int ap_dev_resume(struct device *dev)
582{
583 struct ap_device *ap_dev = to_ap_dev(dev);
584
585 if (ap_dev->drv && ap_dev->drv->resume)
586 ap_dev->drv->resume(ap_dev);
587 return 0;
588}
589
590static void ap_bus_suspend(void)
591{
592 AP_DBF(DBF_DEBUG, "ap_bus_suspend running\n");
593
594 ap_suspend_flag = 1;
595 /*
596 * Disable scanning for devices, thus we do not want to scan
597 * for them after removing.
598 */
599 flush_work(&ap_scan_work);
600 tasklet_disable(&ap_tasklet);
601}
602
603static int __ap_card_devices_unregister(struct device *dev, void *dummy)
604{
605 if (is_card_dev(dev))
606 device_unregister(dev);
607 return 0;
608}
609
610static int __ap_queue_devices_unregister(struct device *dev, void *dummy)
611{
612 if (is_queue_dev(dev))
613 device_unregister(dev);
614 return 0;
615}
616
617static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data)
618{
619 if (is_queue_dev(dev) &&
620 AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long) data)
621 device_unregister(dev);
622 return 0;
623}
624
625static void ap_bus_resume(void)
626{
627 int rc;
628
629 AP_DBF(DBF_DEBUG, "ap_bus_resume running\n");
630
631 /* remove all queue devices */
632 bus_for_each_dev(&ap_bus_type, NULL, NULL,
633 __ap_queue_devices_unregister);
634 /* remove all card devices */
635 bus_for_each_dev(&ap_bus_type, NULL, NULL,
636 __ap_card_devices_unregister);
637
638 /* Reset thin interrupt setting */
639 if (ap_interrupts_available() && !ap_using_interrupts()) {
640 rc = register_adapter_interrupt(&ap_airq);
641 ap_airq_flag = (rc == 0);
642 }
643 if (!ap_interrupts_available() && ap_using_interrupts()) {
644 unregister_adapter_interrupt(&ap_airq);
645 ap_airq_flag = 0;
646 }
647 /* Reset domain */
648 if (!user_set_domain)
649 ap_domain_index = -1;
650 /* Get things going again */
651 ap_suspend_flag = 0;
652 if (ap_airq_flag)
653 xchg(ap_airq.lsi_ptr, 0);
654 tasklet_enable(&ap_tasklet);
655 queue_work(system_long_wq, &ap_scan_work);
656}
657
658static int ap_power_event(struct notifier_block *this, unsigned long event,
659 void *ptr)
660{
661 switch (event) {
662 case PM_HIBERNATION_PREPARE:
663 case PM_SUSPEND_PREPARE:
664 ap_bus_suspend();
665 break;
666 case PM_POST_HIBERNATION:
667 case PM_POST_SUSPEND:
668 ap_bus_resume();
669 break;
670 default:
671 break;
672 }
673 return NOTIFY_DONE;
674}
675static struct notifier_block ap_power_notifier = {
676 .notifier_call = ap_power_event,
677};
678
679static SIMPLE_DEV_PM_OPS(ap_bus_pm_ops, ap_dev_suspend, ap_dev_resume);
680
681static struct bus_type ap_bus_type = {
682 .name = "ap",
683 .match = &ap_bus_match,
684 .uevent = &ap_uevent,
685 .pm = &ap_bus_pm_ops,
686};
687
688static int ap_device_probe(struct device *dev)
689{
690 struct ap_device *ap_dev = to_ap_dev(dev);
691 struct ap_driver *ap_drv = to_ap_drv(dev->driver);
692 int rc;
693
694 /* Add queue/card to list of active queues/cards */
695 spin_lock_bh(&ap_list_lock);
696 if (is_card_dev(dev))
697 list_add(&to_ap_card(dev)->list, &ap_card_list);
698 else
699 list_add(&to_ap_queue(dev)->list,
700 &to_ap_queue(dev)->card->queues);
701 spin_unlock_bh(&ap_list_lock);
702
703 ap_dev->drv = ap_drv;
704 rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
705
706 if (rc) {
707 spin_lock_bh(&ap_list_lock);
708 if (is_card_dev(dev))
709 list_del_init(&to_ap_card(dev)->list);
710 else
711 list_del_init(&to_ap_queue(dev)->list);
712 spin_unlock_bh(&ap_list_lock);
713 ap_dev->drv = NULL;
714 }
715
716 return rc;
717}
718
719static int ap_device_remove(struct device *dev)
720{
721 struct ap_device *ap_dev = to_ap_dev(dev);
722 struct ap_driver *ap_drv = ap_dev->drv;
723
724 if (ap_drv->remove)
725 ap_drv->remove(ap_dev);
726
727 /* Remove queue/card from list of active queues/cards */
728 spin_lock_bh(&ap_list_lock);
729 if (is_card_dev(dev))
730 list_del_init(&to_ap_card(dev)->list);
731 else
732 list_del_init(&to_ap_queue(dev)->list);
733 spin_unlock_bh(&ap_list_lock);
734
735 return 0;
736}
737
738int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
739 char *name)
740{
741 struct device_driver *drv = &ap_drv->driver;
742
743 if (!initialised)
744 return -ENODEV;
745
746 drv->bus = &ap_bus_type;
747 drv->probe = ap_device_probe;
748 drv->remove = ap_device_remove;
749 drv->owner = owner;
750 drv->name = name;
751 return driver_register(drv);
752}
753EXPORT_SYMBOL(ap_driver_register);
754
755void ap_driver_unregister(struct ap_driver *ap_drv)
756{
757 driver_unregister(&ap_drv->driver);
758}
759EXPORT_SYMBOL(ap_driver_unregister);
760
761void ap_bus_force_rescan(void)
762{
763 if (ap_suspend_flag)
764 return;
765 /* processing a asynchronous bus rescan */
766 del_timer(&ap_config_timer);
767 queue_work(system_long_wq, &ap_scan_work);
768 flush_work(&ap_scan_work);
769}
770EXPORT_SYMBOL(ap_bus_force_rescan);
771
772/*
773 * AP bus attributes.
774 */
775static ssize_t ap_domain_show(struct bus_type *bus, char *buf)
776{
777 return snprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index);
778}
779
780static ssize_t ap_domain_store(struct bus_type *bus,
781 const char *buf, size_t count)
782{
783 int domain;
784
785 if (sscanf(buf, "%i\n", &domain) != 1 ||
786 domain < 0 || domain > ap_max_domain_id)
787 return -EINVAL;
788 spin_lock_bh(&ap_domain_lock);
789 ap_domain_index = domain;
790 spin_unlock_bh(&ap_domain_lock);
791
792 AP_DBF(DBF_DEBUG, "stored new default domain=%d\n", domain);
793
794 return count;
795}
796
797static BUS_ATTR(ap_domain, 0644, ap_domain_show, ap_domain_store);
798
799static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf)
800{
801 if (!ap_configuration) /* QCI not supported */
802 return snprintf(buf, PAGE_SIZE, "not supported\n");
803
804 return snprintf(buf, PAGE_SIZE,
805 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
806 ap_configuration->adm[0], ap_configuration->adm[1],
807 ap_configuration->adm[2], ap_configuration->adm[3],
808 ap_configuration->adm[4], ap_configuration->adm[5],
809 ap_configuration->adm[6], ap_configuration->adm[7]);
810}
811
812static BUS_ATTR(ap_control_domain_mask, 0444,
813 ap_control_domain_mask_show, NULL);
814
815static ssize_t ap_usage_domain_mask_show(struct bus_type *bus, char *buf)
816{
817 if (!ap_configuration) /* QCI not supported */
818 return snprintf(buf, PAGE_SIZE, "not supported\n");
819
820 return snprintf(buf, PAGE_SIZE,
821 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
822 ap_configuration->aqm[0], ap_configuration->aqm[1],
823 ap_configuration->aqm[2], ap_configuration->aqm[3],
824 ap_configuration->aqm[4], ap_configuration->aqm[5],
825 ap_configuration->aqm[6], ap_configuration->aqm[7]);
826}
827
828static BUS_ATTR(ap_usage_domain_mask, 0444,
829 ap_usage_domain_mask_show, NULL);
830
831static ssize_t ap_config_time_show(struct bus_type *bus, char *buf)
832{
833 return snprintf(buf, PAGE_SIZE, "%d\n", ap_config_time);
834}
835
836static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf)
837{
838 return snprintf(buf, PAGE_SIZE, "%d\n",
839 ap_using_interrupts() ? 1 : 0);
840}
841
842static BUS_ATTR(ap_interrupts, 0444, ap_interrupts_show, NULL);
843
844static ssize_t ap_config_time_store(struct bus_type *bus,
845 const char *buf, size_t count)
846{
847 int time;
848
849 if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
850 return -EINVAL;
851 ap_config_time = time;
852 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
853 return count;
854}
855
856static BUS_ATTR(config_time, 0644, ap_config_time_show, ap_config_time_store);
857
858static ssize_t ap_poll_thread_show(struct bus_type *bus, char *buf)
859{
860 return snprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0);
861}
862
863static ssize_t ap_poll_thread_store(struct bus_type *bus,
864 const char *buf, size_t count)
865{
866 int flag, rc;
867
868 if (sscanf(buf, "%d\n", &flag) != 1)
869 return -EINVAL;
870 if (flag) {
871 rc = ap_poll_thread_start();
872 if (rc)
873 count = rc;
874 } else
875 ap_poll_thread_stop();
876 return count;
877}
878
879static BUS_ATTR(poll_thread, 0644, ap_poll_thread_show, ap_poll_thread_store);
880
881static ssize_t poll_timeout_show(struct bus_type *bus, char *buf)
882{
883 return snprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout);
884}
885
886static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf,
887 size_t count)
888{
889 unsigned long long time;
890 ktime_t hr_time;
891
892 /* 120 seconds = maximum poll interval */
893 if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 ||
894 time > 120000000000ULL)
895 return -EINVAL;
896 poll_timeout = time;
897 hr_time = poll_timeout;
898
899 spin_lock_bh(&ap_poll_timer_lock);
900 hrtimer_cancel(&ap_poll_timer);
901 hrtimer_set_expires(&ap_poll_timer, hr_time);
902 hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
903 spin_unlock_bh(&ap_poll_timer_lock);
904
905 return count;
906}
907
908static BUS_ATTR(poll_timeout, 0644, poll_timeout_show, poll_timeout_store);
909
910static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf)
911{
912 int max_domain_id;
913
914 if (ap_configuration)
915 max_domain_id = ap_max_domain_id ? : -1;
916 else
917 max_domain_id = 15;
918 return snprintf(buf, PAGE_SIZE, "%d\n", max_domain_id);
919}
920
921static BUS_ATTR(ap_max_domain_id, 0444, ap_max_domain_id_show, NULL);
922
923static struct bus_attribute *const ap_bus_attrs[] = {
924 &bus_attr_ap_domain,
925 &bus_attr_ap_control_domain_mask,
926 &bus_attr_ap_usage_domain_mask,
927 &bus_attr_config_time,
928 &bus_attr_poll_thread,
929 &bus_attr_ap_interrupts,
930 &bus_attr_poll_timeout,
931 &bus_attr_ap_max_domain_id,
932 NULL,
933};
934
935/**
936 * ap_select_domain(): Select an AP domain.
937 *
938 * Pick one of the 16 AP domains.
939 */
940static int ap_select_domain(void)
941{
942 int count, max_count, best_domain;
943 struct ap_queue_status status;
944 int i, j;
945
946 /*
947 * We want to use a single domain. Either the one specified with
948 * the "domain=" parameter or the domain with the maximum number
949 * of devices.
950 */
951 spin_lock_bh(&ap_domain_lock);
952 if (ap_domain_index >= 0) {
953 /* Domain has already been selected. */
954 spin_unlock_bh(&ap_domain_lock);
955 return 0;
956 }
957 best_domain = -1;
958 max_count = 0;
959 for (i = 0; i < AP_DOMAINS; i++) {
960 if (!ap_test_config_domain(i))
961 continue;
962 count = 0;
963 for (j = 0; j < AP_DEVICES; j++) {
964 if (!ap_test_config_card_id(j))
965 continue;
966 status = ap_test_queue(AP_MKQID(j, i),
967 ap_apft_available(),
968 NULL);
969 if (status.response_code != AP_RESPONSE_NORMAL)
970 continue;
971 count++;
972 }
973 if (count > max_count) {
974 max_count = count;
975 best_domain = i;
976 }
977 }
978 if (best_domain >= 0){
979 ap_domain_index = best_domain;
980 AP_DBF(DBF_DEBUG, "new ap_domain_index=%d\n", ap_domain_index);
981 spin_unlock_bh(&ap_domain_lock);
982 return 0;
983 }
984 spin_unlock_bh(&ap_domain_lock);
985 return -ENODEV;
986}
987
988/*
989 * This function checks the type and returns either 0 for not
990 * supported or the highest compatible type value (which may
991 * include the input type value).
992 */
993static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func)
994{
995 int comp_type = 0;
996
997 /* < CEX2A is not supported */
998 if (rawtype < AP_DEVICE_TYPE_CEX2A)
999 return 0;
1000 /* up to CEX6 known and fully supported */
1001 if (rawtype <= AP_DEVICE_TYPE_CEX6)
1002 return rawtype;
1003 /*
1004 * unknown new type > CEX6, check for compatibility
1005 * to the highest known and supported type which is
1006 * currently CEX6 with the help of the QACT function.
1007 */
1008 if (ap_qact_available()) {
1009 struct ap_queue_status status;
1010 union ap_qact_ap_info apinfo = {0};
1011
1012 apinfo.mode = (func >> 26) & 0x07;
1013 apinfo.cat = AP_DEVICE_TYPE_CEX6;
1014 status = ap_qact(qid, 0, &apinfo);
1015 if (status.response_code == AP_RESPONSE_NORMAL
1016 && apinfo.cat >= AP_DEVICE_TYPE_CEX2A
1017 && apinfo.cat <= AP_DEVICE_TYPE_CEX6)
1018 comp_type = apinfo.cat;
1019 }
1020 if (!comp_type)
1021 AP_DBF(DBF_WARN, "queue=%02x.%04x unable to map type %d\n",
1022 AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype);
1023 else if (comp_type != rawtype)
1024 AP_DBF(DBF_INFO, "queue=%02x.%04x map type %d to %d\n",
1025 AP_QID_CARD(qid), AP_QID_QUEUE(qid), rawtype, comp_type);
1026 return comp_type;
1027}
1028
1029/*
1030 * helper function to be used with bus_find_dev
1031 * matches for the card device with the given id
1032 */
1033static int __match_card_device_with_id(struct device *dev, void *data)
1034{
1035 return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long) data;
1036}
1037
1038/* helper function to be used with bus_find_dev
1039 * matches for the queue device with a given qid
1040 */
1041static int __match_queue_device_with_qid(struct device *dev, void *data)
1042{
1043 return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long) data;
1044}
1045
1046/**
1047 * ap_scan_bus(): Scan the AP bus for new devices
1048 * Runs periodically, workqueue timer (ap_config_time)
1049 */
1050static void ap_scan_bus(struct work_struct *unused)
1051{
1052 struct ap_queue *aq;
1053 struct ap_card *ac;
1054 struct device *dev;
1055 ap_qid_t qid;
1056 int comp_type, depth = 0, type = 0;
1057 unsigned int func = 0;
1058 int rc, id, dom, borked, domains, defdomdevs = 0;
1059
1060 AP_DBF(DBF_DEBUG, "ap_scan_bus running\n");
1061
1062 ap_query_configuration(ap_configuration);
1063 if (ap_select_domain() != 0)
1064 goto out;
1065
1066 for (id = 0; id < AP_DEVICES; id++) {
1067 /* check if device is registered */
1068 dev = bus_find_device(&ap_bus_type, NULL,
1069 (void *)(long) id,
1070 __match_card_device_with_id);
1071 ac = dev ? to_ap_card(dev) : NULL;
1072 if (!ap_test_config_card_id(id)) {
1073 if (dev) {
1074 /* Card device has been removed from
1075 * configuration, remove the belonging
1076 * queue devices.
1077 */
1078 bus_for_each_dev(&ap_bus_type, NULL,
1079 (void *)(long) id,
1080 __ap_queue_devices_with_id_unregister);
1081 /* now remove the card device */
1082 device_unregister(dev);
1083 put_device(dev);
1084 }
1085 continue;
1086 }
1087 /* According to the configuration there should be a card
1088 * device, so check if there is at least one valid queue
1089 * and maybe create queue devices and the card device.
1090 */
1091 domains = 0;
1092 for (dom = 0; dom < AP_DOMAINS; dom++) {
1093 qid = AP_MKQID(id, dom);
1094 dev = bus_find_device(&ap_bus_type, NULL,
1095 (void *)(long) qid,
1096 __match_queue_device_with_qid);
1097 aq = dev ? to_ap_queue(dev) : NULL;
1098 if (!ap_test_config_domain(dom)) {
1099 if (dev) {
1100 /* Queue device exists but has been
1101 * removed from configuration.
1102 */
1103 device_unregister(dev);
1104 put_device(dev);
1105 }
1106 continue;
1107 }
1108 rc = ap_query_queue(qid, &depth, &type, &func);
1109 if (dev) {
1110 spin_lock_bh(&aq->lock);
1111 if (rc == -ENODEV ||
1112 /* adapter reconfiguration */
1113 (ac && ac->functions != func))
1114 aq->state = AP_STATE_BORKED;
1115 borked = aq->state == AP_STATE_BORKED;
1116 spin_unlock_bh(&aq->lock);
1117 if (borked) /* Remove broken device */
1118 device_unregister(dev);
1119 put_device(dev);
1120 if (!borked) {
1121 domains++;
1122 if (dom == ap_domain_index)
1123 defdomdevs++;
1124 continue;
1125 }
1126 }
1127 if (rc)
1128 continue;
1129 /* a new queue device is needed, check out comp type */
1130 comp_type = ap_get_compatible_type(qid, type, func);
1131 if (!comp_type)
1132 continue;
1133 /* maybe a card device needs to be created first */
1134 if (!ac) {
1135 ac = ap_card_create(id, depth, type,
1136 comp_type, func);
1137 if (!ac)
1138 continue;
1139 ac->ap_dev.device.bus = &ap_bus_type;
1140 ac->ap_dev.device.parent = ap_root_device;
1141 dev_set_name(&ac->ap_dev.device,
1142 "card%02x", id);
1143 /* Register card with AP bus */
1144 rc = device_register(&ac->ap_dev.device);
1145 if (rc) {
1146 put_device(&ac->ap_dev.device);
1147 ac = NULL;
1148 break;
1149 }
1150 /* get it and thus adjust reference counter */
1151 get_device(&ac->ap_dev.device);
1152 }
1153 /* now create the new queue device */
1154 aq = ap_queue_create(qid, comp_type);
1155 if (!aq)
1156 continue;
1157 aq->card = ac;
1158 aq->ap_dev.device.bus = &ap_bus_type;
1159 aq->ap_dev.device.parent = &ac->ap_dev.device;
1160 dev_set_name(&aq->ap_dev.device,
1161 "%02x.%04x", id, dom);
1162 /* Start with a device reset */
1163 spin_lock_bh(&aq->lock);
1164 ap_wait(ap_sm_event(aq, AP_EVENT_POLL));
1165 spin_unlock_bh(&aq->lock);
1166 /* Register device */
1167 rc = device_register(&aq->ap_dev.device);
1168 if (rc) {
1169 put_device(&aq->ap_dev.device);
1170 continue;
1171 }
1172 domains++;
1173 if (dom == ap_domain_index)
1174 defdomdevs++;
1175 } /* end domain loop */
1176 if (ac) {
1177 /* remove card dev if there are no queue devices */
1178 if (!domains)
1179 device_unregister(&ac->ap_dev.device);
1180 put_device(&ac->ap_dev.device);
1181 }
1182 } /* end device loop */
1183
1184 if (defdomdevs < 1)
1185 AP_DBF(DBF_INFO, "no queue device with default domain %d available\n",
1186 ap_domain_index);
1187
1188out:
1189 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1190}
1191
1192static void ap_config_timeout(struct timer_list *unused)
1193{
1194 if (ap_suspend_flag)
1195 return;
1196 queue_work(system_long_wq, &ap_scan_work);
1197}
1198
1199static int __init ap_debug_init(void)
1200{
1201 ap_dbf_info = debug_register("ap", 1, 1,
1202 DBF_MAX_SPRINTF_ARGS * sizeof(long));
1203 debug_register_view(ap_dbf_info, &debug_sprintf_view);
1204 debug_set_level(ap_dbf_info, DBF_ERR);
1205
1206 return 0;
1207}
1208
1209/**
1210 * ap_module_init(): The module initialization code.
1211 *
1212 * Initializes the module.
1213 */
1214static int __init ap_module_init(void)
1215{
1216 int max_domain_id;
1217 int rc, i;
1218
1219 rc = ap_debug_init();
1220 if (rc)
1221 return rc;
1222
1223 if (ap_instructions_available() != 0) {
1224 pr_warn("The hardware system does not support AP instructions\n");
1225 return -ENODEV;
1226 }
1227
1228 /* Get AP configuration data if available */
1229 ap_init_configuration();
1230
1231 if (ap_configuration)
1232 max_domain_id =
1233 ap_max_domain_id ? ap_max_domain_id : AP_DOMAINS - 1;
1234 else
1235 max_domain_id = 15;
1236 if (ap_domain_index < -1 || ap_domain_index > max_domain_id) {
1237 pr_warn("%d is not a valid cryptographic domain\n",
1238 ap_domain_index);
1239 ap_domain_index = -1;
1240 }
1241 /* In resume callback we need to know if the user had set the domain.
1242 * If so, we can not just reset it.
1243 */
1244 if (ap_domain_index >= 0)
1245 user_set_domain = 1;
1246
1247 if (ap_interrupts_available()) {
1248 rc = register_adapter_interrupt(&ap_airq);
1249 ap_airq_flag = (rc == 0);
1250 }
1251
1252 /* Create /sys/bus/ap. */
1253 rc = bus_register(&ap_bus_type);
1254 if (rc)
1255 goto out;
1256 for (i = 0; ap_bus_attrs[i]; i++) {
1257 rc = bus_create_file(&ap_bus_type, ap_bus_attrs[i]);
1258 if (rc)
1259 goto out_bus;
1260 }
1261
1262 /* Create /sys/devices/ap. */
1263 ap_root_device = root_device_register("ap");
1264 rc = PTR_RET(ap_root_device);
1265 if (rc)
1266 goto out_bus;
1267
1268 /* Setup the AP bus rescan timer. */
1269 timer_setup(&ap_config_timer, ap_config_timeout, 0);
1270
1271 /*
1272 * Setup the high resultion poll timer.
1273 * If we are running under z/VM adjust polling to z/VM polling rate.
1274 */
1275 if (MACHINE_IS_VM)
1276 poll_timeout = 1500000;
1277 spin_lock_init(&ap_poll_timer_lock);
1278 hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1279 ap_poll_timer.function = ap_poll_timeout;
1280
1281 /* Start the low priority AP bus poll thread. */
1282 if (ap_thread_flag) {
1283 rc = ap_poll_thread_start();
1284 if (rc)
1285 goto out_work;
1286 }
1287
1288 rc = register_pm_notifier(&ap_power_notifier);
1289 if (rc)
1290 goto out_pm;
1291
1292 queue_work(system_long_wq, &ap_scan_work);
1293 initialised = true;
1294
1295 return 0;
1296
1297out_pm:
1298 ap_poll_thread_stop();
1299out_work:
1300 hrtimer_cancel(&ap_poll_timer);
1301 root_device_unregister(ap_root_device);
1302out_bus:
1303 while (i--)
1304 bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
1305 bus_unregister(&ap_bus_type);
1306out:
1307 if (ap_using_interrupts())
1308 unregister_adapter_interrupt(&ap_airq);
1309 kfree(ap_configuration);
1310 return rc;
1311}
1312device_initcall(ap_module_init);