Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2/*******************************************************************************
  3
  4  Intel(R) 82576 Virtual Function Linux driver
  5  Copyright(c) 2009 - 2012 Intel Corporation.
  6
  7  This program is free software; you can redistribute it and/or modify it
  8  under the terms and conditions of the GNU General Public License,
  9  version 2, as published by the Free Software Foundation.
 10
 11  This program is distributed in the hope it will be useful, but WITHOUT
 12  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 13  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 14  more details.
 15
 16  You should have received a copy of the GNU General Public License along with
 17  this program; if not, see <http://www.gnu.org/licenses/>.
 18
 19  The full GNU General Public License is included in this distribution in
 20  the file called "COPYING".
 21
 22  Contact Information:
 23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 25
 26*******************************************************************************/
 27
 28#include "vf.h"
 29
 30static s32 e1000_check_for_link_vf(struct e1000_hw *hw);
 31static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
 32				     u16 *duplex);
 33static s32 e1000_init_hw_vf(struct e1000_hw *hw);
 34static s32 e1000_reset_hw_vf(struct e1000_hw *hw);
 35
 36static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *,
 37					 u32, u32, u32);
 38static void e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
 39static s32 e1000_read_mac_addr_vf(struct e1000_hw *);
 40static s32 e1000_set_uc_addr_vf(struct e1000_hw *hw, u32 subcmd, u8 *addr);
 41static s32 e1000_set_vfta_vf(struct e1000_hw *, u16, bool);
 42
 43/**
 44 *  e1000_init_mac_params_vf - Inits MAC params
 45 *  @hw: pointer to the HW structure
 46 **/
 47static s32 e1000_init_mac_params_vf(struct e1000_hw *hw)
 48{
 49	struct e1000_mac_info *mac = &hw->mac;
 50
 51	/* VF's have no MTA Registers - PF feature only */
 52	mac->mta_reg_count = 128;
 53	/* VF's have no access to RAR entries  */
 54	mac->rar_entry_count = 1;
 55
 56	/* Function pointers */
 57	/* reset */
 58	mac->ops.reset_hw = e1000_reset_hw_vf;
 59	/* hw initialization */
 60	mac->ops.init_hw = e1000_init_hw_vf;
 61	/* check for link */
 62	mac->ops.check_for_link = e1000_check_for_link_vf;
 63	/* link info */
 64	mac->ops.get_link_up_info = e1000_get_link_up_info_vf;
 65	/* multicast address update */
 66	mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf;
 67	/* set mac address */
 68	mac->ops.rar_set = e1000_rar_set_vf;
 69	/* read mac address */
 70	mac->ops.read_mac_addr = e1000_read_mac_addr_vf;
 71	/* set mac filter */
 72	mac->ops.set_uc_addr = e1000_set_uc_addr_vf;
 73	/* set vlan filter table array */
 74	mac->ops.set_vfta = e1000_set_vfta_vf;
 75
 76	return E1000_SUCCESS;
 77}
 78
 79/**
 80 *  e1000_init_function_pointers_vf - Inits function pointers
 81 *  @hw: pointer to the HW structure
 82 **/
 83void e1000_init_function_pointers_vf(struct e1000_hw *hw)
 84{
 85	hw->mac.ops.init_params = e1000_init_mac_params_vf;
 86	hw->mbx.ops.init_params = e1000_init_mbx_params_vf;
 87}
 88
 89/**
 90 *  e1000_get_link_up_info_vf - Gets link info.
 91 *  @hw: pointer to the HW structure
 92 *  @speed: pointer to 16 bit value to store link speed.
 93 *  @duplex: pointer to 16 bit value to store duplex.
 94 *
 95 *  Since we cannot read the PHY and get accurate link info, we must rely upon
 96 *  the status register's data which is often stale and inaccurate.
 97 **/
 98static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
 99				     u16 *duplex)
100{
101	s32 status;
102
103	status = er32(STATUS);
104	if (status & E1000_STATUS_SPEED_1000)
105		*speed = SPEED_1000;
106	else if (status & E1000_STATUS_SPEED_100)
107		*speed = SPEED_100;
108	else
109		*speed = SPEED_10;
110
111	if (status & E1000_STATUS_FD)
112		*duplex = FULL_DUPLEX;
113	else
114		*duplex = HALF_DUPLEX;
115
116	return E1000_SUCCESS;
117}
118
119/**
120 *  e1000_reset_hw_vf - Resets the HW
121 *  @hw: pointer to the HW structure
122 *
123 *  VF's provide a function level reset. This is done using bit 26 of ctrl_reg.
124 *  This is all the reset we can perform on a VF.
125 **/
126static s32 e1000_reset_hw_vf(struct e1000_hw *hw)
127{
128	struct e1000_mbx_info *mbx = &hw->mbx;
129	u32 timeout = E1000_VF_INIT_TIMEOUT;
130	u32 ret_val = -E1000_ERR_MAC_INIT;
131	u32 msgbuf[3];
132	u8 *addr = (u8 *)(&msgbuf[1]);
133	u32 ctrl;
134
135	/* assert VF queue/interrupt reset */
136	ctrl = er32(CTRL);
137	ew32(CTRL, ctrl | E1000_CTRL_RST);
138
139	/* we cannot initialize while the RSTI / RSTD bits are asserted */
140	while (!mbx->ops.check_for_rst(hw) && timeout) {
141		timeout--;
142		udelay(5);
143	}
144
145	if (timeout) {
146		/* mailbox timeout can now become active */
147		mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT;
148
149		/* notify PF of VF reset completion */
150		msgbuf[0] = E1000_VF_RESET;
151		mbx->ops.write_posted(hw, msgbuf, 1);
152
153		mdelay(10);
154
155		/* set our "perm_addr" based on info provided by PF */
156		ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
157		if (!ret_val) {
158			if (msgbuf[0] == (E1000_VF_RESET |
159					  E1000_VT_MSGTYPE_ACK))
160				memcpy(hw->mac.perm_addr, addr, ETH_ALEN);
161			else
162				ret_val = -E1000_ERR_MAC_INIT;
163		}
164	}
165
166	return ret_val;
167}
168
169/**
170 *  e1000_init_hw_vf - Inits the HW
171 *  @hw: pointer to the HW structure
172 *
173 *  Not much to do here except clear the PF Reset indication if there is one.
174 **/
175static s32 e1000_init_hw_vf(struct e1000_hw *hw)
176{
177	/* attempt to set and restore our mac address */
178	e1000_rar_set_vf(hw, hw->mac.addr, 0);
179
180	return E1000_SUCCESS;
181}
182
183/**
184 *  e1000_hash_mc_addr_vf - Generate a multicast hash value
185 *  @hw: pointer to the HW structure
186 *  @mc_addr: pointer to a multicast address
187 *
188 *  Generates a multicast address hash value which is used to determine
189 *  the multicast filter table array address and new table value.  See
190 *  e1000_mta_set_generic()
191 **/
192static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
193{
194	u32 hash_value, hash_mask;
195	u8 bit_shift = 0;
196
197	/* Register count multiplied by bits per register */
198	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
199
200	/* The bit_shift is the number of left-shifts
201	 * where 0xFF would still fall within the hash mask.
202	 */
203	while (hash_mask >> bit_shift != 0xFF)
204		bit_shift++;
205
206	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
207				  (((u16)mc_addr[5]) << bit_shift)));
208
209	return hash_value;
210}
211
212/**
213 *  e1000_update_mc_addr_list_vf - Update Multicast addresses
214 *  @hw: pointer to the HW structure
215 *  @mc_addr_list: array of multicast addresses to program
216 *  @mc_addr_count: number of multicast addresses to program
217 *  @rar_used_count: the first RAR register free to program
218 *  @rar_count: total number of supported Receive Address Registers
219 *
220 *  Updates the Receive Address Registers and Multicast Table Array.
221 *  The caller must have a packed mc_addr_list of multicast addresses.
222 *  The parameter rar_count will usually be hw->mac.rar_entry_count
223 *  unless there are workarounds that change this.
224 **/
225static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
226					 u8 *mc_addr_list, u32 mc_addr_count,
227					 u32 rar_used_count, u32 rar_count)
228{
229	struct e1000_mbx_info *mbx = &hw->mbx;
230	u32 msgbuf[E1000_VFMAILBOX_SIZE];
231	u16 *hash_list = (u16 *)&msgbuf[1];
232	u32 hash_value;
233	u32 cnt, i;
234	s32 ret_val;
235
236	/* Each entry in the list uses 1 16 bit word.  We have 30
237	 * 16 bit words available in our HW msg buffer (minus 1 for the
238	 * msg type).  That's 30 hash values if we pack 'em right.  If
239	 * there are more than 30 MC addresses to add then punt the
240	 * extras for now and then add code to handle more than 30 later.
241	 * It would be unusual for a server to request that many multi-cast
242	 * addresses except for in large enterprise network environments.
243	 */
244
245	cnt = (mc_addr_count > 30) ? 30 : mc_addr_count;
246	msgbuf[0] = E1000_VF_SET_MULTICAST;
247	msgbuf[0] |= cnt << E1000_VT_MSGINFO_SHIFT;
248
249	for (i = 0; i < cnt; i++) {
250		hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list);
251		hash_list[i] = hash_value & 0x0FFFF;
252		mc_addr_list += ETH_ALEN;
253	}
254
255	ret_val = mbx->ops.write_posted(hw, msgbuf, E1000_VFMAILBOX_SIZE);
256	if (!ret_val)
257		mbx->ops.read_posted(hw, msgbuf, 1);
258}
259
260/**
261 *  e1000_set_vfta_vf - Set/Unset vlan filter table address
262 *  @hw: pointer to the HW structure
263 *  @vid: determines the vfta register and bit to set/unset
264 *  @set: if true then set bit, else clear bit
265 **/
266static s32 e1000_set_vfta_vf(struct e1000_hw *hw, u16 vid, bool set)
267{
268	struct e1000_mbx_info *mbx = &hw->mbx;
269	u32 msgbuf[2];
270	s32 err;
271
272	msgbuf[0] = E1000_VF_SET_VLAN;
273	msgbuf[1] = vid;
274	/* Setting the 8 bit field MSG INFO to true indicates "add" */
275	if (set)
276		msgbuf[0] |= BIT(E1000_VT_MSGINFO_SHIFT);
277
278	mbx->ops.write_posted(hw, msgbuf, 2);
279
280	err = mbx->ops.read_posted(hw, msgbuf, 2);
281
282	msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
283
284	/* if nacked the vlan was rejected */
285	if (!err && (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK)))
286		err = -E1000_ERR_MAC_INIT;
287
288	return err;
289}
290
291/**
292 *  e1000_rlpml_set_vf - Set the maximum receive packet length
293 *  @hw: pointer to the HW structure
294 *  @max_size: value to assign to max frame size
295 **/
296void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
297{
298	struct e1000_mbx_info *mbx = &hw->mbx;
299	u32 msgbuf[2];
300	s32 ret_val;
301
302	msgbuf[0] = E1000_VF_SET_LPE;
303	msgbuf[1] = max_size;
304
305	ret_val = mbx->ops.write_posted(hw, msgbuf, 2);
306	if (!ret_val)
307		mbx->ops.read_posted(hw, msgbuf, 1);
308}
309
310/**
311 *  e1000_rar_set_vf - set device MAC address
312 *  @hw: pointer to the HW structure
313 *  @addr: pointer to the receive address
314 *  @index: receive address array register
315 **/
316static void e1000_rar_set_vf(struct e1000_hw *hw, u8 *addr, u32 index)
317{
318	struct e1000_mbx_info *mbx = &hw->mbx;
319	u32 msgbuf[3];
320	u8 *msg_addr = (u8 *)(&msgbuf[1]);
321	s32 ret_val;
322
323	memset(msgbuf, 0, 12);
324	msgbuf[0] = E1000_VF_SET_MAC_ADDR;
325	memcpy(msg_addr, addr, ETH_ALEN);
326	ret_val = mbx->ops.write_posted(hw, msgbuf, 3);
327
328	if (!ret_val)
329		ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
330
331	msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
332
333	/* if nacked the address was rejected, use "perm_addr" */
334	if (!ret_val &&
335	    (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK)))
336		e1000_read_mac_addr_vf(hw);
337}
338
339/**
340 *  e1000_read_mac_addr_vf - Read device MAC address
341 *  @hw: pointer to the HW structure
342 **/
343static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw)
344{
345	memcpy(hw->mac.addr, hw->mac.perm_addr, ETH_ALEN);
346
347	return E1000_SUCCESS;
348}
349
350/**
351 *  e1000_set_uc_addr_vf - Set or clear unicast filters
352 *  @hw: pointer to the HW structure
353 *  @sub_cmd: add or clear filters
354 *  @addr: pointer to the filter MAC address
355 **/
356static s32 e1000_set_uc_addr_vf(struct e1000_hw *hw, u32 sub_cmd, u8 *addr)
357{
358	struct e1000_mbx_info *mbx = &hw->mbx;
359	u32 msgbuf[3], msgbuf_chk;
360	u8 *msg_addr = (u8 *)(&msgbuf[1]);
361	s32 ret_val;
362
363	memset(msgbuf, 0, sizeof(msgbuf));
364	msgbuf[0] |= sub_cmd;
365	msgbuf[0] |= E1000_VF_SET_MAC_ADDR;
366	msgbuf_chk = msgbuf[0];
367
368	if (addr)
369		memcpy(msg_addr, addr, ETH_ALEN);
370
371	ret_val = mbx->ops.write_posted(hw, msgbuf, 3);
372
373	if (!ret_val)
374		ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
375
376	msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
377
378	if (!ret_val) {
379		msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
380
381		if (msgbuf[0] == (msgbuf_chk | E1000_VT_MSGTYPE_NACK))
382			return -ENOSPC;
383	}
384
385	return ret_val;
386}
387
388/**
389 *  e1000_check_for_link_vf - Check for link for a virtual interface
390 *  @hw: pointer to the HW structure
391 *
392 *  Checks to see if the underlying PF is still talking to the VF and
393 *  if it is then it reports the link state to the hardware, otherwise
394 *  it reports link down and returns an error.
395 **/
396static s32 e1000_check_for_link_vf(struct e1000_hw *hw)
397{
398	struct e1000_mbx_info *mbx = &hw->mbx;
399	struct e1000_mac_info *mac = &hw->mac;
400	s32 ret_val = E1000_SUCCESS;
401	u32 in_msg = 0;
402
403	/* We only want to run this if there has been a rst asserted.
404	 * in this case that could mean a link change, device reset,
405	 * or a virtual function reset
406	 */
407
408	/* If we were hit with a reset or timeout drop the link */
409	if (!mbx->ops.check_for_rst(hw) || !mbx->timeout)
410		mac->get_link_status = true;
411
412	if (!mac->get_link_status)
413		goto out;
414
415	/* if link status is down no point in checking to see if PF is up */
416	if (!(er32(STATUS) & E1000_STATUS_LU))
417		goto out;
418
419	/* if the read failed it could just be a mailbox collision, best wait
420	 * until we are called again and don't report an error
421	 */
422	if (mbx->ops.read(hw, &in_msg, 1))
423		goto out;
424
425	/* if incoming message isn't clear to send we are waiting on response */
426	if (!(in_msg & E1000_VT_MSGTYPE_CTS)) {
427		/* msg is not CTS and is NACK we must have lost CTS status */
428		if (in_msg & E1000_VT_MSGTYPE_NACK)
429			ret_val = -E1000_ERR_MAC_INIT;
430		goto out;
431	}
432
433	/* the PF is talking, if we timed out in the past we reinit */
434	if (!mbx->timeout) {
435		ret_val = -E1000_ERR_MAC_INIT;
436		goto out;
437	}
438
439	/* if we passed all the tests above then the link is up and we no
440	 * longer need to check for link
441	 */
442	mac->get_link_status = false;
443
444out:
445	return ret_val;
446}
447