Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Microchip switch driver main logic
   3 *
   4 * Copyright (C) 2017
   5 *
   6 * Permission to use, copy, modify, and/or distribute this software for any
   7 * purpose with or without fee is hereby granted, provided that the above
   8 * copyright notice and this permission notice appear in all copies.
   9 *
  10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  17 */
  18
  19#include <linux/delay.h>
  20#include <linux/export.h>
  21#include <linux/gpio.h>
  22#include <linux/kernel.h>
  23#include <linux/module.h>
  24#include <linux/platform_data/microchip-ksz.h>
  25#include <linux/phy.h>
  26#include <linux/etherdevice.h>
  27#include <linux/if_bridge.h>
  28#include <net/dsa.h>
  29#include <net/switchdev.h>
  30
  31#include "ksz_priv.h"
  32
  33static const struct {
  34	int index;
  35	char string[ETH_GSTRING_LEN];
  36} mib_names[TOTAL_SWITCH_COUNTER_NUM] = {
  37	{ 0x00, "rx_hi" },
  38	{ 0x01, "rx_undersize" },
  39	{ 0x02, "rx_fragments" },
  40	{ 0x03, "rx_oversize" },
  41	{ 0x04, "rx_jabbers" },
  42	{ 0x05, "rx_symbol_err" },
  43	{ 0x06, "rx_crc_err" },
  44	{ 0x07, "rx_align_err" },
  45	{ 0x08, "rx_mac_ctrl" },
  46	{ 0x09, "rx_pause" },
  47	{ 0x0A, "rx_bcast" },
  48	{ 0x0B, "rx_mcast" },
  49	{ 0x0C, "rx_ucast" },
  50	{ 0x0D, "rx_64_or_less" },
  51	{ 0x0E, "rx_65_127" },
  52	{ 0x0F, "rx_128_255" },
  53	{ 0x10, "rx_256_511" },
  54	{ 0x11, "rx_512_1023" },
  55	{ 0x12, "rx_1024_1522" },
  56	{ 0x13, "rx_1523_2000" },
  57	{ 0x14, "rx_2001" },
  58	{ 0x15, "tx_hi" },
  59	{ 0x16, "tx_late_col" },
  60	{ 0x17, "tx_pause" },
  61	{ 0x18, "tx_bcast" },
  62	{ 0x19, "tx_mcast" },
  63	{ 0x1A, "tx_ucast" },
  64	{ 0x1B, "tx_deferred" },
  65	{ 0x1C, "tx_total_col" },
  66	{ 0x1D, "tx_exc_col" },
  67	{ 0x1E, "tx_single_col" },
  68	{ 0x1F, "tx_mult_col" },
  69	{ 0x80, "rx_total" },
  70	{ 0x81, "tx_total" },
  71	{ 0x82, "rx_discards" },
  72	{ 0x83, "tx_discards" },
  73};
  74
  75static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
  76{
  77	u8 data;
  78
  79	ksz_read8(dev, addr, &data);
  80	if (set)
  81		data |= bits;
  82	else
  83		data &= ~bits;
  84	ksz_write8(dev, addr, data);
  85}
  86
  87static void ksz_cfg32(struct ksz_device *dev, u32 addr, u32 bits, bool set)
  88{
  89	u32 data;
  90
  91	ksz_read32(dev, addr, &data);
  92	if (set)
  93		data |= bits;
  94	else
  95		data &= ~bits;
  96	ksz_write32(dev, addr, data);
  97}
  98
  99static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
 100			 bool set)
 101{
 102	u32 addr;
 103	u8 data;
 104
 105	addr = PORT_CTRL_ADDR(port, offset);
 106	ksz_read8(dev, addr, &data);
 107
 108	if (set)
 109		data |= bits;
 110	else
 111		data &= ~bits;
 112
 113	ksz_write8(dev, addr, data);
 114}
 115
 116static void ksz_port_cfg32(struct ksz_device *dev, int port, int offset,
 117			   u32 bits, bool set)
 118{
 119	u32 addr;
 120	u32 data;
 121
 122	addr = PORT_CTRL_ADDR(port, offset);
 123	ksz_read32(dev, addr, &data);
 124
 125	if (set)
 126		data |= bits;
 127	else
 128		data &= ~bits;
 129
 130	ksz_write32(dev, addr, data);
 131}
 132
 133static int wait_vlan_ctrl_ready(struct ksz_device *dev, u32 waiton, int timeout)
 134{
 135	u8 data;
 136
 137	do {
 138		ksz_read8(dev, REG_SW_VLAN_CTRL, &data);
 139		if (!(data & waiton))
 140			break;
 141		usleep_range(1, 10);
 142	} while (timeout-- > 0);
 143
 144	if (timeout <= 0)
 145		return -ETIMEDOUT;
 146
 147	return 0;
 148}
 149
 150static int get_vlan_table(struct dsa_switch *ds, u16 vid, u32 *vlan_table)
 151{
 152	struct ksz_device *dev = ds->priv;
 153	int ret;
 154
 155	mutex_lock(&dev->vlan_mutex);
 156
 157	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
 158	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_READ | VLAN_START);
 159
 160	/* wait to be cleared */
 161	ret = wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
 162	if (ret < 0) {
 163		dev_dbg(dev->dev, "Failed to read vlan table\n");
 164		goto exit;
 165	}
 166
 167	ksz_read32(dev, REG_SW_VLAN_ENTRY__4, &vlan_table[0]);
 168	ksz_read32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, &vlan_table[1]);
 169	ksz_read32(dev, REG_SW_VLAN_ENTRY_PORTS__4, &vlan_table[2]);
 170
 171	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
 172
 173exit:
 174	mutex_unlock(&dev->vlan_mutex);
 175
 176	return ret;
 177}
 178
 179static int set_vlan_table(struct dsa_switch *ds, u16 vid, u32 *vlan_table)
 180{
 181	struct ksz_device *dev = ds->priv;
 182	int ret;
 183
 184	mutex_lock(&dev->vlan_mutex);
 185
 186	ksz_write32(dev, REG_SW_VLAN_ENTRY__4, vlan_table[0]);
 187	ksz_write32(dev, REG_SW_VLAN_ENTRY_UNTAG__4, vlan_table[1]);
 188	ksz_write32(dev, REG_SW_VLAN_ENTRY_PORTS__4, vlan_table[2]);
 189
 190	ksz_write16(dev, REG_SW_VLAN_ENTRY_INDEX__2, vid & VLAN_INDEX_M);
 191	ksz_write8(dev, REG_SW_VLAN_CTRL, VLAN_START | VLAN_WRITE);
 192
 193	/* wait to be cleared */
 194	ret = wait_vlan_ctrl_ready(dev, VLAN_START, 1000);
 195	if (ret < 0) {
 196		dev_dbg(dev->dev, "Failed to write vlan table\n");
 197		goto exit;
 198	}
 199
 200	ksz_write8(dev, REG_SW_VLAN_CTRL, 0);
 201
 202	/* update vlan cache table */
 203	dev->vlan_cache[vid].table[0] = vlan_table[0];
 204	dev->vlan_cache[vid].table[1] = vlan_table[1];
 205	dev->vlan_cache[vid].table[2] = vlan_table[2];
 206
 207exit:
 208	mutex_unlock(&dev->vlan_mutex);
 209
 210	return ret;
 211}
 212
 213static void read_table(struct dsa_switch *ds, u32 *table)
 214{
 215	struct ksz_device *dev = ds->priv;
 216
 217	ksz_read32(dev, REG_SW_ALU_VAL_A, &table[0]);
 218	ksz_read32(dev, REG_SW_ALU_VAL_B, &table[1]);
 219	ksz_read32(dev, REG_SW_ALU_VAL_C, &table[2]);
 220	ksz_read32(dev, REG_SW_ALU_VAL_D, &table[3]);
 221}
 222
 223static void write_table(struct dsa_switch *ds, u32 *table)
 224{
 225	struct ksz_device *dev = ds->priv;
 226
 227	ksz_write32(dev, REG_SW_ALU_VAL_A, table[0]);
 228	ksz_write32(dev, REG_SW_ALU_VAL_B, table[1]);
 229	ksz_write32(dev, REG_SW_ALU_VAL_C, table[2]);
 230	ksz_write32(dev, REG_SW_ALU_VAL_D, table[3]);
 231}
 232
 233static int wait_alu_ready(struct ksz_device *dev, u32 waiton, int timeout)
 234{
 235	u32 data;
 236
 237	do {
 238		ksz_read32(dev, REG_SW_ALU_CTRL__4, &data);
 239		if (!(data & waiton))
 240			break;
 241		usleep_range(1, 10);
 242	} while (timeout-- > 0);
 243
 244	if (timeout <= 0)
 245		return -ETIMEDOUT;
 246
 247	return 0;
 248}
 249
 250static int wait_alu_sta_ready(struct ksz_device *dev, u32 waiton, int timeout)
 251{
 252	u32 data;
 253
 254	do {
 255		ksz_read32(dev, REG_SW_ALU_STAT_CTRL__4, &data);
 256		if (!(data & waiton))
 257			break;
 258		usleep_range(1, 10);
 259	} while (timeout-- > 0);
 260
 261	if (timeout <= 0)
 262		return -ETIMEDOUT;
 263
 264	return 0;
 265}
 266
 267static int ksz_reset_switch(struct dsa_switch *ds)
 268{
 269	struct ksz_device *dev = ds->priv;
 270	u8 data8;
 271	u16 data16;
 272	u32 data32;
 273
 274	/* reset switch */
 275	ksz_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
 276
 277	/* turn off SPI DO Edge select */
 278	ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
 279	data8 &= ~SPI_AUTO_EDGE_DETECTION;
 280	ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
 281
 282	/* default configuration */
 283	ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
 284	data8 = SW_AGING_ENABLE | SW_LINK_AUTO_AGING |
 285	      SW_SRC_ADDR_FILTER | SW_FLUSH_STP_TABLE | SW_FLUSH_MSTP_TABLE;
 286	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
 287
 288	/* disable interrupts */
 289	ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
 290	ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0x7F);
 291	ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
 292
 293	/* set broadcast storm protection 10% rate */
 294	ksz_read16(dev, REG_SW_MAC_CTRL_2, &data16);
 295	data16 &= ~BROADCAST_STORM_RATE;
 296	data16 |= (BROADCAST_STORM_VALUE * BROADCAST_STORM_PROT_RATE) / 100;
 297	ksz_write16(dev, REG_SW_MAC_CTRL_2, data16);
 298
 299	return 0;
 300}
 301
 302static void port_setup(struct ksz_device *dev, int port, bool cpu_port)
 303{
 304	u8 data8;
 305	u16 data16;
 306
 307	/* enable tag tail for host port */
 308	if (cpu_port)
 309		ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_TAIL_TAG_ENABLE,
 310			     true);
 311
 312	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, false);
 313
 314	/* set back pressure */
 315	ksz_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE, true);
 316
 317	/* set flow control */
 318	ksz_port_cfg(dev, port, REG_PORT_CTRL_0,
 319		     PORT_FORCE_TX_FLOW_CTRL | PORT_FORCE_RX_FLOW_CTRL, true);
 320
 321	/* enable broadcast storm limit */
 322	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
 323
 324	/* disable DiffServ priority */
 325	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_PRIO_ENABLE, false);
 326
 327	/* replace priority */
 328	ksz_port_cfg(dev, port, REG_PORT_MRI_MAC_CTRL, PORT_USER_PRIO_CEILING,
 329		     false);
 330	ksz_port_cfg32(dev, port, REG_PORT_MTI_QUEUE_CTRL_0__4,
 331		       MTI_PVID_REPLACE, false);
 332
 333	/* enable 802.1p priority */
 334	ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
 335
 336	/* configure MAC to 1G & RGMII mode */
 337	ksz_pread8(dev, port, REG_PORT_XMII_CTRL_1, &data8);
 338	data8 |= PORT_RGMII_ID_EG_ENABLE;
 339	data8 &= ~PORT_MII_NOT_1GBIT;
 340	data8 &= ~PORT_MII_SEL_M;
 341	data8 |= PORT_RGMII_SEL;
 342	ksz_pwrite8(dev, port, REG_PORT_XMII_CTRL_1, data8);
 343
 344	/* clear pending interrupts */
 345	ksz_pread16(dev, port, REG_PORT_PHY_INT_ENABLE, &data16);
 346}
 347
 348static void ksz_config_cpu_port(struct dsa_switch *ds)
 349{
 350	struct ksz_device *dev = ds->priv;
 351	int i;
 352
 353	ds->num_ports = dev->port_cnt;
 354
 355	for (i = 0; i < ds->num_ports; i++) {
 356		if (dsa_is_cpu_port(ds, i) && (dev->cpu_ports & (1 << i))) {
 357			dev->cpu_port = i;
 358
 359			/* enable cpu port */
 360			port_setup(dev, i, true);
 361		}
 362	}
 363}
 364
 365static int ksz_setup(struct dsa_switch *ds)
 366{
 367	struct ksz_device *dev = ds->priv;
 368	int ret = 0;
 369
 370	dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table),
 371				       dev->num_vlans, GFP_KERNEL);
 372	if (!dev->vlan_cache)
 373		return -ENOMEM;
 374
 375	ret = ksz_reset_switch(ds);
 376	if (ret) {
 377		dev_err(ds->dev, "failed to reset switch\n");
 378		return ret;
 379	}
 380
 381	/* accept packet up to 2000bytes */
 382	ksz_cfg(dev, REG_SW_MAC_CTRL_1, SW_LEGAL_PACKET_DISABLE, true);
 383
 384	ksz_config_cpu_port(ds);
 385
 386	ksz_cfg(dev, REG_SW_MAC_CTRL_1, MULTICAST_STORM_DISABLE, true);
 387
 388	/* queue based egress rate limit */
 389	ksz_cfg(dev, REG_SW_MAC_CTRL_5, SW_OUT_RATE_LIMIT_QUEUE_BASED, true);
 390
 391	/* start switch */
 392	ksz_cfg(dev, REG_SW_OPERATION, SW_START, true);
 393
 394	return 0;
 395}
 396
 397static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds,
 398						  int port)
 399{
 400	return DSA_TAG_PROTO_KSZ;
 401}
 402
 403static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg)
 404{
 405	struct ksz_device *dev = ds->priv;
 406	u16 val = 0;
 407
 408	ksz_pread16(dev, addr, 0x100 + (reg << 1), &val);
 409
 410	return val;
 411}
 412
 413static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val)
 414{
 415	struct ksz_device *dev = ds->priv;
 416
 417	ksz_pwrite16(dev, addr, 0x100 + (reg << 1), val);
 418
 419	return 0;
 420}
 421
 422static int ksz_enable_port(struct dsa_switch *ds, int port,
 423			   struct phy_device *phy)
 424{
 425	struct ksz_device *dev = ds->priv;
 426
 427	/* setup slave port */
 428	port_setup(dev, port, false);
 429
 430	return 0;
 431}
 432
 433static void ksz_disable_port(struct dsa_switch *ds, int port,
 434			     struct phy_device *phy)
 435{
 436	struct ksz_device *dev = ds->priv;
 437
 438	/* there is no port disable */
 439	ksz_port_cfg(dev, port, REG_PORT_CTRL_0, PORT_MAC_LOOPBACK, true);
 440}
 441
 442static int ksz_sset_count(struct dsa_switch *ds, int port)
 443{
 444	return TOTAL_SWITCH_COUNTER_NUM;
 445}
 446
 447static void ksz_get_strings(struct dsa_switch *ds, int port, uint8_t *buf)
 448{
 449	int i;
 450
 451	for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
 452		memcpy(buf + i * ETH_GSTRING_LEN, mib_names[i].string,
 453		       ETH_GSTRING_LEN);
 454	}
 455}
 456
 457static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port,
 458				  uint64_t *buf)
 459{
 460	struct ksz_device *dev = ds->priv;
 461	int i;
 462	u32 data;
 463	int timeout;
 464
 465	mutex_lock(&dev->stats_mutex);
 466
 467	for (i = 0; i < TOTAL_SWITCH_COUNTER_NUM; i++) {
 468		data = MIB_COUNTER_READ;
 469		data |= ((mib_names[i].index & 0xFF) << MIB_COUNTER_INDEX_S);
 470		ksz_pwrite32(dev, port, REG_PORT_MIB_CTRL_STAT__4, data);
 471
 472		timeout = 1000;
 473		do {
 474			ksz_pread32(dev, port, REG_PORT_MIB_CTRL_STAT__4,
 475				    &data);
 476			usleep_range(1, 10);
 477			if (!(data & MIB_COUNTER_READ))
 478				break;
 479		} while (timeout-- > 0);
 480
 481		/* failed to read MIB. get out of loop */
 482		if (!timeout) {
 483			dev_dbg(dev->dev, "Failed to get MIB\n");
 484			break;
 485		}
 486
 487		/* count resets upon read */
 488		ksz_pread32(dev, port, REG_PORT_MIB_DATA, &data);
 489
 490		dev->mib_value[i] += (uint64_t)data;
 491		buf[i] = dev->mib_value[i];
 492	}
 493
 494	mutex_unlock(&dev->stats_mutex);
 495}
 496
 497static void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
 498{
 499	struct ksz_device *dev = ds->priv;
 500	u8 data;
 501
 502	ksz_pread8(dev, port, P_STP_CTRL, &data);
 503	data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE);
 504
 505	switch (state) {
 506	case BR_STATE_DISABLED:
 507		data |= PORT_LEARN_DISABLE;
 508		break;
 509	case BR_STATE_LISTENING:
 510		data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE);
 511		break;
 512	case BR_STATE_LEARNING:
 513		data |= PORT_RX_ENABLE;
 514		break;
 515	case BR_STATE_FORWARDING:
 516		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
 517		break;
 518	case BR_STATE_BLOCKING:
 519		data |= PORT_LEARN_DISABLE;
 520		break;
 521	default:
 522		dev_err(ds->dev, "invalid STP state: %d\n", state);
 523		return;
 524	}
 525
 526	ksz_pwrite8(dev, port, P_STP_CTRL, data);
 527}
 528
 529static void ksz_port_fast_age(struct dsa_switch *ds, int port)
 530{
 531	struct ksz_device *dev = ds->priv;
 532	u8 data8;
 533
 534	ksz_read8(dev, REG_SW_LUE_CTRL_1, &data8);
 535	data8 |= SW_FAST_AGING;
 536	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
 537
 538	data8 &= ~SW_FAST_AGING;
 539	ksz_write8(dev, REG_SW_LUE_CTRL_1, data8);
 540}
 541
 542static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port, bool flag)
 543{
 544	struct ksz_device *dev = ds->priv;
 545
 546	if (flag) {
 547		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
 548			     PORT_VLAN_LOOKUP_VID_0, true);
 549		ksz_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY, true);
 550		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, true);
 551	} else {
 552		ksz_cfg(dev, REG_SW_LUE_CTRL_0, SW_VLAN_ENABLE, false);
 553		ksz_cfg32(dev, REG_SW_QM_CTRL__4, UNICAST_VLAN_BOUNDARY, false);
 554		ksz_port_cfg(dev, port, REG_PORT_LUE_CTRL,
 555			     PORT_VLAN_LOOKUP_VID_0, false);
 556	}
 557
 558	return 0;
 559}
 560
 561static int ksz_port_vlan_prepare(struct dsa_switch *ds, int port,
 562				 const struct switchdev_obj_port_vlan *vlan)
 563{
 564	/* nothing needed */
 565
 566	return 0;
 567}
 568
 569static void ksz_port_vlan_add(struct dsa_switch *ds, int port,
 570			      const struct switchdev_obj_port_vlan *vlan)
 571{
 572	struct ksz_device *dev = ds->priv;
 573	u32 vlan_table[3];
 574	u16 vid;
 575	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
 576
 577	for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
 578		if (get_vlan_table(ds, vid, vlan_table)) {
 579			dev_dbg(dev->dev, "Failed to get vlan table\n");
 580			return;
 581		}
 582
 583		vlan_table[0] = VLAN_VALID | (vid & VLAN_FID_M);
 584		if (untagged)
 585			vlan_table[1] |= BIT(port);
 586		else
 587			vlan_table[1] &= ~BIT(port);
 588		vlan_table[1] &= ~(BIT(dev->cpu_port));
 589
 590		vlan_table[2] |= BIT(port) | BIT(dev->cpu_port);
 591
 592		if (set_vlan_table(ds, vid, vlan_table)) {
 593			dev_dbg(dev->dev, "Failed to set vlan table\n");
 594			return;
 595		}
 596
 597		/* change PVID */
 598		if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
 599			ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, vid);
 600	}
 601}
 602
 603static int ksz_port_vlan_del(struct dsa_switch *ds, int port,
 604			     const struct switchdev_obj_port_vlan *vlan)
 605{
 606	struct ksz_device *dev = ds->priv;
 607	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
 608	u32 vlan_table[3];
 609	u16 vid;
 610	u16 pvid;
 611
 612	ksz_pread16(dev, port, REG_PORT_DEFAULT_VID, &pvid);
 613	pvid = pvid & 0xFFF;
 614
 615	for (vid = vlan->vid_begin; vid <= vlan->vid_end; vid++) {
 616		if (get_vlan_table(ds, vid, vlan_table)) {
 617			dev_dbg(dev->dev, "Failed to get vlan table\n");
 618			return -ETIMEDOUT;
 619		}
 620
 621		vlan_table[2] &= ~BIT(port);
 622
 623		if (pvid == vid)
 624			pvid = 1;
 625
 626		if (untagged)
 627			vlan_table[1] &= ~BIT(port);
 628
 629		if (set_vlan_table(ds, vid, vlan_table)) {
 630			dev_dbg(dev->dev, "Failed to set vlan table\n");
 631			return -ETIMEDOUT;
 632		}
 633	}
 634
 635	ksz_pwrite16(dev, port, REG_PORT_DEFAULT_VID, pvid);
 636
 637	return 0;
 638}
 639
 640struct alu_struct {
 641	/* entry 1 */
 642	u8	is_static:1;
 643	u8	is_src_filter:1;
 644	u8	is_dst_filter:1;
 645	u8	prio_age:3;
 646	u32	_reserv_0_1:23;
 647	u8	mstp:3;
 648	/* entry 2 */
 649	u8	is_override:1;
 650	u8	is_use_fid:1;
 651	u32	_reserv_1_1:23;
 652	u8	port_forward:7;
 653	/* entry 3 & 4*/
 654	u32	_reserv_2_1:9;
 655	u8	fid:7;
 656	u8	mac[ETH_ALEN];
 657};
 658
 659static int ksz_port_fdb_add(struct dsa_switch *ds, int port,
 660			    const unsigned char *addr, u16 vid)
 661{
 662	struct ksz_device *dev = ds->priv;
 663	u32 alu_table[4];
 664	u32 data;
 665	int ret = 0;
 666
 667	mutex_lock(&dev->alu_mutex);
 668
 669	/* find any entry with mac & vid */
 670	data = vid << ALU_FID_INDEX_S;
 671	data |= ((addr[0] << 8) | addr[1]);
 672	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
 673
 674	data = ((addr[2] << 24) | (addr[3] << 16));
 675	data |= ((addr[4] << 8) | addr[5]);
 676	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
 677
 678	/* start read operation */
 679	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
 680
 681	/* wait to be finished */
 682	ret = wait_alu_ready(dev, ALU_START, 1000);
 683	if (ret < 0) {
 684		dev_dbg(dev->dev, "Failed to read ALU\n");
 685		goto exit;
 686	}
 687
 688	/* read ALU entry */
 689	read_table(ds, alu_table);
 690
 691	/* update ALU entry */
 692	alu_table[0] = ALU_V_STATIC_VALID;
 693	alu_table[1] |= BIT(port);
 694	if (vid)
 695		alu_table[1] |= ALU_V_USE_FID;
 696	alu_table[2] = (vid << ALU_V_FID_S);
 697	alu_table[2] |= ((addr[0] << 8) | addr[1]);
 698	alu_table[3] = ((addr[2] << 24) | (addr[3] << 16));
 699	alu_table[3] |= ((addr[4] << 8) | addr[5]);
 700
 701	write_table(ds, alu_table);
 702
 703	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
 704
 705	/* wait to be finished */
 706	ret = wait_alu_ready(dev, ALU_START, 1000);
 707	if (ret < 0)
 708		dev_dbg(dev->dev, "Failed to write ALU\n");
 709
 710exit:
 711	mutex_unlock(&dev->alu_mutex);
 712
 713	return ret;
 714}
 715
 716static int ksz_port_fdb_del(struct dsa_switch *ds, int port,
 717			    const unsigned char *addr, u16 vid)
 718{
 719	struct ksz_device *dev = ds->priv;
 720	u32 alu_table[4];
 721	u32 data;
 722	int ret = 0;
 723
 724	mutex_lock(&dev->alu_mutex);
 725
 726	/* read any entry with mac & vid */
 727	data = vid << ALU_FID_INDEX_S;
 728	data |= ((addr[0] << 8) | addr[1]);
 729	ksz_write32(dev, REG_SW_ALU_INDEX_0, data);
 730
 731	data = ((addr[2] << 24) | (addr[3] << 16));
 732	data |= ((addr[4] << 8) | addr[5]);
 733	ksz_write32(dev, REG_SW_ALU_INDEX_1, data);
 734
 735	/* start read operation */
 736	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_READ | ALU_START);
 737
 738	/* wait to be finished */
 739	ret = wait_alu_ready(dev, ALU_START, 1000);
 740	if (ret < 0) {
 741		dev_dbg(dev->dev, "Failed to read ALU\n");
 742		goto exit;
 743	}
 744
 745	ksz_read32(dev, REG_SW_ALU_VAL_A, &alu_table[0]);
 746	if (alu_table[0] & ALU_V_STATIC_VALID) {
 747		ksz_read32(dev, REG_SW_ALU_VAL_B, &alu_table[1]);
 748		ksz_read32(dev, REG_SW_ALU_VAL_C, &alu_table[2]);
 749		ksz_read32(dev, REG_SW_ALU_VAL_D, &alu_table[3]);
 750
 751		/* clear forwarding port */
 752		alu_table[2] &= ~BIT(port);
 753
 754		/* if there is no port to forward, clear table */
 755		if ((alu_table[2] & ALU_V_PORT_MAP) == 0) {
 756			alu_table[0] = 0;
 757			alu_table[1] = 0;
 758			alu_table[2] = 0;
 759			alu_table[3] = 0;
 760		}
 761	} else {
 762		alu_table[0] = 0;
 763		alu_table[1] = 0;
 764		alu_table[2] = 0;
 765		alu_table[3] = 0;
 766	}
 767
 768	write_table(ds, alu_table);
 769
 770	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_WRITE | ALU_START);
 771
 772	/* wait to be finished */
 773	ret = wait_alu_ready(dev, ALU_START, 1000);
 774	if (ret < 0)
 775		dev_dbg(dev->dev, "Failed to write ALU\n");
 776
 777exit:
 778	mutex_unlock(&dev->alu_mutex);
 779
 780	return ret;
 781}
 782
 783static void convert_alu(struct alu_struct *alu, u32 *alu_table)
 784{
 785	alu->is_static = !!(alu_table[0] & ALU_V_STATIC_VALID);
 786	alu->is_src_filter = !!(alu_table[0] & ALU_V_SRC_FILTER);
 787	alu->is_dst_filter = !!(alu_table[0] & ALU_V_DST_FILTER);
 788	alu->prio_age = (alu_table[0] >> ALU_V_PRIO_AGE_CNT_S) &
 789			ALU_V_PRIO_AGE_CNT_M;
 790	alu->mstp = alu_table[0] & ALU_V_MSTP_M;
 791
 792	alu->is_override = !!(alu_table[1] & ALU_V_OVERRIDE);
 793	alu->is_use_fid = !!(alu_table[1] & ALU_V_USE_FID);
 794	alu->port_forward = alu_table[1] & ALU_V_PORT_MAP;
 795
 796	alu->fid = (alu_table[2] >> ALU_V_FID_S) & ALU_V_FID_M;
 797
 798	alu->mac[0] = (alu_table[2] >> 8) & 0xFF;
 799	alu->mac[1] = alu_table[2] & 0xFF;
 800	alu->mac[2] = (alu_table[3] >> 24) & 0xFF;
 801	alu->mac[3] = (alu_table[3] >> 16) & 0xFF;
 802	alu->mac[4] = (alu_table[3] >> 8) & 0xFF;
 803	alu->mac[5] = alu_table[3] & 0xFF;
 804}
 805
 806static int ksz_port_fdb_dump(struct dsa_switch *ds, int port,
 807			     dsa_fdb_dump_cb_t *cb, void *data)
 808{
 809	struct ksz_device *dev = ds->priv;
 810	int ret = 0;
 811	u32 ksz_data;
 812	u32 alu_table[4];
 813	struct alu_struct alu;
 814	int timeout;
 815
 816	mutex_lock(&dev->alu_mutex);
 817
 818	/* start ALU search */
 819	ksz_write32(dev, REG_SW_ALU_CTRL__4, ALU_START | ALU_SEARCH);
 820
 821	do {
 822		timeout = 1000;
 823		do {
 824			ksz_read32(dev, REG_SW_ALU_CTRL__4, &ksz_data);
 825			if ((ksz_data & ALU_VALID) || !(ksz_data & ALU_START))
 826				break;
 827			usleep_range(1, 10);
 828		} while (timeout-- > 0);
 829
 830		if (!timeout) {
 831			dev_dbg(dev->dev, "Failed to search ALU\n");
 832			ret = -ETIMEDOUT;
 833			goto exit;
 834		}
 835
 836		/* read ALU table */
 837		read_table(ds, alu_table);
 838
 839		convert_alu(&alu, alu_table);
 840
 841		if (alu.port_forward & BIT(port)) {
 842			ret = cb(alu.mac, alu.fid, alu.is_static, data);
 843			if (ret)
 844				goto exit;
 845		}
 846	} while (ksz_data & ALU_START);
 847
 848exit:
 849
 850	/* stop ALU search */
 851	ksz_write32(dev, REG_SW_ALU_CTRL__4, 0);
 852
 853	mutex_unlock(&dev->alu_mutex);
 854
 855	return ret;
 856}
 857
 858static int ksz_port_mdb_prepare(struct dsa_switch *ds, int port,
 859				const struct switchdev_obj_port_mdb *mdb)
 860{
 861	/* nothing to do */
 862	return 0;
 863}
 864
 865static void ksz_port_mdb_add(struct dsa_switch *ds, int port,
 866			     const struct switchdev_obj_port_mdb *mdb)
 867{
 868	struct ksz_device *dev = ds->priv;
 869	u32 static_table[4];
 870	u32 data;
 871	int index;
 872	u32 mac_hi, mac_lo;
 873
 874	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
 875	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
 876	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
 877
 878	mutex_lock(&dev->alu_mutex);
 879
 880	for (index = 0; index < dev->num_statics; index++) {
 881		/* find empty slot first */
 882		data = (index << ALU_STAT_INDEX_S) |
 883			ALU_STAT_READ | ALU_STAT_START;
 884		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
 885
 886		/* wait to be finished */
 887		if (wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0) {
 888			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
 889			goto exit;
 890		}
 891
 892		/* read ALU static table */
 893		read_table(ds, static_table);
 894
 895		if (static_table[0] & ALU_V_STATIC_VALID) {
 896			/* check this has same vid & mac address */
 897			if (((static_table[2] >> ALU_V_FID_S) == (mdb->vid)) &&
 898			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
 899			    (static_table[3] == mac_lo)) {
 900				/* found matching one */
 901				break;
 902			}
 903		} else {
 904			/* found empty one */
 905			break;
 906		}
 907	}
 908
 909	/* no available entry */
 910	if (index == dev->num_statics)
 911		goto exit;
 912
 913	/* add entry */
 914	static_table[0] = ALU_V_STATIC_VALID;
 915	static_table[1] |= BIT(port);
 916	if (mdb->vid)
 917		static_table[1] |= ALU_V_USE_FID;
 918	static_table[2] = (mdb->vid << ALU_V_FID_S);
 919	static_table[2] |= mac_hi;
 920	static_table[3] = mac_lo;
 921
 922	write_table(ds, static_table);
 923
 924	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
 925	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
 926
 927	/* wait to be finished */
 928	if (wait_alu_sta_ready(dev, ALU_STAT_START, 1000) < 0)
 929		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
 930
 931exit:
 932	mutex_unlock(&dev->alu_mutex);
 933}
 934
 935static int ksz_port_mdb_del(struct dsa_switch *ds, int port,
 936			    const struct switchdev_obj_port_mdb *mdb)
 937{
 938	struct ksz_device *dev = ds->priv;
 939	u32 static_table[4];
 940	u32 data;
 941	int index;
 942	int ret = 0;
 943	u32 mac_hi, mac_lo;
 944
 945	mac_hi = ((mdb->addr[0] << 8) | mdb->addr[1]);
 946	mac_lo = ((mdb->addr[2] << 24) | (mdb->addr[3] << 16));
 947	mac_lo |= ((mdb->addr[4] << 8) | mdb->addr[5]);
 948
 949	mutex_lock(&dev->alu_mutex);
 950
 951	for (index = 0; index < dev->num_statics; index++) {
 952		/* find empty slot first */
 953		data = (index << ALU_STAT_INDEX_S) |
 954			ALU_STAT_READ | ALU_STAT_START;
 955		ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
 956
 957		/* wait to be finished */
 958		ret = wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
 959		if (ret < 0) {
 960			dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
 961			goto exit;
 962		}
 963
 964		/* read ALU static table */
 965		read_table(ds, static_table);
 966
 967		if (static_table[0] & ALU_V_STATIC_VALID) {
 968			/* check this has same vid & mac address */
 969
 970			if (((static_table[2] >> ALU_V_FID_S) == (mdb->vid)) &&
 971			    ((static_table[2] & ALU_V_MAC_ADDR_HI) == mac_hi) &&
 972			    (static_table[3] == mac_lo)) {
 973				/* found matching one */
 974				break;
 975			}
 976		}
 977	}
 978
 979	/* no available entry */
 980	if (index == dev->num_statics) {
 981		ret = -EINVAL;
 982		goto exit;
 983	}
 984
 985	/* clear port */
 986	static_table[1] &= ~BIT(port);
 987
 988	if ((static_table[1] & ALU_V_PORT_MAP) == 0) {
 989		/* delete entry */
 990		static_table[0] = 0;
 991		static_table[1] = 0;
 992		static_table[2] = 0;
 993		static_table[3] = 0;
 994	}
 995
 996	write_table(ds, static_table);
 997
 998	data = (index << ALU_STAT_INDEX_S) | ALU_STAT_START;
 999	ksz_write32(dev, REG_SW_ALU_STAT_CTRL__4, data);
1000
1001	/* wait to be finished */
1002	ret = wait_alu_sta_ready(dev, ALU_STAT_START, 1000);
1003	if (ret < 0)
1004		dev_dbg(dev->dev, "Failed to read ALU STATIC\n");
1005
1006exit:
1007	mutex_unlock(&dev->alu_mutex);
1008
1009	return ret;
1010}
1011
1012static int ksz_port_mirror_add(struct dsa_switch *ds, int port,
1013			       struct dsa_mall_mirror_tc_entry *mirror,
1014			       bool ingress)
1015{
1016	struct ksz_device *dev = ds->priv;
1017
1018	if (ingress)
1019		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
1020	else
1021		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
1022
1023	ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
1024
1025	/* configure mirror port */
1026	ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1027		     PORT_MIRROR_SNIFFER, true);
1028
1029	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
1030
1031	return 0;
1032}
1033
1034static void ksz_port_mirror_del(struct dsa_switch *ds, int port,
1035				struct dsa_mall_mirror_tc_entry *mirror)
1036{
1037	struct ksz_device *dev = ds->priv;
1038	u8 data;
1039
1040	if (mirror->ingress)
1041		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
1042	else
1043		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
1044
1045	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1046
1047	if (!(data & (PORT_MIRROR_RX | PORT_MIRROR_TX)))
1048		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1049			     PORT_MIRROR_SNIFFER, false);
1050}
1051
1052static const struct dsa_switch_ops ksz_switch_ops = {
1053	.get_tag_protocol	= ksz_get_tag_protocol,
1054	.setup			= ksz_setup,
1055	.phy_read		= ksz_phy_read16,
1056	.phy_write		= ksz_phy_write16,
1057	.port_enable		= ksz_enable_port,
1058	.port_disable		= ksz_disable_port,
1059	.get_strings		= ksz_get_strings,
1060	.get_ethtool_stats	= ksz_get_ethtool_stats,
1061	.get_sset_count		= ksz_sset_count,
1062	.port_stp_state_set	= ksz_port_stp_state_set,
1063	.port_fast_age		= ksz_port_fast_age,
1064	.port_vlan_filtering	= ksz_port_vlan_filtering,
1065	.port_vlan_prepare	= ksz_port_vlan_prepare,
1066	.port_vlan_add		= ksz_port_vlan_add,
1067	.port_vlan_del		= ksz_port_vlan_del,
1068	.port_fdb_dump		= ksz_port_fdb_dump,
1069	.port_fdb_add		= ksz_port_fdb_add,
1070	.port_fdb_del		= ksz_port_fdb_del,
1071	.port_mdb_prepare       = ksz_port_mdb_prepare,
1072	.port_mdb_add           = ksz_port_mdb_add,
1073	.port_mdb_del           = ksz_port_mdb_del,
1074	.port_mirror_add	= ksz_port_mirror_add,
1075	.port_mirror_del	= ksz_port_mirror_del,
1076};
1077
1078struct ksz_chip_data {
1079	u32 chip_id;
1080	const char *dev_name;
1081	int num_vlans;
1082	int num_alus;
1083	int num_statics;
1084	int cpu_ports;
1085	int port_cnt;
1086};
1087
1088static const struct ksz_chip_data ksz_switch_chips[] = {
1089	{
1090		.chip_id = 0x00947700,
1091		.dev_name = "KSZ9477",
1092		.num_vlans = 4096,
1093		.num_alus = 4096,
1094		.num_statics = 16,
1095		.cpu_ports = 0x7F,	/* can be configured as cpu port */
1096		.port_cnt = 7,		/* total physical port count */
1097	},
1098};
1099
1100static int ksz_switch_init(struct ksz_device *dev)
1101{
1102	int i;
1103
1104	mutex_init(&dev->reg_mutex);
1105	mutex_init(&dev->stats_mutex);
1106	mutex_init(&dev->alu_mutex);
1107	mutex_init(&dev->vlan_mutex);
1108
1109	dev->ds->ops = &ksz_switch_ops;
1110
1111	for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) {
1112		const struct ksz_chip_data *chip = &ksz_switch_chips[i];
1113
1114		if (dev->chip_id == chip->chip_id) {
1115			dev->name = chip->dev_name;
1116			dev->num_vlans = chip->num_vlans;
1117			dev->num_alus = chip->num_alus;
1118			dev->num_statics = chip->num_statics;
1119			dev->port_cnt = chip->port_cnt;
1120			dev->cpu_ports = chip->cpu_ports;
1121
1122			break;
1123		}
1124	}
1125
1126	/* no switch found */
1127	if (!dev->port_cnt)
1128		return -ENODEV;
1129
1130	return 0;
1131}
1132
1133struct ksz_device *ksz_switch_alloc(struct device *base,
1134				    const struct ksz_io_ops *ops,
1135				    void *priv)
1136{
1137	struct dsa_switch *ds;
1138	struct ksz_device *swdev;
1139
1140	ds = dsa_switch_alloc(base, DSA_MAX_PORTS);
1141	if (!ds)
1142		return NULL;
1143
1144	swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL);
1145	if (!swdev)
1146		return NULL;
1147
1148	ds->priv = swdev;
1149	swdev->dev = base;
1150
1151	swdev->ds = ds;
1152	swdev->priv = priv;
1153	swdev->ops = ops;
1154
1155	return swdev;
1156}
1157EXPORT_SYMBOL(ksz_switch_alloc);
1158
1159int ksz_switch_detect(struct ksz_device *dev)
1160{
1161	u8 data8;
1162	u32 id32;
1163	int ret;
1164
1165	/* turn off SPI DO Edge select */
1166	ret = ksz_read8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, &data8);
1167	if (ret)
1168		return ret;
1169
1170	data8 &= ~SPI_AUTO_EDGE_DETECTION;
1171	ret = ksz_write8(dev, REG_SW_GLOBAL_SERIAL_CTRL_0, data8);
1172	if (ret)
1173		return ret;
1174
1175	/* read chip id */
1176	ret = ksz_read32(dev, REG_CHIP_ID0__1, &id32);
1177	if (ret)
1178		return ret;
1179
1180	dev->chip_id = id32;
1181
1182	return 0;
1183}
1184EXPORT_SYMBOL(ksz_switch_detect);
1185
1186int ksz_switch_register(struct ksz_device *dev)
1187{
1188	int ret;
1189
1190	if (dev->pdata)
1191		dev->chip_id = dev->pdata->chip_id;
1192
1193	if (ksz_switch_detect(dev))
1194		return -EINVAL;
1195
1196	ret = ksz_switch_init(dev);
1197	if (ret)
1198		return ret;
1199
1200	return dsa_register_switch(dev->ds);
1201}
1202EXPORT_SYMBOL(ksz_switch_register);
1203
1204void ksz_switch_remove(struct ksz_device *dev)
1205{
1206	dsa_unregister_switch(dev->ds);
1207}
1208EXPORT_SYMBOL(ksz_switch_remove);
1209
1210MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>");
1211MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver");
1212MODULE_LICENSE("GPL");