Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
v3.1
   1/*
   2 * MTD device concatenation layer
   3 *
   4 * Copyright © 2002 Robert Kaiser <rkaiser@sysgo.de>
   5 * Copyright © 2002-2010 David Woodhouse <dwmw2@infradead.org>
   6 *
   7 * NAND support by Christian Gan <cgan@iders.ca>
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  22 *
  23 */
  24
  25#include <linux/kernel.h>
  26#include <linux/module.h>
  27#include <linux/slab.h>
  28#include <linux/sched.h>
  29#include <linux/types.h>
  30#include <linux/backing-dev.h>
  31
  32#include <linux/mtd/mtd.h>
  33#include <linux/mtd/concat.h>
  34
  35#include <asm/div64.h>
  36
  37/*
  38 * Our storage structure:
  39 * Subdev points to an array of pointers to struct mtd_info objects
  40 * which is allocated along with this structure
  41 *
  42 */
  43struct mtd_concat {
  44	struct mtd_info mtd;
  45	int num_subdev;
  46	struct mtd_info **subdev;
  47};
  48
  49/*
  50 * how to calculate the size required for the above structure,
  51 * including the pointer array subdev points to:
  52 */
  53#define SIZEOF_STRUCT_MTD_CONCAT(num_subdev)	\
  54	((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *)))
  55
  56/*
  57 * Given a pointer to the MTD object in the mtd_concat structure,
  58 * we can retrieve the pointer to that structure with this macro.
  59 */
  60#define CONCAT(x)  ((struct mtd_concat *)(x))
  61
  62/*
  63 * MTD methods which look up the relevant subdevice, translate the
  64 * effective address and pass through to the subdevice.
  65 */
  66
  67static int
  68concat_read(struct mtd_info *mtd, loff_t from, size_t len,
  69	    size_t * retlen, u_char * buf)
  70{
  71	struct mtd_concat *concat = CONCAT(mtd);
  72	int ret = 0, err;
  73	int i;
  74
  75	*retlen = 0;
  76
  77	for (i = 0; i < concat->num_subdev; i++) {
  78		struct mtd_info *subdev = concat->subdev[i];
  79		size_t size, retsize;
  80
  81		if (from >= subdev->size) {
  82			/* Not destined for this subdev */
  83			size = 0;
  84			from -= subdev->size;
  85			continue;
  86		}
  87		if (from + len > subdev->size)
  88			/* First part goes into this subdev */
  89			size = subdev->size - from;
  90		else
  91			/* Entire transaction goes into this subdev */
  92			size = len;
  93
  94		err = subdev->read(subdev, from, size, &retsize, buf);
  95
  96		/* Save information about bitflips! */
  97		if (unlikely(err)) {
  98			if (err == -EBADMSG) {
  99				mtd->ecc_stats.failed++;
 100				ret = err;
 101			} else if (err == -EUCLEAN) {
 102				mtd->ecc_stats.corrected++;
 103				/* Do not overwrite -EBADMSG !! */
 104				if (!ret)
 105					ret = err;
 106			} else
 107				return err;
 108		}
 109
 110		*retlen += retsize;
 111		len -= size;
 112		if (len == 0)
 113			return ret;
 114
 115		buf += size;
 116		from = 0;
 117	}
 118	return -EINVAL;
 119}
 120
 121static int
 122concat_write(struct mtd_info *mtd, loff_t to, size_t len,
 123	     size_t * retlen, const u_char * buf)
 124{
 125	struct mtd_concat *concat = CONCAT(mtd);
 126	int err = -EINVAL;
 127	int i;
 128
 129	if (!(mtd->flags & MTD_WRITEABLE))
 130		return -EROFS;
 131
 132	*retlen = 0;
 133
 134	for (i = 0; i < concat->num_subdev; i++) {
 135		struct mtd_info *subdev = concat->subdev[i];
 136		size_t size, retsize;
 137
 138		if (to >= subdev->size) {
 139			size = 0;
 140			to -= subdev->size;
 141			continue;
 142		}
 143		if (to + len > subdev->size)
 144			size = subdev->size - to;
 145		else
 146			size = len;
 147
 148		if (!(subdev->flags & MTD_WRITEABLE))
 149			err = -EROFS;
 150		else
 151			err = subdev->write(subdev, to, size, &retsize, buf);
 152
 153		if (err)
 154			break;
 155
 156		*retlen += retsize;
 157		len -= size;
 158		if (len == 0)
 159			break;
 160
 161		err = -EINVAL;
 162		buf += size;
 163		to = 0;
 164	}
 165	return err;
 166}
 167
 168static int
 169concat_writev(struct mtd_info *mtd, const struct kvec *vecs,
 170		unsigned long count, loff_t to, size_t * retlen)
 171{
 172	struct mtd_concat *concat = CONCAT(mtd);
 173	struct kvec *vecs_copy;
 174	unsigned long entry_low, entry_high;
 175	size_t total_len = 0;
 176	int i;
 177	int err = -EINVAL;
 178
 179	if (!(mtd->flags & MTD_WRITEABLE))
 180		return -EROFS;
 181
 182	*retlen = 0;
 183
 184	/* Calculate total length of data */
 185	for (i = 0; i < count; i++)
 186		total_len += vecs[i].iov_len;
 187
 188	/* Do not allow write past end of device */
 189	if ((to + total_len) > mtd->size)
 190		return -EINVAL;
 191
 192	/* Check alignment */
 193	if (mtd->writesize > 1) {
 194		uint64_t __to = to;
 195		if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize))
 196			return -EINVAL;
 197	}
 198
 199	/* make a copy of vecs */
 200	vecs_copy = kmemdup(vecs, sizeof(struct kvec) * count, GFP_KERNEL);
 201	if (!vecs_copy)
 202		return -ENOMEM;
 203
 204	entry_low = 0;
 205	for (i = 0; i < concat->num_subdev; i++) {
 206		struct mtd_info *subdev = concat->subdev[i];
 207		size_t size, wsize, retsize, old_iov_len;
 208
 209		if (to >= subdev->size) {
 210			to -= subdev->size;
 211			continue;
 212		}
 213
 214		size = min_t(uint64_t, total_len, subdev->size - to);
 215		wsize = size; /* store for future use */
 216
 217		entry_high = entry_low;
 218		while (entry_high < count) {
 219			if (size <= vecs_copy[entry_high].iov_len)
 220				break;
 221			size -= vecs_copy[entry_high++].iov_len;
 222		}
 223
 224		old_iov_len = vecs_copy[entry_high].iov_len;
 225		vecs_copy[entry_high].iov_len = size;
 226
 227		if (!(subdev->flags & MTD_WRITEABLE))
 228			err = -EROFS;
 229		else
 230			err = subdev->writev(subdev, &vecs_copy[entry_low],
 231				entry_high - entry_low + 1, to, &retsize);
 232
 233		vecs_copy[entry_high].iov_len = old_iov_len - size;
 234		vecs_copy[entry_high].iov_base += size;
 235
 236		entry_low = entry_high;
 237
 238		if (err)
 239			break;
 240
 241		*retlen += retsize;
 242		total_len -= wsize;
 243
 244		if (total_len == 0)
 245			break;
 246
 247		err = -EINVAL;
 248		to = 0;
 249	}
 250
 251	kfree(vecs_copy);
 252	return err;
 253}
 254
 255static int
 256concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
 257{
 258	struct mtd_concat *concat = CONCAT(mtd);
 259	struct mtd_oob_ops devops = *ops;
 260	int i, err, ret = 0;
 261
 262	ops->retlen = ops->oobretlen = 0;
 263
 264	for (i = 0; i < concat->num_subdev; i++) {
 265		struct mtd_info *subdev = concat->subdev[i];
 266
 267		if (from >= subdev->size) {
 268			from -= subdev->size;
 269			continue;
 270		}
 271
 272		/* partial read ? */
 273		if (from + devops.len > subdev->size)
 274			devops.len = subdev->size - from;
 275
 276		err = subdev->read_oob(subdev, from, &devops);
 277		ops->retlen += devops.retlen;
 278		ops->oobretlen += devops.oobretlen;
 279
 280		/* Save information about bitflips! */
 281		if (unlikely(err)) {
 282			if (err == -EBADMSG) {
 283				mtd->ecc_stats.failed++;
 284				ret = err;
 285			} else if (err == -EUCLEAN) {
 286				mtd->ecc_stats.corrected++;
 287				/* Do not overwrite -EBADMSG !! */
 288				if (!ret)
 289					ret = err;
 290			} else
 291				return err;
 292		}
 293
 294		if (devops.datbuf) {
 295			devops.len = ops->len - ops->retlen;
 296			if (!devops.len)
 297				return ret;
 298			devops.datbuf += devops.retlen;
 299		}
 300		if (devops.oobbuf) {
 301			devops.ooblen = ops->ooblen - ops->oobretlen;
 302			if (!devops.ooblen)
 303				return ret;
 304			devops.oobbuf += ops->oobretlen;
 305		}
 306
 307		from = 0;
 308	}
 309	return -EINVAL;
 310}
 311
 312static int
 313concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops)
 314{
 315	struct mtd_concat *concat = CONCAT(mtd);
 316	struct mtd_oob_ops devops = *ops;
 317	int i, err;
 318
 319	if (!(mtd->flags & MTD_WRITEABLE))
 320		return -EROFS;
 321
 322	ops->retlen = ops->oobretlen = 0;
 323
 324	for (i = 0; i < concat->num_subdev; i++) {
 325		struct mtd_info *subdev = concat->subdev[i];
 326
 327		if (to >= subdev->size) {
 328			to -= subdev->size;
 329			continue;
 330		}
 331
 332		/* partial write ? */
 333		if (to + devops.len > subdev->size)
 334			devops.len = subdev->size - to;
 335
 336		err = subdev->write_oob(subdev, to, &devops);
 337		ops->retlen += devops.oobretlen;
 
 338		if (err)
 339			return err;
 340
 341		if (devops.datbuf) {
 342			devops.len = ops->len - ops->retlen;
 343			if (!devops.len)
 344				return 0;
 345			devops.datbuf += devops.retlen;
 346		}
 347		if (devops.oobbuf) {
 348			devops.ooblen = ops->ooblen - ops->oobretlen;
 349			if (!devops.ooblen)
 350				return 0;
 351			devops.oobbuf += devops.oobretlen;
 352		}
 353		to = 0;
 354	}
 355	return -EINVAL;
 356}
 357
 358static void concat_erase_callback(struct erase_info *instr)
 359{
 360	wake_up((wait_queue_head_t *) instr->priv);
 361}
 362
 363static int concat_dev_erase(struct mtd_info *mtd, struct erase_info *erase)
 364{
 365	int err;
 366	wait_queue_head_t waitq;
 367	DECLARE_WAITQUEUE(wait, current);
 368
 369	/*
 370	 * This code was stol^H^H^H^Hinspired by mtdchar.c
 371	 */
 372	init_waitqueue_head(&waitq);
 373
 374	erase->mtd = mtd;
 375	erase->callback = concat_erase_callback;
 376	erase->priv = (unsigned long) &waitq;
 377
 378	/*
 379	 * FIXME: Allow INTERRUPTIBLE. Which means
 380	 * not having the wait_queue head on the stack.
 381	 */
 382	err = mtd->erase(mtd, erase);
 383	if (!err) {
 384		set_current_state(TASK_UNINTERRUPTIBLE);
 385		add_wait_queue(&waitq, &wait);
 386		if (erase->state != MTD_ERASE_DONE
 387		    && erase->state != MTD_ERASE_FAILED)
 388			schedule();
 389		remove_wait_queue(&waitq, &wait);
 390		set_current_state(TASK_RUNNING);
 391
 392		err = (erase->state == MTD_ERASE_FAILED) ? -EIO : 0;
 393	}
 394	return err;
 395}
 396
 397static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
 398{
 399	struct mtd_concat *concat = CONCAT(mtd);
 400	struct mtd_info *subdev;
 401	int i, err;
 402	uint64_t length, offset = 0;
 403	struct erase_info *erase;
 404
 405	if (!(mtd->flags & MTD_WRITEABLE))
 406		return -EROFS;
 407
 408	if (instr->addr > concat->mtd.size)
 409		return -EINVAL;
 410
 411	if (instr->len + instr->addr > concat->mtd.size)
 412		return -EINVAL;
 413
 414	/*
 415	 * Check for proper erase block alignment of the to-be-erased area.
 416	 * It is easier to do this based on the super device's erase
 417	 * region info rather than looking at each particular sub-device
 418	 * in turn.
 419	 */
 420	if (!concat->mtd.numeraseregions) {
 421		/* the easy case: device has uniform erase block size */
 422		if (instr->addr & (concat->mtd.erasesize - 1))
 423			return -EINVAL;
 424		if (instr->len & (concat->mtd.erasesize - 1))
 425			return -EINVAL;
 426	} else {
 427		/* device has variable erase size */
 428		struct mtd_erase_region_info *erase_regions =
 429		    concat->mtd.eraseregions;
 430
 431		/*
 432		 * Find the erase region where the to-be-erased area begins:
 433		 */
 434		for (i = 0; i < concat->mtd.numeraseregions &&
 435		     instr->addr >= erase_regions[i].offset; i++) ;
 436		--i;
 437
 438		/*
 439		 * Now erase_regions[i] is the region in which the
 440		 * to-be-erased area begins. Verify that the starting
 441		 * offset is aligned to this region's erase size:
 442		 */
 443		if (i < 0 || instr->addr & (erase_regions[i].erasesize - 1))
 444			return -EINVAL;
 445
 446		/*
 447		 * now find the erase region where the to-be-erased area ends:
 448		 */
 449		for (; i < concat->mtd.numeraseregions &&
 450		     (instr->addr + instr->len) >= erase_regions[i].offset;
 451		     ++i) ;
 452		--i;
 453		/*
 454		 * check if the ending offset is aligned to this region's erase size
 455		 */
 456		if (i < 0 || ((instr->addr + instr->len) &
 457					(erase_regions[i].erasesize - 1)))
 458			return -EINVAL;
 459	}
 460
 461	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
 462
 463	/* make a local copy of instr to avoid modifying the caller's struct */
 464	erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL);
 465
 466	if (!erase)
 467		return -ENOMEM;
 468
 469	*erase = *instr;
 470	length = instr->len;
 471
 472	/*
 473	 * find the subdevice where the to-be-erased area begins, adjust
 474	 * starting offset to be relative to the subdevice start
 475	 */
 476	for (i = 0; i < concat->num_subdev; i++) {
 477		subdev = concat->subdev[i];
 478		if (subdev->size <= erase->addr) {
 479			erase->addr -= subdev->size;
 480			offset += subdev->size;
 481		} else {
 482			break;
 483		}
 484	}
 485
 486	/* must never happen since size limit has been verified above */
 487	BUG_ON(i >= concat->num_subdev);
 488
 489	/* now do the erase: */
 490	err = 0;
 491	for (; length > 0; i++) {
 492		/* loop for all subdevices affected by this request */
 493		subdev = concat->subdev[i];	/* get current subdevice */
 494
 495		/* limit length to subdevice's size: */
 496		if (erase->addr + length > subdev->size)
 497			erase->len = subdev->size - erase->addr;
 498		else
 499			erase->len = length;
 500
 501		if (!(subdev->flags & MTD_WRITEABLE)) {
 502			err = -EROFS;
 503			break;
 504		}
 505		length -= erase->len;
 506		if ((err = concat_dev_erase(subdev, erase))) {
 507			/* sanity check: should never happen since
 508			 * block alignment has been checked above */
 509			BUG_ON(err == -EINVAL);
 510			if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
 511				instr->fail_addr = erase->fail_addr + offset;
 512			break;
 513		}
 514		/*
 515		 * erase->addr specifies the offset of the area to be
 516		 * erased *within the current subdevice*. It can be
 517		 * non-zero only the first time through this loop, i.e.
 518		 * for the first subdevice where blocks need to be erased.
 519		 * All the following erases must begin at the start of the
 520		 * current subdevice, i.e. at offset zero.
 521		 */
 522		erase->addr = 0;
 523		offset += subdev->size;
 524	}
 525	instr->state = erase->state;
 526	kfree(erase);
 527	if (err)
 528		return err;
 529
 530	if (instr->callback)
 531		instr->callback(instr);
 532	return 0;
 533}
 534
 535static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 536{
 537	struct mtd_concat *concat = CONCAT(mtd);
 538	int i, err = -EINVAL;
 539
 540	if ((len + ofs) > mtd->size)
 541		return -EINVAL;
 542
 543	for (i = 0; i < concat->num_subdev; i++) {
 544		struct mtd_info *subdev = concat->subdev[i];
 545		uint64_t size;
 546
 547		if (ofs >= subdev->size) {
 548			size = 0;
 549			ofs -= subdev->size;
 550			continue;
 551		}
 552		if (ofs + len > subdev->size)
 553			size = subdev->size - ofs;
 554		else
 555			size = len;
 556
 557		if (subdev->lock) {
 558			err = subdev->lock(subdev, ofs, size);
 559			if (err)
 560				break;
 561		} else
 562			err = -EOPNOTSUPP;
 563
 564		len -= size;
 565		if (len == 0)
 566			break;
 567
 568		err = -EINVAL;
 569		ofs = 0;
 570	}
 571
 572	return err;
 573}
 574
 575static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 576{
 577	struct mtd_concat *concat = CONCAT(mtd);
 578	int i, err = 0;
 579
 580	if ((len + ofs) > mtd->size)
 581		return -EINVAL;
 582
 583	for (i = 0; i < concat->num_subdev; i++) {
 584		struct mtd_info *subdev = concat->subdev[i];
 585		uint64_t size;
 586
 587		if (ofs >= subdev->size) {
 588			size = 0;
 589			ofs -= subdev->size;
 590			continue;
 591		}
 592		if (ofs + len > subdev->size)
 593			size = subdev->size - ofs;
 594		else
 595			size = len;
 596
 597		if (subdev->unlock) {
 598			err = subdev->unlock(subdev, ofs, size);
 599			if (err)
 600				break;
 601		} else
 602			err = -EOPNOTSUPP;
 603
 604		len -= size;
 605		if (len == 0)
 606			break;
 607
 608		err = -EINVAL;
 609		ofs = 0;
 610	}
 611
 612	return err;
 613}
 614
 615static void concat_sync(struct mtd_info *mtd)
 616{
 617	struct mtd_concat *concat = CONCAT(mtd);
 618	int i;
 619
 620	for (i = 0; i < concat->num_subdev; i++) {
 621		struct mtd_info *subdev = concat->subdev[i];
 622		subdev->sync(subdev);
 623	}
 624}
 625
 626static int concat_suspend(struct mtd_info *mtd)
 627{
 628	struct mtd_concat *concat = CONCAT(mtd);
 629	int i, rc = 0;
 630
 631	for (i = 0; i < concat->num_subdev; i++) {
 632		struct mtd_info *subdev = concat->subdev[i];
 633		if ((rc = subdev->suspend(subdev)) < 0)
 634			return rc;
 635	}
 636	return rc;
 637}
 638
 639static void concat_resume(struct mtd_info *mtd)
 640{
 641	struct mtd_concat *concat = CONCAT(mtd);
 642	int i;
 643
 644	for (i = 0; i < concat->num_subdev; i++) {
 645		struct mtd_info *subdev = concat->subdev[i];
 646		subdev->resume(subdev);
 647	}
 648}
 649
 650static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs)
 651{
 652	struct mtd_concat *concat = CONCAT(mtd);
 653	int i, res = 0;
 654
 655	if (!concat->subdev[0]->block_isbad)
 656		return res;
 657
 658	if (ofs > mtd->size)
 659		return -EINVAL;
 660
 661	for (i = 0; i < concat->num_subdev; i++) {
 662		struct mtd_info *subdev = concat->subdev[i];
 663
 664		if (ofs >= subdev->size) {
 665			ofs -= subdev->size;
 666			continue;
 667		}
 668
 669		res = subdev->block_isbad(subdev, ofs);
 670		break;
 671	}
 672
 673	return res;
 674}
 675
 676static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs)
 677{
 678	struct mtd_concat *concat = CONCAT(mtd);
 679	int i, err = -EINVAL;
 680
 681	if (!concat->subdev[0]->block_markbad)
 682		return 0;
 683
 684	if (ofs > mtd->size)
 685		return -EINVAL;
 686
 687	for (i = 0; i < concat->num_subdev; i++) {
 688		struct mtd_info *subdev = concat->subdev[i];
 689
 690		if (ofs >= subdev->size) {
 691			ofs -= subdev->size;
 692			continue;
 693		}
 694
 695		err = subdev->block_markbad(subdev, ofs);
 696		if (!err)
 697			mtd->ecc_stats.badblocks++;
 698		break;
 699	}
 700
 701	return err;
 702}
 703
 704/*
 705 * try to support NOMMU mmaps on concatenated devices
 706 * - we don't support subdev spanning as we can't guarantee it'll work
 707 */
 708static unsigned long concat_get_unmapped_area(struct mtd_info *mtd,
 709					      unsigned long len,
 710					      unsigned long offset,
 711					      unsigned long flags)
 712{
 713	struct mtd_concat *concat = CONCAT(mtd);
 714	int i;
 715
 716	for (i = 0; i < concat->num_subdev; i++) {
 717		struct mtd_info *subdev = concat->subdev[i];
 718
 719		if (offset >= subdev->size) {
 720			offset -= subdev->size;
 721			continue;
 722		}
 723
 724		/* we've found the subdev over which the mapping will reside */
 725		if (offset + len > subdev->size)
 726			return (unsigned long) -EINVAL;
 727
 728		if (subdev->get_unmapped_area)
 729			return subdev->get_unmapped_area(subdev, len, offset,
 730							 flags);
 731
 732		break;
 733	}
 734
 735	return (unsigned long) -ENOSYS;
 736}
 737
 738/*
 739 * This function constructs a virtual MTD device by concatenating
 740 * num_devs MTD devices. A pointer to the new device object is
 741 * stored to *new_dev upon success. This function does _not_
 742 * register any devices: this is the caller's responsibility.
 743 */
 744struct mtd_info *mtd_concat_create(struct mtd_info *subdev[],	/* subdevices to concatenate */
 745				   int num_devs,	/* number of subdevices      */
 746				   const char *name)
 747{				/* name for the new device   */
 748	int i;
 749	size_t size;
 750	struct mtd_concat *concat;
 751	uint32_t max_erasesize, curr_erasesize;
 752	int num_erase_region;
 753	int max_writebufsize = 0;
 754
 755	printk(KERN_NOTICE "Concatenating MTD devices:\n");
 756	for (i = 0; i < num_devs; i++)
 757		printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name);
 758	printk(KERN_NOTICE "into device \"%s\"\n", name);
 759
 760	/* allocate the device structure */
 761	size = SIZEOF_STRUCT_MTD_CONCAT(num_devs);
 762	concat = kzalloc(size, GFP_KERNEL);
 763	if (!concat) {
 764		printk
 765		    ("memory allocation error while creating concatenated device \"%s\"\n",
 766		     name);
 767		return NULL;
 768	}
 769	concat->subdev = (struct mtd_info **) (concat + 1);
 770
 771	/*
 772	 * Set up the new "super" device's MTD object structure, check for
 773	 * incompatibilites between the subdevices.
 774	 */
 775	concat->mtd.type = subdev[0]->type;
 776	concat->mtd.flags = subdev[0]->flags;
 777	concat->mtd.size = subdev[0]->size;
 778	concat->mtd.erasesize = subdev[0]->erasesize;
 779	concat->mtd.writesize = subdev[0]->writesize;
 780
 781	for (i = 0; i < num_devs; i++)
 782		if (max_writebufsize < subdev[i]->writebufsize)
 783			max_writebufsize = subdev[i]->writebufsize;
 784	concat->mtd.writebufsize = max_writebufsize;
 785
 786	concat->mtd.subpage_sft = subdev[0]->subpage_sft;
 787	concat->mtd.oobsize = subdev[0]->oobsize;
 788	concat->mtd.oobavail = subdev[0]->oobavail;
 789	if (subdev[0]->writev)
 790		concat->mtd.writev = concat_writev;
 791	if (subdev[0]->read_oob)
 792		concat->mtd.read_oob = concat_read_oob;
 793	if (subdev[0]->write_oob)
 794		concat->mtd.write_oob = concat_write_oob;
 795	if (subdev[0]->block_isbad)
 796		concat->mtd.block_isbad = concat_block_isbad;
 797	if (subdev[0]->block_markbad)
 798		concat->mtd.block_markbad = concat_block_markbad;
 799
 800	concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks;
 801
 802	concat->mtd.backing_dev_info = subdev[0]->backing_dev_info;
 803
 804	concat->subdev[0] = subdev[0];
 805
 806	for (i = 1; i < num_devs; i++) {
 807		if (concat->mtd.type != subdev[i]->type) {
 808			kfree(concat);
 809			printk("Incompatible device type on \"%s\"\n",
 810			       subdev[i]->name);
 811			return NULL;
 812		}
 813		if (concat->mtd.flags != subdev[i]->flags) {
 814			/*
 815			 * Expect all flags except MTD_WRITEABLE to be
 816			 * equal on all subdevices.
 817			 */
 818			if ((concat->mtd.flags ^ subdev[i]->
 819			     flags) & ~MTD_WRITEABLE) {
 820				kfree(concat);
 821				printk("Incompatible device flags on \"%s\"\n",
 822				       subdev[i]->name);
 823				return NULL;
 824			} else
 825				/* if writeable attribute differs,
 826				   make super device writeable */
 827				concat->mtd.flags |=
 828				    subdev[i]->flags & MTD_WRITEABLE;
 829		}
 830
 831		/* only permit direct mapping if the BDIs are all the same
 832		 * - copy-mapping is still permitted
 833		 */
 834		if (concat->mtd.backing_dev_info !=
 835		    subdev[i]->backing_dev_info)
 836			concat->mtd.backing_dev_info =
 837				&default_backing_dev_info;
 838
 839		concat->mtd.size += subdev[i]->size;
 840		concat->mtd.ecc_stats.badblocks +=
 841			subdev[i]->ecc_stats.badblocks;
 842		if (concat->mtd.writesize   !=  subdev[i]->writesize ||
 843		    concat->mtd.subpage_sft != subdev[i]->subpage_sft ||
 844		    concat->mtd.oobsize    !=  subdev[i]->oobsize ||
 845		    !concat->mtd.read_oob  != !subdev[i]->read_oob ||
 846		    !concat->mtd.write_oob != !subdev[i]->write_oob) {
 847			kfree(concat);
 848			printk("Incompatible OOB or ECC data on \"%s\"\n",
 849			       subdev[i]->name);
 850			return NULL;
 851		}
 852		concat->subdev[i] = subdev[i];
 853
 854	}
 855
 856	concat->mtd.ecclayout = subdev[0]->ecclayout;
 857
 858	concat->num_subdev = num_devs;
 859	concat->mtd.name = name;
 860
 861	concat->mtd.erase = concat_erase;
 862	concat->mtd.read = concat_read;
 863	concat->mtd.write = concat_write;
 864	concat->mtd.sync = concat_sync;
 865	concat->mtd.lock = concat_lock;
 866	concat->mtd.unlock = concat_unlock;
 867	concat->mtd.suspend = concat_suspend;
 868	concat->mtd.resume = concat_resume;
 869	concat->mtd.get_unmapped_area = concat_get_unmapped_area;
 870
 871	/*
 872	 * Combine the erase block size info of the subdevices:
 873	 *
 874	 * first, walk the map of the new device and see how
 875	 * many changes in erase size we have
 876	 */
 877	max_erasesize = curr_erasesize = subdev[0]->erasesize;
 878	num_erase_region = 1;
 879	for (i = 0; i < num_devs; i++) {
 880		if (subdev[i]->numeraseregions == 0) {
 881			/* current subdevice has uniform erase size */
 882			if (subdev[i]->erasesize != curr_erasesize) {
 883				/* if it differs from the last subdevice's erase size, count it */
 884				++num_erase_region;
 885				curr_erasesize = subdev[i]->erasesize;
 886				if (curr_erasesize > max_erasesize)
 887					max_erasesize = curr_erasesize;
 888			}
 889		} else {
 890			/* current subdevice has variable erase size */
 891			int j;
 892			for (j = 0; j < subdev[i]->numeraseregions; j++) {
 893
 894				/* walk the list of erase regions, count any changes */
 895				if (subdev[i]->eraseregions[j].erasesize !=
 896				    curr_erasesize) {
 897					++num_erase_region;
 898					curr_erasesize =
 899					    subdev[i]->eraseregions[j].
 900					    erasesize;
 901					if (curr_erasesize > max_erasesize)
 902						max_erasesize = curr_erasesize;
 903				}
 904			}
 905		}
 906	}
 907
 908	if (num_erase_region == 1) {
 909		/*
 910		 * All subdevices have the same uniform erase size.
 911		 * This is easy:
 912		 */
 913		concat->mtd.erasesize = curr_erasesize;
 914		concat->mtd.numeraseregions = 0;
 915	} else {
 916		uint64_t tmp64;
 917
 918		/*
 919		 * erase block size varies across the subdevices: allocate
 920		 * space to store the data describing the variable erase regions
 921		 */
 922		struct mtd_erase_region_info *erase_region_p;
 923		uint64_t begin, position;
 924
 925		concat->mtd.erasesize = max_erasesize;
 926		concat->mtd.numeraseregions = num_erase_region;
 927		concat->mtd.eraseregions = erase_region_p =
 928		    kmalloc(num_erase_region *
 929			    sizeof (struct mtd_erase_region_info), GFP_KERNEL);
 930		if (!erase_region_p) {
 931			kfree(concat);
 932			printk
 933			    ("memory allocation error while creating erase region list"
 934			     " for device \"%s\"\n", name);
 935			return NULL;
 936		}
 937
 938		/*
 939		 * walk the map of the new device once more and fill in
 940		 * in erase region info:
 941		 */
 942		curr_erasesize = subdev[0]->erasesize;
 943		begin = position = 0;
 944		for (i = 0; i < num_devs; i++) {
 945			if (subdev[i]->numeraseregions == 0) {
 946				/* current subdevice has uniform erase size */
 947				if (subdev[i]->erasesize != curr_erasesize) {
 948					/*
 949					 *  fill in an mtd_erase_region_info structure for the area
 950					 *  we have walked so far:
 951					 */
 952					erase_region_p->offset = begin;
 953					erase_region_p->erasesize =
 954					    curr_erasesize;
 955					tmp64 = position - begin;
 956					do_div(tmp64, curr_erasesize);
 957					erase_region_p->numblocks = tmp64;
 958					begin = position;
 959
 960					curr_erasesize = subdev[i]->erasesize;
 961					++erase_region_p;
 962				}
 963				position += subdev[i]->size;
 964			} else {
 965				/* current subdevice has variable erase size */
 966				int j;
 967				for (j = 0; j < subdev[i]->numeraseregions; j++) {
 968					/* walk the list of erase regions, count any changes */
 969					if (subdev[i]->eraseregions[j].
 970					    erasesize != curr_erasesize) {
 971						erase_region_p->offset = begin;
 972						erase_region_p->erasesize =
 973						    curr_erasesize;
 974						tmp64 = position - begin;
 975						do_div(tmp64, curr_erasesize);
 976						erase_region_p->numblocks = tmp64;
 977						begin = position;
 978
 979						curr_erasesize =
 980						    subdev[i]->eraseregions[j].
 981						    erasesize;
 982						++erase_region_p;
 983					}
 984					position +=
 985					    subdev[i]->eraseregions[j].
 986					    numblocks * (uint64_t)curr_erasesize;
 987				}
 988			}
 989		}
 990		/* Now write the final entry */
 991		erase_region_p->offset = begin;
 992		erase_region_p->erasesize = curr_erasesize;
 993		tmp64 = position - begin;
 994		do_div(tmp64, curr_erasesize);
 995		erase_region_p->numblocks = tmp64;
 996	}
 997
 998	return &concat->mtd;
 999}
1000
1001/*
1002 * This function destroys an MTD object obtained from concat_mtd_devs()
1003 */
1004
1005void mtd_concat_destroy(struct mtd_info *mtd)
1006{
1007	struct mtd_concat *concat = CONCAT(mtd);
1008	if (concat->mtd.numeraseregions)
1009		kfree(concat->mtd.eraseregions);
1010	kfree(concat);
1011}
1012
1013EXPORT_SYMBOL(mtd_concat_create);
1014EXPORT_SYMBOL(mtd_concat_destroy);
1015
1016MODULE_LICENSE("GPL");
1017MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>");
1018MODULE_DESCRIPTION("Generic support for concatenating of MTD devices");
v4.17
  1/*
  2 * MTD device concatenation layer
  3 *
  4 * Copyright © 2002 Robert Kaiser <rkaiser@sysgo.de>
  5 * Copyright © 2002-2010 David Woodhouse <dwmw2@infradead.org>
  6 *
  7 * NAND support by Christian Gan <cgan@iders.ca>
  8 *
  9 * This program is free software; you can redistribute it and/or modify
 10 * it under the terms of the GNU General Public License as published by
 11 * the Free Software Foundation; either version 2 of the License, or
 12 * (at your option) any later version.
 13 *
 14 * This program is distributed in the hope that it will be useful,
 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 17 * GNU General Public License for more details.
 18 *
 19 * You should have received a copy of the GNU General Public License
 20 * along with this program; if not, write to the Free Software
 21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 22 *
 23 */
 24
 25#include <linux/kernel.h>
 26#include <linux/module.h>
 27#include <linux/slab.h>
 28#include <linux/sched.h>
 29#include <linux/types.h>
 30#include <linux/backing-dev.h>
 31
 32#include <linux/mtd/mtd.h>
 33#include <linux/mtd/concat.h>
 34
 35#include <asm/div64.h>
 36
 37/*
 38 * Our storage structure:
 39 * Subdev points to an array of pointers to struct mtd_info objects
 40 * which is allocated along with this structure
 41 *
 42 */
 43struct mtd_concat {
 44	struct mtd_info mtd;
 45	int num_subdev;
 46	struct mtd_info **subdev;
 47};
 48
 49/*
 50 * how to calculate the size required for the above structure,
 51 * including the pointer array subdev points to:
 52 */
 53#define SIZEOF_STRUCT_MTD_CONCAT(num_subdev)	\
 54	((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *)))
 55
 56/*
 57 * Given a pointer to the MTD object in the mtd_concat structure,
 58 * we can retrieve the pointer to that structure with this macro.
 59 */
 60#define CONCAT(x)  ((struct mtd_concat *)(x))
 61
 62/*
 63 * MTD methods which look up the relevant subdevice, translate the
 64 * effective address and pass through to the subdevice.
 65 */
 66
 67static int
 68concat_read(struct mtd_info *mtd, loff_t from, size_t len,
 69	    size_t * retlen, u_char * buf)
 70{
 71	struct mtd_concat *concat = CONCAT(mtd);
 72	int ret = 0, err;
 73	int i;
 74
 
 
 75	for (i = 0; i < concat->num_subdev; i++) {
 76		struct mtd_info *subdev = concat->subdev[i];
 77		size_t size, retsize;
 78
 79		if (from >= subdev->size) {
 80			/* Not destined for this subdev */
 81			size = 0;
 82			from -= subdev->size;
 83			continue;
 84		}
 85		if (from + len > subdev->size)
 86			/* First part goes into this subdev */
 87			size = subdev->size - from;
 88		else
 89			/* Entire transaction goes into this subdev */
 90			size = len;
 91
 92		err = mtd_read(subdev, from, size, &retsize, buf);
 93
 94		/* Save information about bitflips! */
 95		if (unlikely(err)) {
 96			if (mtd_is_eccerr(err)) {
 97				mtd->ecc_stats.failed++;
 98				ret = err;
 99			} else if (mtd_is_bitflip(err)) {
100				mtd->ecc_stats.corrected++;
101				/* Do not overwrite -EBADMSG !! */
102				if (!ret)
103					ret = err;
104			} else
105				return err;
106		}
107
108		*retlen += retsize;
109		len -= size;
110		if (len == 0)
111			return ret;
112
113		buf += size;
114		from = 0;
115	}
116	return -EINVAL;
117}
118
119static int
120concat_write(struct mtd_info *mtd, loff_t to, size_t len,
121	     size_t * retlen, const u_char * buf)
122{
123	struct mtd_concat *concat = CONCAT(mtd);
124	int err = -EINVAL;
125	int i;
126
 
 
 
 
 
127	for (i = 0; i < concat->num_subdev; i++) {
128		struct mtd_info *subdev = concat->subdev[i];
129		size_t size, retsize;
130
131		if (to >= subdev->size) {
132			size = 0;
133			to -= subdev->size;
134			continue;
135		}
136		if (to + len > subdev->size)
137			size = subdev->size - to;
138		else
139			size = len;
140
141		err = mtd_write(subdev, to, size, &retsize, buf);
 
 
 
 
142		if (err)
143			break;
144
145		*retlen += retsize;
146		len -= size;
147		if (len == 0)
148			break;
149
150		err = -EINVAL;
151		buf += size;
152		to = 0;
153	}
154	return err;
155}
156
157static int
158concat_writev(struct mtd_info *mtd, const struct kvec *vecs,
159		unsigned long count, loff_t to, size_t * retlen)
160{
161	struct mtd_concat *concat = CONCAT(mtd);
162	struct kvec *vecs_copy;
163	unsigned long entry_low, entry_high;
164	size_t total_len = 0;
165	int i;
166	int err = -EINVAL;
167
 
 
 
 
 
168	/* Calculate total length of data */
169	for (i = 0; i < count; i++)
170		total_len += vecs[i].iov_len;
171
 
 
 
 
172	/* Check alignment */
173	if (mtd->writesize > 1) {
174		uint64_t __to = to;
175		if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize))
176			return -EINVAL;
177	}
178
179	/* make a copy of vecs */
180	vecs_copy = kmemdup(vecs, sizeof(struct kvec) * count, GFP_KERNEL);
181	if (!vecs_copy)
182		return -ENOMEM;
183
184	entry_low = 0;
185	for (i = 0; i < concat->num_subdev; i++) {
186		struct mtd_info *subdev = concat->subdev[i];
187		size_t size, wsize, retsize, old_iov_len;
188
189		if (to >= subdev->size) {
190			to -= subdev->size;
191			continue;
192		}
193
194		size = min_t(uint64_t, total_len, subdev->size - to);
195		wsize = size; /* store for future use */
196
197		entry_high = entry_low;
198		while (entry_high < count) {
199			if (size <= vecs_copy[entry_high].iov_len)
200				break;
201			size -= vecs_copy[entry_high++].iov_len;
202		}
203
204		old_iov_len = vecs_copy[entry_high].iov_len;
205		vecs_copy[entry_high].iov_len = size;
206
207		err = mtd_writev(subdev, &vecs_copy[entry_low],
208				 entry_high - entry_low + 1, to, &retsize);
 
 
 
209
210		vecs_copy[entry_high].iov_len = old_iov_len - size;
211		vecs_copy[entry_high].iov_base += size;
212
213		entry_low = entry_high;
214
215		if (err)
216			break;
217
218		*retlen += retsize;
219		total_len -= wsize;
220
221		if (total_len == 0)
222			break;
223
224		err = -EINVAL;
225		to = 0;
226	}
227
228	kfree(vecs_copy);
229	return err;
230}
231
232static int
233concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
234{
235	struct mtd_concat *concat = CONCAT(mtd);
236	struct mtd_oob_ops devops = *ops;
237	int i, err, ret = 0;
238
239	ops->retlen = ops->oobretlen = 0;
240
241	for (i = 0; i < concat->num_subdev; i++) {
242		struct mtd_info *subdev = concat->subdev[i];
243
244		if (from >= subdev->size) {
245			from -= subdev->size;
246			continue;
247		}
248
249		/* partial read ? */
250		if (from + devops.len > subdev->size)
251			devops.len = subdev->size - from;
252
253		err = mtd_read_oob(subdev, from, &devops);
254		ops->retlen += devops.retlen;
255		ops->oobretlen += devops.oobretlen;
256
257		/* Save information about bitflips! */
258		if (unlikely(err)) {
259			if (mtd_is_eccerr(err)) {
260				mtd->ecc_stats.failed++;
261				ret = err;
262			} else if (mtd_is_bitflip(err)) {
263				mtd->ecc_stats.corrected++;
264				/* Do not overwrite -EBADMSG !! */
265				if (!ret)
266					ret = err;
267			} else
268				return err;
269		}
270
271		if (devops.datbuf) {
272			devops.len = ops->len - ops->retlen;
273			if (!devops.len)
274				return ret;
275			devops.datbuf += devops.retlen;
276		}
277		if (devops.oobbuf) {
278			devops.ooblen = ops->ooblen - ops->oobretlen;
279			if (!devops.ooblen)
280				return ret;
281			devops.oobbuf += ops->oobretlen;
282		}
283
284		from = 0;
285	}
286	return -EINVAL;
287}
288
289static int
290concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops)
291{
292	struct mtd_concat *concat = CONCAT(mtd);
293	struct mtd_oob_ops devops = *ops;
294	int i, err;
295
296	if (!(mtd->flags & MTD_WRITEABLE))
297		return -EROFS;
298
299	ops->retlen = ops->oobretlen = 0;
300
301	for (i = 0; i < concat->num_subdev; i++) {
302		struct mtd_info *subdev = concat->subdev[i];
303
304		if (to >= subdev->size) {
305			to -= subdev->size;
306			continue;
307		}
308
309		/* partial write ? */
310		if (to + devops.len > subdev->size)
311			devops.len = subdev->size - to;
312
313		err = mtd_write_oob(subdev, to, &devops);
314		ops->retlen += devops.retlen;
315		ops->oobretlen += devops.oobretlen;
316		if (err)
317			return err;
318
319		if (devops.datbuf) {
320			devops.len = ops->len - ops->retlen;
321			if (!devops.len)
322				return 0;
323			devops.datbuf += devops.retlen;
324		}
325		if (devops.oobbuf) {
326			devops.ooblen = ops->ooblen - ops->oobretlen;
327			if (!devops.ooblen)
328				return 0;
329			devops.oobbuf += devops.oobretlen;
330		}
331		to = 0;
332	}
333	return -EINVAL;
334}
335
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
336static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
337{
338	struct mtd_concat *concat = CONCAT(mtd);
339	struct mtd_info *subdev;
340	int i, err;
341	uint64_t length, offset = 0;
342	struct erase_info *erase;
343
 
 
 
 
 
 
 
 
 
344	/*
345	 * Check for proper erase block alignment of the to-be-erased area.
346	 * It is easier to do this based on the super device's erase
347	 * region info rather than looking at each particular sub-device
348	 * in turn.
349	 */
350	if (!concat->mtd.numeraseregions) {
351		/* the easy case: device has uniform erase block size */
352		if (instr->addr & (concat->mtd.erasesize - 1))
353			return -EINVAL;
354		if (instr->len & (concat->mtd.erasesize - 1))
355			return -EINVAL;
356	} else {
357		/* device has variable erase size */
358		struct mtd_erase_region_info *erase_regions =
359		    concat->mtd.eraseregions;
360
361		/*
362		 * Find the erase region where the to-be-erased area begins:
363		 */
364		for (i = 0; i < concat->mtd.numeraseregions &&
365		     instr->addr >= erase_regions[i].offset; i++) ;
366		--i;
367
368		/*
369		 * Now erase_regions[i] is the region in which the
370		 * to-be-erased area begins. Verify that the starting
371		 * offset is aligned to this region's erase size:
372		 */
373		if (i < 0 || instr->addr & (erase_regions[i].erasesize - 1))
374			return -EINVAL;
375
376		/*
377		 * now find the erase region where the to-be-erased area ends:
378		 */
379		for (; i < concat->mtd.numeraseregions &&
380		     (instr->addr + instr->len) >= erase_regions[i].offset;
381		     ++i) ;
382		--i;
383		/*
384		 * check if the ending offset is aligned to this region's erase size
385		 */
386		if (i < 0 || ((instr->addr + instr->len) &
387					(erase_regions[i].erasesize - 1)))
388			return -EINVAL;
389	}
390
 
 
391	/* make a local copy of instr to avoid modifying the caller's struct */
392	erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL);
393
394	if (!erase)
395		return -ENOMEM;
396
397	*erase = *instr;
398	length = instr->len;
399
400	/*
401	 * find the subdevice where the to-be-erased area begins, adjust
402	 * starting offset to be relative to the subdevice start
403	 */
404	for (i = 0; i < concat->num_subdev; i++) {
405		subdev = concat->subdev[i];
406		if (subdev->size <= erase->addr) {
407			erase->addr -= subdev->size;
408			offset += subdev->size;
409		} else {
410			break;
411		}
412	}
413
414	/* must never happen since size limit has been verified above */
415	BUG_ON(i >= concat->num_subdev);
416
417	/* now do the erase: */
418	err = 0;
419	for (; length > 0; i++) {
420		/* loop for all subdevices affected by this request */
421		subdev = concat->subdev[i];	/* get current subdevice */
422
423		/* limit length to subdevice's size: */
424		if (erase->addr + length > subdev->size)
425			erase->len = subdev->size - erase->addr;
426		else
427			erase->len = length;
428
 
 
 
 
429		length -= erase->len;
430		if ((err = mtd_erase(subdev, erase))) {
431			/* sanity check: should never happen since
432			 * block alignment has been checked above */
433			BUG_ON(err == -EINVAL);
434			if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
435				instr->fail_addr = erase->fail_addr + offset;
436			break;
437		}
438		/*
439		 * erase->addr specifies the offset of the area to be
440		 * erased *within the current subdevice*. It can be
441		 * non-zero only the first time through this loop, i.e.
442		 * for the first subdevice where blocks need to be erased.
443		 * All the following erases must begin at the start of the
444		 * current subdevice, i.e. at offset zero.
445		 */
446		erase->addr = 0;
447		offset += subdev->size;
448	}
 
449	kfree(erase);
 
 
450
451	return err;
 
 
452}
453
454static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
455{
456	struct mtd_concat *concat = CONCAT(mtd);
457	int i, err = -EINVAL;
458
 
 
 
459	for (i = 0; i < concat->num_subdev; i++) {
460		struct mtd_info *subdev = concat->subdev[i];
461		uint64_t size;
462
463		if (ofs >= subdev->size) {
464			size = 0;
465			ofs -= subdev->size;
466			continue;
467		}
468		if (ofs + len > subdev->size)
469			size = subdev->size - ofs;
470		else
471			size = len;
472
473		err = mtd_lock(subdev, ofs, size);
474		if (err)
475			break;
 
 
 
476
477		len -= size;
478		if (len == 0)
479			break;
480
481		err = -EINVAL;
482		ofs = 0;
483	}
484
485	return err;
486}
487
488static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
489{
490	struct mtd_concat *concat = CONCAT(mtd);
491	int i, err = 0;
492
 
 
 
493	for (i = 0; i < concat->num_subdev; i++) {
494		struct mtd_info *subdev = concat->subdev[i];
495		uint64_t size;
496
497		if (ofs >= subdev->size) {
498			size = 0;
499			ofs -= subdev->size;
500			continue;
501		}
502		if (ofs + len > subdev->size)
503			size = subdev->size - ofs;
504		else
505			size = len;
506
507		err = mtd_unlock(subdev, ofs, size);
508		if (err)
509			break;
 
 
 
510
511		len -= size;
512		if (len == 0)
513			break;
514
515		err = -EINVAL;
516		ofs = 0;
517	}
518
519	return err;
520}
521
522static void concat_sync(struct mtd_info *mtd)
523{
524	struct mtd_concat *concat = CONCAT(mtd);
525	int i;
526
527	for (i = 0; i < concat->num_subdev; i++) {
528		struct mtd_info *subdev = concat->subdev[i];
529		mtd_sync(subdev);
530	}
531}
532
533static int concat_suspend(struct mtd_info *mtd)
534{
535	struct mtd_concat *concat = CONCAT(mtd);
536	int i, rc = 0;
537
538	for (i = 0; i < concat->num_subdev; i++) {
539		struct mtd_info *subdev = concat->subdev[i];
540		if ((rc = mtd_suspend(subdev)) < 0)
541			return rc;
542	}
543	return rc;
544}
545
546static void concat_resume(struct mtd_info *mtd)
547{
548	struct mtd_concat *concat = CONCAT(mtd);
549	int i;
550
551	for (i = 0; i < concat->num_subdev; i++) {
552		struct mtd_info *subdev = concat->subdev[i];
553		mtd_resume(subdev);
554	}
555}
556
557static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs)
558{
559	struct mtd_concat *concat = CONCAT(mtd);
560	int i, res = 0;
561
562	if (!mtd_can_have_bb(concat->subdev[0]))
563		return res;
564
 
 
 
565	for (i = 0; i < concat->num_subdev; i++) {
566		struct mtd_info *subdev = concat->subdev[i];
567
568		if (ofs >= subdev->size) {
569			ofs -= subdev->size;
570			continue;
571		}
572
573		res = mtd_block_isbad(subdev, ofs);
574		break;
575	}
576
577	return res;
578}
579
580static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs)
581{
582	struct mtd_concat *concat = CONCAT(mtd);
583	int i, err = -EINVAL;
584
 
 
 
 
 
 
585	for (i = 0; i < concat->num_subdev; i++) {
586		struct mtd_info *subdev = concat->subdev[i];
587
588		if (ofs >= subdev->size) {
589			ofs -= subdev->size;
590			continue;
591		}
592
593		err = mtd_block_markbad(subdev, ofs);
594		if (!err)
595			mtd->ecc_stats.badblocks++;
596		break;
597	}
598
599	return err;
600}
601
602/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
603 * This function constructs a virtual MTD device by concatenating
604 * num_devs MTD devices. A pointer to the new device object is
605 * stored to *new_dev upon success. This function does _not_
606 * register any devices: this is the caller's responsibility.
607 */
608struct mtd_info *mtd_concat_create(struct mtd_info *subdev[],	/* subdevices to concatenate */
609				   int num_devs,	/* number of subdevices      */
610				   const char *name)
611{				/* name for the new device   */
612	int i;
613	size_t size;
614	struct mtd_concat *concat;
615	uint32_t max_erasesize, curr_erasesize;
616	int num_erase_region;
617	int max_writebufsize = 0;
618
619	printk(KERN_NOTICE "Concatenating MTD devices:\n");
620	for (i = 0; i < num_devs; i++)
621		printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name);
622	printk(KERN_NOTICE "into device \"%s\"\n", name);
623
624	/* allocate the device structure */
625	size = SIZEOF_STRUCT_MTD_CONCAT(num_devs);
626	concat = kzalloc(size, GFP_KERNEL);
627	if (!concat) {
628		printk
629		    ("memory allocation error while creating concatenated device \"%s\"\n",
630		     name);
631		return NULL;
632	}
633	concat->subdev = (struct mtd_info **) (concat + 1);
634
635	/*
636	 * Set up the new "super" device's MTD object structure, check for
637	 * incompatibilities between the subdevices.
638	 */
639	concat->mtd.type = subdev[0]->type;
640	concat->mtd.flags = subdev[0]->flags;
641	concat->mtd.size = subdev[0]->size;
642	concat->mtd.erasesize = subdev[0]->erasesize;
643	concat->mtd.writesize = subdev[0]->writesize;
644
645	for (i = 0; i < num_devs; i++)
646		if (max_writebufsize < subdev[i]->writebufsize)
647			max_writebufsize = subdev[i]->writebufsize;
648	concat->mtd.writebufsize = max_writebufsize;
649
650	concat->mtd.subpage_sft = subdev[0]->subpage_sft;
651	concat->mtd.oobsize = subdev[0]->oobsize;
652	concat->mtd.oobavail = subdev[0]->oobavail;
653	if (subdev[0]->_writev)
654		concat->mtd._writev = concat_writev;
655	if (subdev[0]->_read_oob)
656		concat->mtd._read_oob = concat_read_oob;
657	if (subdev[0]->_write_oob)
658		concat->mtd._write_oob = concat_write_oob;
659	if (subdev[0]->_block_isbad)
660		concat->mtd._block_isbad = concat_block_isbad;
661	if (subdev[0]->_block_markbad)
662		concat->mtd._block_markbad = concat_block_markbad;
663
664	concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks;
665
 
 
666	concat->subdev[0] = subdev[0];
667
668	for (i = 1; i < num_devs; i++) {
669		if (concat->mtd.type != subdev[i]->type) {
670			kfree(concat);
671			printk("Incompatible device type on \"%s\"\n",
672			       subdev[i]->name);
673			return NULL;
674		}
675		if (concat->mtd.flags != subdev[i]->flags) {
676			/*
677			 * Expect all flags except MTD_WRITEABLE to be
678			 * equal on all subdevices.
679			 */
680			if ((concat->mtd.flags ^ subdev[i]->
681			     flags) & ~MTD_WRITEABLE) {
682				kfree(concat);
683				printk("Incompatible device flags on \"%s\"\n",
684				       subdev[i]->name);
685				return NULL;
686			} else
687				/* if writeable attribute differs,
688				   make super device writeable */
689				concat->mtd.flags |=
690				    subdev[i]->flags & MTD_WRITEABLE;
691		}
692
 
 
 
 
 
 
 
 
693		concat->mtd.size += subdev[i]->size;
694		concat->mtd.ecc_stats.badblocks +=
695			subdev[i]->ecc_stats.badblocks;
696		if (concat->mtd.writesize   !=  subdev[i]->writesize ||
697		    concat->mtd.subpage_sft != subdev[i]->subpage_sft ||
698		    concat->mtd.oobsize    !=  subdev[i]->oobsize ||
699		    !concat->mtd._read_oob  != !subdev[i]->_read_oob ||
700		    !concat->mtd._write_oob != !subdev[i]->_write_oob) {
701			kfree(concat);
702			printk("Incompatible OOB or ECC data on \"%s\"\n",
703			       subdev[i]->name);
704			return NULL;
705		}
706		concat->subdev[i] = subdev[i];
707
708	}
709
710	mtd_set_ooblayout(&concat->mtd, subdev[0]->ooblayout);
711
712	concat->num_subdev = num_devs;
713	concat->mtd.name = name;
714
715	concat->mtd._erase = concat_erase;
716	concat->mtd._read = concat_read;
717	concat->mtd._write = concat_write;
718	concat->mtd._sync = concat_sync;
719	concat->mtd._lock = concat_lock;
720	concat->mtd._unlock = concat_unlock;
721	concat->mtd._suspend = concat_suspend;
722	concat->mtd._resume = concat_resume;
 
723
724	/*
725	 * Combine the erase block size info of the subdevices:
726	 *
727	 * first, walk the map of the new device and see how
728	 * many changes in erase size we have
729	 */
730	max_erasesize = curr_erasesize = subdev[0]->erasesize;
731	num_erase_region = 1;
732	for (i = 0; i < num_devs; i++) {
733		if (subdev[i]->numeraseregions == 0) {
734			/* current subdevice has uniform erase size */
735			if (subdev[i]->erasesize != curr_erasesize) {
736				/* if it differs from the last subdevice's erase size, count it */
737				++num_erase_region;
738				curr_erasesize = subdev[i]->erasesize;
739				if (curr_erasesize > max_erasesize)
740					max_erasesize = curr_erasesize;
741			}
742		} else {
743			/* current subdevice has variable erase size */
744			int j;
745			for (j = 0; j < subdev[i]->numeraseregions; j++) {
746
747				/* walk the list of erase regions, count any changes */
748				if (subdev[i]->eraseregions[j].erasesize !=
749				    curr_erasesize) {
750					++num_erase_region;
751					curr_erasesize =
752					    subdev[i]->eraseregions[j].
753					    erasesize;
754					if (curr_erasesize > max_erasesize)
755						max_erasesize = curr_erasesize;
756				}
757			}
758		}
759	}
760
761	if (num_erase_region == 1) {
762		/*
763		 * All subdevices have the same uniform erase size.
764		 * This is easy:
765		 */
766		concat->mtd.erasesize = curr_erasesize;
767		concat->mtd.numeraseregions = 0;
768	} else {
769		uint64_t tmp64;
770
771		/*
772		 * erase block size varies across the subdevices: allocate
773		 * space to store the data describing the variable erase regions
774		 */
775		struct mtd_erase_region_info *erase_region_p;
776		uint64_t begin, position;
777
778		concat->mtd.erasesize = max_erasesize;
779		concat->mtd.numeraseregions = num_erase_region;
780		concat->mtd.eraseregions = erase_region_p =
781		    kmalloc(num_erase_region *
782			    sizeof (struct mtd_erase_region_info), GFP_KERNEL);
783		if (!erase_region_p) {
784			kfree(concat);
785			printk
786			    ("memory allocation error while creating erase region list"
787			     " for device \"%s\"\n", name);
788			return NULL;
789		}
790
791		/*
792		 * walk the map of the new device once more and fill in
793		 * in erase region info:
794		 */
795		curr_erasesize = subdev[0]->erasesize;
796		begin = position = 0;
797		for (i = 0; i < num_devs; i++) {
798			if (subdev[i]->numeraseregions == 0) {
799				/* current subdevice has uniform erase size */
800				if (subdev[i]->erasesize != curr_erasesize) {
801					/*
802					 *  fill in an mtd_erase_region_info structure for the area
803					 *  we have walked so far:
804					 */
805					erase_region_p->offset = begin;
806					erase_region_p->erasesize =
807					    curr_erasesize;
808					tmp64 = position - begin;
809					do_div(tmp64, curr_erasesize);
810					erase_region_p->numblocks = tmp64;
811					begin = position;
812
813					curr_erasesize = subdev[i]->erasesize;
814					++erase_region_p;
815				}
816				position += subdev[i]->size;
817			} else {
818				/* current subdevice has variable erase size */
819				int j;
820				for (j = 0; j < subdev[i]->numeraseregions; j++) {
821					/* walk the list of erase regions, count any changes */
822					if (subdev[i]->eraseregions[j].
823					    erasesize != curr_erasesize) {
824						erase_region_p->offset = begin;
825						erase_region_p->erasesize =
826						    curr_erasesize;
827						tmp64 = position - begin;
828						do_div(tmp64, curr_erasesize);
829						erase_region_p->numblocks = tmp64;
830						begin = position;
831
832						curr_erasesize =
833						    subdev[i]->eraseregions[j].
834						    erasesize;
835						++erase_region_p;
836					}
837					position +=
838					    subdev[i]->eraseregions[j].
839					    numblocks * (uint64_t)curr_erasesize;
840				}
841			}
842		}
843		/* Now write the final entry */
844		erase_region_p->offset = begin;
845		erase_region_p->erasesize = curr_erasesize;
846		tmp64 = position - begin;
847		do_div(tmp64, curr_erasesize);
848		erase_region_p->numblocks = tmp64;
849	}
850
851	return &concat->mtd;
852}
853
854/*
855 * This function destroys an MTD object obtained from concat_mtd_devs()
856 */
857
858void mtd_concat_destroy(struct mtd_info *mtd)
859{
860	struct mtd_concat *concat = CONCAT(mtd);
861	if (concat->mtd.numeraseregions)
862		kfree(concat->mtd.eraseregions);
863	kfree(concat);
864}
865
866EXPORT_SYMBOL(mtd_concat_create);
867EXPORT_SYMBOL(mtd_concat_destroy);
868
869MODULE_LICENSE("GPL");
870MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>");
871MODULE_DESCRIPTION("Generic support for concatenating of MTD devices");