Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * DA9150 Core MFD Driver
  3 *
  4 * Copyright (c) 2014 Dialog Semiconductor
  5 *
  6 * Author: Adam Thomson <Adam.Thomson.Opensource@diasemi.com>
  7 *
  8 * This program is free software; you can redistribute  it and/or modify it
  9 * under  the terms of  the GNU General  Public License as published by the
 10 * Free Software Foundation;  either version 2 of the  License, or (at your
 11 * option) any later version.
 12 */
 13
 14#include <linux/kernel.h>
 15#include <linux/module.h>
 16#include <linux/platform_device.h>
 17#include <linux/i2c.h>
 18#include <linux/regmap.h>
 19#include <linux/slab.h>
 20#include <linux/irq.h>
 21#include <linux/interrupt.h>
 22#include <linux/mfd/core.h>
 23#include <linux/mfd/da9150/core.h>
 24#include <linux/mfd/da9150/registers.h>
 25
 26/* Raw device access, used for QIF */
 27static int da9150_i2c_read_device(struct i2c_client *client, u8 addr, int count,
 28				  u8 *buf)
 29{
 30	struct i2c_msg xfer;
 31	int ret;
 32
 33	/*
 34	 * Read is split into two transfers as device expects STOP/START rather
 35	 * than repeated start to carry out this kind of access.
 36	 */
 37
 38	/* Write address */
 39	xfer.addr = client->addr;
 40	xfer.flags = 0;
 41	xfer.len = 1;
 42	xfer.buf = &addr;
 43
 44	ret = i2c_transfer(client->adapter, &xfer, 1);
 45	if (ret != 1) {
 46		if (ret < 0)
 47			return ret;
 48		else
 49			return -EIO;
 50	}
 51
 52	/* Read data */
 53	xfer.addr = client->addr;
 54	xfer.flags = I2C_M_RD;
 55	xfer.len = count;
 56	xfer.buf = buf;
 57
 58	ret = i2c_transfer(client->adapter, &xfer, 1);
 59	if (ret == 1)
 60		return 0;
 61	else if (ret < 0)
 62		return ret;
 63	else
 64		return -EIO;
 65}
 66
 67static int da9150_i2c_write_device(struct i2c_client *client, u8 addr,
 68				   int count, const u8 *buf)
 69{
 70	struct i2c_msg xfer;
 71	u8 *reg_data;
 72	int ret;
 73
 74	reg_data = kzalloc(1 + count, GFP_KERNEL);
 75	if (!reg_data)
 76		return -ENOMEM;
 77
 78	reg_data[0] = addr;
 79	memcpy(&reg_data[1], buf, count);
 80
 81	/* Write address & data */
 82	xfer.addr = client->addr;
 83	xfer.flags = 0;
 84	xfer.len = 1 + count;
 85	xfer.buf = reg_data;
 86
 87	ret = i2c_transfer(client->adapter, &xfer, 1);
 88	kfree(reg_data);
 89	if (ret == 1)
 90		return 0;
 91	else if (ret < 0)
 92		return ret;
 93	else
 94		return -EIO;
 95}
 96
 97static bool da9150_volatile_reg(struct device *dev, unsigned int reg)
 98{
 99	switch (reg) {
100	case DA9150_PAGE_CON:
101	case DA9150_STATUS_A:
102	case DA9150_STATUS_B:
103	case DA9150_STATUS_C:
104	case DA9150_STATUS_D:
105	case DA9150_STATUS_E:
106	case DA9150_STATUS_F:
107	case DA9150_STATUS_G:
108	case DA9150_STATUS_H:
109	case DA9150_STATUS_I:
110	case DA9150_STATUS_J:
111	case DA9150_STATUS_K:
112	case DA9150_STATUS_L:
113	case DA9150_STATUS_N:
114	case DA9150_FAULT_LOG_A:
115	case DA9150_FAULT_LOG_B:
116	case DA9150_EVENT_E:
117	case DA9150_EVENT_F:
118	case DA9150_EVENT_G:
119	case DA9150_EVENT_H:
120	case DA9150_CONTROL_B:
121	case DA9150_CONTROL_C:
122	case DA9150_GPADC_MAN:
123	case DA9150_GPADC_RES_A:
124	case DA9150_GPADC_RES_B:
125	case DA9150_ADETVB_CFG_C:
126	case DA9150_ADETD_STAT:
127	case DA9150_ADET_CMPSTAT:
128	case DA9150_ADET_CTRL_A:
129	case DA9150_PPR_TCTR_B:
130	case DA9150_COREBTLD_STAT_A:
131	case DA9150_CORE_DATA_A:
132	case DA9150_CORE_DATA_B:
133	case DA9150_CORE_DATA_C:
134	case DA9150_CORE_DATA_D:
135	case DA9150_CORE2WIRE_STAT_A:
136	case DA9150_FW_CTRL_C:
137	case DA9150_FG_CTRL_B:
138	case DA9150_FW_CTRL_B:
139	case DA9150_GPADC_CMAN:
140	case DA9150_GPADC_CRES_A:
141	case DA9150_GPADC_CRES_B:
142	case DA9150_CC_ICHG_RES_A:
143	case DA9150_CC_ICHG_RES_B:
144	case DA9150_CC_IAVG_RES_A:
145	case DA9150_CC_IAVG_RES_B:
146	case DA9150_TAUX_CTRL_A:
147	case DA9150_TAUX_VALUE_H:
148	case DA9150_TAUX_VALUE_L:
149	case DA9150_TBAT_RES_A:
150	case DA9150_TBAT_RES_B:
151		return true;
152	default:
153		return false;
154	}
155}
156
157static const struct regmap_range_cfg da9150_range_cfg[] = {
158	{
159		.range_min = DA9150_PAGE_CON,
160		.range_max = DA9150_TBAT_RES_B,
161		.selector_reg = DA9150_PAGE_CON,
162		.selector_mask = DA9150_I2C_PAGE_MASK,
163		.selector_shift = DA9150_I2C_PAGE_SHIFT,
164		.window_start = 0,
165		.window_len = 256,
166	},
167};
168
169static const struct regmap_config da9150_regmap_config = {
170	.reg_bits = 8,
171	.val_bits = 8,
172	.ranges = da9150_range_cfg,
173	.num_ranges = ARRAY_SIZE(da9150_range_cfg),
174	.max_register = DA9150_TBAT_RES_B,
175
176	.cache_type = REGCACHE_RBTREE,
177
178	.volatile_reg = da9150_volatile_reg,
179};
180
181void da9150_read_qif(struct da9150 *da9150, u8 addr, int count, u8 *buf)
182{
183	int ret;
184
185	ret = da9150_i2c_read_device(da9150->core_qif, addr, count, buf);
186	if (ret < 0)
187		dev_err(da9150->dev, "Failed to read from QIF 0x%x: %d\n",
188			addr, ret);
189}
190EXPORT_SYMBOL_GPL(da9150_read_qif);
191
192void da9150_write_qif(struct da9150 *da9150, u8 addr, int count, const u8 *buf)
193{
194	int ret;
195
196	ret = da9150_i2c_write_device(da9150->core_qif, addr, count, buf);
197	if (ret < 0)
198		dev_err(da9150->dev, "Failed to write to QIF 0x%x: %d\n",
199			addr, ret);
200}
201EXPORT_SYMBOL_GPL(da9150_write_qif);
202
203u8 da9150_reg_read(struct da9150 *da9150, u16 reg)
204{
205	int val, ret;
206
207	ret = regmap_read(da9150->regmap, reg, &val);
208	if (ret)
209		dev_err(da9150->dev, "Failed to read from reg 0x%x: %d\n",
210			reg, ret);
211
212	return (u8) val;
213}
214EXPORT_SYMBOL_GPL(da9150_reg_read);
215
216void da9150_reg_write(struct da9150 *da9150, u16 reg, u8 val)
217{
218	int ret;
219
220	ret = regmap_write(da9150->regmap, reg, val);
221	if (ret)
222		dev_err(da9150->dev, "Failed to write to reg 0x%x: %d\n",
223			reg, ret);
224}
225EXPORT_SYMBOL_GPL(da9150_reg_write);
226
227void da9150_set_bits(struct da9150 *da9150, u16 reg, u8 mask, u8 val)
228{
229	int ret;
230
231	ret = regmap_update_bits(da9150->regmap, reg, mask, val);
232	if (ret)
233		dev_err(da9150->dev, "Failed to set bits in reg 0x%x: %d\n",
234			reg, ret);
235}
236EXPORT_SYMBOL_GPL(da9150_set_bits);
237
238void da9150_bulk_read(struct da9150 *da9150, u16 reg, int count, u8 *buf)
239{
240	int ret;
241
242	ret = regmap_bulk_read(da9150->regmap, reg, buf, count);
243	if (ret)
244		dev_err(da9150->dev, "Failed to bulk read from reg 0x%x: %d\n",
245			reg, ret);
246}
247EXPORT_SYMBOL_GPL(da9150_bulk_read);
248
249void da9150_bulk_write(struct da9150 *da9150, u16 reg, int count, const u8 *buf)
250{
251	int ret;
252
253	ret = regmap_raw_write(da9150->regmap, reg, buf, count);
254	if (ret)
255		dev_err(da9150->dev, "Failed to bulk write to reg 0x%x %d\n",
256			reg, ret);
257}
258EXPORT_SYMBOL_GPL(da9150_bulk_write);
259
260static const struct regmap_irq da9150_irqs[] = {
261	[DA9150_IRQ_VBUS] = {
262		.reg_offset = 0,
263		.mask = DA9150_E_VBUS_MASK,
264	},
265	[DA9150_IRQ_CHG] = {
266		.reg_offset = 0,
267		.mask = DA9150_E_CHG_MASK,
268	},
269	[DA9150_IRQ_TCLASS] = {
270		.reg_offset = 0,
271		.mask = DA9150_E_TCLASS_MASK,
272	},
273	[DA9150_IRQ_TJUNC] = {
274		.reg_offset = 0,
275		.mask = DA9150_E_TJUNC_MASK,
276	},
277	[DA9150_IRQ_VFAULT] = {
278		.reg_offset = 0,
279		.mask = DA9150_E_VFAULT_MASK,
280	},
281	[DA9150_IRQ_CONF] = {
282		.reg_offset = 1,
283		.mask = DA9150_E_CONF_MASK,
284	},
285	[DA9150_IRQ_DAT] = {
286		.reg_offset = 1,
287		.mask = DA9150_E_DAT_MASK,
288	},
289	[DA9150_IRQ_DTYPE] = {
290		.reg_offset = 1,
291		.mask = DA9150_E_DTYPE_MASK,
292	},
293	[DA9150_IRQ_ID] = {
294		.reg_offset = 1,
295		.mask = DA9150_E_ID_MASK,
296	},
297	[DA9150_IRQ_ADP] = {
298		.reg_offset = 1,
299		.mask = DA9150_E_ADP_MASK,
300	},
301	[DA9150_IRQ_SESS_END] = {
302		.reg_offset = 1,
303		.mask = DA9150_E_SESS_END_MASK,
304	},
305	[DA9150_IRQ_SESS_VLD] = {
306		.reg_offset = 1,
307		.mask = DA9150_E_SESS_VLD_MASK,
308	},
309	[DA9150_IRQ_FG] = {
310		.reg_offset = 2,
311		.mask = DA9150_E_FG_MASK,
312	},
313	[DA9150_IRQ_GP] = {
314		.reg_offset = 2,
315		.mask = DA9150_E_GP_MASK,
316	},
317	[DA9150_IRQ_TBAT] = {
318		.reg_offset = 2,
319		.mask = DA9150_E_TBAT_MASK,
320	},
321	[DA9150_IRQ_GPIOA] = {
322		.reg_offset = 2,
323		.mask = DA9150_E_GPIOA_MASK,
324	},
325	[DA9150_IRQ_GPIOB] = {
326		.reg_offset = 2,
327		.mask = DA9150_E_GPIOB_MASK,
328	},
329	[DA9150_IRQ_GPIOC] = {
330		.reg_offset = 2,
331		.mask = DA9150_E_GPIOC_MASK,
332	},
333	[DA9150_IRQ_GPIOD] = {
334		.reg_offset = 2,
335		.mask = DA9150_E_GPIOD_MASK,
336	},
337	[DA9150_IRQ_GPADC] = {
338		.reg_offset = 2,
339		.mask = DA9150_E_GPADC_MASK,
340	},
341	[DA9150_IRQ_WKUP] = {
342		.reg_offset = 3,
343		.mask = DA9150_E_WKUP_MASK,
344	},
345};
346
347static const struct regmap_irq_chip da9150_regmap_irq_chip = {
348	.name = "da9150_irq",
349	.status_base = DA9150_EVENT_E,
350	.mask_base = DA9150_IRQ_MASK_E,
351	.ack_base = DA9150_EVENT_E,
352	.num_regs = DA9150_NUM_IRQ_REGS,
353	.irqs = da9150_irqs,
354	.num_irqs = ARRAY_SIZE(da9150_irqs),
355};
356
357static struct resource da9150_gpadc_resources[] = {
358	DEFINE_RES_IRQ_NAMED(DA9150_IRQ_GPADC, "GPADC"),
359};
360
361static struct resource da9150_charger_resources[] = {
362	DEFINE_RES_IRQ_NAMED(DA9150_IRQ_CHG, "CHG_STATUS"),
363	DEFINE_RES_IRQ_NAMED(DA9150_IRQ_TJUNC, "CHG_TJUNC"),
364	DEFINE_RES_IRQ_NAMED(DA9150_IRQ_VFAULT, "CHG_VFAULT"),
365	DEFINE_RES_IRQ_NAMED(DA9150_IRQ_VBUS, "CHG_VBUS"),
366};
367
368static struct resource da9150_fg_resources[] = {
369	DEFINE_RES_IRQ_NAMED(DA9150_IRQ_FG, "FG"),
370};
371
372enum da9150_dev_idx {
373	DA9150_GPADC_IDX = 0,
374	DA9150_CHARGER_IDX,
375	DA9150_FG_IDX,
376};
377
378static struct mfd_cell da9150_devs[] = {
379	[DA9150_GPADC_IDX] = {
380		.name = "da9150-gpadc",
381		.of_compatible = "dlg,da9150-gpadc",
382		.resources = da9150_gpadc_resources,
383		.num_resources = ARRAY_SIZE(da9150_gpadc_resources),
384	},
385	[DA9150_CHARGER_IDX] = {
386		.name = "da9150-charger",
387		.of_compatible = "dlg,da9150-charger",
388		.resources = da9150_charger_resources,
389		.num_resources = ARRAY_SIZE(da9150_charger_resources),
390	},
391	[DA9150_FG_IDX] = {
392		.name = "da9150-fuel-gauge",
393		.of_compatible = "dlg,da9150-fuel-gauge",
394		.resources = da9150_fg_resources,
395		.num_resources = ARRAY_SIZE(da9150_fg_resources),
396	},
397};
398
399static int da9150_probe(struct i2c_client *client,
400			const struct i2c_device_id *id)
401{
402	struct da9150 *da9150;
403	struct da9150_pdata *pdata = dev_get_platdata(&client->dev);
404	int qif_addr;
405	int ret;
406
407	da9150 = devm_kzalloc(&client->dev, sizeof(*da9150), GFP_KERNEL);
408	if (!da9150)
409		return -ENOMEM;
410
411	da9150->dev = &client->dev;
412	da9150->irq = client->irq;
413	i2c_set_clientdata(client, da9150);
414
415	da9150->regmap = devm_regmap_init_i2c(client, &da9150_regmap_config);
416	if (IS_ERR(da9150->regmap)) {
417		ret = PTR_ERR(da9150->regmap);
418		dev_err(da9150->dev, "Failed to allocate register map: %d\n",
419			ret);
420		return ret;
421	}
422
423	/* Setup secondary I2C interface for QIF access */
424	qif_addr = da9150_reg_read(da9150, DA9150_CORE2WIRE_CTRL_A);
425	qif_addr = (qif_addr & DA9150_CORE_BASE_ADDR_MASK) >> 1;
426	qif_addr |= DA9150_QIF_I2C_ADDR_LSB;
427	da9150->core_qif = i2c_new_dummy(client->adapter, qif_addr);
428	if (!da9150->core_qif) {
429		dev_err(da9150->dev, "Failed to attach QIF client\n");
430		return -ENODEV;
431	}
432
433	i2c_set_clientdata(da9150->core_qif, da9150);
434
435	if (pdata) {
436		da9150->irq_base = pdata->irq_base;
437
438		da9150_devs[DA9150_FG_IDX].platform_data = pdata->fg_pdata;
439		da9150_devs[DA9150_FG_IDX].pdata_size =
440			sizeof(struct da9150_fg_pdata);
441	} else {
442		da9150->irq_base = -1;
443	}
444
445	ret = regmap_add_irq_chip(da9150->regmap, da9150->irq,
446				  IRQF_TRIGGER_LOW | IRQF_ONESHOT,
447				  da9150->irq_base, &da9150_regmap_irq_chip,
448				  &da9150->regmap_irq_data);
449	if (ret) {
450		dev_err(da9150->dev, "Failed to add regmap irq chip: %d\n",
451			ret);
452		goto regmap_irq_fail;
453	}
454
455
456	da9150->irq_base = regmap_irq_chip_get_base(da9150->regmap_irq_data);
457
458	enable_irq_wake(da9150->irq);
459
460	ret = mfd_add_devices(da9150->dev, -1, da9150_devs,
461			      ARRAY_SIZE(da9150_devs), NULL,
462			      da9150->irq_base, NULL);
463	if (ret) {
464		dev_err(da9150->dev, "Failed to add child devices: %d\n", ret);
465		goto mfd_fail;
466	}
467
468	return 0;
469
470mfd_fail:
471	regmap_del_irq_chip(da9150->irq, da9150->regmap_irq_data);
472regmap_irq_fail:
473	i2c_unregister_device(da9150->core_qif);
474
475	return ret;
476}
477
478static int da9150_remove(struct i2c_client *client)
479{
480	struct da9150 *da9150 = i2c_get_clientdata(client);
481
482	regmap_del_irq_chip(da9150->irq, da9150->regmap_irq_data);
483	mfd_remove_devices(da9150->dev);
484	i2c_unregister_device(da9150->core_qif);
485
486	return 0;
487}
488
489static void da9150_shutdown(struct i2c_client *client)
490{
491	struct da9150 *da9150 = i2c_get_clientdata(client);
492
493	/* Make sure we have a wakup source for the device */
494	da9150_set_bits(da9150, DA9150_CONFIG_D,
495			DA9150_WKUP_PM_EN_MASK,
496			DA9150_WKUP_PM_EN_MASK);
497
498	/* Set device to DISABLED mode */
499	da9150_set_bits(da9150, DA9150_CONTROL_C,
500			DA9150_DISABLE_MASK, DA9150_DISABLE_MASK);
501}
502
503static const struct i2c_device_id da9150_i2c_id[] = {
504	{ "da9150", },
505	{ }
506};
507MODULE_DEVICE_TABLE(i2c, da9150_i2c_id);
508
509static const struct of_device_id da9150_of_match[] = {
510	{ .compatible = "dlg,da9150", },
511	{ }
512};
513MODULE_DEVICE_TABLE(of, da9150_of_match);
514
515static struct i2c_driver da9150_driver = {
516	.driver	= {
517		.name	= "da9150",
518		.of_match_table = of_match_ptr(da9150_of_match),
519	},
520	.probe		= da9150_probe,
521	.remove		= da9150_remove,
522	.shutdown	= da9150_shutdown,
523	.id_table	= da9150_i2c_id,
524};
525
526module_i2c_driver(da9150_driver);
527
528MODULE_DESCRIPTION("MFD Core Driver for DA9150");
529MODULE_AUTHOR("Adam Thomson <Adam.Thomson.Opensource@diasemi.com>");
530MODULE_LICENSE("GPL");