Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
   3 * Copyright (C) 2016-2017 Milan Broz
   4 * Copyright (C) 2016-2017 Mikulas Patocka
   5 *
   6 * This file is released under the GPL.
   7 */
   8
   9#include <linux/compiler.h>
  10#include <linux/module.h>
  11#include <linux/device-mapper.h>
  12#include <linux/dm-io.h>
  13#include <linux/vmalloc.h>
  14#include <linux/sort.h>
  15#include <linux/rbtree.h>
  16#include <linux/delay.h>
  17#include <linux/random.h>
  18#include <crypto/hash.h>
  19#include <crypto/skcipher.h>
  20#include <linux/async_tx.h>
  21#include <linux/dm-bufio.h>
  22
  23#define DM_MSG_PREFIX "integrity"
  24
  25#define DEFAULT_INTERLEAVE_SECTORS	32768
  26#define DEFAULT_JOURNAL_SIZE_FACTOR	7
  27#define DEFAULT_BUFFER_SECTORS		128
  28#define DEFAULT_JOURNAL_WATERMARK	50
  29#define DEFAULT_SYNC_MSEC		10000
  30#define DEFAULT_MAX_JOURNAL_SECTORS	131072
  31#define MIN_LOG2_INTERLEAVE_SECTORS	3
  32#define MAX_LOG2_INTERLEAVE_SECTORS	31
  33#define METADATA_WORKQUEUE_MAX_ACTIVE	16
  34
  35/*
  36 * Warning - DEBUG_PRINT prints security-sensitive data to the log,
  37 * so it should not be enabled in the official kernel
  38 */
  39//#define DEBUG_PRINT
  40//#define INTERNAL_VERIFY
  41
  42/*
  43 * On disk structures
  44 */
  45
  46#define SB_MAGIC			"integrt"
  47#define SB_VERSION			1
  48#define SB_SECTORS			8
  49#define MAX_SECTORS_PER_BLOCK		8
  50
  51struct superblock {
  52	__u8 magic[8];
  53	__u8 version;
  54	__u8 log2_interleave_sectors;
  55	__u16 integrity_tag_size;
  56	__u32 journal_sections;
  57	__u64 provided_data_sectors;	/* userspace uses this value */
  58	__u32 flags;
  59	__u8 log2_sectors_per_block;
  60};
  61
  62#define SB_FLAG_HAVE_JOURNAL_MAC	0x1
  63
  64#define	JOURNAL_ENTRY_ROUNDUP		8
  65
  66typedef __u64 commit_id_t;
  67#define JOURNAL_MAC_PER_SECTOR		8
  68
  69struct journal_entry {
  70	union {
  71		struct {
  72			__u32 sector_lo;
  73			__u32 sector_hi;
  74		} s;
  75		__u64 sector;
  76	} u;
  77	commit_id_t last_bytes[0];
  78	/* __u8 tag[0]; */
  79};
  80
  81#define journal_entry_tag(ic, je)		((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
  82
  83#if BITS_PER_LONG == 64
  84#define journal_entry_set_sector(je, x)		do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
  85#define journal_entry_get_sector(je)		le64_to_cpu((je)->u.sector)
  86#elif defined(CONFIG_LBDAF)
  87#define journal_entry_set_sector(je, x)		do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
  88#define journal_entry_get_sector(je)		le64_to_cpu((je)->u.sector)
  89#else
  90#define journal_entry_set_sector(je, x)		do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32(0)); } while (0)
  91#define journal_entry_get_sector(je)		le32_to_cpu((je)->u.s.sector_lo)
  92#endif
  93#define journal_entry_is_unused(je)		((je)->u.s.sector_hi == cpu_to_le32(-1))
  94#define journal_entry_set_unused(je)		do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
  95#define journal_entry_is_inprogress(je)		((je)->u.s.sector_hi == cpu_to_le32(-2))
  96#define journal_entry_set_inprogress(je)	do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
  97
  98#define JOURNAL_BLOCK_SECTORS		8
  99#define JOURNAL_SECTOR_DATA		((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
 100#define JOURNAL_MAC_SIZE		(JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
 101
 102struct journal_sector {
 103	__u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
 104	__u8 mac[JOURNAL_MAC_PER_SECTOR];
 105	commit_id_t commit_id;
 106};
 107
 108#define MAX_TAG_SIZE			(JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
 109
 110#define METADATA_PADDING_SECTORS	8
 111
 112#define N_COMMIT_IDS			4
 113
 114static unsigned char prev_commit_seq(unsigned char seq)
 115{
 116	return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
 117}
 118
 119static unsigned char next_commit_seq(unsigned char seq)
 120{
 121	return (seq + 1) % N_COMMIT_IDS;
 122}
 123
 124/*
 125 * In-memory structures
 126 */
 127
 128struct journal_node {
 129	struct rb_node node;
 130	sector_t sector;
 131};
 132
 133struct alg_spec {
 134	char *alg_string;
 135	char *key_string;
 136	__u8 *key;
 137	unsigned key_size;
 138};
 139
 140struct dm_integrity_c {
 141	struct dm_dev *dev;
 142	unsigned tag_size;
 143	__s8 log2_tag_size;
 144	sector_t start;
 145	mempool_t *journal_io_mempool;
 146	struct dm_io_client *io;
 147	struct dm_bufio_client *bufio;
 148	struct workqueue_struct *metadata_wq;
 149	struct superblock *sb;
 150	unsigned journal_pages;
 151	struct page_list *journal;
 152	struct page_list *journal_io;
 153	struct page_list *journal_xor;
 154
 155	struct crypto_skcipher *journal_crypt;
 156	struct scatterlist **journal_scatterlist;
 157	struct scatterlist **journal_io_scatterlist;
 158	struct skcipher_request **sk_requests;
 159
 160	struct crypto_shash *journal_mac;
 161
 162	struct journal_node *journal_tree;
 163	struct rb_root journal_tree_root;
 164
 165	sector_t provided_data_sectors;
 166
 167	unsigned short journal_entry_size;
 168	unsigned char journal_entries_per_sector;
 169	unsigned char journal_section_entries;
 170	unsigned short journal_section_sectors;
 171	unsigned journal_sections;
 172	unsigned journal_entries;
 173	sector_t device_sectors;
 174	unsigned initial_sectors;
 175	unsigned metadata_run;
 176	__s8 log2_metadata_run;
 177	__u8 log2_buffer_sectors;
 178	__u8 sectors_per_block;
 179
 180	unsigned char mode;
 181	bool suspending;
 182
 183	int failed;
 184
 185	struct crypto_shash *internal_hash;
 186
 187	/* these variables are locked with endio_wait.lock */
 188	struct rb_root in_progress;
 189	wait_queue_head_t endio_wait;
 190	struct workqueue_struct *wait_wq;
 191
 192	unsigned char commit_seq;
 193	commit_id_t commit_ids[N_COMMIT_IDS];
 194
 195	unsigned committed_section;
 196	unsigned n_committed_sections;
 197
 198	unsigned uncommitted_section;
 199	unsigned n_uncommitted_sections;
 200
 201	unsigned free_section;
 202	unsigned char free_section_entry;
 203	unsigned free_sectors;
 204
 205	unsigned free_sectors_threshold;
 206
 207	struct workqueue_struct *commit_wq;
 208	struct work_struct commit_work;
 209
 210	struct workqueue_struct *writer_wq;
 211	struct work_struct writer_work;
 212
 213	struct bio_list flush_bio_list;
 214
 215	unsigned long autocommit_jiffies;
 216	struct timer_list autocommit_timer;
 217	unsigned autocommit_msec;
 218
 219	wait_queue_head_t copy_to_journal_wait;
 220
 221	struct completion crypto_backoff;
 222
 223	bool journal_uptodate;
 224	bool just_formatted;
 225
 226	struct alg_spec internal_hash_alg;
 227	struct alg_spec journal_crypt_alg;
 228	struct alg_spec journal_mac_alg;
 229
 230	atomic64_t number_of_mismatches;
 231};
 232
 233struct dm_integrity_range {
 234	sector_t logical_sector;
 235	unsigned n_sectors;
 236	struct rb_node node;
 237};
 238
 239struct dm_integrity_io {
 240	struct work_struct work;
 241
 242	struct dm_integrity_c *ic;
 243	bool write;
 244	bool fua;
 245
 246	struct dm_integrity_range range;
 247
 248	sector_t metadata_block;
 249	unsigned metadata_offset;
 250
 251	atomic_t in_flight;
 252	blk_status_t bi_status;
 253
 254	struct completion *completion;
 255
 256	struct gendisk *orig_bi_disk;
 257	u8 orig_bi_partno;
 258	bio_end_io_t *orig_bi_end_io;
 259	struct bio_integrity_payload *orig_bi_integrity;
 260	struct bvec_iter orig_bi_iter;
 261};
 262
 263struct journal_completion {
 264	struct dm_integrity_c *ic;
 265	atomic_t in_flight;
 266	struct completion comp;
 267};
 268
 269struct journal_io {
 270	struct dm_integrity_range range;
 271	struct journal_completion *comp;
 272};
 273
 274static struct kmem_cache *journal_io_cache;
 275
 276#define JOURNAL_IO_MEMPOOL	32
 277
 278#ifdef DEBUG_PRINT
 279#define DEBUG_print(x, ...)	printk(KERN_DEBUG x, ##__VA_ARGS__)
 280static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
 281{
 282	va_list args;
 283	va_start(args, msg);
 284	vprintk(msg, args);
 285	va_end(args);
 286	if (len)
 287		pr_cont(":");
 288	while (len) {
 289		pr_cont(" %02x", *bytes);
 290		bytes++;
 291		len--;
 292	}
 293	pr_cont("\n");
 294}
 295#define DEBUG_bytes(bytes, len, msg, ...)	__DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
 296#else
 297#define DEBUG_print(x, ...)			do { } while (0)
 298#define DEBUG_bytes(bytes, len, msg, ...)	do { } while (0)
 299#endif
 300
 301/*
 302 * DM Integrity profile, protection is performed layer above (dm-crypt)
 303 */
 304static const struct blk_integrity_profile dm_integrity_profile = {
 305	.name			= "DM-DIF-EXT-TAG",
 306	.generate_fn		= NULL,
 307	.verify_fn		= NULL,
 308};
 309
 310static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
 311static void integrity_bio_wait(struct work_struct *w);
 312static void dm_integrity_dtr(struct dm_target *ti);
 313
 314static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
 315{
 316	if (err == -EILSEQ)
 317		atomic64_inc(&ic->number_of_mismatches);
 318	if (!cmpxchg(&ic->failed, 0, err))
 319		DMERR("Error on %s: %d", msg, err);
 320}
 321
 322static int dm_integrity_failed(struct dm_integrity_c *ic)
 323{
 324	return READ_ONCE(ic->failed);
 325}
 326
 327static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
 328					  unsigned j, unsigned char seq)
 329{
 330	/*
 331	 * Xor the number with section and sector, so that if a piece of
 332	 * journal is written at wrong place, it is detected.
 333	 */
 334	return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
 335}
 336
 337static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
 338				sector_t *area, sector_t *offset)
 339{
 340	__u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
 341
 342	*area = data_sector >> log2_interleave_sectors;
 343	*offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
 344}
 345
 346#define sector_to_block(ic, n)						\
 347do {									\
 348	BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1));		\
 349	(n) >>= (ic)->sb->log2_sectors_per_block;			\
 350} while (0)
 351
 352static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
 353					    sector_t offset, unsigned *metadata_offset)
 354{
 355	__u64 ms;
 356	unsigned mo;
 357
 358	ms = area << ic->sb->log2_interleave_sectors;
 359	if (likely(ic->log2_metadata_run >= 0))
 360		ms += area << ic->log2_metadata_run;
 361	else
 362		ms += area * ic->metadata_run;
 363	ms >>= ic->log2_buffer_sectors;
 364
 365	sector_to_block(ic, offset);
 366
 367	if (likely(ic->log2_tag_size >= 0)) {
 368		ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
 369		mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
 370	} else {
 371		ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
 372		mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
 373	}
 374	*metadata_offset = mo;
 375	return ms;
 376}
 377
 378static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
 379{
 380	sector_t result;
 381
 382	result = area << ic->sb->log2_interleave_sectors;
 383	if (likely(ic->log2_metadata_run >= 0))
 384		result += (area + 1) << ic->log2_metadata_run;
 385	else
 386		result += (area + 1) * ic->metadata_run;
 387
 388	result += (sector_t)ic->initial_sectors + offset;
 389	return result;
 390}
 391
 392static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
 393{
 394	if (unlikely(*sec_ptr >= ic->journal_sections))
 395		*sec_ptr -= ic->journal_sections;
 396}
 397
 398static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
 399{
 400	struct dm_io_request io_req;
 401	struct dm_io_region io_loc;
 402
 403	io_req.bi_op = op;
 404	io_req.bi_op_flags = op_flags;
 405	io_req.mem.type = DM_IO_KMEM;
 406	io_req.mem.ptr.addr = ic->sb;
 407	io_req.notify.fn = NULL;
 408	io_req.client = ic->io;
 409	io_loc.bdev = ic->dev->bdev;
 410	io_loc.sector = ic->start;
 411	io_loc.count = SB_SECTORS;
 412
 413	return dm_io(&io_req, 1, &io_loc, NULL);
 414}
 415
 416static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
 417				 bool e, const char *function)
 418{
 419#if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
 420	unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
 421
 422	if (unlikely(section >= ic->journal_sections) ||
 423	    unlikely(offset >= limit)) {
 424		printk(KERN_CRIT "%s: invalid access at (%u,%u), limit (%u,%u)\n",
 425			function, section, offset, ic->journal_sections, limit);
 426		BUG();
 427	}
 428#endif
 429}
 430
 431static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
 432			       unsigned *pl_index, unsigned *pl_offset)
 433{
 434	unsigned sector;
 435
 436	access_journal_check(ic, section, offset, false, "page_list_location");
 437
 438	sector = section * ic->journal_section_sectors + offset;
 439
 440	*pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
 441	*pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
 442}
 443
 444static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
 445					       unsigned section, unsigned offset, unsigned *n_sectors)
 446{
 447	unsigned pl_index, pl_offset;
 448	char *va;
 449
 450	page_list_location(ic, section, offset, &pl_index, &pl_offset);
 451
 452	if (n_sectors)
 453		*n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
 454
 455	va = lowmem_page_address(pl[pl_index].page);
 456
 457	return (struct journal_sector *)(va + pl_offset);
 458}
 459
 460static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
 461{
 462	return access_page_list(ic, ic->journal, section, offset, NULL);
 463}
 464
 465static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
 466{
 467	unsigned rel_sector, offset;
 468	struct journal_sector *js;
 469
 470	access_journal_check(ic, section, n, true, "access_journal_entry");
 471
 472	rel_sector = n % JOURNAL_BLOCK_SECTORS;
 473	offset = n / JOURNAL_BLOCK_SECTORS;
 474
 475	js = access_journal(ic, section, rel_sector);
 476	return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
 477}
 478
 479static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
 480{
 481	n <<= ic->sb->log2_sectors_per_block;
 482
 483	n += JOURNAL_BLOCK_SECTORS;
 484
 485	access_journal_check(ic, section, n, false, "access_journal_data");
 486
 487	return access_journal(ic, section, n);
 488}
 489
 490static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
 491{
 492	SHASH_DESC_ON_STACK(desc, ic->journal_mac);
 493	int r;
 494	unsigned j, size;
 495
 496	desc->tfm = ic->journal_mac;
 497	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 498
 499	r = crypto_shash_init(desc);
 500	if (unlikely(r)) {
 501		dm_integrity_io_error(ic, "crypto_shash_init", r);
 502		goto err;
 503	}
 504
 505	for (j = 0; j < ic->journal_section_entries; j++) {
 506		struct journal_entry *je = access_journal_entry(ic, section, j);
 507		r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
 508		if (unlikely(r)) {
 509			dm_integrity_io_error(ic, "crypto_shash_update", r);
 510			goto err;
 511		}
 512	}
 513
 514	size = crypto_shash_digestsize(ic->journal_mac);
 515
 516	if (likely(size <= JOURNAL_MAC_SIZE)) {
 517		r = crypto_shash_final(desc, result);
 518		if (unlikely(r)) {
 519			dm_integrity_io_error(ic, "crypto_shash_final", r);
 520			goto err;
 521		}
 522		memset(result + size, 0, JOURNAL_MAC_SIZE - size);
 523	} else {
 524		__u8 digest[size];
 525		r = crypto_shash_final(desc, digest);
 526		if (unlikely(r)) {
 527			dm_integrity_io_error(ic, "crypto_shash_final", r);
 528			goto err;
 529		}
 530		memcpy(result, digest, JOURNAL_MAC_SIZE);
 531	}
 532
 533	return;
 534err:
 535	memset(result, 0, JOURNAL_MAC_SIZE);
 536}
 537
 538static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
 539{
 540	__u8 result[JOURNAL_MAC_SIZE];
 541	unsigned j;
 542
 543	if (!ic->journal_mac)
 544		return;
 545
 546	section_mac(ic, section, result);
 547
 548	for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
 549		struct journal_sector *js = access_journal(ic, section, j);
 550
 551		if (likely(wr))
 552			memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
 553		else {
 554			if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR))
 555				dm_integrity_io_error(ic, "journal mac", -EILSEQ);
 556		}
 557	}
 558}
 559
 560static void complete_journal_op(void *context)
 561{
 562	struct journal_completion *comp = context;
 563	BUG_ON(!atomic_read(&comp->in_flight));
 564	if (likely(atomic_dec_and_test(&comp->in_flight)))
 565		complete(&comp->comp);
 566}
 567
 568static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
 569			unsigned n_sections, struct journal_completion *comp)
 570{
 571	struct async_submit_ctl submit;
 572	size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
 573	unsigned pl_index, pl_offset, section_index;
 574	struct page_list *source_pl, *target_pl;
 575
 576	if (likely(encrypt)) {
 577		source_pl = ic->journal;
 578		target_pl = ic->journal_io;
 579	} else {
 580		source_pl = ic->journal_io;
 581		target_pl = ic->journal;
 582	}
 583
 584	page_list_location(ic, section, 0, &pl_index, &pl_offset);
 585
 586	atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
 587
 588	init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
 589
 590	section_index = pl_index;
 591
 592	do {
 593		size_t this_step;
 594		struct page *src_pages[2];
 595		struct page *dst_page;
 596
 597		while (unlikely(pl_index == section_index)) {
 598			unsigned dummy;
 599			if (likely(encrypt))
 600				rw_section_mac(ic, section, true);
 601			section++;
 602			n_sections--;
 603			if (!n_sections)
 604				break;
 605			page_list_location(ic, section, 0, &section_index, &dummy);
 606		}
 607
 608		this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
 609		dst_page = target_pl[pl_index].page;
 610		src_pages[0] = source_pl[pl_index].page;
 611		src_pages[1] = ic->journal_xor[pl_index].page;
 612
 613		async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
 614
 615		pl_index++;
 616		pl_offset = 0;
 617		n_bytes -= this_step;
 618	} while (n_bytes);
 619
 620	BUG_ON(n_sections);
 621
 622	async_tx_issue_pending_all();
 623}
 624
 625static void complete_journal_encrypt(struct crypto_async_request *req, int err)
 626{
 627	struct journal_completion *comp = req->data;
 628	if (unlikely(err)) {
 629		if (likely(err == -EINPROGRESS)) {
 630			complete(&comp->ic->crypto_backoff);
 631			return;
 632		}
 633		dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
 634	}
 635	complete_journal_op(comp);
 636}
 637
 638static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
 639{
 640	int r;
 641	skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
 642				      complete_journal_encrypt, comp);
 643	if (likely(encrypt))
 644		r = crypto_skcipher_encrypt(req);
 645	else
 646		r = crypto_skcipher_decrypt(req);
 647	if (likely(!r))
 648		return false;
 649	if (likely(r == -EINPROGRESS))
 650		return true;
 651	if (likely(r == -EBUSY)) {
 652		wait_for_completion(&comp->ic->crypto_backoff);
 653		reinit_completion(&comp->ic->crypto_backoff);
 654		return true;
 655	}
 656	dm_integrity_io_error(comp->ic, "encrypt", r);
 657	return false;
 658}
 659
 660static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
 661			  unsigned n_sections, struct journal_completion *comp)
 662{
 663	struct scatterlist **source_sg;
 664	struct scatterlist **target_sg;
 665
 666	atomic_add(2, &comp->in_flight);
 667
 668	if (likely(encrypt)) {
 669		source_sg = ic->journal_scatterlist;
 670		target_sg = ic->journal_io_scatterlist;
 671	} else {
 672		source_sg = ic->journal_io_scatterlist;
 673		target_sg = ic->journal_scatterlist;
 674	}
 675
 676	do {
 677		struct skcipher_request *req;
 678		unsigned ivsize;
 679		char *iv;
 680
 681		if (likely(encrypt))
 682			rw_section_mac(ic, section, true);
 683
 684		req = ic->sk_requests[section];
 685		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
 686		iv = req->iv;
 687
 688		memcpy(iv, iv + ivsize, ivsize);
 689
 690		req->src = source_sg[section];
 691		req->dst = target_sg[section];
 692
 693		if (unlikely(do_crypt(encrypt, req, comp)))
 694			atomic_inc(&comp->in_flight);
 695
 696		section++;
 697		n_sections--;
 698	} while (n_sections);
 699
 700	atomic_dec(&comp->in_flight);
 701	complete_journal_op(comp);
 702}
 703
 704static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
 705			    unsigned n_sections, struct journal_completion *comp)
 706{
 707	if (ic->journal_xor)
 708		return xor_journal(ic, encrypt, section, n_sections, comp);
 709	else
 710		return crypt_journal(ic, encrypt, section, n_sections, comp);
 711}
 712
 713static void complete_journal_io(unsigned long error, void *context)
 714{
 715	struct journal_completion *comp = context;
 716	if (unlikely(error != 0))
 717		dm_integrity_io_error(comp->ic, "writing journal", -EIO);
 718	complete_journal_op(comp);
 719}
 720
 721static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
 722		       unsigned n_sections, struct journal_completion *comp)
 723{
 724	struct dm_io_request io_req;
 725	struct dm_io_region io_loc;
 726	unsigned sector, n_sectors, pl_index, pl_offset;
 727	int r;
 728
 729	if (unlikely(dm_integrity_failed(ic))) {
 730		if (comp)
 731			complete_journal_io(-1UL, comp);
 732		return;
 733	}
 734
 735	sector = section * ic->journal_section_sectors;
 736	n_sectors = n_sections * ic->journal_section_sectors;
 737
 738	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
 739	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
 740
 741	io_req.bi_op = op;
 742	io_req.bi_op_flags = op_flags;
 743	io_req.mem.type = DM_IO_PAGE_LIST;
 744	if (ic->journal_io)
 745		io_req.mem.ptr.pl = &ic->journal_io[pl_index];
 746	else
 747		io_req.mem.ptr.pl = &ic->journal[pl_index];
 748	io_req.mem.offset = pl_offset;
 749	if (likely(comp != NULL)) {
 750		io_req.notify.fn = complete_journal_io;
 751		io_req.notify.context = comp;
 752	} else {
 753		io_req.notify.fn = NULL;
 754	}
 755	io_req.client = ic->io;
 756	io_loc.bdev = ic->dev->bdev;
 757	io_loc.sector = ic->start + SB_SECTORS + sector;
 758	io_loc.count = n_sectors;
 759
 760	r = dm_io(&io_req, 1, &io_loc, NULL);
 761	if (unlikely(r)) {
 762		dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
 763		if (comp) {
 764			WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
 765			complete_journal_io(-1UL, comp);
 766		}
 767	}
 768}
 769
 770static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
 771{
 772	struct journal_completion io_comp;
 773	struct journal_completion crypt_comp_1;
 774	struct journal_completion crypt_comp_2;
 775	unsigned i;
 776
 777	io_comp.ic = ic;
 778	init_completion(&io_comp.comp);
 779
 780	if (commit_start + commit_sections <= ic->journal_sections) {
 781		io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
 782		if (ic->journal_io) {
 783			crypt_comp_1.ic = ic;
 784			init_completion(&crypt_comp_1.comp);
 785			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
 786			encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
 787			wait_for_completion_io(&crypt_comp_1.comp);
 788		} else {
 789			for (i = 0; i < commit_sections; i++)
 790				rw_section_mac(ic, commit_start + i, true);
 791		}
 792		rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
 793			   commit_sections, &io_comp);
 794	} else {
 795		unsigned to_end;
 796		io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
 797		to_end = ic->journal_sections - commit_start;
 798		if (ic->journal_io) {
 799			crypt_comp_1.ic = ic;
 800			init_completion(&crypt_comp_1.comp);
 801			crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
 802			encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
 803			if (try_wait_for_completion(&crypt_comp_1.comp)) {
 804				rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
 805				reinit_completion(&crypt_comp_1.comp);
 806				crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
 807				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
 808				wait_for_completion_io(&crypt_comp_1.comp);
 809			} else {
 810				crypt_comp_2.ic = ic;
 811				init_completion(&crypt_comp_2.comp);
 812				crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
 813				encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
 814				wait_for_completion_io(&crypt_comp_1.comp);
 815				rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
 816				wait_for_completion_io(&crypt_comp_2.comp);
 817			}
 818		} else {
 819			for (i = 0; i < to_end; i++)
 820				rw_section_mac(ic, commit_start + i, true);
 821			rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
 822			for (i = 0; i < commit_sections - to_end; i++)
 823				rw_section_mac(ic, i, true);
 824		}
 825		rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
 826	}
 827
 828	wait_for_completion_io(&io_comp.comp);
 829}
 830
 831static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
 832			      unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
 833{
 834	struct dm_io_request io_req;
 835	struct dm_io_region io_loc;
 836	int r;
 837	unsigned sector, pl_index, pl_offset;
 838
 839	BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
 840
 841	if (unlikely(dm_integrity_failed(ic))) {
 842		fn(-1UL, data);
 843		return;
 844	}
 845
 846	sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
 847
 848	pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
 849	pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
 850
 851	io_req.bi_op = REQ_OP_WRITE;
 852	io_req.bi_op_flags = 0;
 853	io_req.mem.type = DM_IO_PAGE_LIST;
 854	io_req.mem.ptr.pl = &ic->journal[pl_index];
 855	io_req.mem.offset = pl_offset;
 856	io_req.notify.fn = fn;
 857	io_req.notify.context = data;
 858	io_req.client = ic->io;
 859	io_loc.bdev = ic->dev->bdev;
 860	io_loc.sector = ic->start + target;
 861	io_loc.count = n_sectors;
 862
 863	r = dm_io(&io_req, 1, &io_loc, NULL);
 864	if (unlikely(r)) {
 865		WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
 866		fn(-1UL, data);
 867	}
 868}
 869
 870static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
 871{
 872	struct rb_node **n = &ic->in_progress.rb_node;
 873	struct rb_node *parent;
 874
 875	BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
 876
 877	parent = NULL;
 878
 879	while (*n) {
 880		struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
 881
 882		parent = *n;
 883		if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
 884			n = &range->node.rb_left;
 885		} else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
 886			n = &range->node.rb_right;
 887		} else {
 888			return false;
 889		}
 890	}
 891
 892	rb_link_node(&new_range->node, parent, n);
 893	rb_insert_color(&new_range->node, &ic->in_progress);
 894
 895	return true;
 896}
 897
 898static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
 899{
 900	rb_erase(&range->node, &ic->in_progress);
 901	wake_up_locked(&ic->endio_wait);
 902}
 903
 904static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
 905{
 906	unsigned long flags;
 907
 908	spin_lock_irqsave(&ic->endio_wait.lock, flags);
 909	remove_range_unlocked(ic, range);
 910	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
 911}
 912
 913static void init_journal_node(struct journal_node *node)
 914{
 915	RB_CLEAR_NODE(&node->node);
 916	node->sector = (sector_t)-1;
 917}
 918
 919static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
 920{
 921	struct rb_node **link;
 922	struct rb_node *parent;
 923
 924	node->sector = sector;
 925	BUG_ON(!RB_EMPTY_NODE(&node->node));
 926
 927	link = &ic->journal_tree_root.rb_node;
 928	parent = NULL;
 929
 930	while (*link) {
 931		struct journal_node *j;
 932		parent = *link;
 933		j = container_of(parent, struct journal_node, node);
 934		if (sector < j->sector)
 935			link = &j->node.rb_left;
 936		else
 937			link = &j->node.rb_right;
 938	}
 939
 940	rb_link_node(&node->node, parent, link);
 941	rb_insert_color(&node->node, &ic->journal_tree_root);
 942}
 943
 944static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
 945{
 946	BUG_ON(RB_EMPTY_NODE(&node->node));
 947	rb_erase(&node->node, &ic->journal_tree_root);
 948	init_journal_node(node);
 949}
 950
 951#define NOT_FOUND	(-1U)
 952
 953static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
 954{
 955	struct rb_node *n = ic->journal_tree_root.rb_node;
 956	unsigned found = NOT_FOUND;
 957	*next_sector = (sector_t)-1;
 958	while (n) {
 959		struct journal_node *j = container_of(n, struct journal_node, node);
 960		if (sector == j->sector) {
 961			found = j - ic->journal_tree;
 962		}
 963		if (sector < j->sector) {
 964			*next_sector = j->sector;
 965			n = j->node.rb_left;
 966		} else {
 967			n = j->node.rb_right;
 968		}
 969	}
 970
 971	return found;
 972}
 973
 974static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
 975{
 976	struct journal_node *node, *next_node;
 977	struct rb_node *next;
 978
 979	if (unlikely(pos >= ic->journal_entries))
 980		return false;
 981	node = &ic->journal_tree[pos];
 982	if (unlikely(RB_EMPTY_NODE(&node->node)))
 983		return false;
 984	if (unlikely(node->sector != sector))
 985		return false;
 986
 987	next = rb_next(&node->node);
 988	if (unlikely(!next))
 989		return true;
 990
 991	next_node = container_of(next, struct journal_node, node);
 992	return next_node->sector != sector;
 993}
 994
 995static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
 996{
 997	struct rb_node *next;
 998	struct journal_node *next_node;
 999	unsigned next_section;
1000
1001	BUG_ON(RB_EMPTY_NODE(&node->node));
1002
1003	next = rb_next(&node->node);
1004	if (unlikely(!next))
1005		return false;
1006
1007	next_node = container_of(next, struct journal_node, node);
1008
1009	if (next_node->sector != node->sector)
1010		return false;
1011
1012	next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1013	if (next_section >= ic->committed_section &&
1014	    next_section < ic->committed_section + ic->n_committed_sections)
1015		return true;
1016	if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1017		return true;
1018
1019	return false;
1020}
1021
1022#define TAG_READ	0
1023#define TAG_WRITE	1
1024#define TAG_CMP		2
1025
1026static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1027			       unsigned *metadata_offset, unsigned total_size, int op)
1028{
1029	do {
1030		unsigned char *data, *dp;
1031		struct dm_buffer *b;
1032		unsigned to_copy;
1033		int r;
1034
1035		r = dm_integrity_failed(ic);
1036		if (unlikely(r))
1037			return r;
1038
1039		data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1040		if (unlikely(IS_ERR(data)))
1041			return PTR_ERR(data);
1042
1043		to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1044		dp = data + *metadata_offset;
1045		if (op == TAG_READ) {
1046			memcpy(tag, dp, to_copy);
1047		} else if (op == TAG_WRITE) {
1048			memcpy(dp, tag, to_copy);
1049			dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1050		} else  {
1051			/* e.g.: op == TAG_CMP */
1052			if (unlikely(memcmp(dp, tag, to_copy))) {
1053				unsigned i;
1054
1055				for (i = 0; i < to_copy; i++) {
1056					if (dp[i] != tag[i])
1057						break;
1058					total_size--;
1059				}
1060				dm_bufio_release(b);
1061				return total_size;
1062			}
1063		}
1064		dm_bufio_release(b);
1065
1066		tag += to_copy;
1067		*metadata_offset += to_copy;
1068		if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1069			(*metadata_block)++;
1070			*metadata_offset = 0;
1071		}
1072		total_size -= to_copy;
1073	} while (unlikely(total_size));
1074
1075	return 0;
1076}
1077
1078static void dm_integrity_flush_buffers(struct dm_integrity_c *ic)
1079{
1080	int r;
1081	r = dm_bufio_write_dirty_buffers(ic->bufio);
1082	if (unlikely(r))
1083		dm_integrity_io_error(ic, "writing tags", r);
1084}
1085
1086static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1087{
1088	DECLARE_WAITQUEUE(wait, current);
1089	__add_wait_queue(&ic->endio_wait, &wait);
1090	__set_current_state(TASK_UNINTERRUPTIBLE);
1091	spin_unlock_irq(&ic->endio_wait.lock);
1092	io_schedule();
1093	spin_lock_irq(&ic->endio_wait.lock);
1094	__remove_wait_queue(&ic->endio_wait, &wait);
1095}
1096
1097static void autocommit_fn(struct timer_list *t)
1098{
1099	struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1100
1101	if (likely(!dm_integrity_failed(ic)))
1102		queue_work(ic->commit_wq, &ic->commit_work);
1103}
1104
1105static void schedule_autocommit(struct dm_integrity_c *ic)
1106{
1107	if (!timer_pending(&ic->autocommit_timer))
1108		mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1109}
1110
1111static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1112{
1113	struct bio *bio;
1114	unsigned long flags;
1115
1116	spin_lock_irqsave(&ic->endio_wait.lock, flags);
1117	bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1118	bio_list_add(&ic->flush_bio_list, bio);
1119	spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1120
1121	queue_work(ic->commit_wq, &ic->commit_work);
1122}
1123
1124static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1125{
1126	int r = dm_integrity_failed(ic);
1127	if (unlikely(r) && !bio->bi_status)
1128		bio->bi_status = errno_to_blk_status(r);
1129	bio_endio(bio);
1130}
1131
1132static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1133{
1134	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1135
1136	if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1137		submit_flush_bio(ic, dio);
1138	else
1139		do_endio(ic, bio);
1140}
1141
1142static void dec_in_flight(struct dm_integrity_io *dio)
1143{
1144	if (atomic_dec_and_test(&dio->in_flight)) {
1145		struct dm_integrity_c *ic = dio->ic;
1146		struct bio *bio;
1147
1148		remove_range(ic, &dio->range);
1149
1150		if (unlikely(dio->write))
1151			schedule_autocommit(ic);
1152
1153		bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1154
1155		if (unlikely(dio->bi_status) && !bio->bi_status)
1156			bio->bi_status = dio->bi_status;
1157		if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1158			dio->range.logical_sector += dio->range.n_sectors;
1159			bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1160			INIT_WORK(&dio->work, integrity_bio_wait);
1161			queue_work(ic->wait_wq, &dio->work);
1162			return;
1163		}
1164		do_endio_flush(ic, dio);
1165	}
1166}
1167
1168static void integrity_end_io(struct bio *bio)
1169{
1170	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1171
1172	bio->bi_iter = dio->orig_bi_iter;
1173	bio->bi_disk = dio->orig_bi_disk;
1174	bio->bi_partno = dio->orig_bi_partno;
1175	if (dio->orig_bi_integrity) {
1176		bio->bi_integrity = dio->orig_bi_integrity;
1177		bio->bi_opf |= REQ_INTEGRITY;
1178	}
1179	bio->bi_end_io = dio->orig_bi_end_io;
1180
1181	if (dio->completion)
1182		complete(dio->completion);
1183
1184	dec_in_flight(dio);
1185}
1186
1187static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1188				      const char *data, char *result)
1189{
1190	__u64 sector_le = cpu_to_le64(sector);
1191	SHASH_DESC_ON_STACK(req, ic->internal_hash);
1192	int r;
1193	unsigned digest_size;
1194
1195	req->tfm = ic->internal_hash;
1196	req->flags = 0;
1197
1198	r = crypto_shash_init(req);
1199	if (unlikely(r < 0)) {
1200		dm_integrity_io_error(ic, "crypto_shash_init", r);
1201		goto failed;
1202	}
1203
1204	r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
1205	if (unlikely(r < 0)) {
1206		dm_integrity_io_error(ic, "crypto_shash_update", r);
1207		goto failed;
1208	}
1209
1210	r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1211	if (unlikely(r < 0)) {
1212		dm_integrity_io_error(ic, "crypto_shash_update", r);
1213		goto failed;
1214	}
1215
1216	r = crypto_shash_final(req, result);
1217	if (unlikely(r < 0)) {
1218		dm_integrity_io_error(ic, "crypto_shash_final", r);
1219		goto failed;
1220	}
1221
1222	digest_size = crypto_shash_digestsize(ic->internal_hash);
1223	if (unlikely(digest_size < ic->tag_size))
1224		memset(result + digest_size, 0, ic->tag_size - digest_size);
1225
1226	return;
1227
1228failed:
1229	/* this shouldn't happen anyway, the hash functions have no reason to fail */
1230	get_random_bytes(result, ic->tag_size);
1231}
1232
1233static void integrity_metadata(struct work_struct *w)
1234{
1235	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1236	struct dm_integrity_c *ic = dio->ic;
1237
1238	int r;
1239
1240	if (ic->internal_hash) {
1241		struct bvec_iter iter;
1242		struct bio_vec bv;
1243		unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1244		struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1245		char *checksums;
1246		unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1247		char checksums_onstack[ic->tag_size + extra_space];
1248		unsigned sectors_to_process = dio->range.n_sectors;
1249		sector_t sector = dio->range.logical_sector;
1250
1251		if (unlikely(ic->mode == 'R'))
1252			goto skip_io;
1253
1254		checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1255				    GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1256		if (!checksums)
1257			checksums = checksums_onstack;
1258
1259		__bio_for_each_segment(bv, bio, iter, dio->orig_bi_iter) {
1260			unsigned pos;
1261			char *mem, *checksums_ptr;
1262
1263again:
1264			mem = (char *)kmap_atomic(bv.bv_page) + bv.bv_offset;
1265			pos = 0;
1266			checksums_ptr = checksums;
1267			do {
1268				integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1269				checksums_ptr += ic->tag_size;
1270				sectors_to_process -= ic->sectors_per_block;
1271				pos += ic->sectors_per_block << SECTOR_SHIFT;
1272				sector += ic->sectors_per_block;
1273			} while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1274			kunmap_atomic(mem);
1275
1276			r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1277						checksums_ptr - checksums, !dio->write ? TAG_CMP : TAG_WRITE);
1278			if (unlikely(r)) {
1279				if (r > 0) {
1280					DMERR("Checksum failed at sector 0x%llx",
1281					      (unsigned long long)(sector - ((r + ic->tag_size - 1) / ic->tag_size)));
1282					r = -EILSEQ;
1283					atomic64_inc(&ic->number_of_mismatches);
1284				}
1285				if (likely(checksums != checksums_onstack))
1286					kfree(checksums);
1287				goto error;
1288			}
1289
1290			if (!sectors_to_process)
1291				break;
1292
1293			if (unlikely(pos < bv.bv_len)) {
1294				bv.bv_offset += pos;
1295				bv.bv_len -= pos;
1296				goto again;
1297			}
1298		}
1299
1300		if (likely(checksums != checksums_onstack))
1301			kfree(checksums);
1302	} else {
1303		struct bio_integrity_payload *bip = dio->orig_bi_integrity;
1304
1305		if (bip) {
1306			struct bio_vec biv;
1307			struct bvec_iter iter;
1308			unsigned data_to_process = dio->range.n_sectors;
1309			sector_to_block(ic, data_to_process);
1310			data_to_process *= ic->tag_size;
1311
1312			bip_for_each_vec(biv, bip, iter) {
1313				unsigned char *tag;
1314				unsigned this_len;
1315
1316				BUG_ON(PageHighMem(biv.bv_page));
1317				tag = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1318				this_len = min(biv.bv_len, data_to_process);
1319				r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1320							this_len, !dio->write ? TAG_READ : TAG_WRITE);
1321				if (unlikely(r))
1322					goto error;
1323				data_to_process -= this_len;
1324				if (!data_to_process)
1325					break;
1326			}
1327		}
1328	}
1329skip_io:
1330	dec_in_flight(dio);
1331	return;
1332error:
1333	dio->bi_status = errno_to_blk_status(r);
1334	dec_in_flight(dio);
1335}
1336
1337static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1338{
1339	struct dm_integrity_c *ic = ti->private;
1340	struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1341	struct bio_integrity_payload *bip;
1342
1343	sector_t area, offset;
1344
1345	dio->ic = ic;
1346	dio->bi_status = 0;
1347
1348	if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1349		submit_flush_bio(ic, dio);
1350		return DM_MAPIO_SUBMITTED;
1351	}
1352
1353	dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1354	dio->write = bio_op(bio) == REQ_OP_WRITE;
1355	dio->fua = dio->write && bio->bi_opf & REQ_FUA;
1356	if (unlikely(dio->fua)) {
1357		/*
1358		 * Don't pass down the FUA flag because we have to flush
1359		 * disk cache anyway.
1360		 */
1361		bio->bi_opf &= ~REQ_FUA;
1362	}
1363	if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1364		DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1365		      (unsigned long long)dio->range.logical_sector, bio_sectors(bio),
1366		      (unsigned long long)ic->provided_data_sectors);
1367		return DM_MAPIO_KILL;
1368	}
1369	if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1370		DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1371		      ic->sectors_per_block,
1372		      (unsigned long long)dio->range.logical_sector, bio_sectors(bio));
1373		return DM_MAPIO_KILL;
1374	}
1375
1376	if (ic->sectors_per_block > 1) {
1377		struct bvec_iter iter;
1378		struct bio_vec bv;
1379		bio_for_each_segment(bv, bio, iter) {
1380			if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1381				DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1382					bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1383				return DM_MAPIO_KILL;
1384			}
1385		}
1386	}
1387
1388	bip = bio_integrity(bio);
1389	if (!ic->internal_hash) {
1390		if (bip) {
1391			unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1392			if (ic->log2_tag_size >= 0)
1393				wanted_tag_size <<= ic->log2_tag_size;
1394			else
1395				wanted_tag_size *= ic->tag_size;
1396			if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1397				DMERR("Invalid integrity data size %u, expected %u", bip->bip_iter.bi_size, wanted_tag_size);
1398				return DM_MAPIO_KILL;
1399			}
1400		}
1401	} else {
1402		if (unlikely(bip != NULL)) {
1403			DMERR("Unexpected integrity data when using internal hash");
1404			return DM_MAPIO_KILL;
1405		}
1406	}
1407
1408	if (unlikely(ic->mode == 'R') && unlikely(dio->write))
1409		return DM_MAPIO_KILL;
1410
1411	get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1412	dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1413	bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1414
1415	dm_integrity_map_continue(dio, true);
1416	return DM_MAPIO_SUBMITTED;
1417}
1418
1419static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1420				 unsigned journal_section, unsigned journal_entry)
1421{
1422	struct dm_integrity_c *ic = dio->ic;
1423	sector_t logical_sector;
1424	unsigned n_sectors;
1425
1426	logical_sector = dio->range.logical_sector;
1427	n_sectors = dio->range.n_sectors;
1428	do {
1429		struct bio_vec bv = bio_iovec(bio);
1430		char *mem;
1431
1432		if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1433			bv.bv_len = n_sectors << SECTOR_SHIFT;
1434		n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1435		bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1436retry_kmap:
1437		mem = kmap_atomic(bv.bv_page);
1438		if (likely(dio->write))
1439			flush_dcache_page(bv.bv_page);
1440
1441		do {
1442			struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1443
1444			if (unlikely(!dio->write)) {
1445				struct journal_sector *js;
1446				char *mem_ptr;
1447				unsigned s;
1448
1449				if (unlikely(journal_entry_is_inprogress(je))) {
1450					flush_dcache_page(bv.bv_page);
1451					kunmap_atomic(mem);
1452
1453					__io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1454					goto retry_kmap;
1455				}
1456				smp_rmb();
1457				BUG_ON(journal_entry_get_sector(je) != logical_sector);
1458				js = access_journal_data(ic, journal_section, journal_entry);
1459				mem_ptr = mem + bv.bv_offset;
1460				s = 0;
1461				do {
1462					memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1463					*(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1464					js++;
1465					mem_ptr += 1 << SECTOR_SHIFT;
1466				} while (++s < ic->sectors_per_block);
1467#ifdef INTERNAL_VERIFY
1468				if (ic->internal_hash) {
1469					char checksums_onstack[max(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)];
1470
1471					integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
1472					if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
1473						DMERR("Checksum failed when reading from journal, at sector 0x%llx",
1474						      (unsigned long long)logical_sector);
1475					}
1476				}
1477#endif
1478			}
1479
1480			if (!ic->internal_hash) {
1481				struct bio_integrity_payload *bip = bio_integrity(bio);
1482				unsigned tag_todo = ic->tag_size;
1483				char *tag_ptr = journal_entry_tag(ic, je);
1484
1485				if (bip) do {
1486					struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
1487					unsigned tag_now = min(biv.bv_len, tag_todo);
1488					char *tag_addr;
1489					BUG_ON(PageHighMem(biv.bv_page));
1490					tag_addr = lowmem_page_address(biv.bv_page) + biv.bv_offset;
1491					if (likely(dio->write))
1492						memcpy(tag_ptr, tag_addr, tag_now);
1493					else
1494						memcpy(tag_addr, tag_ptr, tag_now);
1495					bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
1496					tag_ptr += tag_now;
1497					tag_todo -= tag_now;
1498				} while (unlikely(tag_todo)); else {
1499					if (likely(dio->write))
1500						memset(tag_ptr, 0, tag_todo);
1501				}
1502			}
1503
1504			if (likely(dio->write)) {
1505				struct journal_sector *js;
1506				unsigned s;
1507
1508				js = access_journal_data(ic, journal_section, journal_entry);
1509				memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
1510
1511				s = 0;
1512				do {
1513					je->last_bytes[s] = js[s].commit_id;
1514				} while (++s < ic->sectors_per_block);
1515
1516				if (ic->internal_hash) {
1517					unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1518					if (unlikely(digest_size > ic->tag_size)) {
1519						char checksums_onstack[digest_size];
1520						integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
1521						memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
1522					} else
1523						integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
1524				}
1525
1526				journal_entry_set_sector(je, logical_sector);
1527			}
1528			logical_sector += ic->sectors_per_block;
1529
1530			journal_entry++;
1531			if (unlikely(journal_entry == ic->journal_section_entries)) {
1532				journal_entry = 0;
1533				journal_section++;
1534				wraparound_section(ic, &journal_section);
1535			}
1536
1537			bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
1538		} while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
1539
1540		if (unlikely(!dio->write))
1541			flush_dcache_page(bv.bv_page);
1542		kunmap_atomic(mem);
1543	} while (n_sectors);
1544
1545	if (likely(dio->write)) {
1546		smp_mb();
1547		if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
1548			wake_up(&ic->copy_to_journal_wait);
1549		if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
1550			queue_work(ic->commit_wq, &ic->commit_work);
1551		} else {
1552			schedule_autocommit(ic);
1553		}
1554	} else {
1555		remove_range(ic, &dio->range);
1556	}
1557
1558	if (unlikely(bio->bi_iter.bi_size)) {
1559		sector_t area, offset;
1560
1561		dio->range.logical_sector = logical_sector;
1562		get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1563		dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1564		return true;
1565	}
1566
1567	return false;
1568}
1569
1570static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
1571{
1572	struct dm_integrity_c *ic = dio->ic;
1573	struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1574	unsigned journal_section, journal_entry;
1575	unsigned journal_read_pos;
1576	struct completion read_comp;
1577	bool need_sync_io = ic->internal_hash && !dio->write;
1578
1579	if (need_sync_io && from_map) {
1580		INIT_WORK(&dio->work, integrity_bio_wait);
1581		queue_work(ic->metadata_wq, &dio->work);
1582		return;
1583	}
1584
1585lock_retry:
1586	spin_lock_irq(&ic->endio_wait.lock);
1587retry:
1588	if (unlikely(dm_integrity_failed(ic))) {
1589		spin_unlock_irq(&ic->endio_wait.lock);
1590		do_endio(ic, bio);
1591		return;
1592	}
1593	dio->range.n_sectors = bio_sectors(bio);
1594	journal_read_pos = NOT_FOUND;
1595	if (likely(ic->mode == 'J')) {
1596		if (dio->write) {
1597			unsigned next_entry, i, pos;
1598			unsigned ws, we, range_sectors;
1599
1600			dio->range.n_sectors = min(dio->range.n_sectors,
1601						   ic->free_sectors << ic->sb->log2_sectors_per_block);
1602			if (unlikely(!dio->range.n_sectors))
1603				goto sleep;
1604			range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
1605			ic->free_sectors -= range_sectors;
1606			journal_section = ic->free_section;
1607			journal_entry = ic->free_section_entry;
1608
1609			next_entry = ic->free_section_entry + range_sectors;
1610			ic->free_section_entry = next_entry % ic->journal_section_entries;
1611			ic->free_section += next_entry / ic->journal_section_entries;
1612			ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
1613			wraparound_section(ic, &ic->free_section);
1614
1615			pos = journal_section * ic->journal_section_entries + journal_entry;
1616			ws = journal_section;
1617			we = journal_entry;
1618			i = 0;
1619			do {
1620				struct journal_entry *je;
1621
1622				add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
1623				pos++;
1624				if (unlikely(pos >= ic->journal_entries))
1625					pos = 0;
1626
1627				je = access_journal_entry(ic, ws, we);
1628				BUG_ON(!journal_entry_is_unused(je));
1629				journal_entry_set_inprogress(je);
1630				we++;
1631				if (unlikely(we == ic->journal_section_entries)) {
1632					we = 0;
1633					ws++;
1634					wraparound_section(ic, &ws);
1635				}
1636			} while ((i += ic->sectors_per_block) < dio->range.n_sectors);
1637
1638			spin_unlock_irq(&ic->endio_wait.lock);
1639			goto journal_read_write;
1640		} else {
1641			sector_t next_sector;
1642			journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
1643			if (likely(journal_read_pos == NOT_FOUND)) {
1644				if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
1645					dio->range.n_sectors = next_sector - dio->range.logical_sector;
1646			} else {
1647				unsigned i;
1648				unsigned jp = journal_read_pos + 1;
1649				for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
1650					if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
1651						break;
1652				}
1653				dio->range.n_sectors = i;
1654			}
1655		}
1656	}
1657	if (unlikely(!add_new_range(ic, &dio->range))) {
1658		/*
1659		 * We must not sleep in the request routine because it could
1660		 * stall bios on current->bio_list.
1661		 * So, we offload the bio to a workqueue if we have to sleep.
1662		 */
1663sleep:
1664		if (from_map) {
1665			spin_unlock_irq(&ic->endio_wait.lock);
1666			INIT_WORK(&dio->work, integrity_bio_wait);
1667			queue_work(ic->wait_wq, &dio->work);
1668			return;
1669		} else {
1670			sleep_on_endio_wait(ic);
1671			goto retry;
1672		}
1673	}
1674	spin_unlock_irq(&ic->endio_wait.lock);
1675
1676	if (unlikely(journal_read_pos != NOT_FOUND)) {
1677		journal_section = journal_read_pos / ic->journal_section_entries;
1678		journal_entry = journal_read_pos % ic->journal_section_entries;
1679		goto journal_read_write;
1680	}
1681
1682	dio->in_flight = (atomic_t)ATOMIC_INIT(2);
1683
1684	if (need_sync_io) {
1685		init_completion(&read_comp);
1686		dio->completion = &read_comp;
1687	} else
1688		dio->completion = NULL;
1689
1690	dio->orig_bi_iter = bio->bi_iter;
1691
1692	dio->orig_bi_disk = bio->bi_disk;
1693	dio->orig_bi_partno = bio->bi_partno;
1694	bio_set_dev(bio, ic->dev->bdev);
1695
1696	dio->orig_bi_integrity = bio_integrity(bio);
1697	bio->bi_integrity = NULL;
1698	bio->bi_opf &= ~REQ_INTEGRITY;
1699
1700	dio->orig_bi_end_io = bio->bi_end_io;
1701	bio->bi_end_io = integrity_end_io;
1702
1703	bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
1704	bio->bi_iter.bi_sector += ic->start;
1705	generic_make_request(bio);
1706
1707	if (need_sync_io) {
1708		wait_for_completion_io(&read_comp);
1709		if (likely(!bio->bi_status))
1710			integrity_metadata(&dio->work);
1711		else
1712			dec_in_flight(dio);
1713
1714	} else {
1715		INIT_WORK(&dio->work, integrity_metadata);
1716		queue_work(ic->metadata_wq, &dio->work);
1717	}
1718
1719	return;
1720
1721journal_read_write:
1722	if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
1723		goto lock_retry;
1724
1725	do_endio_flush(ic, dio);
1726}
1727
1728
1729static void integrity_bio_wait(struct work_struct *w)
1730{
1731	struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1732
1733	dm_integrity_map_continue(dio, false);
1734}
1735
1736static void pad_uncommitted(struct dm_integrity_c *ic)
1737{
1738	if (ic->free_section_entry) {
1739		ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
1740		ic->free_section_entry = 0;
1741		ic->free_section++;
1742		wraparound_section(ic, &ic->free_section);
1743		ic->n_uncommitted_sections++;
1744	}
1745	WARN_ON(ic->journal_sections * ic->journal_section_entries !=
1746		(ic->n_uncommitted_sections + ic->n_committed_sections) * ic->journal_section_entries + ic->free_sectors);
1747}
1748
1749static void integrity_commit(struct work_struct *w)
1750{
1751	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
1752	unsigned commit_start, commit_sections;
1753	unsigned i, j, n;
1754	struct bio *flushes;
1755
1756	del_timer(&ic->autocommit_timer);
1757
1758	spin_lock_irq(&ic->endio_wait.lock);
1759	flushes = bio_list_get(&ic->flush_bio_list);
1760	if (unlikely(ic->mode != 'J')) {
1761		spin_unlock_irq(&ic->endio_wait.lock);
1762		dm_integrity_flush_buffers(ic);
1763		goto release_flush_bios;
1764	}
1765
1766	pad_uncommitted(ic);
1767	commit_start = ic->uncommitted_section;
1768	commit_sections = ic->n_uncommitted_sections;
1769	spin_unlock_irq(&ic->endio_wait.lock);
1770
1771	if (!commit_sections)
1772		goto release_flush_bios;
1773
1774	i = commit_start;
1775	for (n = 0; n < commit_sections; n++) {
1776		for (j = 0; j < ic->journal_section_entries; j++) {
1777			struct journal_entry *je;
1778			je = access_journal_entry(ic, i, j);
1779			io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1780		}
1781		for (j = 0; j < ic->journal_section_sectors; j++) {
1782			struct journal_sector *js;
1783			js = access_journal(ic, i, j);
1784			js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
1785		}
1786		i++;
1787		if (unlikely(i >= ic->journal_sections))
1788			ic->commit_seq = next_commit_seq(ic->commit_seq);
1789		wraparound_section(ic, &i);
1790	}
1791	smp_rmb();
1792
1793	write_journal(ic, commit_start, commit_sections);
1794
1795	spin_lock_irq(&ic->endio_wait.lock);
1796	ic->uncommitted_section += commit_sections;
1797	wraparound_section(ic, &ic->uncommitted_section);
1798	ic->n_uncommitted_sections -= commit_sections;
1799	ic->n_committed_sections += commit_sections;
1800	spin_unlock_irq(&ic->endio_wait.lock);
1801
1802	if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
1803		queue_work(ic->writer_wq, &ic->writer_work);
1804
1805release_flush_bios:
1806	while (flushes) {
1807		struct bio *next = flushes->bi_next;
1808		flushes->bi_next = NULL;
1809		do_endio(ic, flushes);
1810		flushes = next;
1811	}
1812}
1813
1814static void complete_copy_from_journal(unsigned long error, void *context)
1815{
1816	struct journal_io *io = context;
1817	struct journal_completion *comp = io->comp;
1818	struct dm_integrity_c *ic = comp->ic;
1819	remove_range(ic, &io->range);
1820	mempool_free(io, ic->journal_io_mempool);
1821	if (unlikely(error != 0))
1822		dm_integrity_io_error(ic, "copying from journal", -EIO);
1823	complete_journal_op(comp);
1824}
1825
1826static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
1827			       struct journal_entry *je)
1828{
1829	unsigned s = 0;
1830	do {
1831		js->commit_id = je->last_bytes[s];
1832		js++;
1833	} while (++s < ic->sectors_per_block);
1834}
1835
1836static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
1837			     unsigned write_sections, bool from_replay)
1838{
1839	unsigned i, j, n;
1840	struct journal_completion comp;
1841	struct blk_plug plug;
1842
1843	blk_start_plug(&plug);
1844
1845	comp.ic = ic;
1846	comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1847	init_completion(&comp.comp);
1848
1849	i = write_start;
1850	for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
1851#ifndef INTERNAL_VERIFY
1852		if (unlikely(from_replay))
1853#endif
1854			rw_section_mac(ic, i, false);
1855		for (j = 0; j < ic->journal_section_entries; j++) {
1856			struct journal_entry *je = access_journal_entry(ic, i, j);
1857			sector_t sec, area, offset;
1858			unsigned k, l, next_loop;
1859			sector_t metadata_block;
1860			unsigned metadata_offset;
1861			struct journal_io *io;
1862
1863			if (journal_entry_is_unused(je))
1864				continue;
1865			BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
1866			sec = journal_entry_get_sector(je);
1867			if (unlikely(from_replay)) {
1868				if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
1869					dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
1870					sec &= ~(sector_t)(ic->sectors_per_block - 1);
1871				}
1872			}
1873			get_area_and_offset(ic, sec, &area, &offset);
1874			restore_last_bytes(ic, access_journal_data(ic, i, j), je);
1875			for (k = j + 1; k < ic->journal_section_entries; k++) {
1876				struct journal_entry *je2 = access_journal_entry(ic, i, k);
1877				sector_t sec2, area2, offset2;
1878				if (journal_entry_is_unused(je2))
1879					break;
1880				BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
1881				sec2 = journal_entry_get_sector(je2);
1882				get_area_and_offset(ic, sec2, &area2, &offset2);
1883				if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
1884					break;
1885				restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
1886			}
1887			next_loop = k - 1;
1888
1889			io = mempool_alloc(ic->journal_io_mempool, GFP_NOIO);
1890			io->comp = &comp;
1891			io->range.logical_sector = sec;
1892			io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
1893
1894			spin_lock_irq(&ic->endio_wait.lock);
1895			while (unlikely(!add_new_range(ic, &io->range)))
1896				sleep_on_endio_wait(ic);
1897
1898			if (likely(!from_replay)) {
1899				struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
1900
1901				/* don't write if there is newer committed sector */
1902				while (j < k && find_newer_committed_node(ic, &section_node[j])) {
1903					struct journal_entry *je2 = access_journal_entry(ic, i, j);
1904
1905					journal_entry_set_unused(je2);
1906					remove_journal_node(ic, &section_node[j]);
1907					j++;
1908					sec += ic->sectors_per_block;
1909					offset += ic->sectors_per_block;
1910				}
1911				while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
1912					struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
1913
1914					journal_entry_set_unused(je2);
1915					remove_journal_node(ic, &section_node[k - 1]);
1916					k--;
1917				}
1918				if (j == k) {
1919					remove_range_unlocked(ic, &io->range);
1920					spin_unlock_irq(&ic->endio_wait.lock);
1921					mempool_free(io, ic->journal_io_mempool);
1922					goto skip_io;
1923				}
1924				for (l = j; l < k; l++) {
1925					remove_journal_node(ic, &section_node[l]);
1926				}
1927			}
1928			spin_unlock_irq(&ic->endio_wait.lock);
1929
1930			metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
1931			for (l = j; l < k; l++) {
1932				int r;
1933				struct journal_entry *je2 = access_journal_entry(ic, i, l);
1934
1935				if (
1936#ifndef INTERNAL_VERIFY
1937				    unlikely(from_replay) &&
1938#endif
1939				    ic->internal_hash) {
1940					char test_tag[max(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)];
1941
1942					integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
1943								  (char *)access_journal_data(ic, i, l), test_tag);
1944					if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size)))
1945						dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
1946				}
1947
1948				journal_entry_set_unused(je2);
1949				r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
1950							ic->tag_size, TAG_WRITE);
1951				if (unlikely(r)) {
1952					dm_integrity_io_error(ic, "reading tags", r);
1953				}
1954			}
1955
1956			atomic_inc(&comp.in_flight);
1957			copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
1958					  (k - j) << ic->sb->log2_sectors_per_block,
1959					  get_data_sector(ic, area, offset),
1960					  complete_copy_from_journal, io);
1961skip_io:
1962			j = next_loop;
1963		}
1964	}
1965
1966	dm_bufio_write_dirty_buffers_async(ic->bufio);
1967
1968	blk_finish_plug(&plug);
1969
1970	complete_journal_op(&comp);
1971	wait_for_completion_io(&comp.comp);
1972
1973	dm_integrity_flush_buffers(ic);
1974}
1975
1976static void integrity_writer(struct work_struct *w)
1977{
1978	struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
1979	unsigned write_start, write_sections;
1980
1981	unsigned prev_free_sectors;
1982
1983	/* the following test is not needed, but it tests the replay code */
1984	if (READ_ONCE(ic->suspending))
1985		return;
1986
1987	spin_lock_irq(&ic->endio_wait.lock);
1988	write_start = ic->committed_section;
1989	write_sections = ic->n_committed_sections;
1990	spin_unlock_irq(&ic->endio_wait.lock);
1991
1992	if (!write_sections)
1993		return;
1994
1995	do_journal_write(ic, write_start, write_sections, false);
1996
1997	spin_lock_irq(&ic->endio_wait.lock);
1998
1999	ic->committed_section += write_sections;
2000	wraparound_section(ic, &ic->committed_section);
2001	ic->n_committed_sections -= write_sections;
2002
2003	prev_free_sectors = ic->free_sectors;
2004	ic->free_sectors += write_sections * ic->journal_section_entries;
2005	if (unlikely(!prev_free_sectors))
2006		wake_up_locked(&ic->endio_wait);
2007
2008	spin_unlock_irq(&ic->endio_wait.lock);
2009}
2010
2011static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2012			 unsigned n_sections, unsigned char commit_seq)
2013{
2014	unsigned i, j, n;
2015
2016	if (!n_sections)
2017		return;
2018
2019	for (n = 0; n < n_sections; n++) {
2020		i = start_section + n;
2021		wraparound_section(ic, &i);
2022		for (j = 0; j < ic->journal_section_sectors; j++) {
2023			struct journal_sector *js = access_journal(ic, i, j);
2024			memset(&js->entries, 0, JOURNAL_SECTOR_DATA);
2025			js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2026		}
2027		for (j = 0; j < ic->journal_section_entries; j++) {
2028			struct journal_entry *je = access_journal_entry(ic, i, j);
2029			journal_entry_set_unused(je);
2030		}
2031	}
2032
2033	write_journal(ic, start_section, n_sections);
2034}
2035
2036static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2037{
2038	unsigned char k;
2039	for (k = 0; k < N_COMMIT_IDS; k++) {
2040		if (dm_integrity_commit_id(ic, i, j, k) == id)
2041			return k;
2042	}
2043	dm_integrity_io_error(ic, "journal commit id", -EIO);
2044	return -EIO;
2045}
2046
2047static void replay_journal(struct dm_integrity_c *ic)
2048{
2049	unsigned i, j;
2050	bool used_commit_ids[N_COMMIT_IDS];
2051	unsigned max_commit_id_sections[N_COMMIT_IDS];
2052	unsigned write_start, write_sections;
2053	unsigned continue_section;
2054	bool journal_empty;
2055	unsigned char unused, last_used, want_commit_seq;
2056
2057	if (ic->mode == 'R')
2058		return;
2059
2060	if (ic->journal_uptodate)
2061		return;
2062
2063	last_used = 0;
2064	write_start = 0;
2065
2066	if (!ic->just_formatted) {
2067		DEBUG_print("reading journal\n");
2068		rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2069		if (ic->journal_io)
2070			DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2071		if (ic->journal_io) {
2072			struct journal_completion crypt_comp;
2073			crypt_comp.ic = ic;
2074			init_completion(&crypt_comp.comp);
2075			crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2076			encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2077			wait_for_completion(&crypt_comp.comp);
2078		}
2079		DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2080	}
2081
2082	if (dm_integrity_failed(ic))
2083		goto clear_journal;
2084
2085	journal_empty = true;
2086	memset(used_commit_ids, 0, sizeof used_commit_ids);
2087	memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2088	for (i = 0; i < ic->journal_sections; i++) {
2089		for (j = 0; j < ic->journal_section_sectors; j++) {
2090			int k;
2091			struct journal_sector *js = access_journal(ic, i, j);
2092			k = find_commit_seq(ic, i, j, js->commit_id);
2093			if (k < 0)
2094				goto clear_journal;
2095			used_commit_ids[k] = true;
2096			max_commit_id_sections[k] = i;
2097		}
2098		if (journal_empty) {
2099			for (j = 0; j < ic->journal_section_entries; j++) {
2100				struct journal_entry *je = access_journal_entry(ic, i, j);
2101				if (!journal_entry_is_unused(je)) {
2102					journal_empty = false;
2103					break;
2104				}
2105			}
2106		}
2107	}
2108
2109	if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2110		unused = N_COMMIT_IDS - 1;
2111		while (unused && !used_commit_ids[unused - 1])
2112			unused--;
2113	} else {
2114		for (unused = 0; unused < N_COMMIT_IDS; unused++)
2115			if (!used_commit_ids[unused])
2116				break;
2117		if (unused == N_COMMIT_IDS) {
2118			dm_integrity_io_error(ic, "journal commit ids", -EIO);
2119			goto clear_journal;
2120		}
2121	}
2122	DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2123		    unused, used_commit_ids[0], used_commit_ids[1],
2124		    used_commit_ids[2], used_commit_ids[3]);
2125
2126	last_used = prev_commit_seq(unused);
2127	want_commit_seq = prev_commit_seq(last_used);
2128
2129	if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2130		journal_empty = true;
2131
2132	write_start = max_commit_id_sections[last_used] + 1;
2133	if (unlikely(write_start >= ic->journal_sections))
2134		want_commit_seq = next_commit_seq(want_commit_seq);
2135	wraparound_section(ic, &write_start);
2136
2137	i = write_start;
2138	for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2139		for (j = 0; j < ic->journal_section_sectors; j++) {
2140			struct journal_sector *js = access_journal(ic, i, j);
2141
2142			if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2143				/*
2144				 * This could be caused by crash during writing.
2145				 * We won't replay the inconsistent part of the
2146				 * journal.
2147				 */
2148				DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
2149					    i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
2150				goto brk;
2151			}
2152		}
2153		i++;
2154		if (unlikely(i >= ic->journal_sections))
2155			want_commit_seq = next_commit_seq(want_commit_seq);
2156		wraparound_section(ic, &i);
2157	}
2158brk:
2159
2160	if (!journal_empty) {
2161		DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
2162			    write_sections, write_start, want_commit_seq);
2163		do_journal_write(ic, write_start, write_sections, true);
2164	}
2165
2166	if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
2167		continue_section = write_start;
2168		ic->commit_seq = want_commit_seq;
2169		DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
2170	} else {
2171		unsigned s;
2172		unsigned char erase_seq;
2173clear_journal:
2174		DEBUG_print("clearing journal\n");
2175
2176		erase_seq = prev_commit_seq(prev_commit_seq(last_used));
2177		s = write_start;
2178		init_journal(ic, s, 1, erase_seq);
2179		s++;
2180		wraparound_section(ic, &s);
2181		if (ic->journal_sections >= 2) {
2182			init_journal(ic, s, ic->journal_sections - 2, erase_seq);
2183			s += ic->journal_sections - 2;
2184			wraparound_section(ic, &s);
2185			init_journal(ic, s, 1, erase_seq);
2186		}
2187
2188		continue_section = 0;
2189		ic->commit_seq = next_commit_seq(erase_seq);
2190	}
2191
2192	ic->committed_section = continue_section;
2193	ic->n_committed_sections = 0;
2194
2195	ic->uncommitted_section = continue_section;
2196	ic->n_uncommitted_sections = 0;
2197
2198	ic->free_section = continue_section;
2199	ic->free_section_entry = 0;
2200	ic->free_sectors = ic->journal_entries;
2201
2202	ic->journal_tree_root = RB_ROOT;
2203	for (i = 0; i < ic->journal_entries; i++)
2204		init_journal_node(&ic->journal_tree[i]);
2205}
2206
2207static void dm_integrity_postsuspend(struct dm_target *ti)
2208{
2209	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2210
2211	del_timer_sync(&ic->autocommit_timer);
2212
2213	ic->suspending = true;
2214
2215	queue_work(ic->commit_wq, &ic->commit_work);
2216	drain_workqueue(ic->commit_wq);
2217
2218	if (ic->mode == 'J') {
2219		drain_workqueue(ic->writer_wq);
2220		dm_integrity_flush_buffers(ic);
2221	}
2222
2223	ic->suspending = false;
2224
2225	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
2226
2227	ic->journal_uptodate = true;
2228}
2229
2230static void dm_integrity_resume(struct dm_target *ti)
2231{
2232	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2233
2234	replay_journal(ic);
2235}
2236
2237static void dm_integrity_status(struct dm_target *ti, status_type_t type,
2238				unsigned status_flags, char *result, unsigned maxlen)
2239{
2240	struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
2241	unsigned arg_count;
2242	size_t sz = 0;
2243
2244	switch (type) {
2245	case STATUSTYPE_INFO:
2246		DMEMIT("%llu", (unsigned long long)atomic64_read(&ic->number_of_mismatches));
2247		break;
2248
2249	case STATUSTYPE_TABLE: {
2250		__u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
2251		watermark_percentage += ic->journal_entries / 2;
2252		do_div(watermark_percentage, ic->journal_entries);
2253		arg_count = 5;
2254		arg_count += ic->sectors_per_block != 1;
2255		arg_count += !!ic->internal_hash_alg.alg_string;
2256		arg_count += !!ic->journal_crypt_alg.alg_string;
2257		arg_count += !!ic->journal_mac_alg.alg_string;
2258		DMEMIT("%s %llu %u %c %u", ic->dev->name, (unsigned long long)ic->start,
2259		       ic->tag_size, ic->mode, arg_count);
2260		DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
2261		DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
2262		DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
2263		DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
2264		DMEMIT(" commit_time:%u", ic->autocommit_msec);
2265		if (ic->sectors_per_block != 1)
2266			DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
2267
2268#define EMIT_ALG(a, n)							\
2269		do {							\
2270			if (ic->a.alg_string) {				\
2271				DMEMIT(" %s:%s", n, ic->a.alg_string);	\
2272				if (ic->a.key_string)			\
2273					DMEMIT(":%s", ic->a.key_string);\
2274			}						\
2275		} while (0)
2276		EMIT_ALG(internal_hash_alg, "internal_hash");
2277		EMIT_ALG(journal_crypt_alg, "journal_crypt");
2278		EMIT_ALG(journal_mac_alg, "journal_mac");
2279		break;
2280	}
2281	}
2282}
2283
2284static int dm_integrity_iterate_devices(struct dm_target *ti,
2285					iterate_devices_callout_fn fn, void *data)
2286{
2287	struct dm_integrity_c *ic = ti->private;
2288
2289	return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
2290}
2291
2292static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
2293{
2294	struct dm_integrity_c *ic = ti->private;
2295
2296	if (ic->sectors_per_block > 1) {
2297		limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
2298		limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
2299		blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
2300	}
2301}
2302
2303static void calculate_journal_section_size(struct dm_integrity_c *ic)
2304{
2305	unsigned sector_space = JOURNAL_SECTOR_DATA;
2306
2307	ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
2308	ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
2309					 JOURNAL_ENTRY_ROUNDUP);
2310
2311	if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
2312		sector_space -= JOURNAL_MAC_PER_SECTOR;
2313	ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
2314	ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
2315	ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
2316	ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
2317}
2318
2319static int calculate_device_limits(struct dm_integrity_c *ic)
2320{
2321	__u64 initial_sectors;
2322	sector_t last_sector, last_area, last_offset;
2323
2324	calculate_journal_section_size(ic);
2325	initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
2326	if (initial_sectors + METADATA_PADDING_SECTORS >= ic->device_sectors || initial_sectors > UINT_MAX)
2327		return -EINVAL;
2328	ic->initial_sectors = initial_sectors;
2329
2330	ic->metadata_run = roundup((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
2331				   (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS)) >> SECTOR_SHIFT;
2332	if (!(ic->metadata_run & (ic->metadata_run - 1)))
2333		ic->log2_metadata_run = __ffs(ic->metadata_run);
2334	else
2335		ic->log2_metadata_run = -1;
2336
2337	get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
2338	last_sector = get_data_sector(ic, last_area, last_offset);
2339
2340	if (ic->start + last_sector < last_sector || ic->start + last_sector >= ic->device_sectors)
2341		return -EINVAL;
2342
2343	return 0;
2344}
2345
2346static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
2347{
2348	unsigned journal_sections;
2349	int test_bit;
2350
2351	memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
2352	memcpy(ic->sb->magic, SB_MAGIC, 8);
2353	ic->sb->version = SB_VERSION;
2354	ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
2355	ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
2356	if (ic->journal_mac_alg.alg_string)
2357		ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
2358
2359	calculate_journal_section_size(ic);
2360	journal_sections = journal_sectors / ic->journal_section_sectors;
2361	if (!journal_sections)
2362		journal_sections = 1;
2363	ic->sb->journal_sections = cpu_to_le32(journal_sections);
2364
2365	if (!interleave_sectors)
2366		interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
2367	ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
2368	ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
2369	ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
2370
2371	ic->provided_data_sectors = 0;
2372	for (test_bit = fls64(ic->device_sectors) - 1; test_bit >= 3; test_bit--) {
2373		__u64 prev_data_sectors = ic->provided_data_sectors;
2374
2375		ic->provided_data_sectors |= (sector_t)1 << test_bit;
2376		if (calculate_device_limits(ic))
2377			ic->provided_data_sectors = prev_data_sectors;
2378	}
2379
2380	if (!ic->provided_data_sectors)
2381		return -EINVAL;
2382
2383	ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
2384
2385	return 0;
2386}
2387
2388static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
2389{
2390	struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
2391	struct blk_integrity bi;
2392
2393	memset(&bi, 0, sizeof(bi));
2394	bi.profile = &dm_integrity_profile;
2395	bi.tuple_size = ic->tag_size;
2396	bi.tag_size = bi.tuple_size;
2397	bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
2398
2399	blk_integrity_register(disk, &bi);
2400	blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
2401}
2402
2403static void dm_integrity_free_page_list(struct dm_integrity_c *ic, struct page_list *pl)
2404{
2405	unsigned i;
2406
2407	if (!pl)
2408		return;
2409	for (i = 0; i < ic->journal_pages; i++)
2410		if (pl[i].page)
2411			__free_page(pl[i].page);
2412	kvfree(pl);
2413}
2414
2415static struct page_list *dm_integrity_alloc_page_list(struct dm_integrity_c *ic)
2416{
2417	size_t page_list_desc_size = ic->journal_pages * sizeof(struct page_list);
2418	struct page_list *pl;
2419	unsigned i;
2420
2421	pl = kvmalloc(page_list_desc_size, GFP_KERNEL | __GFP_ZERO);
2422	if (!pl)
2423		return NULL;
2424
2425	for (i = 0; i < ic->journal_pages; i++) {
2426		pl[i].page = alloc_page(GFP_KERNEL);
2427		if (!pl[i].page) {
2428			dm_integrity_free_page_list(ic, pl);
2429			return NULL;
2430		}
2431		if (i)
2432			pl[i - 1].next = &pl[i];
2433	}
2434
2435	return pl;
2436}
2437
2438static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
2439{
2440	unsigned i;
2441	for (i = 0; i < ic->journal_sections; i++)
2442		kvfree(sl[i]);
2443	kvfree(sl);
2444}
2445
2446static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic, struct page_list *pl)
2447{
2448	struct scatterlist **sl;
2449	unsigned i;
2450
2451	sl = kvmalloc(ic->journal_sections * sizeof(struct scatterlist *), GFP_KERNEL | __GFP_ZERO);
2452	if (!sl)
2453		return NULL;
2454
2455	for (i = 0; i < ic->journal_sections; i++) {
2456		struct scatterlist *s;
2457		unsigned start_index, start_offset;
2458		unsigned end_index, end_offset;
2459		unsigned n_pages;
2460		unsigned idx;
2461
2462		page_list_location(ic, i, 0, &start_index, &start_offset);
2463		page_list_location(ic, i, ic->journal_section_sectors - 1, &end_index, &end_offset);
2464
2465		n_pages = (end_index - start_index + 1);
2466
2467		s = kvmalloc(n_pages * sizeof(struct scatterlist), GFP_KERNEL);
2468		if (!s) {
2469			dm_integrity_free_journal_scatterlist(ic, sl);
2470			return NULL;
2471		}
2472
2473		sg_init_table(s, n_pages);
2474		for (idx = start_index; idx <= end_index; idx++) {
2475			char *va = lowmem_page_address(pl[idx].page);
2476			unsigned start = 0, end = PAGE_SIZE;
2477			if (idx == start_index)
2478				start = start_offset;
2479			if (idx == end_index)
2480				end = end_offset + (1 << SECTOR_SHIFT);
2481			sg_set_buf(&s[idx - start_index], va + start, end - start);
2482		}
2483
2484		sl[i] = s;
2485	}
2486
2487	return sl;
2488}
2489
2490static void free_alg(struct alg_spec *a)
2491{
2492	kzfree(a->alg_string);
2493	kzfree(a->key);
2494	memset(a, 0, sizeof *a);
2495}
2496
2497static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
2498{
2499	char *k;
2500
2501	free_alg(a);
2502
2503	a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
2504	if (!a->alg_string)
2505		goto nomem;
2506
2507	k = strchr(a->alg_string, ':');
2508	if (k) {
2509		*k = 0;
2510		a->key_string = k + 1;
2511		if (strlen(a->key_string) & 1)
2512			goto inval;
2513
2514		a->key_size = strlen(a->key_string) / 2;
2515		a->key = kmalloc(a->key_size, GFP_KERNEL);
2516		if (!a->key)
2517			goto nomem;
2518		if (hex2bin(a->key, a->key_string, a->key_size))
2519			goto inval;
2520	}
2521
2522	return 0;
2523inval:
2524	*error = error_inval;
2525	return -EINVAL;
2526nomem:
2527	*error = "Out of memory for an argument";
2528	return -ENOMEM;
2529}
2530
2531static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
2532		   char *error_alg, char *error_key)
2533{
2534	int r;
2535
2536	if (a->alg_string) {
2537		*hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ASYNC);
2538		if (IS_ERR(*hash)) {
2539			*error = error_alg;
2540			r = PTR_ERR(*hash);
2541			*hash = NULL;
2542			return r;
2543		}
2544
2545		if (a->key) {
2546			r = crypto_shash_setkey(*hash, a->key, a->key_size);
2547			if (r) {
2548				*error = error_key;
2549				return r;
2550			}
2551		} else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
2552			*error = error_key;
2553			return -ENOKEY;
2554		}
2555	}
2556
2557	return 0;
2558}
2559
2560static int create_journal(struct dm_integrity_c *ic, char **error)
2561{
2562	int r = 0;
2563	unsigned i;
2564	__u64 journal_pages, journal_desc_size, journal_tree_size;
2565	unsigned char *crypt_data = NULL, *crypt_iv = NULL;
2566	struct skcipher_request *req = NULL;
2567
2568	ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
2569	ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
2570	ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
2571	ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
2572
2573	journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
2574				PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
2575	journal_desc_size = journal_pages * sizeof(struct page_list);
2576	if (journal_pages >= totalram_pages - totalhigh_pages || journal_desc_size > ULONG_MAX) {
2577		*error = "Journal doesn't fit into memory";
2578		r = -ENOMEM;
2579		goto bad;
2580	}
2581	ic->journal_pages = journal_pages;
2582
2583	ic->journal = dm_integrity_alloc_page_list(ic);
2584	if (!ic->journal) {
2585		*error = "Could not allocate memory for journal";
2586		r = -ENOMEM;
2587		goto bad;
2588	}
2589	if (ic->journal_crypt_alg.alg_string) {
2590		unsigned ivsize, blocksize;
2591		struct journal_completion comp;
2592
2593		comp.ic = ic;
2594		ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, 0);
2595		if (IS_ERR(ic->journal_crypt)) {
2596			*error = "Invalid journal cipher";
2597			r = PTR_ERR(ic->journal_crypt);
2598			ic->journal_crypt = NULL;
2599			goto bad;
2600		}
2601		ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
2602		blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
2603
2604		if (ic->journal_crypt_alg.key) {
2605			r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
2606						   ic->journal_crypt_alg.key_size);
2607			if (r) {
2608				*error = "Error setting encryption key";
2609				goto bad;
2610			}
2611		}
2612		DEBUG_print("cipher %s, block size %u iv size %u\n",
2613			    ic->journal_crypt_alg.alg_string, blocksize, ivsize);
2614
2615		ic->journal_io = dm_integrity_alloc_page_list(ic);
2616		if (!ic->journal_io) {
2617			*error = "Could not allocate memory for journal io";
2618			r = -ENOMEM;
2619			goto bad;
2620		}
2621
2622		if (blocksize == 1) {
2623			struct scatterlist *sg;
2624
2625			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
2626			if (!req) {
2627				*error = "Could not allocate crypt request";
2628				r = -ENOMEM;
2629				goto bad;
2630			}
2631
2632			crypt_iv = kmalloc(ivsize, GFP_KERNEL);
2633			if (!crypt_iv) {
2634				*error = "Could not allocate iv";
2635				r = -ENOMEM;
2636				goto bad;
2637			}
2638
2639			ic->journal_xor = dm_integrity_alloc_page_list(ic);
2640			if (!ic->journal_xor) {
2641				*error = "Could not allocate memory for journal xor";
2642				r = -ENOMEM;
2643				goto bad;
2644			}
2645
2646			sg = kvmalloc((ic->journal_pages + 1) * sizeof(struct scatterlist), GFP_KERNEL);
2647			if (!sg) {
2648				*error = "Unable to allocate sg list";
2649				r = -ENOMEM;
2650				goto bad;
2651			}
2652			sg_init_table(sg, ic->journal_pages + 1);
2653			for (i = 0; i < ic->journal_pages; i++) {
2654				char *va = lowmem_page_address(ic->journal_xor[i].page);
2655				clear_page(va);
2656				sg_set_buf(&sg[i], va, PAGE_SIZE);
2657			}
2658			sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
2659			memset(crypt_iv, 0x00, ivsize);
2660
2661			skcipher_request_set_crypt(req, sg, sg, PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
2662			init_completion(&comp.comp);
2663			comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2664			if (do_crypt(true, req, &comp))
2665				wait_for_completion(&comp.comp);
2666			kvfree(sg);
2667			r = dm_integrity_failed(ic);
2668			if (r) {
2669				*error = "Unable to encrypt journal";
2670				goto bad;
2671			}
2672			DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
2673
2674			crypto_free_skcipher(ic->journal_crypt);
2675			ic->journal_crypt = NULL;
2676		} else {
2677			unsigned crypt_len = roundup(ivsize, blocksize);
2678
2679			req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
2680			if (!req) {
2681				*error = "Could not allocate crypt request";
2682				r = -ENOMEM;
2683				goto bad;
2684			}
2685
2686			crypt_iv = kmalloc(ivsize, GFP_KERNEL);
2687			if (!crypt_iv) {
2688				*error = "Could not allocate iv";
2689				r = -ENOMEM;
2690				goto bad;
2691			}
2692
2693			crypt_data = kmalloc(crypt_len, GFP_KERNEL);
2694			if (!crypt_data) {
2695				*error = "Unable to allocate crypt data";
2696				r = -ENOMEM;
2697				goto bad;
2698			}
2699
2700			ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
2701			if (!ic->journal_scatterlist) {
2702				*error = "Unable to allocate sg list";
2703				r = -ENOMEM;
2704				goto bad;
2705			}
2706			ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
2707			if (!ic->journal_io_scatterlist) {
2708				*error = "Unable to allocate sg list";
2709				r = -ENOMEM;
2710				goto bad;
2711			}
2712			ic->sk_requests = kvmalloc(ic->journal_sections * sizeof(struct skcipher_request *), GFP_KERNEL | __GFP_ZERO);
2713			if (!ic->sk_requests) {
2714				*error = "Unable to allocate sk requests";
2715				r = -ENOMEM;
2716				goto bad;
2717			}
2718			for (i = 0; i < ic->journal_sections; i++) {
2719				struct scatterlist sg;
2720				struct skcipher_request *section_req;
2721				__u32 section_le = cpu_to_le32(i);
2722
2723				memset(crypt_iv, 0x00, ivsize);
2724				memset(crypt_data, 0x00, crypt_len);
2725				memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
2726
2727				sg_init_one(&sg, crypt_data, crypt_len);
2728				skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
2729				init_completion(&comp.comp);
2730				comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2731				if (do_crypt(true, req, &comp))
2732					wait_for_completion(&comp.comp);
2733
2734				r = dm_integrity_failed(ic);
2735				if (r) {
2736					*error = "Unable to generate iv";
2737					goto bad;
2738				}
2739
2740				section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
2741				if (!section_req) {
2742					*error = "Unable to allocate crypt request";
2743					r = -ENOMEM;
2744					goto bad;
2745				}
2746				section_req->iv = kmalloc(ivsize * 2, GFP_KERNEL);
2747				if (!section_req->iv) {
2748					skcipher_request_free(section_req);
2749					*error = "Unable to allocate iv";
2750					r = -ENOMEM;
2751					goto bad;
2752				}
2753				memcpy(section_req->iv + ivsize, crypt_data, ivsize);
2754				section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
2755				ic->sk_requests[i] = section_req;
2756				DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
2757			}
2758		}
2759	}
2760
2761	for (i = 0; i < N_COMMIT_IDS; i++) {
2762		unsigned j;
2763retest_commit_id:
2764		for (j = 0; j < i; j++) {
2765			if (ic->commit_ids[j] == ic->commit_ids[i]) {
2766				ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
2767				goto retest_commit_id;
2768			}
2769		}
2770		DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
2771	}
2772
2773	journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
2774	if (journal_tree_size > ULONG_MAX) {
2775		*error = "Journal doesn't fit into memory";
2776		r = -ENOMEM;
2777		goto bad;
2778	}
2779	ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
2780	if (!ic->journal_tree) {
2781		*error = "Could not allocate memory for journal tree";
2782		r = -ENOMEM;
2783	}
2784bad:
2785	kfree(crypt_data);
2786	kfree(crypt_iv);
2787	skcipher_request_free(req);
2788
2789	return r;
2790}
2791
2792/*
2793 * Construct a integrity mapping
2794 *
2795 * Arguments:
2796 *	device
2797 *	offset from the start of the device
2798 *	tag size
2799 *	D - direct writes, J - journal writes, R - recovery mode
2800 *	number of optional arguments
2801 *	optional arguments:
2802 *		journal_sectors
2803 *		interleave_sectors
2804 *		buffer_sectors
2805 *		journal_watermark
2806 *		commit_time
2807 *		internal_hash
2808 *		journal_crypt
2809 *		journal_mac
2810 *		block_size
2811 */
2812static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
2813{
2814	struct dm_integrity_c *ic;
2815	char dummy;
2816	int r;
2817	unsigned extra_args;
2818	struct dm_arg_set as;
2819	static const struct dm_arg _args[] = {
2820		{0, 9, "Invalid number of feature args"},
2821	};
2822	unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
2823	bool should_write_sb;
2824	__u64 threshold;
2825	unsigned long long start;
2826
2827#define DIRECT_ARGUMENTS	4
2828
2829	if (argc <= DIRECT_ARGUMENTS) {
2830		ti->error = "Invalid argument count";
2831		return -EINVAL;
2832	}
2833
2834	ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
2835	if (!ic) {
2836		ti->error = "Cannot allocate integrity context";
2837		return -ENOMEM;
2838	}
2839	ti->private = ic;
2840	ti->per_io_data_size = sizeof(struct dm_integrity_io);
2841
2842	ic->in_progress = RB_ROOT;
2843	init_waitqueue_head(&ic->endio_wait);
2844	bio_list_init(&ic->flush_bio_list);
2845	init_waitqueue_head(&ic->copy_to_journal_wait);
2846	init_completion(&ic->crypto_backoff);
2847	atomic64_set(&ic->number_of_mismatches, 0);
2848
2849	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
2850	if (r) {
2851		ti->error = "Device lookup failed";
2852		goto bad;
2853	}
2854
2855	if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
2856		ti->error = "Invalid starting offset";
2857		r = -EINVAL;
2858		goto bad;
2859	}
2860	ic->start = start;
2861
2862	if (strcmp(argv[2], "-")) {
2863		if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
2864			ti->error = "Invalid tag size";
2865			r = -EINVAL;
2866			goto bad;
2867		}
2868	}
2869
2870	if (!strcmp(argv[3], "J") || !strcmp(argv[3], "D") || !strcmp(argv[3], "R"))
2871		ic->mode = argv[3][0];
2872	else {
2873		ti->error = "Invalid mode (expecting J, D, R)";
2874		r = -EINVAL;
2875		goto bad;
2876	}
2877
2878	ic->device_sectors = i_size_read(ic->dev->bdev->bd_inode) >> SECTOR_SHIFT;
2879	journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
2880			ic->device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
2881	interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
2882	buffer_sectors = DEFAULT_BUFFER_SECTORS;
2883	journal_watermark = DEFAULT_JOURNAL_WATERMARK;
2884	sync_msec = DEFAULT_SYNC_MSEC;
2885	ic->sectors_per_block = 1;
2886
2887	as.argc = argc - DIRECT_ARGUMENTS;
2888	as.argv = argv + DIRECT_ARGUMENTS;
2889	r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
2890	if (r)
2891		goto bad;
2892
2893	while (extra_args--) {
2894		const char *opt_string;
2895		unsigned val;
2896		opt_string = dm_shift_arg(&as);
2897		if (!opt_string) {
2898			r = -EINVAL;
2899			ti->error = "Not enough feature arguments";
2900			goto bad;
2901		}
2902		if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
2903			journal_sectors = val;
2904		else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
2905			interleave_sectors = val;
2906		else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
2907			buffer_sectors = val;
2908		else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
2909			journal_watermark = val;
2910		else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
2911			sync_msec = val;
2912		else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
2913			if (val < 1 << SECTOR_SHIFT ||
2914			    val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
2915			    (val & (val -1))) {
2916				r = -EINVAL;
2917				ti->error = "Invalid block_size argument";
2918				goto bad;
2919			}
2920			ic->sectors_per_block = val >> SECTOR_SHIFT;
2921		} else if (!memcmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
2922			r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
2923					    "Invalid internal_hash argument");
2924			if (r)
2925				goto bad;
2926		} else if (!memcmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
2927			r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
2928					    "Invalid journal_crypt argument");
2929			if (r)
2930				goto bad;
2931		} else if (!memcmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
2932			r = get_alg_and_key(opt_string, &ic->journal_mac_alg,  &ti->error,
2933					    "Invalid journal_mac argument");
2934			if (r)
2935				goto bad;
2936		} else {
2937			r = -EINVAL;
2938			ti->error = "Invalid argument";
2939			goto bad;
2940		}
2941	}
2942
2943	r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
2944		    "Invalid internal hash", "Error setting internal hash key");
2945	if (r)
2946		goto bad;
2947
2948	r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
2949		    "Invalid journal mac", "Error setting journal mac key");
2950	if (r)
2951		goto bad;
2952
2953	if (!ic->tag_size) {
2954		if (!ic->internal_hash) {
2955			ti->error = "Unknown tag size";
2956			r = -EINVAL;
2957			goto bad;
2958		}
2959		ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
2960	}
2961	if (ic->tag_size > MAX_TAG_SIZE) {
2962		ti->error = "Too big tag size";
2963		r = -EINVAL;
2964		goto bad;
2965	}
2966	if (!(ic->tag_size & (ic->tag_size - 1)))
2967		ic->log2_tag_size = __ffs(ic->tag_size);
2968	else
2969		ic->log2_tag_size = -1;
2970
2971	ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
2972	ic->autocommit_msec = sync_msec;
2973	timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
2974
2975	ic->io = dm_io_client_create();
2976	if (IS_ERR(ic->io)) {
2977		r = PTR_ERR(ic->io);
2978		ic->io = NULL;
2979		ti->error = "Cannot allocate dm io";
2980		goto bad;
2981	}
2982
2983	ic->journal_io_mempool = mempool_create_slab_pool(JOURNAL_IO_MEMPOOL, journal_io_cache);
2984	if (!ic->journal_io_mempool) {
2985		r = -ENOMEM;
2986		ti->error = "Cannot allocate mempool";
2987		goto bad;
2988	}
2989
2990	ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
2991					  WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
2992	if (!ic->metadata_wq) {
2993		ti->error = "Cannot allocate workqueue";
2994		r = -ENOMEM;
2995		goto bad;
2996	}
2997
2998	/*
2999	 * If this workqueue were percpu, it would cause bio reordering
3000	 * and reduced performance.
3001	 */
3002	ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3003	if (!ic->wait_wq) {
3004		ti->error = "Cannot allocate workqueue";
3005		r = -ENOMEM;
3006		goto bad;
3007	}
3008
3009	ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
3010	if (!ic->commit_wq) {
3011		ti->error = "Cannot allocate workqueue";
3012		r = -ENOMEM;
3013		goto bad;
3014	}
3015	INIT_WORK(&ic->commit_work, integrity_commit);
3016
3017	if (ic->mode == 'J') {
3018		ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
3019		if (!ic->writer_wq) {
3020			ti->error = "Cannot allocate workqueue";
3021			r = -ENOMEM;
3022			goto bad;
3023		}
3024		INIT_WORK(&ic->writer_work, integrity_writer);
3025	}
3026
3027	ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
3028	if (!ic->sb) {
3029		r = -ENOMEM;
3030		ti->error = "Cannot allocate superblock area";
3031		goto bad;
3032	}
3033
3034	r = sync_rw_sb(ic, REQ_OP_READ, 0);
3035	if (r) {
3036		ti->error = "Error reading superblock";
3037		goto bad;
3038	}
3039	should_write_sb = false;
3040	if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
3041		if (ic->mode != 'R') {
3042			if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
3043				r = -EINVAL;
3044				ti->error = "The device is not initialized";
3045				goto bad;
3046			}
3047		}
3048
3049		r = initialize_superblock(ic, journal_sectors, interleave_sectors);
3050		if (r) {
3051			ti->error = "Could not initialize superblock";
3052			goto bad;
3053		}
3054		if (ic->mode != 'R')
3055			should_write_sb = true;
3056	}
3057
3058	if (ic->sb->version != SB_VERSION) {
3059		r = -EINVAL;
3060		ti->error = "Unknown version";
3061		goto bad;
3062	}
3063	if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
3064		r = -EINVAL;
3065		ti->error = "Tag size doesn't match the information in superblock";
3066		goto bad;
3067	}
3068	if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
3069		r = -EINVAL;
3070		ti->error = "Block size doesn't match the information in superblock";
3071		goto bad;
3072	}
3073	if (!le32_to_cpu(ic->sb->journal_sections)) {
3074		r = -EINVAL;
3075		ti->error = "Corrupted superblock, journal_sections is 0";
3076		goto bad;
3077	}
3078	/* make sure that ti->max_io_len doesn't overflow */
3079	if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
3080	    ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
3081		r = -EINVAL;
3082		ti->error = "Invalid interleave_sectors in the superblock";
3083		goto bad;
3084	}
3085	ic->provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3086	if (ic->provided_data_sectors != le64_to_cpu(ic->sb->provided_data_sectors)) {
3087		/* test for overflow */
3088		r = -EINVAL;
3089		ti->error = "The superblock has 64-bit device size, but the kernel was compiled with 32-bit sectors";
3090		goto bad;
3091	}
3092	if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
3093		r = -EINVAL;
3094		ti->error = "Journal mac mismatch";
3095		goto bad;
3096	}
3097	r = calculate_device_limits(ic);
3098	if (r) {
3099		ti->error = "The device is too small";
3100		goto bad;
3101	}
3102	if (ti->len > ic->provided_data_sectors) {
3103		r = -EINVAL;
3104		ti->error = "Not enough provided sectors for requested mapping size";
3105		goto bad;
3106	}
3107
3108	if (!buffer_sectors)
3109		buffer_sectors = 1;
3110	ic->log2_buffer_sectors = min3((int)__fls(buffer_sectors), (int)__ffs(ic->metadata_run), 31 - SECTOR_SHIFT);
3111
3112	threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
3113	threshold += 50;
3114	do_div(threshold, 100);
3115	ic->free_sectors_threshold = threshold;
3116
3117	DEBUG_print("initialized:\n");
3118	DEBUG_print("	integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
3119	DEBUG_print("	journal_entry_size %u\n", ic->journal_entry_size);
3120	DEBUG_print("	journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
3121	DEBUG_print("	journal_section_entries %u\n", ic->journal_section_entries);
3122	DEBUG_print("	journal_section_sectors %u\n", ic->journal_section_sectors);
3123	DEBUG_print("	journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
3124	DEBUG_print("	journal_entries %u\n", ic->journal_entries);
3125	DEBUG_print("	log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
3126	DEBUG_print("	device_sectors 0x%llx\n", (unsigned long long)ic->device_sectors);
3127	DEBUG_print("	initial_sectors 0x%x\n", ic->initial_sectors);
3128	DEBUG_print("	metadata_run 0x%x\n", ic->metadata_run);
3129	DEBUG_print("	log2_metadata_run %d\n", ic->log2_metadata_run);
3130	DEBUG_print("	provided_data_sectors 0x%llx (%llu)\n", (unsigned long long)ic->provided_data_sectors,
3131		    (unsigned long long)ic->provided_data_sectors);
3132	DEBUG_print("	log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
3133
3134	ic->bufio = dm_bufio_client_create(ic->dev->bdev, 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors),
3135					   1, 0, NULL, NULL);
3136	if (IS_ERR(ic->bufio)) {
3137		r = PTR_ERR(ic->bufio);
3138		ti->error = "Cannot initialize dm-bufio";
3139		ic->bufio = NULL;
3140		goto bad;
3141	}
3142	dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
3143
3144	if (ic->mode != 'R') {
3145		r = create_journal(ic, &ti->error);
3146		if (r)
3147			goto bad;
3148	}
3149
3150	if (should_write_sb) {
3151		int r;
3152
3153		init_journal(ic, 0, ic->journal_sections, 0);
3154		r = dm_integrity_failed(ic);
3155		if (unlikely(r)) {
3156			ti->error = "Error initializing journal";
3157			goto bad;
3158		}
3159		r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3160		if (r) {
3161			ti->error = "Error initializing superblock";
3162			goto bad;
3163		}
3164		ic->just_formatted = true;
3165	}
3166
3167	r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
3168	if (r)
3169		goto bad;
3170
3171	if (!ic->internal_hash)
3172		dm_integrity_set(ti, ic);
3173
3174	ti->num_flush_bios = 1;
3175	ti->flush_supported = true;
3176
3177	return 0;
3178bad:
3179	dm_integrity_dtr(ti);
3180	return r;
3181}
3182
3183static void dm_integrity_dtr(struct dm_target *ti)
3184{
3185	struct dm_integrity_c *ic = ti->private;
3186
3187	BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3188
3189	if (ic->metadata_wq)
3190		destroy_workqueue(ic->metadata_wq);
3191	if (ic->wait_wq)
3192		destroy_workqueue(ic->wait_wq);
3193	if (ic->commit_wq)
3194		destroy_workqueue(ic->commit_wq);
3195	if (ic->writer_wq)
3196		destroy_workqueue(ic->writer_wq);
3197	if (ic->bufio)
3198		dm_bufio_client_destroy(ic->bufio);
3199	mempool_destroy(ic->journal_io_mempool);
3200	if (ic->io)
3201		dm_io_client_destroy(ic->io);
3202	if (ic->dev)
3203		dm_put_device(ti, ic->dev);
3204	dm_integrity_free_page_list(ic, ic->journal);
3205	dm_integrity_free_page_list(ic, ic->journal_io);
3206	dm_integrity_free_page_list(ic, ic->journal_xor);
3207	if (ic->journal_scatterlist)
3208		dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
3209	if (ic->journal_io_scatterlist)
3210		dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
3211	if (ic->sk_requests) {
3212		unsigned i;
3213
3214		for (i = 0; i < ic->journal_sections; i++) {
3215			struct skcipher_request *req = ic->sk_requests[i];
3216			if (req) {
3217				kzfree(req->iv);
3218				skcipher_request_free(req);
3219			}
3220		}
3221		kvfree(ic->sk_requests);
3222	}
3223	kvfree(ic->journal_tree);
3224	if (ic->sb)
3225		free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
3226
3227	if (ic->internal_hash)
3228		crypto_free_shash(ic->internal_hash);
3229	free_alg(&ic->internal_hash_alg);
3230
3231	if (ic->journal_crypt)
3232		crypto_free_skcipher(ic->journal_crypt);
3233	free_alg(&ic->journal_crypt_alg);
3234
3235	if (ic->journal_mac)
3236		crypto_free_shash(ic->journal_mac);
3237	free_alg(&ic->journal_mac_alg);
3238
3239	kfree(ic);
3240}
3241
3242static struct target_type integrity_target = {
3243	.name			= "integrity",
3244	.version		= {1, 1, 0},
3245	.module			= THIS_MODULE,
3246	.features		= DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
3247	.ctr			= dm_integrity_ctr,
3248	.dtr			= dm_integrity_dtr,
3249	.map			= dm_integrity_map,
3250	.postsuspend		= dm_integrity_postsuspend,
3251	.resume			= dm_integrity_resume,
3252	.status			= dm_integrity_status,
3253	.iterate_devices	= dm_integrity_iterate_devices,
3254	.io_hints		= dm_integrity_io_hints,
3255};
3256
3257int __init dm_integrity_init(void)
3258{
3259	int r;
3260
3261	journal_io_cache = kmem_cache_create("integrity_journal_io",
3262					     sizeof(struct journal_io), 0, 0, NULL);
3263	if (!journal_io_cache) {
3264		DMERR("can't allocate journal io cache");
3265		return -ENOMEM;
3266	}
3267
3268	r = dm_register_target(&integrity_target);
3269
3270	if (r < 0)
3271		DMERR("register failed %d", r);
3272
3273	return r;
3274}
3275
3276void dm_integrity_exit(void)
3277{
3278	dm_unregister_target(&integrity_target);
3279	kmem_cache_destroy(journal_io_cache);
3280}
3281
3282module_init(dm_integrity_init);
3283module_exit(dm_integrity_exit);
3284
3285MODULE_AUTHOR("Milan Broz");
3286MODULE_AUTHOR("Mikulas Patocka");
3287MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
3288MODULE_LICENSE("GPL");