Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright (C) 2012 Red Hat. All rights reserved.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm.h"
   8#include "dm-bio-prison-v2.h"
   9#include "dm-bio-record.h"
  10#include "dm-cache-metadata.h"
  11
  12#include <linux/dm-io.h>
  13#include <linux/dm-kcopyd.h>
  14#include <linux/jiffies.h>
  15#include <linux/init.h>
  16#include <linux/mempool.h>
  17#include <linux/module.h>
  18#include <linux/rwsem.h>
  19#include <linux/slab.h>
  20#include <linux/vmalloc.h>
  21
  22#define DM_MSG_PREFIX "cache"
  23
  24DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
  25	"A percentage of time allocated for copying to and/or from cache");
  26
  27/*----------------------------------------------------------------*/
  28
  29/*
  30 * Glossary:
  31 *
  32 * oblock: index of an origin block
  33 * cblock: index of a cache block
  34 * promotion: movement of a block from origin to cache
  35 * demotion: movement of a block from cache to origin
  36 * migration: movement of a block between the origin and cache device,
  37 *	      either direction
  38 */
  39
  40/*----------------------------------------------------------------*/
  41
  42struct io_tracker {
  43	spinlock_t lock;
  44
  45	/*
  46	 * Sectors of in-flight IO.
  47	 */
  48	sector_t in_flight;
  49
  50	/*
  51	 * The time, in jiffies, when this device became idle (if it is
  52	 * indeed idle).
  53	 */
  54	unsigned long idle_time;
  55	unsigned long last_update_time;
  56};
  57
  58static void iot_init(struct io_tracker *iot)
  59{
  60	spin_lock_init(&iot->lock);
  61	iot->in_flight = 0ul;
  62	iot->idle_time = 0ul;
  63	iot->last_update_time = jiffies;
  64}
  65
  66static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
  67{
  68	if (iot->in_flight)
  69		return false;
  70
  71	return time_after(jiffies, iot->idle_time + jifs);
  72}
  73
  74static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
  75{
  76	bool r;
  77	unsigned long flags;
  78
  79	spin_lock_irqsave(&iot->lock, flags);
  80	r = __iot_idle_for(iot, jifs);
  81	spin_unlock_irqrestore(&iot->lock, flags);
  82
  83	return r;
  84}
  85
  86static void iot_io_begin(struct io_tracker *iot, sector_t len)
  87{
  88	unsigned long flags;
  89
  90	spin_lock_irqsave(&iot->lock, flags);
  91	iot->in_flight += len;
  92	spin_unlock_irqrestore(&iot->lock, flags);
  93}
  94
  95static void __iot_io_end(struct io_tracker *iot, sector_t len)
  96{
  97	if (!len)
  98		return;
  99
 100	iot->in_flight -= len;
 101	if (!iot->in_flight)
 102		iot->idle_time = jiffies;
 103}
 104
 105static void iot_io_end(struct io_tracker *iot, sector_t len)
 106{
 107	unsigned long flags;
 108
 109	spin_lock_irqsave(&iot->lock, flags);
 110	__iot_io_end(iot, len);
 111	spin_unlock_irqrestore(&iot->lock, flags);
 112}
 113
 114/*----------------------------------------------------------------*/
 115
 116/*
 117 * Represents a chunk of future work.  'input' allows continuations to pass
 118 * values between themselves, typically error values.
 119 */
 120struct continuation {
 121	struct work_struct ws;
 122	blk_status_t input;
 123};
 124
 125static inline void init_continuation(struct continuation *k,
 126				     void (*fn)(struct work_struct *))
 127{
 128	INIT_WORK(&k->ws, fn);
 129	k->input = 0;
 130}
 131
 132static inline void queue_continuation(struct workqueue_struct *wq,
 133				      struct continuation *k)
 134{
 135	queue_work(wq, &k->ws);
 136}
 137
 138/*----------------------------------------------------------------*/
 139
 140/*
 141 * The batcher collects together pieces of work that need a particular
 142 * operation to occur before they can proceed (typically a commit).
 143 */
 144struct batcher {
 145	/*
 146	 * The operation that everyone is waiting for.
 147	 */
 148	blk_status_t (*commit_op)(void *context);
 149	void *commit_context;
 150
 151	/*
 152	 * This is how bios should be issued once the commit op is complete
 153	 * (accounted_request).
 154	 */
 155	void (*issue_op)(struct bio *bio, void *context);
 156	void *issue_context;
 157
 158	/*
 159	 * Queued work gets put on here after commit.
 160	 */
 161	struct workqueue_struct *wq;
 162
 163	spinlock_t lock;
 164	struct list_head work_items;
 165	struct bio_list bios;
 166	struct work_struct commit_work;
 167
 168	bool commit_scheduled;
 169};
 170
 171static void __commit(struct work_struct *_ws)
 172{
 173	struct batcher *b = container_of(_ws, struct batcher, commit_work);
 174	blk_status_t r;
 175	unsigned long flags;
 176	struct list_head work_items;
 177	struct work_struct *ws, *tmp;
 178	struct continuation *k;
 179	struct bio *bio;
 180	struct bio_list bios;
 181
 182	INIT_LIST_HEAD(&work_items);
 183	bio_list_init(&bios);
 184
 185	/*
 186	 * We have to grab these before the commit_op to avoid a race
 187	 * condition.
 188	 */
 189	spin_lock_irqsave(&b->lock, flags);
 190	list_splice_init(&b->work_items, &work_items);
 191	bio_list_merge(&bios, &b->bios);
 192	bio_list_init(&b->bios);
 193	b->commit_scheduled = false;
 194	spin_unlock_irqrestore(&b->lock, flags);
 195
 196	r = b->commit_op(b->commit_context);
 197
 198	list_for_each_entry_safe(ws, tmp, &work_items, entry) {
 199		k = container_of(ws, struct continuation, ws);
 200		k->input = r;
 201		INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
 202		queue_work(b->wq, ws);
 203	}
 204
 205	while ((bio = bio_list_pop(&bios))) {
 206		if (r) {
 207			bio->bi_status = r;
 208			bio_endio(bio);
 209		} else
 210			b->issue_op(bio, b->issue_context);
 211	}
 212}
 213
 214static void batcher_init(struct batcher *b,
 215			 blk_status_t (*commit_op)(void *),
 216			 void *commit_context,
 217			 void (*issue_op)(struct bio *bio, void *),
 218			 void *issue_context,
 219			 struct workqueue_struct *wq)
 220{
 221	b->commit_op = commit_op;
 222	b->commit_context = commit_context;
 223	b->issue_op = issue_op;
 224	b->issue_context = issue_context;
 225	b->wq = wq;
 226
 227	spin_lock_init(&b->lock);
 228	INIT_LIST_HEAD(&b->work_items);
 229	bio_list_init(&b->bios);
 230	INIT_WORK(&b->commit_work, __commit);
 231	b->commit_scheduled = false;
 232}
 233
 234static void async_commit(struct batcher *b)
 235{
 236	queue_work(b->wq, &b->commit_work);
 237}
 238
 239static void continue_after_commit(struct batcher *b, struct continuation *k)
 240{
 241	unsigned long flags;
 242	bool commit_scheduled;
 243
 244	spin_lock_irqsave(&b->lock, flags);
 245	commit_scheduled = b->commit_scheduled;
 246	list_add_tail(&k->ws.entry, &b->work_items);
 247	spin_unlock_irqrestore(&b->lock, flags);
 248
 249	if (commit_scheduled)
 250		async_commit(b);
 251}
 252
 253/*
 254 * Bios are errored if commit failed.
 255 */
 256static void issue_after_commit(struct batcher *b, struct bio *bio)
 257{
 258       unsigned long flags;
 259       bool commit_scheduled;
 260
 261       spin_lock_irqsave(&b->lock, flags);
 262       commit_scheduled = b->commit_scheduled;
 263       bio_list_add(&b->bios, bio);
 264       spin_unlock_irqrestore(&b->lock, flags);
 265
 266       if (commit_scheduled)
 267	       async_commit(b);
 268}
 269
 270/*
 271 * Call this if some urgent work is waiting for the commit to complete.
 272 */
 273static void schedule_commit(struct batcher *b)
 274{
 275	bool immediate;
 276	unsigned long flags;
 277
 278	spin_lock_irqsave(&b->lock, flags);
 279	immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
 280	b->commit_scheduled = true;
 281	spin_unlock_irqrestore(&b->lock, flags);
 282
 283	if (immediate)
 284		async_commit(b);
 285}
 286
 287/*
 288 * There are a couple of places where we let a bio run, but want to do some
 289 * work before calling its endio function.  We do this by temporarily
 290 * changing the endio fn.
 291 */
 292struct dm_hook_info {
 293	bio_end_io_t *bi_end_io;
 294};
 295
 296static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
 297			bio_end_io_t *bi_end_io, void *bi_private)
 298{
 299	h->bi_end_io = bio->bi_end_io;
 300
 301	bio->bi_end_io = bi_end_io;
 302	bio->bi_private = bi_private;
 303}
 304
 305static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
 306{
 307	bio->bi_end_io = h->bi_end_io;
 308}
 309
 310/*----------------------------------------------------------------*/
 311
 312#define MIGRATION_POOL_SIZE 128
 313#define COMMIT_PERIOD HZ
 314#define MIGRATION_COUNT_WINDOW 10
 315
 316/*
 317 * The block size of the device holding cache data must be
 318 * between 32KB and 1GB.
 319 */
 320#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
 321#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
 322
 323enum cache_metadata_mode {
 324	CM_WRITE,		/* metadata may be changed */
 325	CM_READ_ONLY,		/* metadata may not be changed */
 326	CM_FAIL
 327};
 328
 329enum cache_io_mode {
 330	/*
 331	 * Data is written to cached blocks only.  These blocks are marked
 332	 * dirty.  If you lose the cache device you will lose data.
 333	 * Potential performance increase for both reads and writes.
 334	 */
 335	CM_IO_WRITEBACK,
 336
 337	/*
 338	 * Data is written to both cache and origin.  Blocks are never
 339	 * dirty.  Potential performance benfit for reads only.
 340	 */
 341	CM_IO_WRITETHROUGH,
 342
 343	/*
 344	 * A degraded mode useful for various cache coherency situations
 345	 * (eg, rolling back snapshots).  Reads and writes always go to the
 346	 * origin.  If a write goes to a cached oblock, then the cache
 347	 * block is invalidated.
 348	 */
 349	CM_IO_PASSTHROUGH
 350};
 351
 352struct cache_features {
 353	enum cache_metadata_mode mode;
 354	enum cache_io_mode io_mode;
 355	unsigned metadata_version;
 356};
 357
 358struct cache_stats {
 359	atomic_t read_hit;
 360	atomic_t read_miss;
 361	atomic_t write_hit;
 362	atomic_t write_miss;
 363	atomic_t demotion;
 364	atomic_t promotion;
 365	atomic_t writeback;
 366	atomic_t copies_avoided;
 367	atomic_t cache_cell_clash;
 368	atomic_t commit_count;
 369	atomic_t discard_count;
 370};
 371
 372struct cache {
 373	struct dm_target *ti;
 374	struct dm_target_callbacks callbacks;
 375
 376	struct dm_cache_metadata *cmd;
 377
 378	/*
 379	 * Metadata is written to this device.
 380	 */
 381	struct dm_dev *metadata_dev;
 382
 383	/*
 384	 * The slower of the two data devices.  Typically a spindle.
 385	 */
 386	struct dm_dev *origin_dev;
 387
 388	/*
 389	 * The faster of the two data devices.  Typically an SSD.
 390	 */
 391	struct dm_dev *cache_dev;
 392
 393	/*
 394	 * Size of the origin device in _complete_ blocks and native sectors.
 395	 */
 396	dm_oblock_t origin_blocks;
 397	sector_t origin_sectors;
 398
 399	/*
 400	 * Size of the cache device in blocks.
 401	 */
 402	dm_cblock_t cache_size;
 403
 404	/*
 405	 * Fields for converting from sectors to blocks.
 406	 */
 407	sector_t sectors_per_block;
 408	int sectors_per_block_shift;
 409
 410	spinlock_t lock;
 411	struct bio_list deferred_bios;
 412	sector_t migration_threshold;
 413	wait_queue_head_t migration_wait;
 414	atomic_t nr_allocated_migrations;
 415
 416	/*
 417	 * The number of in flight migrations that are performing
 418	 * background io. eg, promotion, writeback.
 419	 */
 420	atomic_t nr_io_migrations;
 421
 422	struct rw_semaphore quiesce_lock;
 423
 424	/*
 425	 * cache_size entries, dirty if set
 426	 */
 427	atomic_t nr_dirty;
 428	unsigned long *dirty_bitset;
 429
 430	/*
 431	 * origin_blocks entries, discarded if set.
 432	 */
 433	dm_dblock_t discard_nr_blocks;
 434	unsigned long *discard_bitset;
 435	uint32_t discard_block_size; /* a power of 2 times sectors per block */
 436
 437	/*
 438	 * Rather than reconstructing the table line for the status we just
 439	 * save it and regurgitate.
 440	 */
 441	unsigned nr_ctr_args;
 442	const char **ctr_args;
 443
 444	struct dm_kcopyd_client *copier;
 445	struct workqueue_struct *wq;
 446	struct work_struct deferred_bio_worker;
 447	struct work_struct migration_worker;
 448	struct delayed_work waker;
 449	struct dm_bio_prison_v2 *prison;
 450	struct bio_set *bs;
 451
 452	mempool_t *migration_pool;
 453
 454	struct dm_cache_policy *policy;
 455	unsigned policy_nr_args;
 456
 457	bool need_tick_bio:1;
 458	bool sized:1;
 459	bool invalidate:1;
 460	bool commit_requested:1;
 461	bool loaded_mappings:1;
 462	bool loaded_discards:1;
 463
 464	/*
 465	 * Cache features such as write-through.
 466	 */
 467	struct cache_features features;
 468
 469	struct cache_stats stats;
 470
 471	/*
 472	 * Invalidation fields.
 473	 */
 474	spinlock_t invalidation_lock;
 475	struct list_head invalidation_requests;
 476
 477	struct io_tracker tracker;
 478
 479	struct work_struct commit_ws;
 480	struct batcher committer;
 481
 482	struct rw_semaphore background_work_lock;
 483};
 484
 485struct per_bio_data {
 486	bool tick:1;
 487	unsigned req_nr:2;
 488	struct dm_bio_prison_cell_v2 *cell;
 489	struct dm_hook_info hook_info;
 490	sector_t len;
 491};
 492
 493struct dm_cache_migration {
 494	struct continuation k;
 495	struct cache *cache;
 496
 497	struct policy_work *op;
 498	struct bio *overwrite_bio;
 499	struct dm_bio_prison_cell_v2 *cell;
 500
 501	dm_cblock_t invalidate_cblock;
 502	dm_oblock_t invalidate_oblock;
 503};
 504
 505/*----------------------------------------------------------------*/
 506
 507static bool writethrough_mode(struct cache *cache)
 508{
 509	return cache->features.io_mode == CM_IO_WRITETHROUGH;
 510}
 511
 512static bool writeback_mode(struct cache *cache)
 513{
 514	return cache->features.io_mode == CM_IO_WRITEBACK;
 515}
 516
 517static inline bool passthrough_mode(struct cache *cache)
 518{
 519	return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
 520}
 521
 522/*----------------------------------------------------------------*/
 523
 524static void wake_deferred_bio_worker(struct cache *cache)
 525{
 526	queue_work(cache->wq, &cache->deferred_bio_worker);
 527}
 528
 529static void wake_migration_worker(struct cache *cache)
 530{
 531	if (passthrough_mode(cache))
 532		return;
 533
 534	queue_work(cache->wq, &cache->migration_worker);
 535}
 536
 537/*----------------------------------------------------------------*/
 538
 539static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
 540{
 541	return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOWAIT);
 542}
 543
 544static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
 545{
 546	dm_bio_prison_free_cell_v2(cache->prison, cell);
 547}
 548
 549static struct dm_cache_migration *alloc_migration(struct cache *cache)
 550{
 551	struct dm_cache_migration *mg;
 552
 553	mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
 554	if (!mg)
 555		return NULL;
 556
 557	memset(mg, 0, sizeof(*mg));
 558
 559	mg->cache = cache;
 560	atomic_inc(&cache->nr_allocated_migrations);
 561
 562	return mg;
 563}
 564
 565static void free_migration(struct dm_cache_migration *mg)
 566{
 567	struct cache *cache = mg->cache;
 568
 569	if (atomic_dec_and_test(&cache->nr_allocated_migrations))
 570		wake_up(&cache->migration_wait);
 571
 572	mempool_free(mg, cache->migration_pool);
 573}
 574
 575/*----------------------------------------------------------------*/
 576
 577static inline dm_oblock_t oblock_succ(dm_oblock_t b)
 578{
 579	return to_oblock(from_oblock(b) + 1ull);
 580}
 581
 582static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
 583{
 584	key->virtual = 0;
 585	key->dev = 0;
 586	key->block_begin = from_oblock(begin);
 587	key->block_end = from_oblock(end);
 588}
 589
 590/*
 591 * We have two lock levels.  Level 0, which is used to prevent WRITEs, and
 592 * level 1 which prevents *both* READs and WRITEs.
 593 */
 594#define WRITE_LOCK_LEVEL 0
 595#define READ_WRITE_LOCK_LEVEL 1
 596
 597static unsigned lock_level(struct bio *bio)
 598{
 599	return bio_data_dir(bio) == WRITE ?
 600		WRITE_LOCK_LEVEL :
 601		READ_WRITE_LOCK_LEVEL;
 602}
 603
 604/*----------------------------------------------------------------
 605 * Per bio data
 606 *--------------------------------------------------------------*/
 607
 608static struct per_bio_data *get_per_bio_data(struct bio *bio)
 609{
 610	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
 611	BUG_ON(!pb);
 612	return pb;
 613}
 614
 615static struct per_bio_data *init_per_bio_data(struct bio *bio)
 616{
 617	struct per_bio_data *pb = get_per_bio_data(bio);
 618
 619	pb->tick = false;
 620	pb->req_nr = dm_bio_get_target_bio_nr(bio);
 621	pb->cell = NULL;
 622	pb->len = 0;
 623
 624	return pb;
 625}
 626
 627/*----------------------------------------------------------------*/
 628
 629static void defer_bio(struct cache *cache, struct bio *bio)
 630{
 631	unsigned long flags;
 632
 633	spin_lock_irqsave(&cache->lock, flags);
 634	bio_list_add(&cache->deferred_bios, bio);
 635	spin_unlock_irqrestore(&cache->lock, flags);
 636
 637	wake_deferred_bio_worker(cache);
 638}
 639
 640static void defer_bios(struct cache *cache, struct bio_list *bios)
 641{
 642	unsigned long flags;
 643
 644	spin_lock_irqsave(&cache->lock, flags);
 645	bio_list_merge(&cache->deferred_bios, bios);
 646	bio_list_init(bios);
 647	spin_unlock_irqrestore(&cache->lock, flags);
 648
 649	wake_deferred_bio_worker(cache);
 650}
 651
 652/*----------------------------------------------------------------*/
 653
 654static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
 655{
 656	bool r;
 657	struct per_bio_data *pb;
 658	struct dm_cell_key_v2 key;
 659	dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
 660	struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
 661
 662	cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
 663	if (!cell_prealloc) {
 664		defer_bio(cache, bio);
 665		return false;
 666	}
 667
 668	build_key(oblock, end, &key);
 669	r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
 670	if (!r) {
 671		/*
 672		 * Failed to get the lock.
 673		 */
 674		free_prison_cell(cache, cell_prealloc);
 675		return r;
 676	}
 677
 678	if (cell != cell_prealloc)
 679		free_prison_cell(cache, cell_prealloc);
 680
 681	pb = get_per_bio_data(bio);
 682	pb->cell = cell;
 683
 684	return r;
 685}
 686
 687/*----------------------------------------------------------------*/
 688
 689static bool is_dirty(struct cache *cache, dm_cblock_t b)
 690{
 691	return test_bit(from_cblock(b), cache->dirty_bitset);
 692}
 693
 694static void set_dirty(struct cache *cache, dm_cblock_t cblock)
 695{
 696	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
 697		atomic_inc(&cache->nr_dirty);
 698		policy_set_dirty(cache->policy, cblock);
 699	}
 700}
 701
 702/*
 703 * These two are called when setting after migrations to force the policy
 704 * and dirty bitset to be in sync.
 705 */
 706static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
 707{
 708	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
 709		atomic_inc(&cache->nr_dirty);
 710	policy_set_dirty(cache->policy, cblock);
 711}
 712
 713static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
 714{
 715	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
 716		if (atomic_dec_return(&cache->nr_dirty) == 0)
 717			dm_table_event(cache->ti->table);
 718	}
 719
 720	policy_clear_dirty(cache->policy, cblock);
 721}
 722
 723/*----------------------------------------------------------------*/
 724
 725static bool block_size_is_power_of_two(struct cache *cache)
 726{
 727	return cache->sectors_per_block_shift >= 0;
 728}
 729
 730/* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
 731#if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
 732__always_inline
 733#endif
 734static dm_block_t block_div(dm_block_t b, uint32_t n)
 735{
 736	do_div(b, n);
 737
 738	return b;
 739}
 740
 741static dm_block_t oblocks_per_dblock(struct cache *cache)
 742{
 743	dm_block_t oblocks = cache->discard_block_size;
 744
 745	if (block_size_is_power_of_two(cache))
 746		oblocks >>= cache->sectors_per_block_shift;
 747	else
 748		oblocks = block_div(oblocks, cache->sectors_per_block);
 749
 750	return oblocks;
 751}
 752
 753static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
 754{
 755	return to_dblock(block_div(from_oblock(oblock),
 756				   oblocks_per_dblock(cache)));
 757}
 758
 759static void set_discard(struct cache *cache, dm_dblock_t b)
 760{
 761	unsigned long flags;
 762
 763	BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
 764	atomic_inc(&cache->stats.discard_count);
 765
 766	spin_lock_irqsave(&cache->lock, flags);
 767	set_bit(from_dblock(b), cache->discard_bitset);
 768	spin_unlock_irqrestore(&cache->lock, flags);
 769}
 770
 771static void clear_discard(struct cache *cache, dm_dblock_t b)
 772{
 773	unsigned long flags;
 774
 775	spin_lock_irqsave(&cache->lock, flags);
 776	clear_bit(from_dblock(b), cache->discard_bitset);
 777	spin_unlock_irqrestore(&cache->lock, flags);
 778}
 779
 780static bool is_discarded(struct cache *cache, dm_dblock_t b)
 781{
 782	int r;
 783	unsigned long flags;
 784
 785	spin_lock_irqsave(&cache->lock, flags);
 786	r = test_bit(from_dblock(b), cache->discard_bitset);
 787	spin_unlock_irqrestore(&cache->lock, flags);
 788
 789	return r;
 790}
 791
 792static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
 793{
 794	int r;
 795	unsigned long flags;
 796
 797	spin_lock_irqsave(&cache->lock, flags);
 798	r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
 799		     cache->discard_bitset);
 800	spin_unlock_irqrestore(&cache->lock, flags);
 801
 802	return r;
 803}
 804
 805/*----------------------------------------------------------------
 806 * Remapping
 807 *--------------------------------------------------------------*/
 808static void remap_to_origin(struct cache *cache, struct bio *bio)
 809{
 810	bio_set_dev(bio, cache->origin_dev->bdev);
 811}
 812
 813static void remap_to_cache(struct cache *cache, struct bio *bio,
 814			   dm_cblock_t cblock)
 815{
 816	sector_t bi_sector = bio->bi_iter.bi_sector;
 817	sector_t block = from_cblock(cblock);
 818
 819	bio_set_dev(bio, cache->cache_dev->bdev);
 820	if (!block_size_is_power_of_two(cache))
 821		bio->bi_iter.bi_sector =
 822			(block * cache->sectors_per_block) +
 823			sector_div(bi_sector, cache->sectors_per_block);
 824	else
 825		bio->bi_iter.bi_sector =
 826			(block << cache->sectors_per_block_shift) |
 827			(bi_sector & (cache->sectors_per_block - 1));
 828}
 829
 830static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
 831{
 832	unsigned long flags;
 833	struct per_bio_data *pb;
 834
 835	spin_lock_irqsave(&cache->lock, flags);
 836	if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
 837	    bio_op(bio) != REQ_OP_DISCARD) {
 838		pb = get_per_bio_data(bio);
 839		pb->tick = true;
 840		cache->need_tick_bio = false;
 841	}
 842	spin_unlock_irqrestore(&cache->lock, flags);
 843}
 844
 845static void __remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
 846					    dm_oblock_t oblock, bool bio_has_pbd)
 847{
 848	if (bio_has_pbd)
 849		check_if_tick_bio_needed(cache, bio);
 850	remap_to_origin(cache, bio);
 851	if (bio_data_dir(bio) == WRITE)
 852		clear_discard(cache, oblock_to_dblock(cache, oblock));
 853}
 854
 855static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
 856					  dm_oblock_t oblock)
 857{
 858	// FIXME: check_if_tick_bio_needed() is called way too much through this interface
 859	__remap_to_origin_clear_discard(cache, bio, oblock, true);
 860}
 861
 862static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
 863				 dm_oblock_t oblock, dm_cblock_t cblock)
 864{
 865	check_if_tick_bio_needed(cache, bio);
 866	remap_to_cache(cache, bio, cblock);
 867	if (bio_data_dir(bio) == WRITE) {
 868		set_dirty(cache, cblock);
 869		clear_discard(cache, oblock_to_dblock(cache, oblock));
 870	}
 871}
 872
 873static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
 874{
 875	sector_t block_nr = bio->bi_iter.bi_sector;
 876
 877	if (!block_size_is_power_of_two(cache))
 878		(void) sector_div(block_nr, cache->sectors_per_block);
 879	else
 880		block_nr >>= cache->sectors_per_block_shift;
 881
 882	return to_oblock(block_nr);
 883}
 884
 885static bool accountable_bio(struct cache *cache, struct bio *bio)
 886{
 887	return bio_op(bio) != REQ_OP_DISCARD;
 888}
 889
 890static void accounted_begin(struct cache *cache, struct bio *bio)
 891{
 892	struct per_bio_data *pb;
 893
 894	if (accountable_bio(cache, bio)) {
 895		pb = get_per_bio_data(bio);
 896		pb->len = bio_sectors(bio);
 897		iot_io_begin(&cache->tracker, pb->len);
 898	}
 899}
 900
 901static void accounted_complete(struct cache *cache, struct bio *bio)
 902{
 903	struct per_bio_data *pb = get_per_bio_data(bio);
 904
 905	iot_io_end(&cache->tracker, pb->len);
 906}
 907
 908static void accounted_request(struct cache *cache, struct bio *bio)
 909{
 910	accounted_begin(cache, bio);
 911	generic_make_request(bio);
 912}
 913
 914static void issue_op(struct bio *bio, void *context)
 915{
 916	struct cache *cache = context;
 917	accounted_request(cache, bio);
 918}
 919
 920/*
 921 * When running in writethrough mode we need to send writes to clean blocks
 922 * to both the cache and origin devices.  Clone the bio and send them in parallel.
 923 */
 924static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
 925				      dm_oblock_t oblock, dm_cblock_t cblock)
 926{
 927	struct bio *origin_bio = bio_clone_fast(bio, GFP_NOIO, cache->bs);
 928
 929	BUG_ON(!origin_bio);
 930
 931	bio_chain(origin_bio, bio);
 932	/*
 933	 * Passing false to __remap_to_origin_clear_discard() skips
 934	 * all code that might use per_bio_data (since clone doesn't have it)
 935	 */
 936	__remap_to_origin_clear_discard(cache, origin_bio, oblock, false);
 937	submit_bio(origin_bio);
 938
 939	remap_to_cache(cache, bio, cblock);
 940}
 941
 942/*----------------------------------------------------------------
 943 * Failure modes
 944 *--------------------------------------------------------------*/
 945static enum cache_metadata_mode get_cache_mode(struct cache *cache)
 946{
 947	return cache->features.mode;
 948}
 949
 950static const char *cache_device_name(struct cache *cache)
 951{
 952	return dm_device_name(dm_table_get_md(cache->ti->table));
 953}
 954
 955static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
 956{
 957	const char *descs[] = {
 958		"write",
 959		"read-only",
 960		"fail"
 961	};
 962
 963	dm_table_event(cache->ti->table);
 964	DMINFO("%s: switching cache to %s mode",
 965	       cache_device_name(cache), descs[(int)mode]);
 966}
 967
 968static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
 969{
 970	bool needs_check;
 971	enum cache_metadata_mode old_mode = get_cache_mode(cache);
 972
 973	if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
 974		DMERR("%s: unable to read needs_check flag, setting failure mode.",
 975		      cache_device_name(cache));
 976		new_mode = CM_FAIL;
 977	}
 978
 979	if (new_mode == CM_WRITE && needs_check) {
 980		DMERR("%s: unable to switch cache to write mode until repaired.",
 981		      cache_device_name(cache));
 982		if (old_mode != new_mode)
 983			new_mode = old_mode;
 984		else
 985			new_mode = CM_READ_ONLY;
 986	}
 987
 988	/* Never move out of fail mode */
 989	if (old_mode == CM_FAIL)
 990		new_mode = CM_FAIL;
 991
 992	switch (new_mode) {
 993	case CM_FAIL:
 994	case CM_READ_ONLY:
 995		dm_cache_metadata_set_read_only(cache->cmd);
 996		break;
 997
 998	case CM_WRITE:
 999		dm_cache_metadata_set_read_write(cache->cmd);
1000		break;
1001	}
1002
1003	cache->features.mode = new_mode;
1004
1005	if (new_mode != old_mode)
1006		notify_mode_switch(cache, new_mode);
1007}
1008
1009static void abort_transaction(struct cache *cache)
1010{
1011	const char *dev_name = cache_device_name(cache);
1012
1013	if (get_cache_mode(cache) >= CM_READ_ONLY)
1014		return;
1015
1016	if (dm_cache_metadata_set_needs_check(cache->cmd)) {
1017		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1018		set_cache_mode(cache, CM_FAIL);
1019	}
1020
1021	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1022	if (dm_cache_metadata_abort(cache->cmd)) {
1023		DMERR("%s: failed to abort metadata transaction", dev_name);
1024		set_cache_mode(cache, CM_FAIL);
1025	}
1026}
1027
1028static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1029{
1030	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1031		    cache_device_name(cache), op, r);
1032	abort_transaction(cache);
1033	set_cache_mode(cache, CM_READ_ONLY);
1034}
1035
1036/*----------------------------------------------------------------*/
1037
1038static void load_stats(struct cache *cache)
1039{
1040	struct dm_cache_statistics stats;
1041
1042	dm_cache_metadata_get_stats(cache->cmd, &stats);
1043	atomic_set(&cache->stats.read_hit, stats.read_hits);
1044	atomic_set(&cache->stats.read_miss, stats.read_misses);
1045	atomic_set(&cache->stats.write_hit, stats.write_hits);
1046	atomic_set(&cache->stats.write_miss, stats.write_misses);
1047}
1048
1049static void save_stats(struct cache *cache)
1050{
1051	struct dm_cache_statistics stats;
1052
1053	if (get_cache_mode(cache) >= CM_READ_ONLY)
1054		return;
1055
1056	stats.read_hits = atomic_read(&cache->stats.read_hit);
1057	stats.read_misses = atomic_read(&cache->stats.read_miss);
1058	stats.write_hits = atomic_read(&cache->stats.write_hit);
1059	stats.write_misses = atomic_read(&cache->stats.write_miss);
1060
1061	dm_cache_metadata_set_stats(cache->cmd, &stats);
1062}
1063
1064static void update_stats(struct cache_stats *stats, enum policy_operation op)
1065{
1066	switch (op) {
1067	case POLICY_PROMOTE:
1068		atomic_inc(&stats->promotion);
1069		break;
1070
1071	case POLICY_DEMOTE:
1072		atomic_inc(&stats->demotion);
1073		break;
1074
1075	case POLICY_WRITEBACK:
1076		atomic_inc(&stats->writeback);
1077		break;
1078	}
1079}
1080
1081/*----------------------------------------------------------------
1082 * Migration processing
1083 *
1084 * Migration covers moving data from the origin device to the cache, or
1085 * vice versa.
1086 *--------------------------------------------------------------*/
1087
1088static void inc_io_migrations(struct cache *cache)
1089{
1090	atomic_inc(&cache->nr_io_migrations);
1091}
1092
1093static void dec_io_migrations(struct cache *cache)
1094{
1095	atomic_dec(&cache->nr_io_migrations);
1096}
1097
1098static bool discard_or_flush(struct bio *bio)
1099{
1100	return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
1101}
1102
1103static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1104				     dm_dblock_t *b, dm_dblock_t *e)
1105{
1106	sector_t sb = bio->bi_iter.bi_sector;
1107	sector_t se = bio_end_sector(bio);
1108
1109	*b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1110
1111	if (se - sb < cache->discard_block_size)
1112		*e = *b;
1113	else
1114		*e = to_dblock(block_div(se, cache->discard_block_size));
1115}
1116
1117/*----------------------------------------------------------------*/
1118
1119static void prevent_background_work(struct cache *cache)
1120{
1121	lockdep_off();
1122	down_write(&cache->background_work_lock);
1123	lockdep_on();
1124}
1125
1126static void allow_background_work(struct cache *cache)
1127{
1128	lockdep_off();
1129	up_write(&cache->background_work_lock);
1130	lockdep_on();
1131}
1132
1133static bool background_work_begin(struct cache *cache)
1134{
1135	bool r;
1136
1137	lockdep_off();
1138	r = down_read_trylock(&cache->background_work_lock);
1139	lockdep_on();
1140
1141	return r;
1142}
1143
1144static void background_work_end(struct cache *cache)
1145{
1146	lockdep_off();
1147	up_read(&cache->background_work_lock);
1148	lockdep_on();
1149}
1150
1151/*----------------------------------------------------------------*/
1152
1153static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1154{
1155	return (bio_data_dir(bio) == WRITE) &&
1156		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1157}
1158
1159static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1160{
1161	return writeback_mode(cache) &&
1162		(is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1163}
1164
1165static void quiesce(struct dm_cache_migration *mg,
1166		    void (*continuation)(struct work_struct *))
1167{
1168	init_continuation(&mg->k, continuation);
1169	dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1170}
1171
1172static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1173{
1174	struct continuation *k = container_of(ws, struct continuation, ws);
1175	return container_of(k, struct dm_cache_migration, k);
1176}
1177
1178static void copy_complete(int read_err, unsigned long write_err, void *context)
1179{
1180	struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
1181
1182	if (read_err || write_err)
1183		mg->k.input = BLK_STS_IOERR;
1184
1185	queue_continuation(mg->cache->wq, &mg->k);
1186}
1187
1188static int copy(struct dm_cache_migration *mg, bool promote)
1189{
1190	int r;
1191	struct dm_io_region o_region, c_region;
1192	struct cache *cache = mg->cache;
1193
1194	o_region.bdev = cache->origin_dev->bdev;
1195	o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1196	o_region.count = cache->sectors_per_block;
1197
1198	c_region.bdev = cache->cache_dev->bdev;
1199	c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1200	c_region.count = cache->sectors_per_block;
1201
1202	if (promote)
1203		r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1204	else
1205		r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1206
1207	return r;
1208}
1209
1210static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1211{
1212	struct per_bio_data *pb = get_per_bio_data(bio);
1213
1214	if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1215		free_prison_cell(cache, pb->cell);
1216	pb->cell = NULL;
1217}
1218
1219static void overwrite_endio(struct bio *bio)
1220{
1221	struct dm_cache_migration *mg = bio->bi_private;
1222	struct cache *cache = mg->cache;
1223	struct per_bio_data *pb = get_per_bio_data(bio);
1224
1225	dm_unhook_bio(&pb->hook_info, bio);
1226
1227	if (bio->bi_status)
1228		mg->k.input = bio->bi_status;
1229
1230	queue_continuation(cache->wq, &mg->k);
1231}
1232
1233static void overwrite(struct dm_cache_migration *mg,
1234		      void (*continuation)(struct work_struct *))
1235{
1236	struct bio *bio = mg->overwrite_bio;
1237	struct per_bio_data *pb = get_per_bio_data(bio);
1238
1239	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1240
1241	/*
1242	 * The overwrite bio is part of the copy operation, as such it does
1243	 * not set/clear discard or dirty flags.
1244	 */
1245	if (mg->op->op == POLICY_PROMOTE)
1246		remap_to_cache(mg->cache, bio, mg->op->cblock);
1247	else
1248		remap_to_origin(mg->cache, bio);
1249
1250	init_continuation(&mg->k, continuation);
1251	accounted_request(mg->cache, bio);
1252}
1253
1254/*
1255 * Migration steps:
1256 *
1257 * 1) exclusive lock preventing WRITEs
1258 * 2) quiesce
1259 * 3) copy or issue overwrite bio
1260 * 4) upgrade to exclusive lock preventing READs and WRITEs
1261 * 5) quiesce
1262 * 6) update metadata and commit
1263 * 7) unlock
1264 */
1265static void mg_complete(struct dm_cache_migration *mg, bool success)
1266{
1267	struct bio_list bios;
1268	struct cache *cache = mg->cache;
1269	struct policy_work *op = mg->op;
1270	dm_cblock_t cblock = op->cblock;
1271
1272	if (success)
1273		update_stats(&cache->stats, op->op);
1274
1275	switch (op->op) {
1276	case POLICY_PROMOTE:
1277		clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1278		policy_complete_background_work(cache->policy, op, success);
1279
1280		if (mg->overwrite_bio) {
1281			if (success)
1282				force_set_dirty(cache, cblock);
1283			else if (mg->k.input)
1284				mg->overwrite_bio->bi_status = mg->k.input;
1285			else
1286				mg->overwrite_bio->bi_status = BLK_STS_IOERR;
1287			bio_endio(mg->overwrite_bio);
1288		} else {
1289			if (success)
1290				force_clear_dirty(cache, cblock);
1291			dec_io_migrations(cache);
1292		}
1293		break;
1294
1295	case POLICY_DEMOTE:
1296		/*
1297		 * We clear dirty here to update the nr_dirty counter.
1298		 */
1299		if (success)
1300			force_clear_dirty(cache, cblock);
1301		policy_complete_background_work(cache->policy, op, success);
1302		dec_io_migrations(cache);
1303		break;
1304
1305	case POLICY_WRITEBACK:
1306		if (success)
1307			force_clear_dirty(cache, cblock);
1308		policy_complete_background_work(cache->policy, op, success);
1309		dec_io_migrations(cache);
1310		break;
1311	}
1312
1313	bio_list_init(&bios);
1314	if (mg->cell) {
1315		if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1316			free_prison_cell(cache, mg->cell);
1317	}
1318
1319	free_migration(mg);
1320	defer_bios(cache, &bios);
1321	wake_migration_worker(cache);
1322
1323	background_work_end(cache);
1324}
1325
1326static void mg_success(struct work_struct *ws)
1327{
1328	struct dm_cache_migration *mg = ws_to_mg(ws);
1329	mg_complete(mg, mg->k.input == 0);
1330}
1331
1332static void mg_update_metadata(struct work_struct *ws)
1333{
1334	int r;
1335	struct dm_cache_migration *mg = ws_to_mg(ws);
1336	struct cache *cache = mg->cache;
1337	struct policy_work *op = mg->op;
1338
1339	switch (op->op) {
1340	case POLICY_PROMOTE:
1341		r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1342		if (r) {
1343			DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1344				    cache_device_name(cache));
1345			metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1346
1347			mg_complete(mg, false);
1348			return;
1349		}
1350		mg_complete(mg, true);
1351		break;
1352
1353	case POLICY_DEMOTE:
1354		r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1355		if (r) {
1356			DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1357				    cache_device_name(cache));
1358			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1359
1360			mg_complete(mg, false);
1361			return;
1362		}
1363
1364		/*
1365		 * It would be nice if we only had to commit when a REQ_FLUSH
1366		 * comes through.  But there's one scenario that we have to
1367		 * look out for:
1368		 *
1369		 * - vblock x in a cache block
1370		 * - domotion occurs
1371		 * - cache block gets reallocated and over written
1372		 * - crash
1373		 *
1374		 * When we recover, because there was no commit the cache will
1375		 * rollback to having the data for vblock x in the cache block.
1376		 * But the cache block has since been overwritten, so it'll end
1377		 * up pointing to data that was never in 'x' during the history
1378		 * of the device.
1379		 *
1380		 * To avoid this issue we require a commit as part of the
1381		 * demotion operation.
1382		 */
1383		init_continuation(&mg->k, mg_success);
1384		continue_after_commit(&cache->committer, &mg->k);
1385		schedule_commit(&cache->committer);
1386		break;
1387
1388	case POLICY_WRITEBACK:
1389		mg_complete(mg, true);
1390		break;
1391	}
1392}
1393
1394static void mg_update_metadata_after_copy(struct work_struct *ws)
1395{
1396	struct dm_cache_migration *mg = ws_to_mg(ws);
1397
1398	/*
1399	 * Did the copy succeed?
1400	 */
1401	if (mg->k.input)
1402		mg_complete(mg, false);
1403	else
1404		mg_update_metadata(ws);
1405}
1406
1407static void mg_upgrade_lock(struct work_struct *ws)
1408{
1409	int r;
1410	struct dm_cache_migration *mg = ws_to_mg(ws);
1411
1412	/*
1413	 * Did the copy succeed?
1414	 */
1415	if (mg->k.input)
1416		mg_complete(mg, false);
1417
1418	else {
1419		/*
1420		 * Now we want the lock to prevent both reads and writes.
1421		 */
1422		r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1423					    READ_WRITE_LOCK_LEVEL);
1424		if (r < 0)
1425			mg_complete(mg, false);
1426
1427		else if (r)
1428			quiesce(mg, mg_update_metadata);
1429
1430		else
1431			mg_update_metadata(ws);
1432	}
1433}
1434
1435static void mg_full_copy(struct work_struct *ws)
1436{
1437	struct dm_cache_migration *mg = ws_to_mg(ws);
1438	struct cache *cache = mg->cache;
1439	struct policy_work *op = mg->op;
1440	bool is_policy_promote = (op->op == POLICY_PROMOTE);
1441
1442	if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1443	    is_discarded_oblock(cache, op->oblock)) {
1444		mg_upgrade_lock(ws);
1445		return;
1446	}
1447
1448	init_continuation(&mg->k, mg_upgrade_lock);
1449
1450	if (copy(mg, is_policy_promote)) {
1451		DMERR_LIMIT("%s: migration copy failed", cache_device_name(cache));
1452		mg->k.input = BLK_STS_IOERR;
1453		mg_complete(mg, false);
1454	}
1455}
1456
1457static void mg_copy(struct work_struct *ws)
1458{
1459	struct dm_cache_migration *mg = ws_to_mg(ws);
1460
1461	if (mg->overwrite_bio) {
1462		/*
1463		 * No exclusive lock was held when we last checked if the bio
1464		 * was optimisable.  So we have to check again in case things
1465		 * have changed (eg, the block may no longer be discarded).
1466		 */
1467		if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1468			/*
1469			 * Fallback to a real full copy after doing some tidying up.
1470			 */
1471			bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1472			BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */
1473			mg->overwrite_bio = NULL;
1474			inc_io_migrations(mg->cache);
1475			mg_full_copy(ws);
1476			return;
1477		}
1478
1479		/*
1480		 * It's safe to do this here, even though it's new data
1481		 * because all IO has been locked out of the block.
1482		 *
1483		 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1484		 * so _not_ using mg_upgrade_lock() as continutation.
1485		 */
1486		overwrite(mg, mg_update_metadata_after_copy);
1487
1488	} else
1489		mg_full_copy(ws);
1490}
1491
1492static int mg_lock_writes(struct dm_cache_migration *mg)
1493{
1494	int r;
1495	struct dm_cell_key_v2 key;
1496	struct cache *cache = mg->cache;
1497	struct dm_bio_prison_cell_v2 *prealloc;
1498
1499	prealloc = alloc_prison_cell(cache);
1500	if (!prealloc) {
1501		DMERR_LIMIT("%s: alloc_prison_cell failed", cache_device_name(cache));
1502		mg_complete(mg, false);
1503		return -ENOMEM;
1504	}
1505
1506	/*
1507	 * Prevent writes to the block, but allow reads to continue.
1508	 * Unless we're using an overwrite bio, in which case we lock
1509	 * everything.
1510	 */
1511	build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1512	r = dm_cell_lock_v2(cache->prison, &key,
1513			    mg->overwrite_bio ?  READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1514			    prealloc, &mg->cell);
1515	if (r < 0) {
1516		free_prison_cell(cache, prealloc);
1517		mg_complete(mg, false);
1518		return r;
1519	}
1520
1521	if (mg->cell != prealloc)
1522		free_prison_cell(cache, prealloc);
1523
1524	if (r == 0)
1525		mg_copy(&mg->k.ws);
1526	else
1527		quiesce(mg, mg_copy);
1528
1529	return 0;
1530}
1531
1532static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
1533{
1534	struct dm_cache_migration *mg;
1535
1536	if (!background_work_begin(cache)) {
1537		policy_complete_background_work(cache->policy, op, false);
1538		return -EPERM;
1539	}
1540
1541	mg = alloc_migration(cache);
1542	if (!mg) {
1543		policy_complete_background_work(cache->policy, op, false);
1544		background_work_end(cache);
1545		return -ENOMEM;
1546	}
1547
1548	mg->op = op;
1549	mg->overwrite_bio = bio;
1550
1551	if (!bio)
1552		inc_io_migrations(cache);
1553
1554	return mg_lock_writes(mg);
1555}
1556
1557/*----------------------------------------------------------------
1558 * invalidation processing
1559 *--------------------------------------------------------------*/
1560
1561static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1562{
1563	struct bio_list bios;
1564	struct cache *cache = mg->cache;
1565
1566	bio_list_init(&bios);
1567	if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1568		free_prison_cell(cache, mg->cell);
1569
1570	if (!success && mg->overwrite_bio)
1571		bio_io_error(mg->overwrite_bio);
1572
1573	free_migration(mg);
1574	defer_bios(cache, &bios);
1575
1576	background_work_end(cache);
1577}
1578
1579static void invalidate_completed(struct work_struct *ws)
1580{
1581	struct dm_cache_migration *mg = ws_to_mg(ws);
1582	invalidate_complete(mg, !mg->k.input);
1583}
1584
1585static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1586{
1587	int r = policy_invalidate_mapping(cache->policy, cblock);
1588	if (!r) {
1589		r = dm_cache_remove_mapping(cache->cmd, cblock);
1590		if (r) {
1591			DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1592				    cache_device_name(cache));
1593			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1594		}
1595
1596	} else if (r == -ENODATA) {
1597		/*
1598		 * Harmless, already unmapped.
1599		 */
1600		r = 0;
1601
1602	} else
1603		DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1604
1605	return r;
1606}
1607
1608static void invalidate_remove(struct work_struct *ws)
1609{
1610	int r;
1611	struct dm_cache_migration *mg = ws_to_mg(ws);
1612	struct cache *cache = mg->cache;
1613
1614	r = invalidate_cblock(cache, mg->invalidate_cblock);
1615	if (r) {
1616		invalidate_complete(mg, false);
1617		return;
1618	}
1619
1620	init_continuation(&mg->k, invalidate_completed);
1621	continue_after_commit(&cache->committer, &mg->k);
1622	remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1623	mg->overwrite_bio = NULL;
1624	schedule_commit(&cache->committer);
1625}
1626
1627static int invalidate_lock(struct dm_cache_migration *mg)
1628{
1629	int r;
1630	struct dm_cell_key_v2 key;
1631	struct cache *cache = mg->cache;
1632	struct dm_bio_prison_cell_v2 *prealloc;
1633
1634	prealloc = alloc_prison_cell(cache);
1635	if (!prealloc) {
1636		invalidate_complete(mg, false);
1637		return -ENOMEM;
1638	}
1639
1640	build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1641	r = dm_cell_lock_v2(cache->prison, &key,
1642			    READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1643	if (r < 0) {
1644		free_prison_cell(cache, prealloc);
1645		invalidate_complete(mg, false);
1646		return r;
1647	}
1648
1649	if (mg->cell != prealloc)
1650		free_prison_cell(cache, prealloc);
1651
1652	if (r)
1653		quiesce(mg, invalidate_remove);
1654
1655	else {
1656		/*
1657		 * We can't call invalidate_remove() directly here because we
1658		 * might still be in request context.
1659		 */
1660		init_continuation(&mg->k, invalidate_remove);
1661		queue_work(cache->wq, &mg->k.ws);
1662	}
1663
1664	return 0;
1665}
1666
1667static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1668			    dm_oblock_t oblock, struct bio *bio)
1669{
1670	struct dm_cache_migration *mg;
1671
1672	if (!background_work_begin(cache))
1673		return -EPERM;
1674
1675	mg = alloc_migration(cache);
1676	if (!mg) {
1677		background_work_end(cache);
1678		return -ENOMEM;
1679	}
1680
1681	mg->overwrite_bio = bio;
1682	mg->invalidate_cblock = cblock;
1683	mg->invalidate_oblock = oblock;
1684
1685	return invalidate_lock(mg);
1686}
1687
1688/*----------------------------------------------------------------
1689 * bio processing
1690 *--------------------------------------------------------------*/
1691
1692enum busy {
1693	IDLE,
1694	BUSY
1695};
1696
1697static enum busy spare_migration_bandwidth(struct cache *cache)
1698{
1699	bool idle = iot_idle_for(&cache->tracker, HZ);
1700	sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1701		cache->sectors_per_block;
1702
1703	if (idle && current_volume <= cache->migration_threshold)
1704		return IDLE;
1705	else
1706		return BUSY;
1707}
1708
1709static void inc_hit_counter(struct cache *cache, struct bio *bio)
1710{
1711	atomic_inc(bio_data_dir(bio) == READ ?
1712		   &cache->stats.read_hit : &cache->stats.write_hit);
1713}
1714
1715static void inc_miss_counter(struct cache *cache, struct bio *bio)
1716{
1717	atomic_inc(bio_data_dir(bio) == READ ?
1718		   &cache->stats.read_miss : &cache->stats.write_miss);
1719}
1720
1721/*----------------------------------------------------------------*/
1722
1723static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1724		   bool *commit_needed)
1725{
1726	int r, data_dir;
1727	bool rb, background_queued;
1728	dm_cblock_t cblock;
1729
1730	*commit_needed = false;
1731
1732	rb = bio_detain_shared(cache, block, bio);
1733	if (!rb) {
1734		/*
1735		 * An exclusive lock is held for this block, so we have to
1736		 * wait.  We set the commit_needed flag so the current
1737		 * transaction will be committed asap, allowing this lock
1738		 * to be dropped.
1739		 */
1740		*commit_needed = true;
1741		return DM_MAPIO_SUBMITTED;
1742	}
1743
1744	data_dir = bio_data_dir(bio);
1745
1746	if (optimisable_bio(cache, bio, block)) {
1747		struct policy_work *op = NULL;
1748
1749		r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1750		if (unlikely(r && r != -ENOENT)) {
1751			DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1752				    cache_device_name(cache), r);
1753			bio_io_error(bio);
1754			return DM_MAPIO_SUBMITTED;
1755		}
1756
1757		if (r == -ENOENT && op) {
1758			bio_drop_shared_lock(cache, bio);
1759			BUG_ON(op->op != POLICY_PROMOTE);
1760			mg_start(cache, op, bio);
1761			return DM_MAPIO_SUBMITTED;
1762		}
1763	} else {
1764		r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1765		if (unlikely(r && r != -ENOENT)) {
1766			DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1767				    cache_device_name(cache), r);
1768			bio_io_error(bio);
1769			return DM_MAPIO_SUBMITTED;
1770		}
1771
1772		if (background_queued)
1773			wake_migration_worker(cache);
1774	}
1775
1776	if (r == -ENOENT) {
1777		struct per_bio_data *pb = get_per_bio_data(bio);
1778
1779		/*
1780		 * Miss.
1781		 */
1782		inc_miss_counter(cache, bio);
1783		if (pb->req_nr == 0) {
1784			accounted_begin(cache, bio);
1785			remap_to_origin_clear_discard(cache, bio, block);
1786		} else {
1787			/*
1788			 * This is a duplicate writethrough io that is no
1789			 * longer needed because the block has been demoted.
1790			 */
1791			bio_endio(bio);
1792			return DM_MAPIO_SUBMITTED;
1793		}
1794	} else {
1795		/*
1796		 * Hit.
1797		 */
1798		inc_hit_counter(cache, bio);
1799
1800		/*
1801		 * Passthrough always maps to the origin, invalidating any
1802		 * cache blocks that are written to.
1803		 */
1804		if (passthrough_mode(cache)) {
1805			if (bio_data_dir(bio) == WRITE) {
1806				bio_drop_shared_lock(cache, bio);
1807				atomic_inc(&cache->stats.demotion);
1808				invalidate_start(cache, cblock, block, bio);
1809			} else
1810				remap_to_origin_clear_discard(cache, bio, block);
1811		} else {
1812			if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
1813			    !is_dirty(cache, cblock)) {
1814				remap_to_origin_and_cache(cache, bio, block, cblock);
1815				accounted_begin(cache, bio);
1816			} else
1817				remap_to_cache_dirty(cache, bio, block, cblock);
1818		}
1819	}
1820
1821	/*
1822	 * dm core turns FUA requests into a separate payload and FLUSH req.
1823	 */
1824	if (bio->bi_opf & REQ_FUA) {
1825		/*
1826		 * issue_after_commit will call accounted_begin a second time.  So
1827		 * we call accounted_complete() to avoid double accounting.
1828		 */
1829		accounted_complete(cache, bio);
1830		issue_after_commit(&cache->committer, bio);
1831		*commit_needed = true;
1832		return DM_MAPIO_SUBMITTED;
1833	}
1834
1835	return DM_MAPIO_REMAPPED;
1836}
1837
1838static bool process_bio(struct cache *cache, struct bio *bio)
1839{
1840	bool commit_needed;
1841
1842	if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1843		generic_make_request(bio);
1844
1845	return commit_needed;
1846}
1847
1848/*
1849 * A non-zero return indicates read_only or fail_io mode.
1850 */
1851static int commit(struct cache *cache, bool clean_shutdown)
1852{
1853	int r;
1854
1855	if (get_cache_mode(cache) >= CM_READ_ONLY)
1856		return -EINVAL;
1857
1858	atomic_inc(&cache->stats.commit_count);
1859	r = dm_cache_commit(cache->cmd, clean_shutdown);
1860	if (r)
1861		metadata_operation_failed(cache, "dm_cache_commit", r);
1862
1863	return r;
1864}
1865
1866/*
1867 * Used by the batcher.
1868 */
1869static blk_status_t commit_op(void *context)
1870{
1871	struct cache *cache = context;
1872
1873	if (dm_cache_changed_this_transaction(cache->cmd))
1874		return errno_to_blk_status(commit(cache, false));
1875
1876	return 0;
1877}
1878
1879/*----------------------------------------------------------------*/
1880
1881static bool process_flush_bio(struct cache *cache, struct bio *bio)
1882{
1883	struct per_bio_data *pb = get_per_bio_data(bio);
1884
1885	if (!pb->req_nr)
1886		remap_to_origin(cache, bio);
1887	else
1888		remap_to_cache(cache, bio, 0);
1889
1890	issue_after_commit(&cache->committer, bio);
1891	return true;
1892}
1893
1894static bool process_discard_bio(struct cache *cache, struct bio *bio)
1895{
1896	dm_dblock_t b, e;
1897
1898	// FIXME: do we need to lock the region?  Or can we just assume the
1899	// user wont be so foolish as to issue discard concurrently with
1900	// other IO?
1901	calc_discard_block_range(cache, bio, &b, &e);
1902	while (b != e) {
1903		set_discard(cache, b);
1904		b = to_dblock(from_dblock(b) + 1);
1905	}
1906
1907	bio_endio(bio);
1908
1909	return false;
1910}
1911
1912static void process_deferred_bios(struct work_struct *ws)
1913{
1914	struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1915
1916	unsigned long flags;
1917	bool commit_needed = false;
1918	struct bio_list bios;
1919	struct bio *bio;
1920
1921	bio_list_init(&bios);
1922
1923	spin_lock_irqsave(&cache->lock, flags);
1924	bio_list_merge(&bios, &cache->deferred_bios);
1925	bio_list_init(&cache->deferred_bios);
1926	spin_unlock_irqrestore(&cache->lock, flags);
1927
1928	while ((bio = bio_list_pop(&bios))) {
1929		if (bio->bi_opf & REQ_PREFLUSH)
1930			commit_needed = process_flush_bio(cache, bio) || commit_needed;
1931
1932		else if (bio_op(bio) == REQ_OP_DISCARD)
1933			commit_needed = process_discard_bio(cache, bio) || commit_needed;
1934
1935		else
1936			commit_needed = process_bio(cache, bio) || commit_needed;
1937	}
1938
1939	if (commit_needed)
1940		schedule_commit(&cache->committer);
1941}
1942
1943/*----------------------------------------------------------------
1944 * Main worker loop
1945 *--------------------------------------------------------------*/
1946
1947static void requeue_deferred_bios(struct cache *cache)
1948{
1949	struct bio *bio;
1950	struct bio_list bios;
1951
1952	bio_list_init(&bios);
1953	bio_list_merge(&bios, &cache->deferred_bios);
1954	bio_list_init(&cache->deferred_bios);
1955
1956	while ((bio = bio_list_pop(&bios))) {
1957		bio->bi_status = BLK_STS_DM_REQUEUE;
1958		bio_endio(bio);
1959	}
1960}
1961
1962/*
1963 * We want to commit periodically so that not too much
1964 * unwritten metadata builds up.
1965 */
1966static void do_waker(struct work_struct *ws)
1967{
1968	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1969
1970	policy_tick(cache->policy, true);
1971	wake_migration_worker(cache);
1972	schedule_commit(&cache->committer);
1973	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1974}
1975
1976static void check_migrations(struct work_struct *ws)
1977{
1978	int r;
1979	struct policy_work *op;
1980	struct cache *cache = container_of(ws, struct cache, migration_worker);
1981	enum busy b;
1982
1983	for (;;) {
1984		b = spare_migration_bandwidth(cache);
1985
1986		r = policy_get_background_work(cache->policy, b == IDLE, &op);
1987		if (r == -ENODATA)
1988			break;
1989
1990		if (r) {
1991			DMERR_LIMIT("%s: policy_background_work failed",
1992				    cache_device_name(cache));
1993			break;
1994		}
1995
1996		r = mg_start(cache, op, NULL);
1997		if (r)
1998			break;
1999	}
2000}
2001
2002/*----------------------------------------------------------------
2003 * Target methods
2004 *--------------------------------------------------------------*/
2005
2006/*
2007 * This function gets called on the error paths of the constructor, so we
2008 * have to cope with a partially initialised struct.
2009 */
2010static void destroy(struct cache *cache)
2011{
2012	unsigned i;
2013
2014	mempool_destroy(cache->migration_pool);
2015
2016	if (cache->prison)
2017		dm_bio_prison_destroy_v2(cache->prison);
2018
2019	if (cache->wq)
2020		destroy_workqueue(cache->wq);
2021
2022	if (cache->dirty_bitset)
2023		free_bitset(cache->dirty_bitset);
2024
2025	if (cache->discard_bitset)
2026		free_bitset(cache->discard_bitset);
2027
2028	if (cache->copier)
2029		dm_kcopyd_client_destroy(cache->copier);
2030
2031	if (cache->cmd)
2032		dm_cache_metadata_close(cache->cmd);
2033
2034	if (cache->metadata_dev)
2035		dm_put_device(cache->ti, cache->metadata_dev);
2036
2037	if (cache->origin_dev)
2038		dm_put_device(cache->ti, cache->origin_dev);
2039
2040	if (cache->cache_dev)
2041		dm_put_device(cache->ti, cache->cache_dev);
2042
2043	if (cache->policy)
2044		dm_cache_policy_destroy(cache->policy);
2045
2046	for (i = 0; i < cache->nr_ctr_args ; i++)
2047		kfree(cache->ctr_args[i]);
2048	kfree(cache->ctr_args);
2049
2050	if (cache->bs)
2051		bioset_free(cache->bs);
2052
2053	kfree(cache);
2054}
2055
2056static void cache_dtr(struct dm_target *ti)
2057{
2058	struct cache *cache = ti->private;
2059
2060	destroy(cache);
2061}
2062
2063static sector_t get_dev_size(struct dm_dev *dev)
2064{
2065	return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2066}
2067
2068/*----------------------------------------------------------------*/
2069
2070/*
2071 * Construct a cache device mapping.
2072 *
2073 * cache <metadata dev> <cache dev> <origin dev> <block size>
2074 *       <#feature args> [<feature arg>]*
2075 *       <policy> <#policy args> [<policy arg>]*
2076 *
2077 * metadata dev    : fast device holding the persistent metadata
2078 * cache dev	   : fast device holding cached data blocks
2079 * origin dev	   : slow device holding original data blocks
2080 * block size	   : cache unit size in sectors
2081 *
2082 * #feature args   : number of feature arguments passed
2083 * feature args    : writethrough.  (The default is writeback.)
2084 *
2085 * policy	   : the replacement policy to use
2086 * #policy args    : an even number of policy arguments corresponding
2087 *		     to key/value pairs passed to the policy
2088 * policy args	   : key/value pairs passed to the policy
2089 *		     E.g. 'sequential_threshold 1024'
2090 *		     See cache-policies.txt for details.
2091 *
2092 * Optional feature arguments are:
2093 *   writethrough  : write through caching that prohibits cache block
2094 *		     content from being different from origin block content.
2095 *		     Without this argument, the default behaviour is to write
2096 *		     back cache block contents later for performance reasons,
2097 *		     so they may differ from the corresponding origin blocks.
2098 */
2099struct cache_args {
2100	struct dm_target *ti;
2101
2102	struct dm_dev *metadata_dev;
2103
2104	struct dm_dev *cache_dev;
2105	sector_t cache_sectors;
2106
2107	struct dm_dev *origin_dev;
2108	sector_t origin_sectors;
2109
2110	uint32_t block_size;
2111
2112	const char *policy_name;
2113	int policy_argc;
2114	const char **policy_argv;
2115
2116	struct cache_features features;
2117};
2118
2119static void destroy_cache_args(struct cache_args *ca)
2120{
2121	if (ca->metadata_dev)
2122		dm_put_device(ca->ti, ca->metadata_dev);
2123
2124	if (ca->cache_dev)
2125		dm_put_device(ca->ti, ca->cache_dev);
2126
2127	if (ca->origin_dev)
2128		dm_put_device(ca->ti, ca->origin_dev);
2129
2130	kfree(ca);
2131}
2132
2133static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2134{
2135	if (!as->argc) {
2136		*error = "Insufficient args";
2137		return false;
2138	}
2139
2140	return true;
2141}
2142
2143static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2144			      char **error)
2145{
2146	int r;
2147	sector_t metadata_dev_size;
2148	char b[BDEVNAME_SIZE];
2149
2150	if (!at_least_one_arg(as, error))
2151		return -EINVAL;
2152
2153	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2154			  &ca->metadata_dev);
2155	if (r) {
2156		*error = "Error opening metadata device";
2157		return r;
2158	}
2159
2160	metadata_dev_size = get_dev_size(ca->metadata_dev);
2161	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2162		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2163		       bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2164
2165	return 0;
2166}
2167
2168static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2169			   char **error)
2170{
2171	int r;
2172
2173	if (!at_least_one_arg(as, error))
2174		return -EINVAL;
2175
2176	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2177			  &ca->cache_dev);
2178	if (r) {
2179		*error = "Error opening cache device";
2180		return r;
2181	}
2182	ca->cache_sectors = get_dev_size(ca->cache_dev);
2183
2184	return 0;
2185}
2186
2187static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2188			    char **error)
2189{
2190	int r;
2191
2192	if (!at_least_one_arg(as, error))
2193		return -EINVAL;
2194
2195	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2196			  &ca->origin_dev);
2197	if (r) {
2198		*error = "Error opening origin device";
2199		return r;
2200	}
2201
2202	ca->origin_sectors = get_dev_size(ca->origin_dev);
2203	if (ca->ti->len > ca->origin_sectors) {
2204		*error = "Device size larger than cached device";
2205		return -EINVAL;
2206	}
2207
2208	return 0;
2209}
2210
2211static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2212			    char **error)
2213{
2214	unsigned long block_size;
2215
2216	if (!at_least_one_arg(as, error))
2217		return -EINVAL;
2218
2219	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2220	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2221	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2222	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2223		*error = "Invalid data block size";
2224		return -EINVAL;
2225	}
2226
2227	if (block_size > ca->cache_sectors) {
2228		*error = "Data block size is larger than the cache device";
2229		return -EINVAL;
2230	}
2231
2232	ca->block_size = block_size;
2233
2234	return 0;
2235}
2236
2237static void init_features(struct cache_features *cf)
2238{
2239	cf->mode = CM_WRITE;
2240	cf->io_mode = CM_IO_WRITEBACK;
2241	cf->metadata_version = 1;
2242}
2243
2244static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2245			  char **error)
2246{
2247	static const struct dm_arg _args[] = {
2248		{0, 2, "Invalid number of cache feature arguments"},
2249	};
2250
2251	int r;
2252	unsigned argc;
2253	const char *arg;
2254	struct cache_features *cf = &ca->features;
2255
2256	init_features(cf);
2257
2258	r = dm_read_arg_group(_args, as, &argc, error);
2259	if (r)
2260		return -EINVAL;
2261
2262	while (argc--) {
2263		arg = dm_shift_arg(as);
2264
2265		if (!strcasecmp(arg, "writeback"))
2266			cf->io_mode = CM_IO_WRITEBACK;
2267
2268		else if (!strcasecmp(arg, "writethrough"))
2269			cf->io_mode = CM_IO_WRITETHROUGH;
2270
2271		else if (!strcasecmp(arg, "passthrough"))
2272			cf->io_mode = CM_IO_PASSTHROUGH;
2273
2274		else if (!strcasecmp(arg, "metadata2"))
2275			cf->metadata_version = 2;
2276
2277		else {
2278			*error = "Unrecognised cache feature requested";
2279			return -EINVAL;
2280		}
2281	}
2282
2283	return 0;
2284}
2285
2286static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2287			char **error)
2288{
2289	static const struct dm_arg _args[] = {
2290		{0, 1024, "Invalid number of policy arguments"},
2291	};
2292
2293	int r;
2294
2295	if (!at_least_one_arg(as, error))
2296		return -EINVAL;
2297
2298	ca->policy_name = dm_shift_arg(as);
2299
2300	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2301	if (r)
2302		return -EINVAL;
2303
2304	ca->policy_argv = (const char **)as->argv;
2305	dm_consume_args(as, ca->policy_argc);
2306
2307	return 0;
2308}
2309
2310static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2311			    char **error)
2312{
2313	int r;
2314	struct dm_arg_set as;
2315
2316	as.argc = argc;
2317	as.argv = argv;
2318
2319	r = parse_metadata_dev(ca, &as, error);
2320	if (r)
2321		return r;
2322
2323	r = parse_cache_dev(ca, &as, error);
2324	if (r)
2325		return r;
2326
2327	r = parse_origin_dev(ca, &as, error);
2328	if (r)
2329		return r;
2330
2331	r = parse_block_size(ca, &as, error);
2332	if (r)
2333		return r;
2334
2335	r = parse_features(ca, &as, error);
2336	if (r)
2337		return r;
2338
2339	r = parse_policy(ca, &as, error);
2340	if (r)
2341		return r;
2342
2343	return 0;
2344}
2345
2346/*----------------------------------------------------------------*/
2347
2348static struct kmem_cache *migration_cache;
2349
2350#define NOT_CORE_OPTION 1
2351
2352static int process_config_option(struct cache *cache, const char *key, const char *value)
2353{
2354	unsigned long tmp;
2355
2356	if (!strcasecmp(key, "migration_threshold")) {
2357		if (kstrtoul(value, 10, &tmp))
2358			return -EINVAL;
2359
2360		cache->migration_threshold = tmp;
2361		return 0;
2362	}
2363
2364	return NOT_CORE_OPTION;
2365}
2366
2367static int set_config_value(struct cache *cache, const char *key, const char *value)
2368{
2369	int r = process_config_option(cache, key, value);
2370
2371	if (r == NOT_CORE_OPTION)
2372		r = policy_set_config_value(cache->policy, key, value);
2373
2374	if (r)
2375		DMWARN("bad config value for %s: %s", key, value);
2376
2377	return r;
2378}
2379
2380static int set_config_values(struct cache *cache, int argc, const char **argv)
2381{
2382	int r = 0;
2383
2384	if (argc & 1) {
2385		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2386		return -EINVAL;
2387	}
2388
2389	while (argc) {
2390		r = set_config_value(cache, argv[0], argv[1]);
2391		if (r)
2392			break;
2393
2394		argc -= 2;
2395		argv += 2;
2396	}
2397
2398	return r;
2399}
2400
2401static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2402			       char **error)
2403{
2404	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2405							   cache->cache_size,
2406							   cache->origin_sectors,
2407							   cache->sectors_per_block);
2408	if (IS_ERR(p)) {
2409		*error = "Error creating cache's policy";
2410		return PTR_ERR(p);
2411	}
2412	cache->policy = p;
2413	BUG_ON(!cache->policy);
2414
2415	return 0;
2416}
2417
2418/*
2419 * We want the discard block size to be at least the size of the cache
2420 * block size and have no more than 2^14 discard blocks across the origin.
2421 */
2422#define MAX_DISCARD_BLOCKS (1 << 14)
2423
2424static bool too_many_discard_blocks(sector_t discard_block_size,
2425				    sector_t origin_size)
2426{
2427	(void) sector_div(origin_size, discard_block_size);
2428
2429	return origin_size > MAX_DISCARD_BLOCKS;
2430}
2431
2432static sector_t calculate_discard_block_size(sector_t cache_block_size,
2433					     sector_t origin_size)
2434{
2435	sector_t discard_block_size = cache_block_size;
2436
2437	if (origin_size)
2438		while (too_many_discard_blocks(discard_block_size, origin_size))
2439			discard_block_size *= 2;
2440
2441	return discard_block_size;
2442}
2443
2444static void set_cache_size(struct cache *cache, dm_cblock_t size)
2445{
2446	dm_block_t nr_blocks = from_cblock(size);
2447
2448	if (nr_blocks > (1 << 20) && cache->cache_size != size)
2449		DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2450			     "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2451			     "Please consider increasing the cache block size to reduce the overall cache block count.",
2452			     (unsigned long long) nr_blocks);
2453
2454	cache->cache_size = size;
2455}
2456
2457static int is_congested(struct dm_dev *dev, int bdi_bits)
2458{
2459	struct request_queue *q = bdev_get_queue(dev->bdev);
2460	return bdi_congested(q->backing_dev_info, bdi_bits);
2461}
2462
2463static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2464{
2465	struct cache *cache = container_of(cb, struct cache, callbacks);
2466
2467	return is_congested(cache->origin_dev, bdi_bits) ||
2468		is_congested(cache->cache_dev, bdi_bits);
2469}
2470
2471#define DEFAULT_MIGRATION_THRESHOLD 2048
2472
2473static int cache_create(struct cache_args *ca, struct cache **result)
2474{
2475	int r = 0;
2476	char **error = &ca->ti->error;
2477	struct cache *cache;
2478	struct dm_target *ti = ca->ti;
2479	dm_block_t origin_blocks;
2480	struct dm_cache_metadata *cmd;
2481	bool may_format = ca->features.mode == CM_WRITE;
2482
2483	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2484	if (!cache)
2485		return -ENOMEM;
2486
2487	cache->ti = ca->ti;
2488	ti->private = cache;
2489	ti->num_flush_bios = 2;
2490	ti->flush_supported = true;
2491
2492	ti->num_discard_bios = 1;
2493	ti->discards_supported = true;
2494	ti->split_discard_bios = false;
2495
2496	ti->per_io_data_size = sizeof(struct per_bio_data);
2497
2498	cache->features = ca->features;
2499	if (writethrough_mode(cache)) {
2500		/* Create bioset for writethrough bios issued to origin */
2501		cache->bs = bioset_create(BIO_POOL_SIZE, 0, 0);
2502		if (!cache->bs)
2503			goto bad;
2504	}
2505
2506	cache->callbacks.congested_fn = cache_is_congested;
2507	dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2508
2509	cache->metadata_dev = ca->metadata_dev;
2510	cache->origin_dev = ca->origin_dev;
2511	cache->cache_dev = ca->cache_dev;
2512
2513	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2514
2515	origin_blocks = cache->origin_sectors = ca->origin_sectors;
2516	origin_blocks = block_div(origin_blocks, ca->block_size);
2517	cache->origin_blocks = to_oblock(origin_blocks);
2518
2519	cache->sectors_per_block = ca->block_size;
2520	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2521		r = -EINVAL;
2522		goto bad;
2523	}
2524
2525	if (ca->block_size & (ca->block_size - 1)) {
2526		dm_block_t cache_size = ca->cache_sectors;
2527
2528		cache->sectors_per_block_shift = -1;
2529		cache_size = block_div(cache_size, ca->block_size);
2530		set_cache_size(cache, to_cblock(cache_size));
2531	} else {
2532		cache->sectors_per_block_shift = __ffs(ca->block_size);
2533		set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2534	}
2535
2536	r = create_cache_policy(cache, ca, error);
2537	if (r)
2538		goto bad;
2539
2540	cache->policy_nr_args = ca->policy_argc;
2541	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2542
2543	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2544	if (r) {
2545		*error = "Error setting cache policy's config values";
2546		goto bad;
2547	}
2548
2549	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2550				     ca->block_size, may_format,
2551				     dm_cache_policy_get_hint_size(cache->policy),
2552				     ca->features.metadata_version);
2553	if (IS_ERR(cmd)) {
2554		*error = "Error creating metadata object";
2555		r = PTR_ERR(cmd);
2556		goto bad;
2557	}
2558	cache->cmd = cmd;
2559	set_cache_mode(cache, CM_WRITE);
2560	if (get_cache_mode(cache) != CM_WRITE) {
2561		*error = "Unable to get write access to metadata, please check/repair metadata.";
2562		r = -EINVAL;
2563		goto bad;
2564	}
2565
2566	if (passthrough_mode(cache)) {
2567		bool all_clean;
2568
2569		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2570		if (r) {
2571			*error = "dm_cache_metadata_all_clean() failed";
2572			goto bad;
2573		}
2574
2575		if (!all_clean) {
2576			*error = "Cannot enter passthrough mode unless all blocks are clean";
2577			r = -EINVAL;
2578			goto bad;
2579		}
2580
2581		policy_allow_migrations(cache->policy, false);
2582	}
2583
2584	spin_lock_init(&cache->lock);
2585	bio_list_init(&cache->deferred_bios);
2586	atomic_set(&cache->nr_allocated_migrations, 0);
2587	atomic_set(&cache->nr_io_migrations, 0);
2588	init_waitqueue_head(&cache->migration_wait);
2589
2590	r = -ENOMEM;
2591	atomic_set(&cache->nr_dirty, 0);
2592	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2593	if (!cache->dirty_bitset) {
2594		*error = "could not allocate dirty bitset";
2595		goto bad;
2596	}
2597	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2598
2599	cache->discard_block_size =
2600		calculate_discard_block_size(cache->sectors_per_block,
2601					     cache->origin_sectors);
2602	cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2603							      cache->discard_block_size));
2604	cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2605	if (!cache->discard_bitset) {
2606		*error = "could not allocate discard bitset";
2607		goto bad;
2608	}
2609	clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2610
2611	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2612	if (IS_ERR(cache->copier)) {
2613		*error = "could not create kcopyd client";
2614		r = PTR_ERR(cache->copier);
2615		goto bad;
2616	}
2617
2618	cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2619	if (!cache->wq) {
2620		*error = "could not create workqueue for metadata object";
2621		goto bad;
2622	}
2623	INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2624	INIT_WORK(&cache->migration_worker, check_migrations);
2625	INIT_DELAYED_WORK(&cache->waker, do_waker);
2626
2627	cache->prison = dm_bio_prison_create_v2(cache->wq);
2628	if (!cache->prison) {
2629		*error = "could not create bio prison";
2630		goto bad;
2631	}
2632
2633	cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2634							 migration_cache);
2635	if (!cache->migration_pool) {
2636		*error = "Error creating cache's migration mempool";
2637		goto bad;
2638	}
2639
2640	cache->need_tick_bio = true;
2641	cache->sized = false;
2642	cache->invalidate = false;
2643	cache->commit_requested = false;
2644	cache->loaded_mappings = false;
2645	cache->loaded_discards = false;
2646
2647	load_stats(cache);
2648
2649	atomic_set(&cache->stats.demotion, 0);
2650	atomic_set(&cache->stats.promotion, 0);
2651	atomic_set(&cache->stats.copies_avoided, 0);
2652	atomic_set(&cache->stats.cache_cell_clash, 0);
2653	atomic_set(&cache->stats.commit_count, 0);
2654	atomic_set(&cache->stats.discard_count, 0);
2655
2656	spin_lock_init(&cache->invalidation_lock);
2657	INIT_LIST_HEAD(&cache->invalidation_requests);
2658
2659	batcher_init(&cache->committer, commit_op, cache,
2660		     issue_op, cache, cache->wq);
2661	iot_init(&cache->tracker);
2662
2663	init_rwsem(&cache->background_work_lock);
2664	prevent_background_work(cache);
2665
2666	*result = cache;
2667	return 0;
2668bad:
2669	destroy(cache);
2670	return r;
2671}
2672
2673static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2674{
2675	unsigned i;
2676	const char **copy;
2677
2678	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2679	if (!copy)
2680		return -ENOMEM;
2681	for (i = 0; i < argc; i++) {
2682		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2683		if (!copy[i]) {
2684			while (i--)
2685				kfree(copy[i]);
2686			kfree(copy);
2687			return -ENOMEM;
2688		}
2689	}
2690
2691	cache->nr_ctr_args = argc;
2692	cache->ctr_args = copy;
2693
2694	return 0;
2695}
2696
2697static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2698{
2699	int r = -EINVAL;
2700	struct cache_args *ca;
2701	struct cache *cache = NULL;
2702
2703	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2704	if (!ca) {
2705		ti->error = "Error allocating memory for cache";
2706		return -ENOMEM;
2707	}
2708	ca->ti = ti;
2709
2710	r = parse_cache_args(ca, argc, argv, &ti->error);
2711	if (r)
2712		goto out;
2713
2714	r = cache_create(ca, &cache);
2715	if (r)
2716		goto out;
2717
2718	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2719	if (r) {
2720		destroy(cache);
2721		goto out;
2722	}
2723
2724	ti->private = cache;
2725out:
2726	destroy_cache_args(ca);
2727	return r;
2728}
2729
2730/*----------------------------------------------------------------*/
2731
2732static int cache_map(struct dm_target *ti, struct bio *bio)
2733{
2734	struct cache *cache = ti->private;
2735
2736	int r;
2737	bool commit_needed;
2738	dm_oblock_t block = get_bio_block(cache, bio);
2739
2740	init_per_bio_data(bio);
2741	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2742		/*
2743		 * This can only occur if the io goes to a partial block at
2744		 * the end of the origin device.  We don't cache these.
2745		 * Just remap to the origin and carry on.
2746		 */
2747		remap_to_origin(cache, bio);
2748		accounted_begin(cache, bio);
2749		return DM_MAPIO_REMAPPED;
2750	}
2751
2752	if (discard_or_flush(bio)) {
2753		defer_bio(cache, bio);
2754		return DM_MAPIO_SUBMITTED;
2755	}
2756
2757	r = map_bio(cache, bio, block, &commit_needed);
2758	if (commit_needed)
2759		schedule_commit(&cache->committer);
2760
2761	return r;
2762}
2763
2764static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
2765{
2766	struct cache *cache = ti->private;
2767	unsigned long flags;
2768	struct per_bio_data *pb = get_per_bio_data(bio);
2769
2770	if (pb->tick) {
2771		policy_tick(cache->policy, false);
2772
2773		spin_lock_irqsave(&cache->lock, flags);
2774		cache->need_tick_bio = true;
2775		spin_unlock_irqrestore(&cache->lock, flags);
2776	}
2777
2778	bio_drop_shared_lock(cache, bio);
2779	accounted_complete(cache, bio);
2780
2781	return DM_ENDIO_DONE;
2782}
2783
2784static int write_dirty_bitset(struct cache *cache)
2785{
2786	int r;
2787
2788	if (get_cache_mode(cache) >= CM_READ_ONLY)
2789		return -EINVAL;
2790
2791	r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2792	if (r)
2793		metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
2794
2795	return r;
2796}
2797
2798static int write_discard_bitset(struct cache *cache)
2799{
2800	unsigned i, r;
2801
2802	if (get_cache_mode(cache) >= CM_READ_ONLY)
2803		return -EINVAL;
2804
2805	r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2806					   cache->discard_nr_blocks);
2807	if (r) {
2808		DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2809		metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2810		return r;
2811	}
2812
2813	for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2814		r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2815					 is_discarded(cache, to_dblock(i)));
2816		if (r) {
2817			metadata_operation_failed(cache, "dm_cache_set_discard", r);
2818			return r;
2819		}
2820	}
2821
2822	return 0;
2823}
2824
2825static int write_hints(struct cache *cache)
2826{
2827	int r;
2828
2829	if (get_cache_mode(cache) >= CM_READ_ONLY)
2830		return -EINVAL;
2831
2832	r = dm_cache_write_hints(cache->cmd, cache->policy);
2833	if (r) {
2834		metadata_operation_failed(cache, "dm_cache_write_hints", r);
2835		return r;
2836	}
2837
2838	return 0;
2839}
2840
2841/*
2842 * returns true on success
2843 */
2844static bool sync_metadata(struct cache *cache)
2845{
2846	int r1, r2, r3, r4;
2847
2848	r1 = write_dirty_bitset(cache);
2849	if (r1)
2850		DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2851
2852	r2 = write_discard_bitset(cache);
2853	if (r2)
2854		DMERR("%s: could not write discard bitset", cache_device_name(cache));
2855
2856	save_stats(cache);
2857
2858	r3 = write_hints(cache);
2859	if (r3)
2860		DMERR("%s: could not write hints", cache_device_name(cache));
2861
2862	/*
2863	 * If writing the above metadata failed, we still commit, but don't
2864	 * set the clean shutdown flag.  This will effectively force every
2865	 * dirty bit to be set on reload.
2866	 */
2867	r4 = commit(cache, !r1 && !r2 && !r3);
2868	if (r4)
2869		DMERR("%s: could not write cache metadata", cache_device_name(cache));
2870
2871	return !r1 && !r2 && !r3 && !r4;
2872}
2873
2874static void cache_postsuspend(struct dm_target *ti)
2875{
2876	struct cache *cache = ti->private;
2877
2878	prevent_background_work(cache);
2879	BUG_ON(atomic_read(&cache->nr_io_migrations));
2880
2881	cancel_delayed_work(&cache->waker);
2882	flush_workqueue(cache->wq);
2883	WARN_ON(cache->tracker.in_flight);
2884
2885	/*
2886	 * If it's a flush suspend there won't be any deferred bios, so this
2887	 * call is harmless.
2888	 */
2889	requeue_deferred_bios(cache);
2890
2891	if (get_cache_mode(cache) == CM_WRITE)
2892		(void) sync_metadata(cache);
2893}
2894
2895static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2896			bool dirty, uint32_t hint, bool hint_valid)
2897{
2898	int r;
2899	struct cache *cache = context;
2900
2901	if (dirty) {
2902		set_bit(from_cblock(cblock), cache->dirty_bitset);
2903		atomic_inc(&cache->nr_dirty);
2904	} else
2905		clear_bit(from_cblock(cblock), cache->dirty_bitset);
2906
2907	r = policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2908	if (r)
2909		return r;
2910
2911	return 0;
2912}
2913
2914/*
2915 * The discard block size in the on disk metadata is not
2916 * neccessarily the same as we're currently using.  So we have to
2917 * be careful to only set the discarded attribute if we know it
2918 * covers a complete block of the new size.
2919 */
2920struct discard_load_info {
2921	struct cache *cache;
2922
2923	/*
2924	 * These blocks are sized using the on disk dblock size, rather
2925	 * than the current one.
2926	 */
2927	dm_block_t block_size;
2928	dm_block_t discard_begin, discard_end;
2929};
2930
2931static void discard_load_info_init(struct cache *cache,
2932				   struct discard_load_info *li)
2933{
2934	li->cache = cache;
2935	li->discard_begin = li->discard_end = 0;
2936}
2937
2938static void set_discard_range(struct discard_load_info *li)
2939{
2940	sector_t b, e;
2941
2942	if (li->discard_begin == li->discard_end)
2943		return;
2944
2945	/*
2946	 * Convert to sectors.
2947	 */
2948	b = li->discard_begin * li->block_size;
2949	e = li->discard_end * li->block_size;
2950
2951	/*
2952	 * Then convert back to the current dblock size.
2953	 */
2954	b = dm_sector_div_up(b, li->cache->discard_block_size);
2955	sector_div(e, li->cache->discard_block_size);
2956
2957	/*
2958	 * The origin may have shrunk, so we need to check we're still in
2959	 * bounds.
2960	 */
2961	if (e > from_dblock(li->cache->discard_nr_blocks))
2962		e = from_dblock(li->cache->discard_nr_blocks);
2963
2964	for (; b < e; b++)
2965		set_discard(li->cache, to_dblock(b));
2966}
2967
2968static int load_discard(void *context, sector_t discard_block_size,
2969			dm_dblock_t dblock, bool discard)
2970{
2971	struct discard_load_info *li = context;
2972
2973	li->block_size = discard_block_size;
2974
2975	if (discard) {
2976		if (from_dblock(dblock) == li->discard_end)
2977			/*
2978			 * We're already in a discard range, just extend it.
2979			 */
2980			li->discard_end = li->discard_end + 1ULL;
2981
2982		else {
2983			/*
2984			 * Emit the old range and start a new one.
2985			 */
2986			set_discard_range(li);
2987			li->discard_begin = from_dblock(dblock);
2988			li->discard_end = li->discard_begin + 1ULL;
2989		}
2990	} else {
2991		set_discard_range(li);
2992		li->discard_begin = li->discard_end = 0;
2993	}
2994
2995	return 0;
2996}
2997
2998static dm_cblock_t get_cache_dev_size(struct cache *cache)
2999{
3000	sector_t size = get_dev_size(cache->cache_dev);
3001	(void) sector_div(size, cache->sectors_per_block);
3002	return to_cblock(size);
3003}
3004
3005static bool can_resize(struct cache *cache, dm_cblock_t new_size)
3006{
3007	if (from_cblock(new_size) > from_cblock(cache->cache_size))
3008		return true;
3009
3010	/*
3011	 * We can't drop a dirty block when shrinking the cache.
3012	 */
3013	while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
3014		new_size = to_cblock(from_cblock(new_size) + 1);
3015		if (is_dirty(cache, new_size)) {
3016			DMERR("%s: unable to shrink cache; cache block %llu is dirty",
3017			      cache_device_name(cache),
3018			      (unsigned long long) from_cblock(new_size));
3019			return false;
3020		}
3021	}
3022
3023	return true;
3024}
3025
3026static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
3027{
3028	int r;
3029
3030	r = dm_cache_resize(cache->cmd, new_size);
3031	if (r) {
3032		DMERR("%s: could not resize cache metadata", cache_device_name(cache));
3033		metadata_operation_failed(cache, "dm_cache_resize", r);
3034		return r;
3035	}
3036
3037	set_cache_size(cache, new_size);
3038
3039	return 0;
3040}
3041
3042static int cache_preresume(struct dm_target *ti)
3043{
3044	int r = 0;
3045	struct cache *cache = ti->private;
3046	dm_cblock_t csize = get_cache_dev_size(cache);
3047
3048	/*
3049	 * Check to see if the cache has resized.
3050	 */
3051	if (!cache->sized) {
3052		r = resize_cache_dev(cache, csize);
3053		if (r)
3054			return r;
3055
3056		cache->sized = true;
3057
3058	} else if (csize != cache->cache_size) {
3059		if (!can_resize(cache, csize))
3060			return -EINVAL;
3061
3062		r = resize_cache_dev(cache, csize);
3063		if (r)
3064			return r;
3065	}
3066
3067	if (!cache->loaded_mappings) {
3068		r = dm_cache_load_mappings(cache->cmd, cache->policy,
3069					   load_mapping, cache);
3070		if (r) {
3071			DMERR("%s: could not load cache mappings", cache_device_name(cache));
3072			metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3073			return r;
3074		}
3075
3076		cache->loaded_mappings = true;
3077	}
3078
3079	if (!cache->loaded_discards) {
3080		struct discard_load_info li;
3081
3082		/*
3083		 * The discard bitset could have been resized, or the
3084		 * discard block size changed.  To be safe we start by
3085		 * setting every dblock to not discarded.
3086		 */
3087		clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3088
3089		discard_load_info_init(cache, &li);
3090		r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3091		if (r) {
3092			DMERR("%s: could not load origin discards", cache_device_name(cache));
3093			metadata_operation_failed(cache, "dm_cache_load_discards", r);
3094			return r;
3095		}
3096		set_discard_range(&li);
3097
3098		cache->loaded_discards = true;
3099	}
3100
3101	return r;
3102}
3103
3104static void cache_resume(struct dm_target *ti)
3105{
3106	struct cache *cache = ti->private;
3107
3108	cache->need_tick_bio = true;
3109	allow_background_work(cache);
3110	do_waker(&cache->waker.work);
3111}
3112
3113/*
3114 * Status format:
3115 *
3116 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3117 * <cache block size> <#used cache blocks>/<#total cache blocks>
3118 * <#read hits> <#read misses> <#write hits> <#write misses>
3119 * <#demotions> <#promotions> <#dirty>
3120 * <#features> <features>*
3121 * <#core args> <core args>
3122 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3123 */
3124static void cache_status(struct dm_target *ti, status_type_t type,
3125			 unsigned status_flags, char *result, unsigned maxlen)
3126{
3127	int r = 0;
3128	unsigned i;
3129	ssize_t sz = 0;
3130	dm_block_t nr_free_blocks_metadata = 0;
3131	dm_block_t nr_blocks_metadata = 0;
3132	char buf[BDEVNAME_SIZE];
3133	struct cache *cache = ti->private;
3134	dm_cblock_t residency;
3135	bool needs_check;
3136
3137	switch (type) {
3138	case STATUSTYPE_INFO:
3139		if (get_cache_mode(cache) == CM_FAIL) {
3140			DMEMIT("Fail");
3141			break;
3142		}
3143
3144		/* Commit to ensure statistics aren't out-of-date */
3145		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3146			(void) commit(cache, false);
3147
3148		r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3149		if (r) {
3150			DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3151			      cache_device_name(cache), r);
3152			goto err;
3153		}
3154
3155		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3156		if (r) {
3157			DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3158			      cache_device_name(cache), r);
3159			goto err;
3160		}
3161
3162		residency = policy_residency(cache->policy);
3163
3164		DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3165		       (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3166		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3167		       (unsigned long long)nr_blocks_metadata,
3168		       (unsigned long long)cache->sectors_per_block,
3169		       (unsigned long long) from_cblock(residency),
3170		       (unsigned long long) from_cblock(cache->cache_size),
3171		       (unsigned) atomic_read(&cache->stats.read_hit),
3172		       (unsigned) atomic_read(&cache->stats.read_miss),
3173		       (unsigned) atomic_read(&cache->stats.write_hit),
3174		       (unsigned) atomic_read(&cache->stats.write_miss),
3175		       (unsigned) atomic_read(&cache->stats.demotion),
3176		       (unsigned) atomic_read(&cache->stats.promotion),
3177		       (unsigned long) atomic_read(&cache->nr_dirty));
3178
3179		if (cache->features.metadata_version == 2)
3180			DMEMIT("2 metadata2 ");
3181		else
3182			DMEMIT("1 ");
3183
3184		if (writethrough_mode(cache))
3185			DMEMIT("writethrough ");
3186
3187		else if (passthrough_mode(cache))
3188			DMEMIT("passthrough ");
3189
3190		else if (writeback_mode(cache))
3191			DMEMIT("writeback ");
3192
3193		else {
3194			DMERR("%s: internal error: unknown io mode: %d",
3195			      cache_device_name(cache), (int) cache->features.io_mode);
3196			goto err;
3197		}
3198
3199		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3200
3201		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3202		if (sz < maxlen) {
3203			r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3204			if (r)
3205				DMERR("%s: policy_emit_config_values returned %d",
3206				      cache_device_name(cache), r);
3207		}
3208
3209		if (get_cache_mode(cache) == CM_READ_ONLY)
3210			DMEMIT("ro ");
3211		else
3212			DMEMIT("rw ");
3213
3214		r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3215
3216		if (r || needs_check)
3217			DMEMIT("needs_check ");
3218		else
3219			DMEMIT("- ");
3220
3221		break;
3222
3223	case STATUSTYPE_TABLE:
3224		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3225		DMEMIT("%s ", buf);
3226		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3227		DMEMIT("%s ", buf);
3228		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3229		DMEMIT("%s", buf);
3230
3231		for (i = 0; i < cache->nr_ctr_args - 1; i++)
3232			DMEMIT(" %s", cache->ctr_args[i]);
3233		if (cache->nr_ctr_args)
3234			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3235	}
3236
3237	return;
3238
3239err:
3240	DMEMIT("Error");
3241}
3242
3243/*
3244 * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
3245 * the one-past-the-end value.
3246 */
3247struct cblock_range {
3248	dm_cblock_t begin;
3249	dm_cblock_t end;
3250};
3251
3252/*
3253 * A cache block range can take two forms:
3254 *
3255 * i) A single cblock, eg. '3456'
3256 * ii) A begin and end cblock with a dash between, eg. 123-234
3257 */
3258static int parse_cblock_range(struct cache *cache, const char *str,
3259			      struct cblock_range *result)
3260{
3261	char dummy;
3262	uint64_t b, e;
3263	int r;
3264
3265	/*
3266	 * Try and parse form (ii) first.
3267	 */
3268	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3269	if (r < 0)
3270		return r;
3271
3272	if (r == 2) {
3273		result->begin = to_cblock(b);
3274		result->end = to_cblock(e);
3275		return 0;
3276	}
3277
3278	/*
3279	 * That didn't work, try form (i).
3280	 */
3281	r = sscanf(str, "%llu%c", &b, &dummy);
3282	if (r < 0)
3283		return r;
3284
3285	if (r == 1) {
3286		result->begin = to_cblock(b);
3287		result->end = to_cblock(from_cblock(result->begin) + 1u);
3288		return 0;
3289	}
3290
3291	DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3292	return -EINVAL;
3293}
3294
3295static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3296{
3297	uint64_t b = from_cblock(range->begin);
3298	uint64_t e = from_cblock(range->end);
3299	uint64_t n = from_cblock(cache->cache_size);
3300
3301	if (b >= n) {
3302		DMERR("%s: begin cblock out of range: %llu >= %llu",
3303		      cache_device_name(cache), b, n);
3304		return -EINVAL;
3305	}
3306
3307	if (e > n) {
3308		DMERR("%s: end cblock out of range: %llu > %llu",
3309		      cache_device_name(cache), e, n);
3310		return -EINVAL;
3311	}
3312
3313	if (b >= e) {
3314		DMERR("%s: invalid cblock range: %llu >= %llu",
3315		      cache_device_name(cache), b, e);
3316		return -EINVAL;
3317	}
3318
3319	return 0;
3320}
3321
3322static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3323{
3324	return to_cblock(from_cblock(b) + 1);
3325}
3326
3327static int request_invalidation(struct cache *cache, struct cblock_range *range)
3328{
3329	int r = 0;
3330
3331	/*
3332	 * We don't need to do any locking here because we know we're in
3333	 * passthrough mode.  There's is potential for a race between an
3334	 * invalidation triggered by an io and an invalidation message.  This
3335	 * is harmless, we must not worry if the policy call fails.
3336	 */
3337	while (range->begin != range->end) {
3338		r = invalidate_cblock(cache, range->begin);
3339		if (r)
3340			return r;
3341
3342		range->begin = cblock_succ(range->begin);
3343	}
3344
3345	cache->commit_requested = true;
3346	return r;
3347}
3348
3349static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3350					      const char **cblock_ranges)
3351{
3352	int r = 0;
3353	unsigned i;
3354	struct cblock_range range;
3355
3356	if (!passthrough_mode(cache)) {
3357		DMERR("%s: cache has to be in passthrough mode for invalidation",
3358		      cache_device_name(cache));
3359		return -EPERM;
3360	}
3361
3362	for (i = 0; i < count; i++) {
3363		r = parse_cblock_range(cache, cblock_ranges[i], &range);
3364		if (r)
3365			break;
3366
3367		r = validate_cblock_range(cache, &range);
3368		if (r)
3369			break;
3370
3371		/*
3372		 * Pass begin and end origin blocks to the worker and wake it.
3373		 */
3374		r = request_invalidation(cache, &range);
3375		if (r)
3376			break;
3377	}
3378
3379	return r;
3380}
3381
3382/*
3383 * Supports
3384 *	"<key> <value>"
3385 * and
3386 *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3387 *
3388 * The key migration_threshold is supported by the cache target core.
3389 */
3390static int cache_message(struct dm_target *ti, unsigned argc, char **argv,
3391			 char *result, unsigned maxlen)
3392{
3393	struct cache *cache = ti->private;
3394
3395	if (!argc)
3396		return -EINVAL;
3397
3398	if (get_cache_mode(cache) >= CM_READ_ONLY) {
3399		DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3400		      cache_device_name(cache));
3401		return -EOPNOTSUPP;
3402	}
3403
3404	if (!strcasecmp(argv[0], "invalidate_cblocks"))
3405		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3406
3407	if (argc != 2)
3408		return -EINVAL;
3409
3410	return set_config_value(cache, argv[0], argv[1]);
3411}
3412
3413static int cache_iterate_devices(struct dm_target *ti,
3414				 iterate_devices_callout_fn fn, void *data)
3415{
3416	int r = 0;
3417	struct cache *cache = ti->private;
3418
3419	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3420	if (!r)
3421		r = fn(ti, cache->origin_dev, 0, ti->len, data);
3422
3423	return r;
3424}
3425
3426static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3427{
3428	/*
3429	 * FIXME: these limits may be incompatible with the cache device
3430	 */
3431	limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3432					    cache->origin_sectors);
3433	limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3434}
3435
3436static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3437{
3438	struct cache *cache = ti->private;
3439	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3440
3441	/*
3442	 * If the system-determined stacked limits are compatible with the
3443	 * cache's blocksize (io_opt is a factor) do not override them.
3444	 */
3445	if (io_opt_sectors < cache->sectors_per_block ||
3446	    do_div(io_opt_sectors, cache->sectors_per_block)) {
3447		blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3448		blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3449	}
3450	set_discard_limits(cache, limits);
3451}
3452
3453/*----------------------------------------------------------------*/
3454
3455static struct target_type cache_target = {
3456	.name = "cache",
3457	.version = {2, 0, 0},
3458	.module = THIS_MODULE,
3459	.ctr = cache_ctr,
3460	.dtr = cache_dtr,
3461	.map = cache_map,
3462	.end_io = cache_end_io,
3463	.postsuspend = cache_postsuspend,
3464	.preresume = cache_preresume,
3465	.resume = cache_resume,
3466	.status = cache_status,
3467	.message = cache_message,
3468	.iterate_devices = cache_iterate_devices,
3469	.io_hints = cache_io_hints,
3470};
3471
3472static int __init dm_cache_init(void)
3473{
3474	int r;
3475
3476	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3477	if (!migration_cache) {
3478		dm_unregister_target(&cache_target);
3479		return -ENOMEM;
3480	}
3481
3482	r = dm_register_target(&cache_target);
3483	if (r) {
3484		DMERR("cache target registration failed: %d", r);
3485		return r;
3486	}
3487
3488	return 0;
3489}
3490
3491static void __exit dm_cache_exit(void)
3492{
3493	dm_unregister_target(&cache_target);
3494	kmem_cache_destroy(migration_cache);
3495}
3496
3497module_init(dm_cache_init);
3498module_exit(dm_cache_exit);
3499
3500MODULE_DESCRIPTION(DM_NAME " cache target");
3501MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3502MODULE_LICENSE("GPL");