Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * Copyright 2013-2015 Analog Devices Inc.
  3 *  Author: Lars-Peter Clausen <lars@metafoo.de>
  4 *
  5 * Licensed under the GPL-2.
  6 */
  7
  8#include <linux/slab.h>
  9#include <linux/kernel.h>
 10#include <linux/module.h>
 11#include <linux/device.h>
 12#include <linux/workqueue.h>
 13#include <linux/mutex.h>
 14#include <linux/sched.h>
 15#include <linux/poll.h>
 16#include <linux/iio/buffer.h>
 17#include <linux/iio/buffer_impl.h>
 18#include <linux/iio/buffer-dma.h>
 19#include <linux/dma-mapping.h>
 20#include <linux/sizes.h>
 21
 22/*
 23 * For DMA buffers the storage is sub-divided into so called blocks. Each block
 24 * has its own memory buffer. The size of the block is the granularity at which
 25 * memory is exchanged between the hardware and the application. Increasing the
 26 * basic unit of data exchange from one sample to one block decreases the
 27 * management overhead that is associated with each sample. E.g. if we say the
 28 * management overhead for one exchange is x and the unit of exchange is one
 29 * sample the overhead will be x for each sample. Whereas when using a block
 30 * which contains n samples the overhead per sample is reduced to x/n. This
 31 * allows to achieve much higher samplerates than what can be sustained with
 32 * the one sample approach.
 33 *
 34 * Blocks are exchanged between the DMA controller and the application via the
 35 * means of two queues. The incoming queue and the outgoing queue. Blocks on the
 36 * incoming queue are waiting for the DMA controller to pick them up and fill
 37 * them with data. Block on the outgoing queue have been filled with data and
 38 * are waiting for the application to dequeue them and read the data.
 39 *
 40 * A block can be in one of the following states:
 41 *  * Owned by the application. In this state the application can read data from
 42 *    the block.
 43 *  * On the incoming list: Blocks on the incoming list are queued up to be
 44 *    processed by the DMA controller.
 45 *  * Owned by the DMA controller: The DMA controller is processing the block
 46 *    and filling it with data.
 47 *  * On the outgoing list: Blocks on the outgoing list have been successfully
 48 *    processed by the DMA controller and contain data. They can be dequeued by
 49 *    the application.
 50 *  * Dead: A block that is dead has been marked as to be freed. It might still
 51 *    be owned by either the application or the DMA controller at the moment.
 52 *    But once they are done processing it instead of going to either the
 53 *    incoming or outgoing queue the block will be freed.
 54 *
 55 * In addition to this blocks are reference counted and the memory associated
 56 * with both the block structure as well as the storage memory for the block
 57 * will be freed when the last reference to the block is dropped. This means a
 58 * block must not be accessed without holding a reference.
 59 *
 60 * The iio_dma_buffer implementation provides a generic infrastructure for
 61 * managing the blocks.
 62 *
 63 * A driver for a specific piece of hardware that has DMA capabilities need to
 64 * implement the submit() callback from the iio_dma_buffer_ops structure. This
 65 * callback is supposed to initiate the DMA transfer copying data from the
 66 * converter to the memory region of the block. Once the DMA transfer has been
 67 * completed the driver must call iio_dma_buffer_block_done() for the completed
 68 * block.
 69 *
 70 * Prior to this it must set the bytes_used field of the block contains
 71 * the actual number of bytes in the buffer. Typically this will be equal to the
 72 * size of the block, but if the DMA hardware has certain alignment requirements
 73 * for the transfer length it might choose to use less than the full size. In
 74 * either case it is expected that bytes_used is a multiple of the bytes per
 75 * datum, i.e. the block must not contain partial samples.
 76 *
 77 * The driver must call iio_dma_buffer_block_done() for each block it has
 78 * received through its submit_block() callback, even if it does not actually
 79 * perform a DMA transfer for the block, e.g. because the buffer was disabled
 80 * before the block transfer was started. In this case it should set bytes_used
 81 * to 0.
 82 *
 83 * In addition it is recommended that a driver implements the abort() callback.
 84 * It will be called when the buffer is disabled and can be used to cancel
 85 * pending and stop active transfers.
 86 *
 87 * The specific driver implementation should use the default callback
 88 * implementations provided by this module for the iio_buffer_access_funcs
 89 * struct. It may overload some callbacks with custom variants if the hardware
 90 * has special requirements that are not handled by the generic functions. If a
 91 * driver chooses to overload a callback it has to ensure that the generic
 92 * callback is called from within the custom callback.
 93 */
 94
 95static void iio_buffer_block_release(struct kref *kref)
 96{
 97	struct iio_dma_buffer_block *block = container_of(kref,
 98		struct iio_dma_buffer_block, kref);
 99
100	WARN_ON(block->state != IIO_BLOCK_STATE_DEAD);
101
102	dma_free_coherent(block->queue->dev, PAGE_ALIGN(block->size),
103					block->vaddr, block->phys_addr);
104
105	iio_buffer_put(&block->queue->buffer);
106	kfree(block);
107}
108
109static void iio_buffer_block_get(struct iio_dma_buffer_block *block)
110{
111	kref_get(&block->kref);
112}
113
114static void iio_buffer_block_put(struct iio_dma_buffer_block *block)
115{
116	kref_put(&block->kref, iio_buffer_block_release);
117}
118
119/*
120 * dma_free_coherent can sleep, hence we need to take some special care to be
121 * able to drop a reference from an atomic context.
122 */
123static LIST_HEAD(iio_dma_buffer_dead_blocks);
124static DEFINE_SPINLOCK(iio_dma_buffer_dead_blocks_lock);
125
126static void iio_dma_buffer_cleanup_worker(struct work_struct *work)
127{
128	struct iio_dma_buffer_block *block, *_block;
129	LIST_HEAD(block_list);
130
131	spin_lock_irq(&iio_dma_buffer_dead_blocks_lock);
132	list_splice_tail_init(&iio_dma_buffer_dead_blocks, &block_list);
133	spin_unlock_irq(&iio_dma_buffer_dead_blocks_lock);
134
135	list_for_each_entry_safe(block, _block, &block_list, head)
136		iio_buffer_block_release(&block->kref);
137}
138static DECLARE_WORK(iio_dma_buffer_cleanup_work, iio_dma_buffer_cleanup_worker);
139
140static void iio_buffer_block_release_atomic(struct kref *kref)
141{
142	struct iio_dma_buffer_block *block;
143	unsigned long flags;
144
145	block = container_of(kref, struct iio_dma_buffer_block, kref);
146
147	spin_lock_irqsave(&iio_dma_buffer_dead_blocks_lock, flags);
148	list_add_tail(&block->head, &iio_dma_buffer_dead_blocks);
149	spin_unlock_irqrestore(&iio_dma_buffer_dead_blocks_lock, flags);
150
151	schedule_work(&iio_dma_buffer_cleanup_work);
152}
153
154/*
155 * Version of iio_buffer_block_put() that can be called from atomic context
156 */
157static void iio_buffer_block_put_atomic(struct iio_dma_buffer_block *block)
158{
159	kref_put(&block->kref, iio_buffer_block_release_atomic);
160}
161
162static struct iio_dma_buffer_queue *iio_buffer_to_queue(struct iio_buffer *buf)
163{
164	return container_of(buf, struct iio_dma_buffer_queue, buffer);
165}
166
167static struct iio_dma_buffer_block *iio_dma_buffer_alloc_block(
168	struct iio_dma_buffer_queue *queue, size_t size)
169{
170	struct iio_dma_buffer_block *block;
171
172	block = kzalloc(sizeof(*block), GFP_KERNEL);
173	if (!block)
174		return NULL;
175
176	block->vaddr = dma_alloc_coherent(queue->dev, PAGE_ALIGN(size),
177		&block->phys_addr, GFP_KERNEL);
178	if (!block->vaddr) {
179		kfree(block);
180		return NULL;
181	}
182
183	block->size = size;
184	block->state = IIO_BLOCK_STATE_DEQUEUED;
185	block->queue = queue;
186	INIT_LIST_HEAD(&block->head);
187	kref_init(&block->kref);
188
189	iio_buffer_get(&queue->buffer);
190
191	return block;
192}
193
194static void _iio_dma_buffer_block_done(struct iio_dma_buffer_block *block)
195{
196	struct iio_dma_buffer_queue *queue = block->queue;
197
198	/*
199	 * The buffer has already been freed by the application, just drop the
200	 * reference.
201	 */
202	if (block->state != IIO_BLOCK_STATE_DEAD) {
203		block->state = IIO_BLOCK_STATE_DONE;
204		list_add_tail(&block->head, &queue->outgoing);
205	}
206}
207
208/**
209 * iio_dma_buffer_block_done() - Indicate that a block has been completed
210 * @block: The completed block
211 *
212 * Should be called when the DMA controller has finished handling the block to
213 * pass back ownership of the block to the queue.
214 */
215void iio_dma_buffer_block_done(struct iio_dma_buffer_block *block)
216{
217	struct iio_dma_buffer_queue *queue = block->queue;
218	unsigned long flags;
219
220	spin_lock_irqsave(&queue->list_lock, flags);
221	_iio_dma_buffer_block_done(block);
222	spin_unlock_irqrestore(&queue->list_lock, flags);
223
224	iio_buffer_block_put_atomic(block);
225	wake_up_interruptible_poll(&queue->buffer.pollq, EPOLLIN | EPOLLRDNORM);
226}
227EXPORT_SYMBOL_GPL(iio_dma_buffer_block_done);
228
229/**
230 * iio_dma_buffer_block_list_abort() - Indicate that a list block has been
231 *   aborted
232 * @queue: Queue for which to complete blocks.
233 * @list: List of aborted blocks. All blocks in this list must be from @queue.
234 *
235 * Typically called from the abort() callback after the DMA controller has been
236 * stopped. This will set bytes_used to 0 for each block in the list and then
237 * hand the blocks back to the queue.
238 */
239void iio_dma_buffer_block_list_abort(struct iio_dma_buffer_queue *queue,
240	struct list_head *list)
241{
242	struct iio_dma_buffer_block *block, *_block;
243	unsigned long flags;
244
245	spin_lock_irqsave(&queue->list_lock, flags);
246	list_for_each_entry_safe(block, _block, list, head) {
247		list_del(&block->head);
248		block->bytes_used = 0;
249		_iio_dma_buffer_block_done(block);
250		iio_buffer_block_put_atomic(block);
251	}
252	spin_unlock_irqrestore(&queue->list_lock, flags);
253
254	wake_up_interruptible_poll(&queue->buffer.pollq, EPOLLIN | EPOLLRDNORM);
255}
256EXPORT_SYMBOL_GPL(iio_dma_buffer_block_list_abort);
257
258static bool iio_dma_block_reusable(struct iio_dma_buffer_block *block)
259{
260	/*
261	 * If the core owns the block it can be re-used. This should be the
262	 * default case when enabling the buffer, unless the DMA controller does
263	 * not support abort and has not given back the block yet.
264	 */
265	switch (block->state) {
266	case IIO_BLOCK_STATE_DEQUEUED:
267	case IIO_BLOCK_STATE_QUEUED:
268	case IIO_BLOCK_STATE_DONE:
269		return true;
270	default:
271		return false;
272	}
273}
274
275/**
276 * iio_dma_buffer_request_update() - DMA buffer request_update callback
277 * @buffer: The buffer which to request an update
278 *
279 * Should be used as the iio_dma_buffer_request_update() callback for
280 * iio_buffer_access_ops struct for DMA buffers.
281 */
282int iio_dma_buffer_request_update(struct iio_buffer *buffer)
283{
284	struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
285	struct iio_dma_buffer_block *block;
286	bool try_reuse = false;
287	size_t size;
288	int ret = 0;
289	int i;
290
291	/*
292	 * Split the buffer into two even parts. This is used as a double
293	 * buffering scheme with usually one block at a time being used by the
294	 * DMA and the other one by the application.
295	 */
296	size = DIV_ROUND_UP(queue->buffer.bytes_per_datum *
297		queue->buffer.length, 2);
298
299	mutex_lock(&queue->lock);
300
301	/* Allocations are page aligned */
302	if (PAGE_ALIGN(queue->fileio.block_size) == PAGE_ALIGN(size))
303		try_reuse = true;
304
305	queue->fileio.block_size = size;
306	queue->fileio.active_block = NULL;
307
308	spin_lock_irq(&queue->list_lock);
309	for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
310		block = queue->fileio.blocks[i];
311
312		/* If we can't re-use it free it */
313		if (block && (!iio_dma_block_reusable(block) || !try_reuse))
314			block->state = IIO_BLOCK_STATE_DEAD;
315	}
316
317	/*
318	 * At this point all blocks are either owned by the core or marked as
319	 * dead. This means we can reset the lists without having to fear
320	 * corrution.
321	 */
322	INIT_LIST_HEAD(&queue->outgoing);
323	spin_unlock_irq(&queue->list_lock);
324
325	INIT_LIST_HEAD(&queue->incoming);
326
327	for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
328		if (queue->fileio.blocks[i]) {
329			block = queue->fileio.blocks[i];
330			if (block->state == IIO_BLOCK_STATE_DEAD) {
331				/* Could not reuse it */
332				iio_buffer_block_put(block);
333				block = NULL;
334			} else {
335				block->size = size;
336			}
337		} else {
338			block = NULL;
339		}
340
341		if (!block) {
342			block = iio_dma_buffer_alloc_block(queue, size);
343			if (!block) {
344				ret = -ENOMEM;
345				goto out_unlock;
346			}
347			queue->fileio.blocks[i] = block;
348		}
349
350		block->state = IIO_BLOCK_STATE_QUEUED;
351		list_add_tail(&block->head, &queue->incoming);
352	}
353
354out_unlock:
355	mutex_unlock(&queue->lock);
356
357	return ret;
358}
359EXPORT_SYMBOL_GPL(iio_dma_buffer_request_update);
360
361static void iio_dma_buffer_submit_block(struct iio_dma_buffer_queue *queue,
362	struct iio_dma_buffer_block *block)
363{
364	int ret;
365
366	/*
367	 * If the hardware has already been removed we put the block into
368	 * limbo. It will neither be on the incoming nor outgoing list, nor will
369	 * it ever complete. It will just wait to be freed eventually.
370	 */
371	if (!queue->ops)
372		return;
373
374	block->state = IIO_BLOCK_STATE_ACTIVE;
375	iio_buffer_block_get(block);
376	ret = queue->ops->submit(queue, block);
377	if (ret) {
378		/*
379		 * This is a bit of a problem and there is not much we can do
380		 * other then wait for the buffer to be disabled and re-enabled
381		 * and try again. But it should not really happen unless we run
382		 * out of memory or something similar.
383		 *
384		 * TODO: Implement support in the IIO core to allow buffers to
385		 * notify consumers that something went wrong and the buffer
386		 * should be disabled.
387		 */
388		iio_buffer_block_put(block);
389	}
390}
391
392/**
393 * iio_dma_buffer_enable() - Enable DMA buffer
394 * @buffer: IIO buffer to enable
395 * @indio_dev: IIO device the buffer is attached to
396 *
397 * Needs to be called when the device that the buffer is attached to starts
398 * sampling. Typically should be the iio_buffer_access_ops enable callback.
399 *
400 * This will allocate the DMA buffers and start the DMA transfers.
401 */
402int iio_dma_buffer_enable(struct iio_buffer *buffer,
403	struct iio_dev *indio_dev)
404{
405	struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
406	struct iio_dma_buffer_block *block, *_block;
407
408	mutex_lock(&queue->lock);
409	queue->active = true;
410	list_for_each_entry_safe(block, _block, &queue->incoming, head) {
411		list_del(&block->head);
412		iio_dma_buffer_submit_block(queue, block);
413	}
414	mutex_unlock(&queue->lock);
415
416	return 0;
417}
418EXPORT_SYMBOL_GPL(iio_dma_buffer_enable);
419
420/**
421 * iio_dma_buffer_disable() - Disable DMA buffer
422 * @buffer: IIO DMA buffer to disable
423 * @indio_dev: IIO device the buffer is attached to
424 *
425 * Needs to be called when the device that the buffer is attached to stops
426 * sampling. Typically should be the iio_buffer_access_ops disable callback.
427 */
428int iio_dma_buffer_disable(struct iio_buffer *buffer,
429	struct iio_dev *indio_dev)
430{
431	struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
432
433	mutex_lock(&queue->lock);
434	queue->active = false;
435
436	if (queue->ops && queue->ops->abort)
437		queue->ops->abort(queue);
438	mutex_unlock(&queue->lock);
439
440	return 0;
441}
442EXPORT_SYMBOL_GPL(iio_dma_buffer_disable);
443
444static void iio_dma_buffer_enqueue(struct iio_dma_buffer_queue *queue,
445	struct iio_dma_buffer_block *block)
446{
447	if (block->state == IIO_BLOCK_STATE_DEAD) {
448		iio_buffer_block_put(block);
449	} else if (queue->active) {
450		iio_dma_buffer_submit_block(queue, block);
451	} else {
452		block->state = IIO_BLOCK_STATE_QUEUED;
453		list_add_tail(&block->head, &queue->incoming);
454	}
455}
456
457static struct iio_dma_buffer_block *iio_dma_buffer_dequeue(
458	struct iio_dma_buffer_queue *queue)
459{
460	struct iio_dma_buffer_block *block;
461
462	spin_lock_irq(&queue->list_lock);
463	block = list_first_entry_or_null(&queue->outgoing, struct
464		iio_dma_buffer_block, head);
465	if (block != NULL) {
466		list_del(&block->head);
467		block->state = IIO_BLOCK_STATE_DEQUEUED;
468	}
469	spin_unlock_irq(&queue->list_lock);
470
471	return block;
472}
473
474/**
475 * iio_dma_buffer_read() - DMA buffer read callback
476 * @buffer: Buffer to read form
477 * @n: Number of bytes to read
478 * @user_buffer: Userspace buffer to copy the data to
479 *
480 * Should be used as the read_first_n callback for iio_buffer_access_ops
481 * struct for DMA buffers.
482 */
483int iio_dma_buffer_read(struct iio_buffer *buffer, size_t n,
484	char __user *user_buffer)
485{
486	struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buffer);
487	struct iio_dma_buffer_block *block;
488	int ret;
489
490	if (n < buffer->bytes_per_datum)
491		return -EINVAL;
492
493	mutex_lock(&queue->lock);
494
495	if (!queue->fileio.active_block) {
496		block = iio_dma_buffer_dequeue(queue);
497		if (block == NULL) {
498			ret = 0;
499			goto out_unlock;
500		}
501		queue->fileio.pos = 0;
502		queue->fileio.active_block = block;
503	} else {
504		block = queue->fileio.active_block;
505	}
506
507	n = rounddown(n, buffer->bytes_per_datum);
508	if (n > block->bytes_used - queue->fileio.pos)
509		n = block->bytes_used - queue->fileio.pos;
510
511	if (copy_to_user(user_buffer, block->vaddr + queue->fileio.pos, n)) {
512		ret = -EFAULT;
513		goto out_unlock;
514	}
515
516	queue->fileio.pos += n;
517
518	if (queue->fileio.pos == block->bytes_used) {
519		queue->fileio.active_block = NULL;
520		iio_dma_buffer_enqueue(queue, block);
521	}
522
523	ret = n;
524
525out_unlock:
526	mutex_unlock(&queue->lock);
527
528	return ret;
529}
530EXPORT_SYMBOL_GPL(iio_dma_buffer_read);
531
532/**
533 * iio_dma_buffer_data_available() - DMA buffer data_available callback
534 * @buf: Buffer to check for data availability
535 *
536 * Should be used as the data_available callback for iio_buffer_access_ops
537 * struct for DMA buffers.
538 */
539size_t iio_dma_buffer_data_available(struct iio_buffer *buf)
540{
541	struct iio_dma_buffer_queue *queue = iio_buffer_to_queue(buf);
542	struct iio_dma_buffer_block *block;
543	size_t data_available = 0;
544
545	/*
546	 * For counting the available bytes we'll use the size of the block not
547	 * the number of actual bytes available in the block. Otherwise it is
548	 * possible that we end up with a value that is lower than the watermark
549	 * but won't increase since all blocks are in use.
550	 */
551
552	mutex_lock(&queue->lock);
553	if (queue->fileio.active_block)
554		data_available += queue->fileio.active_block->size;
555
556	spin_lock_irq(&queue->list_lock);
557	list_for_each_entry(block, &queue->outgoing, head)
558		data_available += block->size;
559	spin_unlock_irq(&queue->list_lock);
560	mutex_unlock(&queue->lock);
561
562	return data_available;
563}
564EXPORT_SYMBOL_GPL(iio_dma_buffer_data_available);
565
566/**
567 * iio_dma_buffer_set_bytes_per_datum() - DMA buffer set_bytes_per_datum callback
568 * @buffer: Buffer to set the bytes-per-datum for
569 * @bpd: The new bytes-per-datum value
570 *
571 * Should be used as the set_bytes_per_datum callback for iio_buffer_access_ops
572 * struct for DMA buffers.
573 */
574int iio_dma_buffer_set_bytes_per_datum(struct iio_buffer *buffer, size_t bpd)
575{
576	buffer->bytes_per_datum = bpd;
577
578	return 0;
579}
580EXPORT_SYMBOL_GPL(iio_dma_buffer_set_bytes_per_datum);
581
582/**
583 * iio_dma_buffer_set_length - DMA buffer set_length callback
584 * @buffer: Buffer to set the length for
585 * @length: The new buffer length
586 *
587 * Should be used as the set_length callback for iio_buffer_access_ops
588 * struct for DMA buffers.
589 */
590int iio_dma_buffer_set_length(struct iio_buffer *buffer, unsigned int length)
591{
592	/* Avoid an invalid state */
593	if (length < 2)
594		length = 2;
595	buffer->length = length;
596	buffer->watermark = length / 2;
597
598	return 0;
599}
600EXPORT_SYMBOL_GPL(iio_dma_buffer_set_length);
601
602/**
603 * iio_dma_buffer_init() - Initialize DMA buffer queue
604 * @queue: Buffer to initialize
605 * @dev: DMA device
606 * @ops: DMA buffer queue callback operations
607 *
608 * The DMA device will be used by the queue to do DMA memory allocations. So it
609 * should refer to the device that will perform the DMA to ensure that
610 * allocations are done from a memory region that can be accessed by the device.
611 */
612int iio_dma_buffer_init(struct iio_dma_buffer_queue *queue,
613	struct device *dev, const struct iio_dma_buffer_ops *ops)
614{
615	iio_buffer_init(&queue->buffer);
616	queue->buffer.length = PAGE_SIZE;
617	queue->buffer.watermark = queue->buffer.length / 2;
618	queue->dev = dev;
619	queue->ops = ops;
620
621	INIT_LIST_HEAD(&queue->incoming);
622	INIT_LIST_HEAD(&queue->outgoing);
623
624	mutex_init(&queue->lock);
625	spin_lock_init(&queue->list_lock);
626
627	return 0;
628}
629EXPORT_SYMBOL_GPL(iio_dma_buffer_init);
630
631/**
632 * iio_dma_buffer_exit() - Cleanup DMA buffer queue
633 * @queue: Buffer to cleanup
634 *
635 * After this function has completed it is safe to free any resources that are
636 * associated with the buffer and are accessed inside the callback operations.
637 */
638void iio_dma_buffer_exit(struct iio_dma_buffer_queue *queue)
639{
640	unsigned int i;
641
642	mutex_lock(&queue->lock);
643
644	spin_lock_irq(&queue->list_lock);
645	for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
646		if (!queue->fileio.blocks[i])
647			continue;
648		queue->fileio.blocks[i]->state = IIO_BLOCK_STATE_DEAD;
649	}
650	INIT_LIST_HEAD(&queue->outgoing);
651	spin_unlock_irq(&queue->list_lock);
652
653	INIT_LIST_HEAD(&queue->incoming);
654
655	for (i = 0; i < ARRAY_SIZE(queue->fileio.blocks); i++) {
656		if (!queue->fileio.blocks[i])
657			continue;
658		iio_buffer_block_put(queue->fileio.blocks[i]);
659		queue->fileio.blocks[i] = NULL;
660	}
661	queue->fileio.active_block = NULL;
662	queue->ops = NULL;
663
664	mutex_unlock(&queue->lock);
665}
666EXPORT_SYMBOL_GPL(iio_dma_buffer_exit);
667
668/**
669 * iio_dma_buffer_release() - Release final buffer resources
670 * @queue: Buffer to release
671 *
672 * Frees resources that can't yet be freed in iio_dma_buffer_exit(). Should be
673 * called in the buffers release callback implementation right before freeing
674 * the memory associated with the buffer.
675 */
676void iio_dma_buffer_release(struct iio_dma_buffer_queue *queue)
677{
678	mutex_destroy(&queue->lock);
679}
680EXPORT_SYMBOL_GPL(iio_dma_buffer_release);
681
682MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
683MODULE_DESCRIPTION("DMA buffer for the IIO framework");
684MODULE_LICENSE("GPL v2");