Loading...
1/**************************************************************************
2 *
3 * Copyright © 2009 VMware, Inc., Palo Alto, CA., USA
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28#include "vmwgfx_drv.h"
29#include "vmwgfx_drm.h"
30#include "ttm/ttm_object.h"
31#include "ttm/ttm_placement.h"
32#include "drmP.h"
33
34#define VMW_RES_CONTEXT ttm_driver_type0
35#define VMW_RES_SURFACE ttm_driver_type1
36#define VMW_RES_STREAM ttm_driver_type2
37
38struct vmw_user_context {
39 struct ttm_base_object base;
40 struct vmw_resource res;
41};
42
43struct vmw_user_surface {
44 struct ttm_base_object base;
45 struct vmw_surface srf;
46};
47
48struct vmw_user_dma_buffer {
49 struct ttm_base_object base;
50 struct vmw_dma_buffer dma;
51};
52
53struct vmw_bo_user_rep {
54 uint32_t handle;
55 uint64_t map_handle;
56};
57
58struct vmw_stream {
59 struct vmw_resource res;
60 uint32_t stream_id;
61};
62
63struct vmw_user_stream {
64 struct ttm_base_object base;
65 struct vmw_stream stream;
66};
67
68static inline struct vmw_dma_buffer *
69vmw_dma_buffer(struct ttm_buffer_object *bo)
70{
71 return container_of(bo, struct vmw_dma_buffer, base);
72}
73
74static inline struct vmw_user_dma_buffer *
75vmw_user_dma_buffer(struct ttm_buffer_object *bo)
76{
77 struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
78 return container_of(vmw_bo, struct vmw_user_dma_buffer, dma);
79}
80
81struct vmw_resource *vmw_resource_reference(struct vmw_resource *res)
82{
83 kref_get(&res->kref);
84 return res;
85}
86
87static void vmw_resource_release(struct kref *kref)
88{
89 struct vmw_resource *res =
90 container_of(kref, struct vmw_resource, kref);
91 struct vmw_private *dev_priv = res->dev_priv;
92
93 idr_remove(res->idr, res->id);
94 write_unlock(&dev_priv->resource_lock);
95
96 if (likely(res->hw_destroy != NULL))
97 res->hw_destroy(res);
98
99 if (res->res_free != NULL)
100 res->res_free(res);
101 else
102 kfree(res);
103
104 write_lock(&dev_priv->resource_lock);
105}
106
107void vmw_resource_unreference(struct vmw_resource **p_res)
108{
109 struct vmw_resource *res = *p_res;
110 struct vmw_private *dev_priv = res->dev_priv;
111
112 *p_res = NULL;
113 write_lock(&dev_priv->resource_lock);
114 kref_put(&res->kref, vmw_resource_release);
115 write_unlock(&dev_priv->resource_lock);
116}
117
118static int vmw_resource_init(struct vmw_private *dev_priv,
119 struct vmw_resource *res,
120 struct idr *idr,
121 enum ttm_object_type obj_type,
122 void (*res_free) (struct vmw_resource *res))
123{
124 int ret;
125
126 kref_init(&res->kref);
127 res->hw_destroy = NULL;
128 res->res_free = res_free;
129 res->res_type = obj_type;
130 res->idr = idr;
131 res->avail = false;
132 res->dev_priv = dev_priv;
133
134 do {
135 if (unlikely(idr_pre_get(idr, GFP_KERNEL) == 0))
136 return -ENOMEM;
137
138 write_lock(&dev_priv->resource_lock);
139 ret = idr_get_new_above(idr, res, 1, &res->id);
140 write_unlock(&dev_priv->resource_lock);
141
142 } while (ret == -EAGAIN);
143
144 return ret;
145}
146
147/**
148 * vmw_resource_activate
149 *
150 * @res: Pointer to the newly created resource
151 * @hw_destroy: Destroy function. NULL if none.
152 *
153 * Activate a resource after the hardware has been made aware of it.
154 * Set tye destroy function to @destroy. Typically this frees the
155 * resource and destroys the hardware resources associated with it.
156 * Activate basically means that the function vmw_resource_lookup will
157 * find it.
158 */
159
160static void vmw_resource_activate(struct vmw_resource *res,
161 void (*hw_destroy) (struct vmw_resource *))
162{
163 struct vmw_private *dev_priv = res->dev_priv;
164
165 write_lock(&dev_priv->resource_lock);
166 res->avail = true;
167 res->hw_destroy = hw_destroy;
168 write_unlock(&dev_priv->resource_lock);
169}
170
171struct vmw_resource *vmw_resource_lookup(struct vmw_private *dev_priv,
172 struct idr *idr, int id)
173{
174 struct vmw_resource *res;
175
176 read_lock(&dev_priv->resource_lock);
177 res = idr_find(idr, id);
178 if (res && res->avail)
179 kref_get(&res->kref);
180 else
181 res = NULL;
182 read_unlock(&dev_priv->resource_lock);
183
184 if (unlikely(res == NULL))
185 return NULL;
186
187 return res;
188}
189
190/**
191 * Context management:
192 */
193
194static void vmw_hw_context_destroy(struct vmw_resource *res)
195{
196
197 struct vmw_private *dev_priv = res->dev_priv;
198 struct {
199 SVGA3dCmdHeader header;
200 SVGA3dCmdDestroyContext body;
201 } *cmd = vmw_fifo_reserve(dev_priv, sizeof(*cmd));
202
203 if (unlikely(cmd == NULL)) {
204 DRM_ERROR("Failed reserving FIFO space for surface "
205 "destruction.\n");
206 return;
207 }
208
209 cmd->header.id = cpu_to_le32(SVGA_3D_CMD_CONTEXT_DESTROY);
210 cmd->header.size = cpu_to_le32(sizeof(cmd->body));
211 cmd->body.cid = cpu_to_le32(res->id);
212
213 vmw_fifo_commit(dev_priv, sizeof(*cmd));
214 vmw_3d_resource_dec(dev_priv);
215}
216
217static int vmw_context_init(struct vmw_private *dev_priv,
218 struct vmw_resource *res,
219 void (*res_free) (struct vmw_resource *res))
220{
221 int ret;
222
223 struct {
224 SVGA3dCmdHeader header;
225 SVGA3dCmdDefineContext body;
226 } *cmd;
227
228 ret = vmw_resource_init(dev_priv, res, &dev_priv->context_idr,
229 VMW_RES_CONTEXT, res_free);
230
231 if (unlikely(ret != 0)) {
232 if (res_free == NULL)
233 kfree(res);
234 else
235 res_free(res);
236 return ret;
237 }
238
239 cmd = vmw_fifo_reserve(dev_priv, sizeof(*cmd));
240 if (unlikely(cmd == NULL)) {
241 DRM_ERROR("Fifo reserve failed.\n");
242 vmw_resource_unreference(&res);
243 return -ENOMEM;
244 }
245
246 cmd->header.id = cpu_to_le32(SVGA_3D_CMD_CONTEXT_DEFINE);
247 cmd->header.size = cpu_to_le32(sizeof(cmd->body));
248 cmd->body.cid = cpu_to_le32(res->id);
249
250 vmw_fifo_commit(dev_priv, sizeof(*cmd));
251 (void) vmw_3d_resource_inc(dev_priv);
252 vmw_resource_activate(res, vmw_hw_context_destroy);
253 return 0;
254}
255
256struct vmw_resource *vmw_context_alloc(struct vmw_private *dev_priv)
257{
258 struct vmw_resource *res = kmalloc(sizeof(*res), GFP_KERNEL);
259 int ret;
260
261 if (unlikely(res == NULL))
262 return NULL;
263
264 ret = vmw_context_init(dev_priv, res, NULL);
265 return (ret == 0) ? res : NULL;
266}
267
268/**
269 * User-space context management:
270 */
271
272static void vmw_user_context_free(struct vmw_resource *res)
273{
274 struct vmw_user_context *ctx =
275 container_of(res, struct vmw_user_context, res);
276
277 kfree(ctx);
278}
279
280/**
281 * This function is called when user space has no more references on the
282 * base object. It releases the base-object's reference on the resource object.
283 */
284
285static void vmw_user_context_base_release(struct ttm_base_object **p_base)
286{
287 struct ttm_base_object *base = *p_base;
288 struct vmw_user_context *ctx =
289 container_of(base, struct vmw_user_context, base);
290 struct vmw_resource *res = &ctx->res;
291
292 *p_base = NULL;
293 vmw_resource_unreference(&res);
294}
295
296int vmw_context_destroy_ioctl(struct drm_device *dev, void *data,
297 struct drm_file *file_priv)
298{
299 struct vmw_private *dev_priv = vmw_priv(dev);
300 struct vmw_resource *res;
301 struct vmw_user_context *ctx;
302 struct drm_vmw_context_arg *arg = (struct drm_vmw_context_arg *)data;
303 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
304 int ret = 0;
305
306 res = vmw_resource_lookup(dev_priv, &dev_priv->context_idr, arg->cid);
307 if (unlikely(res == NULL))
308 return -EINVAL;
309
310 if (res->res_free != &vmw_user_context_free) {
311 ret = -EINVAL;
312 goto out;
313 }
314
315 ctx = container_of(res, struct vmw_user_context, res);
316 if (ctx->base.tfile != tfile && !ctx->base.shareable) {
317 ret = -EPERM;
318 goto out;
319 }
320
321 ttm_ref_object_base_unref(tfile, ctx->base.hash.key, TTM_REF_USAGE);
322out:
323 vmw_resource_unreference(&res);
324 return ret;
325}
326
327int vmw_context_define_ioctl(struct drm_device *dev, void *data,
328 struct drm_file *file_priv)
329{
330 struct vmw_private *dev_priv = vmw_priv(dev);
331 struct vmw_user_context *ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
332 struct vmw_resource *res;
333 struct vmw_resource *tmp;
334 struct drm_vmw_context_arg *arg = (struct drm_vmw_context_arg *)data;
335 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
336 int ret;
337
338 if (unlikely(ctx == NULL))
339 return -ENOMEM;
340
341 res = &ctx->res;
342 ctx->base.shareable = false;
343 ctx->base.tfile = NULL;
344
345 ret = vmw_context_init(dev_priv, res, vmw_user_context_free);
346 if (unlikely(ret != 0))
347 return ret;
348
349 tmp = vmw_resource_reference(&ctx->res);
350 ret = ttm_base_object_init(tfile, &ctx->base, false, VMW_RES_CONTEXT,
351 &vmw_user_context_base_release, NULL);
352
353 if (unlikely(ret != 0)) {
354 vmw_resource_unreference(&tmp);
355 goto out_err;
356 }
357
358 arg->cid = res->id;
359out_err:
360 vmw_resource_unreference(&res);
361 return ret;
362
363}
364
365int vmw_context_check(struct vmw_private *dev_priv,
366 struct ttm_object_file *tfile,
367 int id)
368{
369 struct vmw_resource *res;
370 int ret = 0;
371
372 read_lock(&dev_priv->resource_lock);
373 res = idr_find(&dev_priv->context_idr, id);
374 if (res && res->avail) {
375 struct vmw_user_context *ctx =
376 container_of(res, struct vmw_user_context, res);
377 if (ctx->base.tfile != tfile && !ctx->base.shareable)
378 ret = -EPERM;
379 } else
380 ret = -EINVAL;
381 read_unlock(&dev_priv->resource_lock);
382
383 return ret;
384}
385
386
387/**
388 * Surface management.
389 */
390
391static void vmw_hw_surface_destroy(struct vmw_resource *res)
392{
393
394 struct vmw_private *dev_priv = res->dev_priv;
395 struct {
396 SVGA3dCmdHeader header;
397 SVGA3dCmdDestroySurface body;
398 } *cmd = vmw_fifo_reserve(dev_priv, sizeof(*cmd));
399
400 if (unlikely(cmd == NULL)) {
401 DRM_ERROR("Failed reserving FIFO space for surface "
402 "destruction.\n");
403 return;
404 }
405
406 cmd->header.id = cpu_to_le32(SVGA_3D_CMD_SURFACE_DESTROY);
407 cmd->header.size = cpu_to_le32(sizeof(cmd->body));
408 cmd->body.sid = cpu_to_le32(res->id);
409
410 vmw_fifo_commit(dev_priv, sizeof(*cmd));
411 vmw_3d_resource_dec(dev_priv);
412}
413
414void vmw_surface_res_free(struct vmw_resource *res)
415{
416 struct vmw_surface *srf = container_of(res, struct vmw_surface, res);
417
418 kfree(srf->sizes);
419 kfree(srf->snooper.image);
420 kfree(srf);
421}
422
423int vmw_surface_init(struct vmw_private *dev_priv,
424 struct vmw_surface *srf,
425 void (*res_free) (struct vmw_resource *res))
426{
427 int ret;
428 struct {
429 SVGA3dCmdHeader header;
430 SVGA3dCmdDefineSurface body;
431 } *cmd;
432 SVGA3dSize *cmd_size;
433 struct vmw_resource *res = &srf->res;
434 struct drm_vmw_size *src_size;
435 size_t submit_size;
436 uint32_t cmd_len;
437 int i;
438
439 BUG_ON(res_free == NULL);
440 ret = vmw_resource_init(dev_priv, res, &dev_priv->surface_idr,
441 VMW_RES_SURFACE, res_free);
442
443 if (unlikely(ret != 0)) {
444 res_free(res);
445 return ret;
446 }
447
448 submit_size = sizeof(*cmd) + srf->num_sizes * sizeof(SVGA3dSize);
449 cmd_len = sizeof(cmd->body) + srf->num_sizes * sizeof(SVGA3dSize);
450
451 cmd = vmw_fifo_reserve(dev_priv, submit_size);
452 if (unlikely(cmd == NULL)) {
453 DRM_ERROR("Fifo reserve failed for create surface.\n");
454 vmw_resource_unreference(&res);
455 return -ENOMEM;
456 }
457
458 cmd->header.id = cpu_to_le32(SVGA_3D_CMD_SURFACE_DEFINE);
459 cmd->header.size = cpu_to_le32(cmd_len);
460 cmd->body.sid = cpu_to_le32(res->id);
461 cmd->body.surfaceFlags = cpu_to_le32(srf->flags);
462 cmd->body.format = cpu_to_le32(srf->format);
463 for (i = 0; i < DRM_VMW_MAX_SURFACE_FACES; ++i) {
464 cmd->body.face[i].numMipLevels =
465 cpu_to_le32(srf->mip_levels[i]);
466 }
467
468 cmd += 1;
469 cmd_size = (SVGA3dSize *) cmd;
470 src_size = srf->sizes;
471
472 for (i = 0; i < srf->num_sizes; ++i, cmd_size++, src_size++) {
473 cmd_size->width = cpu_to_le32(src_size->width);
474 cmd_size->height = cpu_to_le32(src_size->height);
475 cmd_size->depth = cpu_to_le32(src_size->depth);
476 }
477
478 vmw_fifo_commit(dev_priv, submit_size);
479 (void) vmw_3d_resource_inc(dev_priv);
480 vmw_resource_activate(res, vmw_hw_surface_destroy);
481 return 0;
482}
483
484static void vmw_user_surface_free(struct vmw_resource *res)
485{
486 struct vmw_surface *srf = container_of(res, struct vmw_surface, res);
487 struct vmw_user_surface *user_srf =
488 container_of(srf, struct vmw_user_surface, srf);
489
490 kfree(srf->sizes);
491 kfree(srf->snooper.image);
492 kfree(user_srf);
493}
494
495int vmw_user_surface_lookup_handle(struct vmw_private *dev_priv,
496 struct ttm_object_file *tfile,
497 uint32_t handle, struct vmw_surface **out)
498{
499 struct vmw_resource *res;
500 struct vmw_surface *srf;
501 struct vmw_user_surface *user_srf;
502 struct ttm_base_object *base;
503 int ret = -EINVAL;
504
505 base = ttm_base_object_lookup(tfile, handle);
506 if (unlikely(base == NULL))
507 return -EINVAL;
508
509 if (unlikely(base->object_type != VMW_RES_SURFACE))
510 goto out_bad_resource;
511
512 user_srf = container_of(base, struct vmw_user_surface, base);
513 srf = &user_srf->srf;
514 res = &srf->res;
515
516 read_lock(&dev_priv->resource_lock);
517
518 if (!res->avail || res->res_free != &vmw_user_surface_free) {
519 read_unlock(&dev_priv->resource_lock);
520 goto out_bad_resource;
521 }
522
523 kref_get(&res->kref);
524 read_unlock(&dev_priv->resource_lock);
525
526 *out = srf;
527 ret = 0;
528
529out_bad_resource:
530 ttm_base_object_unref(&base);
531
532 return ret;
533}
534
535static void vmw_user_surface_base_release(struct ttm_base_object **p_base)
536{
537 struct ttm_base_object *base = *p_base;
538 struct vmw_user_surface *user_srf =
539 container_of(base, struct vmw_user_surface, base);
540 struct vmw_resource *res = &user_srf->srf.res;
541
542 *p_base = NULL;
543 vmw_resource_unreference(&res);
544}
545
546int vmw_surface_destroy_ioctl(struct drm_device *dev, void *data,
547 struct drm_file *file_priv)
548{
549 struct drm_vmw_surface_arg *arg = (struct drm_vmw_surface_arg *)data;
550 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
551
552 return ttm_ref_object_base_unref(tfile, arg->sid, TTM_REF_USAGE);
553}
554
555int vmw_surface_define_ioctl(struct drm_device *dev, void *data,
556 struct drm_file *file_priv)
557{
558 struct vmw_private *dev_priv = vmw_priv(dev);
559 struct vmw_user_surface *user_srf =
560 kmalloc(sizeof(*user_srf), GFP_KERNEL);
561 struct vmw_surface *srf;
562 struct vmw_resource *res;
563 struct vmw_resource *tmp;
564 union drm_vmw_surface_create_arg *arg =
565 (union drm_vmw_surface_create_arg *)data;
566 struct drm_vmw_surface_create_req *req = &arg->req;
567 struct drm_vmw_surface_arg *rep = &arg->rep;
568 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
569 struct drm_vmw_size __user *user_sizes;
570 int ret;
571 int i;
572
573 if (unlikely(user_srf == NULL))
574 return -ENOMEM;
575
576 srf = &user_srf->srf;
577 res = &srf->res;
578
579 srf->flags = req->flags;
580 srf->format = req->format;
581 srf->scanout = req->scanout;
582 memcpy(srf->mip_levels, req->mip_levels, sizeof(srf->mip_levels));
583 srf->num_sizes = 0;
584 for (i = 0; i < DRM_VMW_MAX_SURFACE_FACES; ++i)
585 srf->num_sizes += srf->mip_levels[i];
586
587 if (srf->num_sizes > DRM_VMW_MAX_SURFACE_FACES *
588 DRM_VMW_MAX_MIP_LEVELS) {
589 ret = -EINVAL;
590 goto out_err0;
591 }
592
593 srf->sizes = kmalloc(srf->num_sizes * sizeof(*srf->sizes), GFP_KERNEL);
594 if (unlikely(srf->sizes == NULL)) {
595 ret = -ENOMEM;
596 goto out_err0;
597 }
598
599 user_sizes = (struct drm_vmw_size __user *)(unsigned long)
600 req->size_addr;
601
602 ret = copy_from_user(srf->sizes, user_sizes,
603 srf->num_sizes * sizeof(*srf->sizes));
604 if (unlikely(ret != 0)) {
605 ret = -EFAULT;
606 goto out_err1;
607 }
608
609 if (srf->scanout &&
610 srf->num_sizes == 1 &&
611 srf->sizes[0].width == 64 &&
612 srf->sizes[0].height == 64 &&
613 srf->format == SVGA3D_A8R8G8B8) {
614
615 /* allocate image area and clear it */
616 srf->snooper.image = kzalloc(64 * 64 * 4, GFP_KERNEL);
617 if (!srf->snooper.image) {
618 DRM_ERROR("Failed to allocate cursor_image\n");
619 ret = -ENOMEM;
620 goto out_err1;
621 }
622 } else {
623 srf->snooper.image = NULL;
624 }
625 srf->snooper.crtc = NULL;
626
627 user_srf->base.shareable = false;
628 user_srf->base.tfile = NULL;
629
630 /**
631 * From this point, the generic resource management functions
632 * destroy the object on failure.
633 */
634
635 ret = vmw_surface_init(dev_priv, srf, vmw_user_surface_free);
636 if (unlikely(ret != 0))
637 return ret;
638
639 tmp = vmw_resource_reference(&srf->res);
640 ret = ttm_base_object_init(tfile, &user_srf->base,
641 req->shareable, VMW_RES_SURFACE,
642 &vmw_user_surface_base_release, NULL);
643
644 if (unlikely(ret != 0)) {
645 vmw_resource_unreference(&tmp);
646 vmw_resource_unreference(&res);
647 return ret;
648 }
649
650 rep->sid = user_srf->base.hash.key;
651 if (rep->sid == SVGA3D_INVALID_ID)
652 DRM_ERROR("Created bad Surface ID.\n");
653
654 vmw_resource_unreference(&res);
655 return 0;
656out_err1:
657 kfree(srf->sizes);
658out_err0:
659 kfree(user_srf);
660 return ret;
661}
662
663int vmw_surface_reference_ioctl(struct drm_device *dev, void *data,
664 struct drm_file *file_priv)
665{
666 union drm_vmw_surface_reference_arg *arg =
667 (union drm_vmw_surface_reference_arg *)data;
668 struct drm_vmw_surface_arg *req = &arg->req;
669 struct drm_vmw_surface_create_req *rep = &arg->rep;
670 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
671 struct vmw_surface *srf;
672 struct vmw_user_surface *user_srf;
673 struct drm_vmw_size __user *user_sizes;
674 struct ttm_base_object *base;
675 int ret = -EINVAL;
676
677 base = ttm_base_object_lookup(tfile, req->sid);
678 if (unlikely(base == NULL)) {
679 DRM_ERROR("Could not find surface to reference.\n");
680 return -EINVAL;
681 }
682
683 if (unlikely(base->object_type != VMW_RES_SURFACE))
684 goto out_bad_resource;
685
686 user_srf = container_of(base, struct vmw_user_surface, base);
687 srf = &user_srf->srf;
688
689 ret = ttm_ref_object_add(tfile, &user_srf->base, TTM_REF_USAGE, NULL);
690 if (unlikely(ret != 0)) {
691 DRM_ERROR("Could not add a reference to a surface.\n");
692 goto out_no_reference;
693 }
694
695 rep->flags = srf->flags;
696 rep->format = srf->format;
697 memcpy(rep->mip_levels, srf->mip_levels, sizeof(srf->mip_levels));
698 user_sizes = (struct drm_vmw_size __user *)(unsigned long)
699 rep->size_addr;
700
701 if (user_sizes)
702 ret = copy_to_user(user_sizes, srf->sizes,
703 srf->num_sizes * sizeof(*srf->sizes));
704 if (unlikely(ret != 0)) {
705 DRM_ERROR("copy_to_user failed %p %u\n",
706 user_sizes, srf->num_sizes);
707 ret = -EFAULT;
708 }
709out_bad_resource:
710out_no_reference:
711 ttm_base_object_unref(&base);
712
713 return ret;
714}
715
716int vmw_surface_check(struct vmw_private *dev_priv,
717 struct ttm_object_file *tfile,
718 uint32_t handle, int *id)
719{
720 struct ttm_base_object *base;
721 struct vmw_user_surface *user_srf;
722
723 int ret = -EPERM;
724
725 base = ttm_base_object_lookup(tfile, handle);
726 if (unlikely(base == NULL))
727 return -EINVAL;
728
729 if (unlikely(base->object_type != VMW_RES_SURFACE))
730 goto out_bad_surface;
731
732 user_srf = container_of(base, struct vmw_user_surface, base);
733 *id = user_srf->srf.res.id;
734 ret = 0;
735
736out_bad_surface:
737 /**
738 * FIXME: May deadlock here when called from the
739 * command parsing code.
740 */
741
742 ttm_base_object_unref(&base);
743 return ret;
744}
745
746/**
747 * Buffer management.
748 */
749
750static size_t vmw_dmabuf_acc_size(struct ttm_bo_global *glob,
751 unsigned long num_pages)
752{
753 static size_t bo_user_size = ~0;
754
755 size_t page_array_size =
756 (num_pages * sizeof(void *) + PAGE_SIZE - 1) & PAGE_MASK;
757
758 if (unlikely(bo_user_size == ~0)) {
759 bo_user_size = glob->ttm_bo_extra_size +
760 ttm_round_pot(sizeof(struct vmw_dma_buffer));
761 }
762
763 return bo_user_size + page_array_size;
764}
765
766void vmw_dmabuf_bo_free(struct ttm_buffer_object *bo)
767{
768 struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
769 struct ttm_bo_global *glob = bo->glob;
770
771 ttm_mem_global_free(glob->mem_glob, bo->acc_size);
772 kfree(vmw_bo);
773}
774
775int vmw_dmabuf_init(struct vmw_private *dev_priv,
776 struct vmw_dma_buffer *vmw_bo,
777 size_t size, struct ttm_placement *placement,
778 bool interruptible,
779 void (*bo_free) (struct ttm_buffer_object *bo))
780{
781 struct ttm_bo_device *bdev = &dev_priv->bdev;
782 struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
783 size_t acc_size;
784 int ret;
785
786 BUG_ON(!bo_free);
787
788 acc_size =
789 vmw_dmabuf_acc_size(bdev->glob,
790 (size + PAGE_SIZE - 1) >> PAGE_SHIFT);
791
792 ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
793 if (unlikely(ret != 0)) {
794 /* we must free the bo here as
795 * ttm_buffer_object_init does so as well */
796 bo_free(&vmw_bo->base);
797 return ret;
798 }
799
800 memset(vmw_bo, 0, sizeof(*vmw_bo));
801
802 INIT_LIST_HEAD(&vmw_bo->validate_list);
803
804 ret = ttm_bo_init(bdev, &vmw_bo->base, size,
805 ttm_bo_type_device, placement,
806 0, 0, interruptible,
807 NULL, acc_size, bo_free);
808 return ret;
809}
810
811static void vmw_user_dmabuf_destroy(struct ttm_buffer_object *bo)
812{
813 struct vmw_user_dma_buffer *vmw_user_bo = vmw_user_dma_buffer(bo);
814 struct ttm_bo_global *glob = bo->glob;
815
816 ttm_mem_global_free(glob->mem_glob, bo->acc_size);
817 kfree(vmw_user_bo);
818}
819
820static void vmw_user_dmabuf_release(struct ttm_base_object **p_base)
821{
822 struct vmw_user_dma_buffer *vmw_user_bo;
823 struct ttm_base_object *base = *p_base;
824 struct ttm_buffer_object *bo;
825
826 *p_base = NULL;
827
828 if (unlikely(base == NULL))
829 return;
830
831 vmw_user_bo = container_of(base, struct vmw_user_dma_buffer, base);
832 bo = &vmw_user_bo->dma.base;
833 ttm_bo_unref(&bo);
834}
835
836int vmw_dmabuf_alloc_ioctl(struct drm_device *dev, void *data,
837 struct drm_file *file_priv)
838{
839 struct vmw_private *dev_priv = vmw_priv(dev);
840 union drm_vmw_alloc_dmabuf_arg *arg =
841 (union drm_vmw_alloc_dmabuf_arg *)data;
842 struct drm_vmw_alloc_dmabuf_req *req = &arg->req;
843 struct drm_vmw_dmabuf_rep *rep = &arg->rep;
844 struct vmw_user_dma_buffer *vmw_user_bo;
845 struct ttm_buffer_object *tmp;
846 struct vmw_master *vmaster = vmw_master(file_priv->master);
847 int ret;
848
849 vmw_user_bo = kzalloc(sizeof(*vmw_user_bo), GFP_KERNEL);
850 if (unlikely(vmw_user_bo == NULL))
851 return -ENOMEM;
852
853 ret = ttm_read_lock(&vmaster->lock, true);
854 if (unlikely(ret != 0)) {
855 kfree(vmw_user_bo);
856 return ret;
857 }
858
859 ret = vmw_dmabuf_init(dev_priv, &vmw_user_bo->dma, req->size,
860 &vmw_vram_sys_placement, true,
861 &vmw_user_dmabuf_destroy);
862 if (unlikely(ret != 0))
863 goto out_no_dmabuf;
864
865 tmp = ttm_bo_reference(&vmw_user_bo->dma.base);
866 ret = ttm_base_object_init(vmw_fpriv(file_priv)->tfile,
867 &vmw_user_bo->base,
868 false,
869 ttm_buffer_type,
870 &vmw_user_dmabuf_release, NULL);
871 if (unlikely(ret != 0))
872 goto out_no_base_object;
873 else {
874 rep->handle = vmw_user_bo->base.hash.key;
875 rep->map_handle = vmw_user_bo->dma.base.addr_space_offset;
876 rep->cur_gmr_id = vmw_user_bo->base.hash.key;
877 rep->cur_gmr_offset = 0;
878 }
879
880out_no_base_object:
881 ttm_bo_unref(&tmp);
882out_no_dmabuf:
883 ttm_read_unlock(&vmaster->lock);
884
885 return ret;
886}
887
888int vmw_dmabuf_unref_ioctl(struct drm_device *dev, void *data,
889 struct drm_file *file_priv)
890{
891 struct drm_vmw_unref_dmabuf_arg *arg =
892 (struct drm_vmw_unref_dmabuf_arg *)data;
893
894 return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
895 arg->handle,
896 TTM_REF_USAGE);
897}
898
899uint32_t vmw_dmabuf_validate_node(struct ttm_buffer_object *bo,
900 uint32_t cur_validate_node)
901{
902 struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
903
904 if (likely(vmw_bo->on_validate_list))
905 return vmw_bo->cur_validate_node;
906
907 vmw_bo->cur_validate_node = cur_validate_node;
908 vmw_bo->on_validate_list = true;
909
910 return cur_validate_node;
911}
912
913void vmw_dmabuf_validate_clear(struct ttm_buffer_object *bo)
914{
915 struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
916
917 vmw_bo->on_validate_list = false;
918}
919
920int vmw_user_dmabuf_lookup(struct ttm_object_file *tfile,
921 uint32_t handle, struct vmw_dma_buffer **out)
922{
923 struct vmw_user_dma_buffer *vmw_user_bo;
924 struct ttm_base_object *base;
925
926 base = ttm_base_object_lookup(tfile, handle);
927 if (unlikely(base == NULL)) {
928 printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
929 (unsigned long)handle);
930 return -ESRCH;
931 }
932
933 if (unlikely(base->object_type != ttm_buffer_type)) {
934 ttm_base_object_unref(&base);
935 printk(KERN_ERR "Invalid buffer object handle 0x%08lx.\n",
936 (unsigned long)handle);
937 return -EINVAL;
938 }
939
940 vmw_user_bo = container_of(base, struct vmw_user_dma_buffer, base);
941 (void)ttm_bo_reference(&vmw_user_bo->dma.base);
942 ttm_base_object_unref(&base);
943 *out = &vmw_user_bo->dma;
944
945 return 0;
946}
947
948/*
949 * Stream management
950 */
951
952static void vmw_stream_destroy(struct vmw_resource *res)
953{
954 struct vmw_private *dev_priv = res->dev_priv;
955 struct vmw_stream *stream;
956 int ret;
957
958 DRM_INFO("%s: unref\n", __func__);
959 stream = container_of(res, struct vmw_stream, res);
960
961 ret = vmw_overlay_unref(dev_priv, stream->stream_id);
962 WARN_ON(ret != 0);
963}
964
965static int vmw_stream_init(struct vmw_private *dev_priv,
966 struct vmw_stream *stream,
967 void (*res_free) (struct vmw_resource *res))
968{
969 struct vmw_resource *res = &stream->res;
970 int ret;
971
972 ret = vmw_resource_init(dev_priv, res, &dev_priv->stream_idr,
973 VMW_RES_STREAM, res_free);
974
975 if (unlikely(ret != 0)) {
976 if (res_free == NULL)
977 kfree(stream);
978 else
979 res_free(&stream->res);
980 return ret;
981 }
982
983 ret = vmw_overlay_claim(dev_priv, &stream->stream_id);
984 if (ret) {
985 vmw_resource_unreference(&res);
986 return ret;
987 }
988
989 DRM_INFO("%s: claimed\n", __func__);
990
991 vmw_resource_activate(&stream->res, vmw_stream_destroy);
992 return 0;
993}
994
995/**
996 * User-space context management:
997 */
998
999static void vmw_user_stream_free(struct vmw_resource *res)
1000{
1001 struct vmw_user_stream *stream =
1002 container_of(res, struct vmw_user_stream, stream.res);
1003
1004 kfree(stream);
1005}
1006
1007/**
1008 * This function is called when user space has no more references on the
1009 * base object. It releases the base-object's reference on the resource object.
1010 */
1011
1012static void vmw_user_stream_base_release(struct ttm_base_object **p_base)
1013{
1014 struct ttm_base_object *base = *p_base;
1015 struct vmw_user_stream *stream =
1016 container_of(base, struct vmw_user_stream, base);
1017 struct vmw_resource *res = &stream->stream.res;
1018
1019 *p_base = NULL;
1020 vmw_resource_unreference(&res);
1021}
1022
1023int vmw_stream_unref_ioctl(struct drm_device *dev, void *data,
1024 struct drm_file *file_priv)
1025{
1026 struct vmw_private *dev_priv = vmw_priv(dev);
1027 struct vmw_resource *res;
1028 struct vmw_user_stream *stream;
1029 struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
1030 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1031 int ret = 0;
1032
1033 res = vmw_resource_lookup(dev_priv, &dev_priv->stream_idr, arg->stream_id);
1034 if (unlikely(res == NULL))
1035 return -EINVAL;
1036
1037 if (res->res_free != &vmw_user_stream_free) {
1038 ret = -EINVAL;
1039 goto out;
1040 }
1041
1042 stream = container_of(res, struct vmw_user_stream, stream.res);
1043 if (stream->base.tfile != tfile) {
1044 ret = -EINVAL;
1045 goto out;
1046 }
1047
1048 ttm_ref_object_base_unref(tfile, stream->base.hash.key, TTM_REF_USAGE);
1049out:
1050 vmw_resource_unreference(&res);
1051 return ret;
1052}
1053
1054int vmw_stream_claim_ioctl(struct drm_device *dev, void *data,
1055 struct drm_file *file_priv)
1056{
1057 struct vmw_private *dev_priv = vmw_priv(dev);
1058 struct vmw_user_stream *stream = kmalloc(sizeof(*stream), GFP_KERNEL);
1059 struct vmw_resource *res;
1060 struct vmw_resource *tmp;
1061 struct drm_vmw_stream_arg *arg = (struct drm_vmw_stream_arg *)data;
1062 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
1063 int ret;
1064
1065 if (unlikely(stream == NULL))
1066 return -ENOMEM;
1067
1068 res = &stream->stream.res;
1069 stream->base.shareable = false;
1070 stream->base.tfile = NULL;
1071
1072 ret = vmw_stream_init(dev_priv, &stream->stream, vmw_user_stream_free);
1073 if (unlikely(ret != 0))
1074 return ret;
1075
1076 tmp = vmw_resource_reference(res);
1077 ret = ttm_base_object_init(tfile, &stream->base, false, VMW_RES_STREAM,
1078 &vmw_user_stream_base_release, NULL);
1079
1080 if (unlikely(ret != 0)) {
1081 vmw_resource_unreference(&tmp);
1082 goto out_err;
1083 }
1084
1085 arg->stream_id = res->id;
1086out_err:
1087 vmw_resource_unreference(&res);
1088 return ret;
1089}
1090
1091int vmw_user_stream_lookup(struct vmw_private *dev_priv,
1092 struct ttm_object_file *tfile,
1093 uint32_t *inout_id, struct vmw_resource **out)
1094{
1095 struct vmw_user_stream *stream;
1096 struct vmw_resource *res;
1097 int ret;
1098
1099 res = vmw_resource_lookup(dev_priv, &dev_priv->stream_idr, *inout_id);
1100 if (unlikely(res == NULL))
1101 return -EINVAL;
1102
1103 if (res->res_free != &vmw_user_stream_free) {
1104 ret = -EINVAL;
1105 goto err_ref;
1106 }
1107
1108 stream = container_of(res, struct vmw_user_stream, stream.res);
1109 if (stream->base.tfile != tfile) {
1110 ret = -EPERM;
1111 goto err_ref;
1112 }
1113
1114 *inout_id = stream->stream.stream_id;
1115 *out = res;
1116 return 0;
1117err_ref:
1118 vmw_resource_unreference(&res);
1119 return ret;
1120}
1/**************************************************************************
2 *
3 * Copyright © 2009-2015 VMware, Inc., Palo Alto, CA., USA
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27
28#include "vmwgfx_drv.h"
29#include <drm/vmwgfx_drm.h>
30#include <drm/ttm/ttm_object.h>
31#include <drm/ttm/ttm_placement.h>
32#include <drm/drmP.h>
33#include "vmwgfx_resource_priv.h"
34#include "vmwgfx_binding.h"
35
36#define VMW_RES_EVICT_ERR_COUNT 10
37
38struct vmw_user_dma_buffer {
39 struct ttm_prime_object prime;
40 struct vmw_dma_buffer dma;
41};
42
43struct vmw_bo_user_rep {
44 uint32_t handle;
45 uint64_t map_handle;
46};
47
48static inline struct vmw_dma_buffer *
49vmw_dma_buffer(struct ttm_buffer_object *bo)
50{
51 return container_of(bo, struct vmw_dma_buffer, base);
52}
53
54static inline struct vmw_user_dma_buffer *
55vmw_user_dma_buffer(struct ttm_buffer_object *bo)
56{
57 struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
58 return container_of(vmw_bo, struct vmw_user_dma_buffer, dma);
59}
60
61struct vmw_resource *vmw_resource_reference(struct vmw_resource *res)
62{
63 kref_get(&res->kref);
64 return res;
65}
66
67struct vmw_resource *
68vmw_resource_reference_unless_doomed(struct vmw_resource *res)
69{
70 return kref_get_unless_zero(&res->kref) ? res : NULL;
71}
72
73/**
74 * vmw_resource_release_id - release a resource id to the id manager.
75 *
76 * @res: Pointer to the resource.
77 *
78 * Release the resource id to the resource id manager and set it to -1
79 */
80void vmw_resource_release_id(struct vmw_resource *res)
81{
82 struct vmw_private *dev_priv = res->dev_priv;
83 struct idr *idr = &dev_priv->res_idr[res->func->res_type];
84
85 write_lock(&dev_priv->resource_lock);
86 if (res->id != -1)
87 idr_remove(idr, res->id);
88 res->id = -1;
89 write_unlock(&dev_priv->resource_lock);
90}
91
92static void vmw_resource_release(struct kref *kref)
93{
94 struct vmw_resource *res =
95 container_of(kref, struct vmw_resource, kref);
96 struct vmw_private *dev_priv = res->dev_priv;
97 int id;
98 struct idr *idr = &dev_priv->res_idr[res->func->res_type];
99
100 write_lock(&dev_priv->resource_lock);
101 res->avail = false;
102 list_del_init(&res->lru_head);
103 write_unlock(&dev_priv->resource_lock);
104 if (res->backup) {
105 struct ttm_buffer_object *bo = &res->backup->base;
106
107 ttm_bo_reserve(bo, false, false, NULL);
108 if (!list_empty(&res->mob_head) &&
109 res->func->unbind != NULL) {
110 struct ttm_validate_buffer val_buf;
111
112 val_buf.bo = bo;
113 val_buf.shared = false;
114 res->func->unbind(res, false, &val_buf);
115 }
116 res->backup_dirty = false;
117 list_del_init(&res->mob_head);
118 ttm_bo_unreserve(bo);
119 vmw_dmabuf_unreference(&res->backup);
120 }
121
122 if (likely(res->hw_destroy != NULL)) {
123 mutex_lock(&dev_priv->binding_mutex);
124 vmw_binding_res_list_kill(&res->binding_head);
125 mutex_unlock(&dev_priv->binding_mutex);
126 res->hw_destroy(res);
127 }
128
129 id = res->id;
130 if (res->res_free != NULL)
131 res->res_free(res);
132 else
133 kfree(res);
134
135 write_lock(&dev_priv->resource_lock);
136 if (id != -1)
137 idr_remove(idr, id);
138 write_unlock(&dev_priv->resource_lock);
139}
140
141void vmw_resource_unreference(struct vmw_resource **p_res)
142{
143 struct vmw_resource *res = *p_res;
144
145 *p_res = NULL;
146 kref_put(&res->kref, vmw_resource_release);
147}
148
149
150/**
151 * vmw_resource_alloc_id - release a resource id to the id manager.
152 *
153 * @res: Pointer to the resource.
154 *
155 * Allocate the lowest free resource from the resource manager, and set
156 * @res->id to that id. Returns 0 on success and -ENOMEM on failure.
157 */
158int vmw_resource_alloc_id(struct vmw_resource *res)
159{
160 struct vmw_private *dev_priv = res->dev_priv;
161 int ret;
162 struct idr *idr = &dev_priv->res_idr[res->func->res_type];
163
164 BUG_ON(res->id != -1);
165
166 idr_preload(GFP_KERNEL);
167 write_lock(&dev_priv->resource_lock);
168
169 ret = idr_alloc(idr, res, 1, 0, GFP_NOWAIT);
170 if (ret >= 0)
171 res->id = ret;
172
173 write_unlock(&dev_priv->resource_lock);
174 idr_preload_end();
175 return ret < 0 ? ret : 0;
176}
177
178/**
179 * vmw_resource_init - initialize a struct vmw_resource
180 *
181 * @dev_priv: Pointer to a device private struct.
182 * @res: The struct vmw_resource to initialize.
183 * @obj_type: Resource object type.
184 * @delay_id: Boolean whether to defer device id allocation until
185 * the first validation.
186 * @res_free: Resource destructor.
187 * @func: Resource function table.
188 */
189int vmw_resource_init(struct vmw_private *dev_priv, struct vmw_resource *res,
190 bool delay_id,
191 void (*res_free) (struct vmw_resource *res),
192 const struct vmw_res_func *func)
193{
194 kref_init(&res->kref);
195 res->hw_destroy = NULL;
196 res->res_free = res_free;
197 res->avail = false;
198 res->dev_priv = dev_priv;
199 res->func = func;
200 INIT_LIST_HEAD(&res->lru_head);
201 INIT_LIST_HEAD(&res->mob_head);
202 INIT_LIST_HEAD(&res->binding_head);
203 res->id = -1;
204 res->backup = NULL;
205 res->backup_offset = 0;
206 res->backup_dirty = false;
207 res->res_dirty = false;
208 if (delay_id)
209 return 0;
210 else
211 return vmw_resource_alloc_id(res);
212}
213
214/**
215 * vmw_resource_activate
216 *
217 * @res: Pointer to the newly created resource
218 * @hw_destroy: Destroy function. NULL if none.
219 *
220 * Activate a resource after the hardware has been made aware of it.
221 * Set tye destroy function to @destroy. Typically this frees the
222 * resource and destroys the hardware resources associated with it.
223 * Activate basically means that the function vmw_resource_lookup will
224 * find it.
225 */
226void vmw_resource_activate(struct vmw_resource *res,
227 void (*hw_destroy) (struct vmw_resource *))
228{
229 struct vmw_private *dev_priv = res->dev_priv;
230
231 write_lock(&dev_priv->resource_lock);
232 res->avail = true;
233 res->hw_destroy = hw_destroy;
234 write_unlock(&dev_priv->resource_lock);
235}
236
237/**
238 * vmw_user_resource_lookup_handle - lookup a struct resource from a
239 * TTM user-space handle and perform basic type checks
240 *
241 * @dev_priv: Pointer to a device private struct
242 * @tfile: Pointer to a struct ttm_object_file identifying the caller
243 * @handle: The TTM user-space handle
244 * @converter: Pointer to an object describing the resource type
245 * @p_res: On successful return the location pointed to will contain
246 * a pointer to a refcounted struct vmw_resource.
247 *
248 * If the handle can't be found or is associated with an incorrect resource
249 * type, -EINVAL will be returned.
250 */
251int vmw_user_resource_lookup_handle(struct vmw_private *dev_priv,
252 struct ttm_object_file *tfile,
253 uint32_t handle,
254 const struct vmw_user_resource_conv
255 *converter,
256 struct vmw_resource **p_res)
257{
258 struct ttm_base_object *base;
259 struct vmw_resource *res;
260 int ret = -EINVAL;
261
262 base = ttm_base_object_lookup(tfile, handle);
263 if (unlikely(base == NULL))
264 return -EINVAL;
265
266 if (unlikely(ttm_base_object_type(base) != converter->object_type))
267 goto out_bad_resource;
268
269 res = converter->base_obj_to_res(base);
270
271 read_lock(&dev_priv->resource_lock);
272 if (!res->avail || res->res_free != converter->res_free) {
273 read_unlock(&dev_priv->resource_lock);
274 goto out_bad_resource;
275 }
276
277 kref_get(&res->kref);
278 read_unlock(&dev_priv->resource_lock);
279
280 *p_res = res;
281 ret = 0;
282
283out_bad_resource:
284 ttm_base_object_unref(&base);
285
286 return ret;
287}
288
289/**
290 * Helper function that looks either a surface or dmabuf.
291 *
292 * The pointer this pointed at by out_surf and out_buf needs to be null.
293 */
294int vmw_user_lookup_handle(struct vmw_private *dev_priv,
295 struct ttm_object_file *tfile,
296 uint32_t handle,
297 struct vmw_surface **out_surf,
298 struct vmw_dma_buffer **out_buf)
299{
300 struct vmw_resource *res;
301 int ret;
302
303 BUG_ON(*out_surf || *out_buf);
304
305 ret = vmw_user_resource_lookup_handle(dev_priv, tfile, handle,
306 user_surface_converter,
307 &res);
308 if (!ret) {
309 *out_surf = vmw_res_to_srf(res);
310 return 0;
311 }
312
313 *out_surf = NULL;
314 ret = vmw_user_dmabuf_lookup(tfile, handle, out_buf, NULL);
315 return ret;
316}
317
318/**
319 * Buffer management.
320 */
321
322/**
323 * vmw_dmabuf_acc_size - Calculate the pinned memory usage of buffers
324 *
325 * @dev_priv: Pointer to a struct vmw_private identifying the device.
326 * @size: The requested buffer size.
327 * @user: Whether this is an ordinary dma buffer or a user dma buffer.
328 */
329static size_t vmw_dmabuf_acc_size(struct vmw_private *dev_priv, size_t size,
330 bool user)
331{
332 static size_t struct_size, user_struct_size;
333 size_t num_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
334 size_t page_array_size = ttm_round_pot(num_pages * sizeof(void *));
335
336 if (unlikely(struct_size == 0)) {
337 size_t backend_size = ttm_round_pot(vmw_tt_size);
338
339 struct_size = backend_size +
340 ttm_round_pot(sizeof(struct vmw_dma_buffer));
341 user_struct_size = backend_size +
342 ttm_round_pot(sizeof(struct vmw_user_dma_buffer));
343 }
344
345 if (dev_priv->map_mode == vmw_dma_alloc_coherent)
346 page_array_size +=
347 ttm_round_pot(num_pages * sizeof(dma_addr_t));
348
349 return ((user) ? user_struct_size : struct_size) +
350 page_array_size;
351}
352
353void vmw_dmabuf_bo_free(struct ttm_buffer_object *bo)
354{
355 struct vmw_dma_buffer *vmw_bo = vmw_dma_buffer(bo);
356
357 vmw_dma_buffer_unmap(vmw_bo);
358 kfree(vmw_bo);
359}
360
361static void vmw_user_dmabuf_destroy(struct ttm_buffer_object *bo)
362{
363 struct vmw_user_dma_buffer *vmw_user_bo = vmw_user_dma_buffer(bo);
364
365 vmw_dma_buffer_unmap(&vmw_user_bo->dma);
366 ttm_prime_object_kfree(vmw_user_bo, prime);
367}
368
369int vmw_dmabuf_init(struct vmw_private *dev_priv,
370 struct vmw_dma_buffer *vmw_bo,
371 size_t size, struct ttm_placement *placement,
372 bool interruptible,
373 void (*bo_free) (struct ttm_buffer_object *bo))
374{
375 struct ttm_bo_device *bdev = &dev_priv->bdev;
376 size_t acc_size;
377 int ret;
378 bool user = (bo_free == &vmw_user_dmabuf_destroy);
379
380 BUG_ON(!bo_free && (!user && (bo_free != vmw_dmabuf_bo_free)));
381
382 acc_size = vmw_dmabuf_acc_size(dev_priv, size, user);
383 memset(vmw_bo, 0, sizeof(*vmw_bo));
384
385 INIT_LIST_HEAD(&vmw_bo->res_list);
386
387 ret = ttm_bo_init(bdev, &vmw_bo->base, size,
388 ttm_bo_type_device, placement,
389 0, interruptible, acc_size,
390 NULL, NULL, bo_free);
391 return ret;
392}
393
394static void vmw_user_dmabuf_release(struct ttm_base_object **p_base)
395{
396 struct vmw_user_dma_buffer *vmw_user_bo;
397 struct ttm_base_object *base = *p_base;
398 struct ttm_buffer_object *bo;
399
400 *p_base = NULL;
401
402 if (unlikely(base == NULL))
403 return;
404
405 vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
406 prime.base);
407 bo = &vmw_user_bo->dma.base;
408 ttm_bo_unref(&bo);
409}
410
411static void vmw_user_dmabuf_ref_obj_release(struct ttm_base_object *base,
412 enum ttm_ref_type ref_type)
413{
414 struct vmw_user_dma_buffer *user_bo;
415 user_bo = container_of(base, struct vmw_user_dma_buffer, prime.base);
416
417 switch (ref_type) {
418 case TTM_REF_SYNCCPU_WRITE:
419 ttm_bo_synccpu_write_release(&user_bo->dma.base);
420 break;
421 default:
422 BUG();
423 }
424}
425
426/**
427 * vmw_user_dmabuf_alloc - Allocate a user dma buffer
428 *
429 * @dev_priv: Pointer to a struct device private.
430 * @tfile: Pointer to a struct ttm_object_file on which to register the user
431 * object.
432 * @size: Size of the dma buffer.
433 * @shareable: Boolean whether the buffer is shareable with other open files.
434 * @handle: Pointer to where the handle value should be assigned.
435 * @p_dma_buf: Pointer to where the refcounted struct vmw_dma_buffer pointer
436 * should be assigned.
437 */
438int vmw_user_dmabuf_alloc(struct vmw_private *dev_priv,
439 struct ttm_object_file *tfile,
440 uint32_t size,
441 bool shareable,
442 uint32_t *handle,
443 struct vmw_dma_buffer **p_dma_buf,
444 struct ttm_base_object **p_base)
445{
446 struct vmw_user_dma_buffer *user_bo;
447 struct ttm_buffer_object *tmp;
448 int ret;
449
450 user_bo = kzalloc(sizeof(*user_bo), GFP_KERNEL);
451 if (unlikely(!user_bo)) {
452 DRM_ERROR("Failed to allocate a buffer.\n");
453 return -ENOMEM;
454 }
455
456 ret = vmw_dmabuf_init(dev_priv, &user_bo->dma, size,
457 (dev_priv->has_mob) ?
458 &vmw_sys_placement :
459 &vmw_vram_sys_placement, true,
460 &vmw_user_dmabuf_destroy);
461 if (unlikely(ret != 0))
462 return ret;
463
464 tmp = ttm_bo_reference(&user_bo->dma.base);
465 ret = ttm_prime_object_init(tfile,
466 size,
467 &user_bo->prime,
468 shareable,
469 ttm_buffer_type,
470 &vmw_user_dmabuf_release,
471 &vmw_user_dmabuf_ref_obj_release);
472 if (unlikely(ret != 0)) {
473 ttm_bo_unref(&tmp);
474 goto out_no_base_object;
475 }
476
477 *p_dma_buf = &user_bo->dma;
478 if (p_base) {
479 *p_base = &user_bo->prime.base;
480 kref_get(&(*p_base)->refcount);
481 }
482 *handle = user_bo->prime.base.hash.key;
483
484out_no_base_object:
485 return ret;
486}
487
488/**
489 * vmw_user_dmabuf_verify_access - verify access permissions on this
490 * buffer object.
491 *
492 * @bo: Pointer to the buffer object being accessed
493 * @tfile: Identifying the caller.
494 */
495int vmw_user_dmabuf_verify_access(struct ttm_buffer_object *bo,
496 struct ttm_object_file *tfile)
497{
498 struct vmw_user_dma_buffer *vmw_user_bo;
499
500 if (unlikely(bo->destroy != vmw_user_dmabuf_destroy))
501 return -EPERM;
502
503 vmw_user_bo = vmw_user_dma_buffer(bo);
504
505 /* Check that the caller has opened the object. */
506 if (likely(ttm_ref_object_exists(tfile, &vmw_user_bo->prime.base)))
507 return 0;
508
509 DRM_ERROR("Could not grant buffer access.\n");
510 return -EPERM;
511}
512
513/**
514 * vmw_user_dmabuf_synccpu_grab - Grab a struct vmw_user_dma_buffer for cpu
515 * access, idling previous GPU operations on the buffer and optionally
516 * blocking it for further command submissions.
517 *
518 * @user_bo: Pointer to the buffer object being grabbed for CPU access
519 * @tfile: Identifying the caller.
520 * @flags: Flags indicating how the grab should be performed.
521 *
522 * A blocking grab will be automatically released when @tfile is closed.
523 */
524static int vmw_user_dmabuf_synccpu_grab(struct vmw_user_dma_buffer *user_bo,
525 struct ttm_object_file *tfile,
526 uint32_t flags)
527{
528 struct ttm_buffer_object *bo = &user_bo->dma.base;
529 bool existed;
530 int ret;
531
532 if (flags & drm_vmw_synccpu_allow_cs) {
533 bool nonblock = !!(flags & drm_vmw_synccpu_dontblock);
534 long lret;
535
536 lret = reservation_object_wait_timeout_rcu(bo->resv, true, true,
537 nonblock ? 0 : MAX_SCHEDULE_TIMEOUT);
538 if (!lret)
539 return -EBUSY;
540 else if (lret < 0)
541 return lret;
542 return 0;
543 }
544
545 ret = ttm_bo_synccpu_write_grab
546 (bo, !!(flags & drm_vmw_synccpu_dontblock));
547 if (unlikely(ret != 0))
548 return ret;
549
550 ret = ttm_ref_object_add(tfile, &user_bo->prime.base,
551 TTM_REF_SYNCCPU_WRITE, &existed, false);
552 if (ret != 0 || existed)
553 ttm_bo_synccpu_write_release(&user_bo->dma.base);
554
555 return ret;
556}
557
558/**
559 * vmw_user_dmabuf_synccpu_release - Release a previous grab for CPU access,
560 * and unblock command submission on the buffer if blocked.
561 *
562 * @handle: Handle identifying the buffer object.
563 * @tfile: Identifying the caller.
564 * @flags: Flags indicating the type of release.
565 */
566static int vmw_user_dmabuf_synccpu_release(uint32_t handle,
567 struct ttm_object_file *tfile,
568 uint32_t flags)
569{
570 if (!(flags & drm_vmw_synccpu_allow_cs))
571 return ttm_ref_object_base_unref(tfile, handle,
572 TTM_REF_SYNCCPU_WRITE);
573
574 return 0;
575}
576
577/**
578 * vmw_user_dmabuf_synccpu_release - ioctl function implementing the synccpu
579 * functionality.
580 *
581 * @dev: Identifies the drm device.
582 * @data: Pointer to the ioctl argument.
583 * @file_priv: Identifies the caller.
584 *
585 * This function checks the ioctl arguments for validity and calls the
586 * relevant synccpu functions.
587 */
588int vmw_user_dmabuf_synccpu_ioctl(struct drm_device *dev, void *data,
589 struct drm_file *file_priv)
590{
591 struct drm_vmw_synccpu_arg *arg =
592 (struct drm_vmw_synccpu_arg *) data;
593 struct vmw_dma_buffer *dma_buf;
594 struct vmw_user_dma_buffer *user_bo;
595 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
596 struct ttm_base_object *buffer_base;
597 int ret;
598
599 if ((arg->flags & (drm_vmw_synccpu_read | drm_vmw_synccpu_write)) == 0
600 || (arg->flags & ~(drm_vmw_synccpu_read | drm_vmw_synccpu_write |
601 drm_vmw_synccpu_dontblock |
602 drm_vmw_synccpu_allow_cs)) != 0) {
603 DRM_ERROR("Illegal synccpu flags.\n");
604 return -EINVAL;
605 }
606
607 switch (arg->op) {
608 case drm_vmw_synccpu_grab:
609 ret = vmw_user_dmabuf_lookup(tfile, arg->handle, &dma_buf,
610 &buffer_base);
611 if (unlikely(ret != 0))
612 return ret;
613
614 user_bo = container_of(dma_buf, struct vmw_user_dma_buffer,
615 dma);
616 ret = vmw_user_dmabuf_synccpu_grab(user_bo, tfile, arg->flags);
617 vmw_dmabuf_unreference(&dma_buf);
618 ttm_base_object_unref(&buffer_base);
619 if (unlikely(ret != 0 && ret != -ERESTARTSYS &&
620 ret != -EBUSY)) {
621 DRM_ERROR("Failed synccpu grab on handle 0x%08x.\n",
622 (unsigned int) arg->handle);
623 return ret;
624 }
625 break;
626 case drm_vmw_synccpu_release:
627 ret = vmw_user_dmabuf_synccpu_release(arg->handle, tfile,
628 arg->flags);
629 if (unlikely(ret != 0)) {
630 DRM_ERROR("Failed synccpu release on handle 0x%08x.\n",
631 (unsigned int) arg->handle);
632 return ret;
633 }
634 break;
635 default:
636 DRM_ERROR("Invalid synccpu operation.\n");
637 return -EINVAL;
638 }
639
640 return 0;
641}
642
643int vmw_dmabuf_alloc_ioctl(struct drm_device *dev, void *data,
644 struct drm_file *file_priv)
645{
646 struct vmw_private *dev_priv = vmw_priv(dev);
647 union drm_vmw_alloc_dmabuf_arg *arg =
648 (union drm_vmw_alloc_dmabuf_arg *)data;
649 struct drm_vmw_alloc_dmabuf_req *req = &arg->req;
650 struct drm_vmw_dmabuf_rep *rep = &arg->rep;
651 struct vmw_dma_buffer *dma_buf;
652 uint32_t handle;
653 int ret;
654
655 ret = ttm_read_lock(&dev_priv->reservation_sem, true);
656 if (unlikely(ret != 0))
657 return ret;
658
659 ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
660 req->size, false, &handle, &dma_buf,
661 NULL);
662 if (unlikely(ret != 0))
663 goto out_no_dmabuf;
664
665 rep->handle = handle;
666 rep->map_handle = drm_vma_node_offset_addr(&dma_buf->base.vma_node);
667 rep->cur_gmr_id = handle;
668 rep->cur_gmr_offset = 0;
669
670 vmw_dmabuf_unreference(&dma_buf);
671
672out_no_dmabuf:
673 ttm_read_unlock(&dev_priv->reservation_sem);
674
675 return ret;
676}
677
678int vmw_dmabuf_unref_ioctl(struct drm_device *dev, void *data,
679 struct drm_file *file_priv)
680{
681 struct drm_vmw_unref_dmabuf_arg *arg =
682 (struct drm_vmw_unref_dmabuf_arg *)data;
683
684 return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
685 arg->handle,
686 TTM_REF_USAGE);
687}
688
689int vmw_user_dmabuf_lookup(struct ttm_object_file *tfile,
690 uint32_t handle, struct vmw_dma_buffer **out,
691 struct ttm_base_object **p_base)
692{
693 struct vmw_user_dma_buffer *vmw_user_bo;
694 struct ttm_base_object *base;
695
696 base = ttm_base_object_lookup(tfile, handle);
697 if (unlikely(base == NULL)) {
698 pr_err("Invalid buffer object handle 0x%08lx\n",
699 (unsigned long)handle);
700 return -ESRCH;
701 }
702
703 if (unlikely(ttm_base_object_type(base) != ttm_buffer_type)) {
704 ttm_base_object_unref(&base);
705 pr_err("Invalid buffer object handle 0x%08lx\n",
706 (unsigned long)handle);
707 return -EINVAL;
708 }
709
710 vmw_user_bo = container_of(base, struct vmw_user_dma_buffer,
711 prime.base);
712 (void)ttm_bo_reference(&vmw_user_bo->dma.base);
713 if (p_base)
714 *p_base = base;
715 else
716 ttm_base_object_unref(&base);
717 *out = &vmw_user_bo->dma;
718
719 return 0;
720}
721
722int vmw_user_dmabuf_reference(struct ttm_object_file *tfile,
723 struct vmw_dma_buffer *dma_buf,
724 uint32_t *handle)
725{
726 struct vmw_user_dma_buffer *user_bo;
727
728 if (dma_buf->base.destroy != vmw_user_dmabuf_destroy)
729 return -EINVAL;
730
731 user_bo = container_of(dma_buf, struct vmw_user_dma_buffer, dma);
732
733 *handle = user_bo->prime.base.hash.key;
734 return ttm_ref_object_add(tfile, &user_bo->prime.base,
735 TTM_REF_USAGE, NULL, false);
736}
737
738/**
739 * vmw_dumb_create - Create a dumb kms buffer
740 *
741 * @file_priv: Pointer to a struct drm_file identifying the caller.
742 * @dev: Pointer to the drm device.
743 * @args: Pointer to a struct drm_mode_create_dumb structure
744 *
745 * This is a driver callback for the core drm create_dumb functionality.
746 * Note that this is very similar to the vmw_dmabuf_alloc ioctl, except
747 * that the arguments have a different format.
748 */
749int vmw_dumb_create(struct drm_file *file_priv,
750 struct drm_device *dev,
751 struct drm_mode_create_dumb *args)
752{
753 struct vmw_private *dev_priv = vmw_priv(dev);
754 struct vmw_dma_buffer *dma_buf;
755 int ret;
756
757 args->pitch = args->width * ((args->bpp + 7) / 8);
758 args->size = args->pitch * args->height;
759
760 ret = ttm_read_lock(&dev_priv->reservation_sem, true);
761 if (unlikely(ret != 0))
762 return ret;
763
764 ret = vmw_user_dmabuf_alloc(dev_priv, vmw_fpriv(file_priv)->tfile,
765 args->size, false, &args->handle,
766 &dma_buf, NULL);
767 if (unlikely(ret != 0))
768 goto out_no_dmabuf;
769
770 vmw_dmabuf_unreference(&dma_buf);
771out_no_dmabuf:
772 ttm_read_unlock(&dev_priv->reservation_sem);
773 return ret;
774}
775
776/**
777 * vmw_dumb_map_offset - Return the address space offset of a dumb buffer
778 *
779 * @file_priv: Pointer to a struct drm_file identifying the caller.
780 * @dev: Pointer to the drm device.
781 * @handle: Handle identifying the dumb buffer.
782 * @offset: The address space offset returned.
783 *
784 * This is a driver callback for the core drm dumb_map_offset functionality.
785 */
786int vmw_dumb_map_offset(struct drm_file *file_priv,
787 struct drm_device *dev, uint32_t handle,
788 uint64_t *offset)
789{
790 struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
791 struct vmw_dma_buffer *out_buf;
792 int ret;
793
794 ret = vmw_user_dmabuf_lookup(tfile, handle, &out_buf, NULL);
795 if (ret != 0)
796 return -EINVAL;
797
798 *offset = drm_vma_node_offset_addr(&out_buf->base.vma_node);
799 vmw_dmabuf_unreference(&out_buf);
800 return 0;
801}
802
803/**
804 * vmw_dumb_destroy - Destroy a dumb boffer
805 *
806 * @file_priv: Pointer to a struct drm_file identifying the caller.
807 * @dev: Pointer to the drm device.
808 * @handle: Handle identifying the dumb buffer.
809 *
810 * This is a driver callback for the core drm dumb_destroy functionality.
811 */
812int vmw_dumb_destroy(struct drm_file *file_priv,
813 struct drm_device *dev,
814 uint32_t handle)
815{
816 return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
817 handle, TTM_REF_USAGE);
818}
819
820/**
821 * vmw_resource_buf_alloc - Allocate a backup buffer for a resource.
822 *
823 * @res: The resource for which to allocate a backup buffer.
824 * @interruptible: Whether any sleeps during allocation should be
825 * performed while interruptible.
826 */
827static int vmw_resource_buf_alloc(struct vmw_resource *res,
828 bool interruptible)
829{
830 unsigned long size =
831 (res->backup_size + PAGE_SIZE - 1) & PAGE_MASK;
832 struct vmw_dma_buffer *backup;
833 int ret;
834
835 if (likely(res->backup)) {
836 BUG_ON(res->backup->base.num_pages * PAGE_SIZE < size);
837 return 0;
838 }
839
840 backup = kzalloc(sizeof(*backup), GFP_KERNEL);
841 if (unlikely(!backup))
842 return -ENOMEM;
843
844 ret = vmw_dmabuf_init(res->dev_priv, backup, res->backup_size,
845 res->func->backup_placement,
846 interruptible,
847 &vmw_dmabuf_bo_free);
848 if (unlikely(ret != 0))
849 goto out_no_dmabuf;
850
851 res->backup = backup;
852
853out_no_dmabuf:
854 return ret;
855}
856
857/**
858 * vmw_resource_do_validate - Make a resource up-to-date and visible
859 * to the device.
860 *
861 * @res: The resource to make visible to the device.
862 * @val_buf: Information about a buffer possibly
863 * containing backup data if a bind operation is needed.
864 *
865 * On hardware resource shortage, this function returns -EBUSY and
866 * should be retried once resources have been freed up.
867 */
868static int vmw_resource_do_validate(struct vmw_resource *res,
869 struct ttm_validate_buffer *val_buf)
870{
871 int ret = 0;
872 const struct vmw_res_func *func = res->func;
873
874 if (unlikely(res->id == -1)) {
875 ret = func->create(res);
876 if (unlikely(ret != 0))
877 return ret;
878 }
879
880 if (func->bind &&
881 ((func->needs_backup && list_empty(&res->mob_head) &&
882 val_buf->bo != NULL) ||
883 (!func->needs_backup && val_buf->bo != NULL))) {
884 ret = func->bind(res, val_buf);
885 if (unlikely(ret != 0))
886 goto out_bind_failed;
887 if (func->needs_backup)
888 list_add_tail(&res->mob_head, &res->backup->res_list);
889 }
890
891 /*
892 * Only do this on write operations, and move to
893 * vmw_resource_unreserve if it can be called after
894 * backup buffers have been unreserved. Otherwise
895 * sort out locking.
896 */
897 res->res_dirty = true;
898
899 return 0;
900
901out_bind_failed:
902 func->destroy(res);
903
904 return ret;
905}
906
907/**
908 * vmw_resource_unreserve - Unreserve a resource previously reserved for
909 * command submission.
910 *
911 * @res: Pointer to the struct vmw_resource to unreserve.
912 * @switch_backup: Backup buffer has been switched.
913 * @new_backup: Pointer to new backup buffer if command submission
914 * switched. May be NULL.
915 * @new_backup_offset: New backup offset if @switch_backup is true.
916 *
917 * Currently unreserving a resource means putting it back on the device's
918 * resource lru list, so that it can be evicted if necessary.
919 */
920void vmw_resource_unreserve(struct vmw_resource *res,
921 bool switch_backup,
922 struct vmw_dma_buffer *new_backup,
923 unsigned long new_backup_offset)
924{
925 struct vmw_private *dev_priv = res->dev_priv;
926
927 if (!list_empty(&res->lru_head))
928 return;
929
930 if (switch_backup && new_backup != res->backup) {
931 if (res->backup) {
932 lockdep_assert_held(&res->backup->base.resv->lock.base);
933 list_del_init(&res->mob_head);
934 vmw_dmabuf_unreference(&res->backup);
935 }
936
937 if (new_backup) {
938 res->backup = vmw_dmabuf_reference(new_backup);
939 lockdep_assert_held(&new_backup->base.resv->lock.base);
940 list_add_tail(&res->mob_head, &new_backup->res_list);
941 } else {
942 res->backup = NULL;
943 }
944 }
945 if (switch_backup)
946 res->backup_offset = new_backup_offset;
947
948 if (!res->func->may_evict || res->id == -1 || res->pin_count)
949 return;
950
951 write_lock(&dev_priv->resource_lock);
952 list_add_tail(&res->lru_head,
953 &res->dev_priv->res_lru[res->func->res_type]);
954 write_unlock(&dev_priv->resource_lock);
955}
956
957/**
958 * vmw_resource_check_buffer - Check whether a backup buffer is needed
959 * for a resource and in that case, allocate
960 * one, reserve and validate it.
961 *
962 * @res: The resource for which to allocate a backup buffer.
963 * @interruptible: Whether any sleeps during allocation should be
964 * performed while interruptible.
965 * @val_buf: On successful return contains data about the
966 * reserved and validated backup buffer.
967 */
968static int
969vmw_resource_check_buffer(struct vmw_resource *res,
970 bool interruptible,
971 struct ttm_validate_buffer *val_buf)
972{
973 struct ttm_operation_ctx ctx = { true, false };
974 struct list_head val_list;
975 bool backup_dirty = false;
976 int ret;
977
978 if (unlikely(res->backup == NULL)) {
979 ret = vmw_resource_buf_alloc(res, interruptible);
980 if (unlikely(ret != 0))
981 return ret;
982 }
983
984 INIT_LIST_HEAD(&val_list);
985 val_buf->bo = ttm_bo_reference(&res->backup->base);
986 val_buf->shared = false;
987 list_add_tail(&val_buf->head, &val_list);
988 ret = ttm_eu_reserve_buffers(NULL, &val_list, interruptible, NULL);
989 if (unlikely(ret != 0))
990 goto out_no_reserve;
991
992 if (res->func->needs_backup && list_empty(&res->mob_head))
993 return 0;
994
995 backup_dirty = res->backup_dirty;
996 ret = ttm_bo_validate(&res->backup->base,
997 res->func->backup_placement,
998 &ctx);
999
1000 if (unlikely(ret != 0))
1001 goto out_no_validate;
1002
1003 return 0;
1004
1005out_no_validate:
1006 ttm_eu_backoff_reservation(NULL, &val_list);
1007out_no_reserve:
1008 ttm_bo_unref(&val_buf->bo);
1009 if (backup_dirty)
1010 vmw_dmabuf_unreference(&res->backup);
1011
1012 return ret;
1013}
1014
1015/**
1016 * vmw_resource_reserve - Reserve a resource for command submission
1017 *
1018 * @res: The resource to reserve.
1019 *
1020 * This function takes the resource off the LRU list and make sure
1021 * a backup buffer is present for guest-backed resources. However,
1022 * the buffer may not be bound to the resource at this point.
1023 *
1024 */
1025int vmw_resource_reserve(struct vmw_resource *res, bool interruptible,
1026 bool no_backup)
1027{
1028 struct vmw_private *dev_priv = res->dev_priv;
1029 int ret;
1030
1031 write_lock(&dev_priv->resource_lock);
1032 list_del_init(&res->lru_head);
1033 write_unlock(&dev_priv->resource_lock);
1034
1035 if (res->func->needs_backup && res->backup == NULL &&
1036 !no_backup) {
1037 ret = vmw_resource_buf_alloc(res, interruptible);
1038 if (unlikely(ret != 0)) {
1039 DRM_ERROR("Failed to allocate a backup buffer "
1040 "of size %lu. bytes\n",
1041 (unsigned long) res->backup_size);
1042 return ret;
1043 }
1044 }
1045
1046 return 0;
1047}
1048
1049/**
1050 * vmw_resource_backoff_reservation - Unreserve and unreference a
1051 * backup buffer
1052 *.
1053 * @val_buf: Backup buffer information.
1054 */
1055static void
1056vmw_resource_backoff_reservation(struct ttm_validate_buffer *val_buf)
1057{
1058 struct list_head val_list;
1059
1060 if (likely(val_buf->bo == NULL))
1061 return;
1062
1063 INIT_LIST_HEAD(&val_list);
1064 list_add_tail(&val_buf->head, &val_list);
1065 ttm_eu_backoff_reservation(NULL, &val_list);
1066 ttm_bo_unref(&val_buf->bo);
1067}
1068
1069/**
1070 * vmw_resource_do_evict - Evict a resource, and transfer its data
1071 * to a backup buffer.
1072 *
1073 * @res: The resource to evict.
1074 * @interruptible: Whether to wait interruptible.
1075 */
1076static int vmw_resource_do_evict(struct vmw_resource *res, bool interruptible)
1077{
1078 struct ttm_validate_buffer val_buf;
1079 const struct vmw_res_func *func = res->func;
1080 int ret;
1081
1082 BUG_ON(!func->may_evict);
1083
1084 val_buf.bo = NULL;
1085 val_buf.shared = false;
1086 ret = vmw_resource_check_buffer(res, interruptible, &val_buf);
1087 if (unlikely(ret != 0))
1088 return ret;
1089
1090 if (unlikely(func->unbind != NULL &&
1091 (!func->needs_backup || !list_empty(&res->mob_head)))) {
1092 ret = func->unbind(res, res->res_dirty, &val_buf);
1093 if (unlikely(ret != 0))
1094 goto out_no_unbind;
1095 list_del_init(&res->mob_head);
1096 }
1097 ret = func->destroy(res);
1098 res->backup_dirty = true;
1099 res->res_dirty = false;
1100out_no_unbind:
1101 vmw_resource_backoff_reservation(&val_buf);
1102
1103 return ret;
1104}
1105
1106
1107/**
1108 * vmw_resource_validate - Make a resource up-to-date and visible
1109 * to the device.
1110 *
1111 * @res: The resource to make visible to the device.
1112 *
1113 * On succesful return, any backup DMA buffer pointed to by @res->backup will
1114 * be reserved and validated.
1115 * On hardware resource shortage, this function will repeatedly evict
1116 * resources of the same type until the validation succeeds.
1117 */
1118int vmw_resource_validate(struct vmw_resource *res)
1119{
1120 int ret;
1121 struct vmw_resource *evict_res;
1122 struct vmw_private *dev_priv = res->dev_priv;
1123 struct list_head *lru_list = &dev_priv->res_lru[res->func->res_type];
1124 struct ttm_validate_buffer val_buf;
1125 unsigned err_count = 0;
1126
1127 if (!res->func->create)
1128 return 0;
1129
1130 val_buf.bo = NULL;
1131 val_buf.shared = false;
1132 if (res->backup)
1133 val_buf.bo = &res->backup->base;
1134 do {
1135 ret = vmw_resource_do_validate(res, &val_buf);
1136 if (likely(ret != -EBUSY))
1137 break;
1138
1139 write_lock(&dev_priv->resource_lock);
1140 if (list_empty(lru_list) || !res->func->may_evict) {
1141 DRM_ERROR("Out of device device resources "
1142 "for %s.\n", res->func->type_name);
1143 ret = -EBUSY;
1144 write_unlock(&dev_priv->resource_lock);
1145 break;
1146 }
1147
1148 evict_res = vmw_resource_reference
1149 (list_first_entry(lru_list, struct vmw_resource,
1150 lru_head));
1151 list_del_init(&evict_res->lru_head);
1152
1153 write_unlock(&dev_priv->resource_lock);
1154
1155 ret = vmw_resource_do_evict(evict_res, true);
1156 if (unlikely(ret != 0)) {
1157 write_lock(&dev_priv->resource_lock);
1158 list_add_tail(&evict_res->lru_head, lru_list);
1159 write_unlock(&dev_priv->resource_lock);
1160 if (ret == -ERESTARTSYS ||
1161 ++err_count > VMW_RES_EVICT_ERR_COUNT) {
1162 vmw_resource_unreference(&evict_res);
1163 goto out_no_validate;
1164 }
1165 }
1166
1167 vmw_resource_unreference(&evict_res);
1168 } while (1);
1169
1170 if (unlikely(ret != 0))
1171 goto out_no_validate;
1172 else if (!res->func->needs_backup && res->backup) {
1173 list_del_init(&res->mob_head);
1174 vmw_dmabuf_unreference(&res->backup);
1175 }
1176
1177 return 0;
1178
1179out_no_validate:
1180 return ret;
1181}
1182
1183/**
1184 * vmw_fence_single_bo - Utility function to fence a single TTM buffer
1185 * object without unreserving it.
1186 *
1187 * @bo: Pointer to the struct ttm_buffer_object to fence.
1188 * @fence: Pointer to the fence. If NULL, this function will
1189 * insert a fence into the command stream..
1190 *
1191 * Contrary to the ttm_eu version of this function, it takes only
1192 * a single buffer object instead of a list, and it also doesn't
1193 * unreserve the buffer object, which needs to be done separately.
1194 */
1195void vmw_fence_single_bo(struct ttm_buffer_object *bo,
1196 struct vmw_fence_obj *fence)
1197{
1198 struct ttm_bo_device *bdev = bo->bdev;
1199
1200 struct vmw_private *dev_priv =
1201 container_of(bdev, struct vmw_private, bdev);
1202
1203 if (fence == NULL) {
1204 vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
1205 reservation_object_add_excl_fence(bo->resv, &fence->base);
1206 dma_fence_put(&fence->base);
1207 } else
1208 reservation_object_add_excl_fence(bo->resv, &fence->base);
1209}
1210
1211/**
1212 * vmw_resource_move_notify - TTM move_notify_callback
1213 *
1214 * @bo: The TTM buffer object about to move.
1215 * @mem: The struct ttm_mem_reg indicating to what memory
1216 * region the move is taking place.
1217 *
1218 * Evicts the Guest Backed hardware resource if the backup
1219 * buffer is being moved out of MOB memory.
1220 * Note that this function should not race with the resource
1221 * validation code as long as it accesses only members of struct
1222 * resource that remain static while bo::res is !NULL and
1223 * while we have @bo reserved. struct resource::backup is *not* a
1224 * static member. The resource validation code will take care
1225 * to set @bo::res to NULL, while having @bo reserved when the
1226 * buffer is no longer bound to the resource, so @bo:res can be
1227 * used to determine whether there is a need to unbind and whether
1228 * it is safe to unbind.
1229 */
1230void vmw_resource_move_notify(struct ttm_buffer_object *bo,
1231 struct ttm_mem_reg *mem)
1232{
1233 struct vmw_dma_buffer *dma_buf;
1234
1235 if (mem == NULL)
1236 return;
1237
1238 if (bo->destroy != vmw_dmabuf_bo_free &&
1239 bo->destroy != vmw_user_dmabuf_destroy)
1240 return;
1241
1242 dma_buf = container_of(bo, struct vmw_dma_buffer, base);
1243
1244 /*
1245 * Kill any cached kernel maps before move. An optimization could
1246 * be to do this iff source or destination memory type is VRAM.
1247 */
1248 vmw_dma_buffer_unmap(dma_buf);
1249
1250 if (mem->mem_type != VMW_PL_MOB) {
1251 struct vmw_resource *res, *n;
1252 struct ttm_validate_buffer val_buf;
1253
1254 val_buf.bo = bo;
1255 val_buf.shared = false;
1256
1257 list_for_each_entry_safe(res, n, &dma_buf->res_list, mob_head) {
1258
1259 if (unlikely(res->func->unbind == NULL))
1260 continue;
1261
1262 (void) res->func->unbind(res, true, &val_buf);
1263 res->backup_dirty = true;
1264 res->res_dirty = false;
1265 list_del_init(&res->mob_head);
1266 }
1267
1268 (void) ttm_bo_wait(bo, false, false);
1269 }
1270}
1271
1272
1273/**
1274 * vmw_resource_swap_notify - swapout notify callback.
1275 *
1276 * @bo: The buffer object to be swapped out.
1277 */
1278void vmw_resource_swap_notify(struct ttm_buffer_object *bo)
1279{
1280 if (bo->destroy != vmw_dmabuf_bo_free &&
1281 bo->destroy != vmw_user_dmabuf_destroy)
1282 return;
1283
1284 /* Kill any cached kernel maps before swapout */
1285 vmw_dma_buffer_unmap(vmw_dma_buffer(bo));
1286}
1287
1288
1289/**
1290 * vmw_query_readback_all - Read back cached query states
1291 *
1292 * @dx_query_mob: Buffer containing the DX query MOB
1293 *
1294 * Read back cached states from the device if they exist. This function
1295 * assumings binding_mutex is held.
1296 */
1297int vmw_query_readback_all(struct vmw_dma_buffer *dx_query_mob)
1298{
1299 struct vmw_resource *dx_query_ctx;
1300 struct vmw_private *dev_priv;
1301 struct {
1302 SVGA3dCmdHeader header;
1303 SVGA3dCmdDXReadbackAllQuery body;
1304 } *cmd;
1305
1306
1307 /* No query bound, so do nothing */
1308 if (!dx_query_mob || !dx_query_mob->dx_query_ctx)
1309 return 0;
1310
1311 dx_query_ctx = dx_query_mob->dx_query_ctx;
1312 dev_priv = dx_query_ctx->dev_priv;
1313
1314 cmd = vmw_fifo_reserve_dx(dev_priv, sizeof(*cmd), dx_query_ctx->id);
1315 if (unlikely(cmd == NULL)) {
1316 DRM_ERROR("Failed reserving FIFO space for "
1317 "query MOB read back.\n");
1318 return -ENOMEM;
1319 }
1320
1321 cmd->header.id = SVGA_3D_CMD_DX_READBACK_ALL_QUERY;
1322 cmd->header.size = sizeof(cmd->body);
1323 cmd->body.cid = dx_query_ctx->id;
1324
1325 vmw_fifo_commit(dev_priv, sizeof(*cmd));
1326
1327 /* Triggers a rebind the next time affected context is bound */
1328 dx_query_mob->dx_query_ctx = NULL;
1329
1330 return 0;
1331}
1332
1333
1334
1335/**
1336 * vmw_query_move_notify - Read back cached query states
1337 *
1338 * @bo: The TTM buffer object about to move.
1339 * @mem: The memory region @bo is moving to.
1340 *
1341 * Called before the query MOB is swapped out to read back cached query
1342 * states from the device.
1343 */
1344void vmw_query_move_notify(struct ttm_buffer_object *bo,
1345 struct ttm_mem_reg *mem)
1346{
1347 struct vmw_dma_buffer *dx_query_mob;
1348 struct ttm_bo_device *bdev = bo->bdev;
1349 struct vmw_private *dev_priv;
1350
1351
1352 dev_priv = container_of(bdev, struct vmw_private, bdev);
1353
1354 mutex_lock(&dev_priv->binding_mutex);
1355
1356 dx_query_mob = container_of(bo, struct vmw_dma_buffer, base);
1357 if (mem == NULL || !dx_query_mob || !dx_query_mob->dx_query_ctx) {
1358 mutex_unlock(&dev_priv->binding_mutex);
1359 return;
1360 }
1361
1362 /* If BO is being moved from MOB to system memory */
1363 if (mem->mem_type == TTM_PL_SYSTEM && bo->mem.mem_type == VMW_PL_MOB) {
1364 struct vmw_fence_obj *fence;
1365
1366 (void) vmw_query_readback_all(dx_query_mob);
1367 mutex_unlock(&dev_priv->binding_mutex);
1368
1369 /* Create a fence and attach the BO to it */
1370 (void) vmw_execbuf_fence_commands(NULL, dev_priv, &fence, NULL);
1371 vmw_fence_single_bo(bo, fence);
1372
1373 if (fence != NULL)
1374 vmw_fence_obj_unreference(&fence);
1375
1376 (void) ttm_bo_wait(bo, false, false);
1377 } else
1378 mutex_unlock(&dev_priv->binding_mutex);
1379
1380}
1381
1382/**
1383 * vmw_resource_needs_backup - Return whether a resource needs a backup buffer.
1384 *
1385 * @res: The resource being queried.
1386 */
1387bool vmw_resource_needs_backup(const struct vmw_resource *res)
1388{
1389 return res->func->needs_backup;
1390}
1391
1392/**
1393 * vmw_resource_evict_type - Evict all resources of a specific type
1394 *
1395 * @dev_priv: Pointer to a device private struct
1396 * @type: The resource type to evict
1397 *
1398 * To avoid thrashing starvation or as part of the hibernation sequence,
1399 * try to evict all evictable resources of a specific type.
1400 */
1401static void vmw_resource_evict_type(struct vmw_private *dev_priv,
1402 enum vmw_res_type type)
1403{
1404 struct list_head *lru_list = &dev_priv->res_lru[type];
1405 struct vmw_resource *evict_res;
1406 unsigned err_count = 0;
1407 int ret;
1408
1409 do {
1410 write_lock(&dev_priv->resource_lock);
1411
1412 if (list_empty(lru_list))
1413 goto out_unlock;
1414
1415 evict_res = vmw_resource_reference(
1416 list_first_entry(lru_list, struct vmw_resource,
1417 lru_head));
1418 list_del_init(&evict_res->lru_head);
1419 write_unlock(&dev_priv->resource_lock);
1420
1421 ret = vmw_resource_do_evict(evict_res, false);
1422 if (unlikely(ret != 0)) {
1423 write_lock(&dev_priv->resource_lock);
1424 list_add_tail(&evict_res->lru_head, lru_list);
1425 write_unlock(&dev_priv->resource_lock);
1426 if (++err_count > VMW_RES_EVICT_ERR_COUNT) {
1427 vmw_resource_unreference(&evict_res);
1428 return;
1429 }
1430 }
1431
1432 vmw_resource_unreference(&evict_res);
1433 } while (1);
1434
1435out_unlock:
1436 write_unlock(&dev_priv->resource_lock);
1437}
1438
1439/**
1440 * vmw_resource_evict_all - Evict all evictable resources
1441 *
1442 * @dev_priv: Pointer to a device private struct
1443 *
1444 * To avoid thrashing starvation or as part of the hibernation sequence,
1445 * evict all evictable resources. In particular this means that all
1446 * guest-backed resources that are registered with the device are
1447 * evicted and the OTable becomes clean.
1448 */
1449void vmw_resource_evict_all(struct vmw_private *dev_priv)
1450{
1451 enum vmw_res_type type;
1452
1453 mutex_lock(&dev_priv->cmdbuf_mutex);
1454
1455 for (type = 0; type < vmw_res_max; ++type)
1456 vmw_resource_evict_type(dev_priv, type);
1457
1458 mutex_unlock(&dev_priv->cmdbuf_mutex);
1459}
1460
1461/**
1462 * vmw_resource_pin - Add a pin reference on a resource
1463 *
1464 * @res: The resource to add a pin reference on
1465 *
1466 * This function adds a pin reference, and if needed validates the resource.
1467 * Having a pin reference means that the resource can never be evicted, and
1468 * its id will never change as long as there is a pin reference.
1469 * This function returns 0 on success and a negative error code on failure.
1470 */
1471int vmw_resource_pin(struct vmw_resource *res, bool interruptible)
1472{
1473 struct ttm_operation_ctx ctx = { interruptible, false };
1474 struct vmw_private *dev_priv = res->dev_priv;
1475 int ret;
1476
1477 ttm_write_lock(&dev_priv->reservation_sem, interruptible);
1478 mutex_lock(&dev_priv->cmdbuf_mutex);
1479 ret = vmw_resource_reserve(res, interruptible, false);
1480 if (ret)
1481 goto out_no_reserve;
1482
1483 if (res->pin_count == 0) {
1484 struct vmw_dma_buffer *vbo = NULL;
1485
1486 if (res->backup) {
1487 vbo = res->backup;
1488
1489 ttm_bo_reserve(&vbo->base, interruptible, false, NULL);
1490 if (!vbo->pin_count) {
1491 ret = ttm_bo_validate
1492 (&vbo->base,
1493 res->func->backup_placement,
1494 &ctx);
1495 if (ret) {
1496 ttm_bo_unreserve(&vbo->base);
1497 goto out_no_validate;
1498 }
1499 }
1500
1501 /* Do we really need to pin the MOB as well? */
1502 vmw_bo_pin_reserved(vbo, true);
1503 }
1504 ret = vmw_resource_validate(res);
1505 if (vbo)
1506 ttm_bo_unreserve(&vbo->base);
1507 if (ret)
1508 goto out_no_validate;
1509 }
1510 res->pin_count++;
1511
1512out_no_validate:
1513 vmw_resource_unreserve(res, false, NULL, 0UL);
1514out_no_reserve:
1515 mutex_unlock(&dev_priv->cmdbuf_mutex);
1516 ttm_write_unlock(&dev_priv->reservation_sem);
1517
1518 return ret;
1519}
1520
1521/**
1522 * vmw_resource_unpin - Remove a pin reference from a resource
1523 *
1524 * @res: The resource to remove a pin reference from
1525 *
1526 * Having a pin reference means that the resource can never be evicted, and
1527 * its id will never change as long as there is a pin reference.
1528 */
1529void vmw_resource_unpin(struct vmw_resource *res)
1530{
1531 struct vmw_private *dev_priv = res->dev_priv;
1532 int ret;
1533
1534 (void) ttm_read_lock(&dev_priv->reservation_sem, false);
1535 mutex_lock(&dev_priv->cmdbuf_mutex);
1536
1537 ret = vmw_resource_reserve(res, false, true);
1538 WARN_ON(ret);
1539
1540 WARN_ON(res->pin_count == 0);
1541 if (--res->pin_count == 0 && res->backup) {
1542 struct vmw_dma_buffer *vbo = res->backup;
1543
1544 (void) ttm_bo_reserve(&vbo->base, false, false, NULL);
1545 vmw_bo_pin_reserved(vbo, false);
1546 ttm_bo_unreserve(&vbo->base);
1547 }
1548
1549 vmw_resource_unreserve(res, false, NULL, 0UL);
1550
1551 mutex_unlock(&dev_priv->cmdbuf_mutex);
1552 ttm_read_unlock(&dev_priv->reservation_sem);
1553}
1554
1555/**
1556 * vmw_res_type - Return the resource type
1557 *
1558 * @res: Pointer to the resource
1559 */
1560enum vmw_res_type vmw_res_type(const struct vmw_resource *res)
1561{
1562 return res->func->res_type;
1563}