Loading...
Note: File does not exist in v3.1.
1/*
2 * Copyright © 2014 Broadcom
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24#include <linux/module.h>
25#include <linux/platform_device.h>
26#include <linux/pm_runtime.h>
27#include <linux/device.h>
28#include <linux/io.h>
29#include <linux/sched/signal.h>
30
31#include "uapi/drm/vc4_drm.h"
32#include "vc4_drv.h"
33#include "vc4_regs.h"
34#include "vc4_trace.h"
35
36static void
37vc4_queue_hangcheck(struct drm_device *dev)
38{
39 struct vc4_dev *vc4 = to_vc4_dev(dev);
40
41 mod_timer(&vc4->hangcheck.timer,
42 round_jiffies_up(jiffies + msecs_to_jiffies(100)));
43}
44
45struct vc4_hang_state {
46 struct drm_vc4_get_hang_state user_state;
47
48 u32 bo_count;
49 struct drm_gem_object **bo;
50};
51
52static void
53vc4_free_hang_state(struct drm_device *dev, struct vc4_hang_state *state)
54{
55 unsigned int i;
56
57 for (i = 0; i < state->user_state.bo_count; i++)
58 drm_gem_object_put_unlocked(state->bo[i]);
59
60 kfree(state);
61}
62
63int
64vc4_get_hang_state_ioctl(struct drm_device *dev, void *data,
65 struct drm_file *file_priv)
66{
67 struct drm_vc4_get_hang_state *get_state = data;
68 struct drm_vc4_get_hang_state_bo *bo_state;
69 struct vc4_hang_state *kernel_state;
70 struct drm_vc4_get_hang_state *state;
71 struct vc4_dev *vc4 = to_vc4_dev(dev);
72 unsigned long irqflags;
73 u32 i;
74 int ret = 0;
75
76 spin_lock_irqsave(&vc4->job_lock, irqflags);
77 kernel_state = vc4->hang_state;
78 if (!kernel_state) {
79 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
80 return -ENOENT;
81 }
82 state = &kernel_state->user_state;
83
84 /* If the user's array isn't big enough, just return the
85 * required array size.
86 */
87 if (get_state->bo_count < state->bo_count) {
88 get_state->bo_count = state->bo_count;
89 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
90 return 0;
91 }
92
93 vc4->hang_state = NULL;
94 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
95
96 /* Save the user's BO pointer, so we don't stomp it with the memcpy. */
97 state->bo = get_state->bo;
98 memcpy(get_state, state, sizeof(*state));
99
100 bo_state = kcalloc(state->bo_count, sizeof(*bo_state), GFP_KERNEL);
101 if (!bo_state) {
102 ret = -ENOMEM;
103 goto err_free;
104 }
105
106 for (i = 0; i < state->bo_count; i++) {
107 struct vc4_bo *vc4_bo = to_vc4_bo(kernel_state->bo[i]);
108 u32 handle;
109
110 ret = drm_gem_handle_create(file_priv, kernel_state->bo[i],
111 &handle);
112
113 if (ret) {
114 state->bo_count = i;
115 goto err_delete_handle;
116 }
117 bo_state[i].handle = handle;
118 bo_state[i].paddr = vc4_bo->base.paddr;
119 bo_state[i].size = vc4_bo->base.base.size;
120 }
121
122 if (copy_to_user(u64_to_user_ptr(get_state->bo),
123 bo_state,
124 state->bo_count * sizeof(*bo_state)))
125 ret = -EFAULT;
126
127err_delete_handle:
128 if (ret) {
129 for (i = 0; i < state->bo_count; i++)
130 drm_gem_handle_delete(file_priv, bo_state[i].handle);
131 }
132
133err_free:
134 vc4_free_hang_state(dev, kernel_state);
135 kfree(bo_state);
136
137 return ret;
138}
139
140static void
141vc4_save_hang_state(struct drm_device *dev)
142{
143 struct vc4_dev *vc4 = to_vc4_dev(dev);
144 struct drm_vc4_get_hang_state *state;
145 struct vc4_hang_state *kernel_state;
146 struct vc4_exec_info *exec[2];
147 struct vc4_bo *bo;
148 unsigned long irqflags;
149 unsigned int i, j, k, unref_list_count;
150
151 kernel_state = kcalloc(1, sizeof(*kernel_state), GFP_KERNEL);
152 if (!kernel_state)
153 return;
154
155 state = &kernel_state->user_state;
156
157 spin_lock_irqsave(&vc4->job_lock, irqflags);
158 exec[0] = vc4_first_bin_job(vc4);
159 exec[1] = vc4_first_render_job(vc4);
160 if (!exec[0] && !exec[1]) {
161 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
162 return;
163 }
164
165 /* Get the bos from both binner and renderer into hang state. */
166 state->bo_count = 0;
167 for (i = 0; i < 2; i++) {
168 if (!exec[i])
169 continue;
170
171 unref_list_count = 0;
172 list_for_each_entry(bo, &exec[i]->unref_list, unref_head)
173 unref_list_count++;
174 state->bo_count += exec[i]->bo_count + unref_list_count;
175 }
176
177 kernel_state->bo = kcalloc(state->bo_count,
178 sizeof(*kernel_state->bo), GFP_ATOMIC);
179
180 if (!kernel_state->bo) {
181 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
182 return;
183 }
184
185 k = 0;
186 for (i = 0; i < 2; i++) {
187 if (!exec[i])
188 continue;
189
190 for (j = 0; j < exec[i]->bo_count; j++) {
191 bo = to_vc4_bo(&exec[i]->bo[j]->base);
192
193 /* Retain BOs just in case they were marked purgeable.
194 * This prevents the BO from being purged before
195 * someone had a chance to dump the hang state.
196 */
197 WARN_ON(!refcount_read(&bo->usecnt));
198 refcount_inc(&bo->usecnt);
199 drm_gem_object_get(&exec[i]->bo[j]->base);
200 kernel_state->bo[k++] = &exec[i]->bo[j]->base;
201 }
202
203 list_for_each_entry(bo, &exec[i]->unref_list, unref_head) {
204 /* No need to retain BOs coming from the ->unref_list
205 * because they are naturally unpurgeable.
206 */
207 drm_gem_object_get(&bo->base.base);
208 kernel_state->bo[k++] = &bo->base.base;
209 }
210 }
211
212 WARN_ON_ONCE(k != state->bo_count);
213
214 if (exec[0])
215 state->start_bin = exec[0]->ct0ca;
216 if (exec[1])
217 state->start_render = exec[1]->ct1ca;
218
219 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
220
221 state->ct0ca = V3D_READ(V3D_CTNCA(0));
222 state->ct0ea = V3D_READ(V3D_CTNEA(0));
223
224 state->ct1ca = V3D_READ(V3D_CTNCA(1));
225 state->ct1ea = V3D_READ(V3D_CTNEA(1));
226
227 state->ct0cs = V3D_READ(V3D_CTNCS(0));
228 state->ct1cs = V3D_READ(V3D_CTNCS(1));
229
230 state->ct0ra0 = V3D_READ(V3D_CT00RA0);
231 state->ct1ra0 = V3D_READ(V3D_CT01RA0);
232
233 state->bpca = V3D_READ(V3D_BPCA);
234 state->bpcs = V3D_READ(V3D_BPCS);
235 state->bpoa = V3D_READ(V3D_BPOA);
236 state->bpos = V3D_READ(V3D_BPOS);
237
238 state->vpmbase = V3D_READ(V3D_VPMBASE);
239
240 state->dbge = V3D_READ(V3D_DBGE);
241 state->fdbgo = V3D_READ(V3D_FDBGO);
242 state->fdbgb = V3D_READ(V3D_FDBGB);
243 state->fdbgr = V3D_READ(V3D_FDBGR);
244 state->fdbgs = V3D_READ(V3D_FDBGS);
245 state->errstat = V3D_READ(V3D_ERRSTAT);
246
247 /* We need to turn purgeable BOs into unpurgeable ones so that
248 * userspace has a chance to dump the hang state before the kernel
249 * decides to purge those BOs.
250 * Note that BO consistency at dump time cannot be guaranteed. For
251 * example, if the owner of these BOs decides to re-use them or mark
252 * them purgeable again there's nothing we can do to prevent it.
253 */
254 for (i = 0; i < kernel_state->user_state.bo_count; i++) {
255 struct vc4_bo *bo = to_vc4_bo(kernel_state->bo[i]);
256
257 if (bo->madv == __VC4_MADV_NOTSUPP)
258 continue;
259
260 mutex_lock(&bo->madv_lock);
261 if (!WARN_ON(bo->madv == __VC4_MADV_PURGED))
262 bo->madv = VC4_MADV_WILLNEED;
263 refcount_dec(&bo->usecnt);
264 mutex_unlock(&bo->madv_lock);
265 }
266
267 spin_lock_irqsave(&vc4->job_lock, irqflags);
268 if (vc4->hang_state) {
269 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
270 vc4_free_hang_state(dev, kernel_state);
271 } else {
272 vc4->hang_state = kernel_state;
273 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
274 }
275}
276
277static void
278vc4_reset(struct drm_device *dev)
279{
280 struct vc4_dev *vc4 = to_vc4_dev(dev);
281
282 DRM_INFO("Resetting GPU.\n");
283
284 mutex_lock(&vc4->power_lock);
285 if (vc4->power_refcount) {
286 /* Power the device off and back on the by dropping the
287 * reference on runtime PM.
288 */
289 pm_runtime_put_sync_suspend(&vc4->v3d->pdev->dev);
290 pm_runtime_get_sync(&vc4->v3d->pdev->dev);
291 }
292 mutex_unlock(&vc4->power_lock);
293
294 vc4_irq_reset(dev);
295
296 /* Rearm the hangcheck -- another job might have been waiting
297 * for our hung one to get kicked off, and vc4_irq_reset()
298 * would have started it.
299 */
300 vc4_queue_hangcheck(dev);
301}
302
303static void
304vc4_reset_work(struct work_struct *work)
305{
306 struct vc4_dev *vc4 =
307 container_of(work, struct vc4_dev, hangcheck.reset_work);
308
309 vc4_save_hang_state(vc4->dev);
310
311 vc4_reset(vc4->dev);
312}
313
314static void
315vc4_hangcheck_elapsed(struct timer_list *t)
316{
317 struct vc4_dev *vc4 = from_timer(vc4, t, hangcheck.timer);
318 struct drm_device *dev = vc4->dev;
319 uint32_t ct0ca, ct1ca;
320 unsigned long irqflags;
321 struct vc4_exec_info *bin_exec, *render_exec;
322
323 spin_lock_irqsave(&vc4->job_lock, irqflags);
324
325 bin_exec = vc4_first_bin_job(vc4);
326 render_exec = vc4_first_render_job(vc4);
327
328 /* If idle, we can stop watching for hangs. */
329 if (!bin_exec && !render_exec) {
330 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
331 return;
332 }
333
334 ct0ca = V3D_READ(V3D_CTNCA(0));
335 ct1ca = V3D_READ(V3D_CTNCA(1));
336
337 /* If we've made any progress in execution, rearm the timer
338 * and wait.
339 */
340 if ((bin_exec && ct0ca != bin_exec->last_ct0ca) ||
341 (render_exec && ct1ca != render_exec->last_ct1ca)) {
342 if (bin_exec)
343 bin_exec->last_ct0ca = ct0ca;
344 if (render_exec)
345 render_exec->last_ct1ca = ct1ca;
346 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
347 vc4_queue_hangcheck(dev);
348 return;
349 }
350
351 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
352
353 /* We've gone too long with no progress, reset. This has to
354 * be done from a work struct, since resetting can sleep and
355 * this timer hook isn't allowed to.
356 */
357 schedule_work(&vc4->hangcheck.reset_work);
358}
359
360static void
361submit_cl(struct drm_device *dev, uint32_t thread, uint32_t start, uint32_t end)
362{
363 struct vc4_dev *vc4 = to_vc4_dev(dev);
364
365 /* Set the current and end address of the control list.
366 * Writing the end register is what starts the job.
367 */
368 V3D_WRITE(V3D_CTNCA(thread), start);
369 V3D_WRITE(V3D_CTNEA(thread), end);
370}
371
372int
373vc4_wait_for_seqno(struct drm_device *dev, uint64_t seqno, uint64_t timeout_ns,
374 bool interruptible)
375{
376 struct vc4_dev *vc4 = to_vc4_dev(dev);
377 int ret = 0;
378 unsigned long timeout_expire;
379 DEFINE_WAIT(wait);
380
381 if (vc4->finished_seqno >= seqno)
382 return 0;
383
384 if (timeout_ns == 0)
385 return -ETIME;
386
387 timeout_expire = jiffies + nsecs_to_jiffies(timeout_ns);
388
389 trace_vc4_wait_for_seqno_begin(dev, seqno, timeout_ns);
390 for (;;) {
391 prepare_to_wait(&vc4->job_wait_queue, &wait,
392 interruptible ? TASK_INTERRUPTIBLE :
393 TASK_UNINTERRUPTIBLE);
394
395 if (interruptible && signal_pending(current)) {
396 ret = -ERESTARTSYS;
397 break;
398 }
399
400 if (vc4->finished_seqno >= seqno)
401 break;
402
403 if (timeout_ns != ~0ull) {
404 if (time_after_eq(jiffies, timeout_expire)) {
405 ret = -ETIME;
406 break;
407 }
408 schedule_timeout(timeout_expire - jiffies);
409 } else {
410 schedule();
411 }
412 }
413
414 finish_wait(&vc4->job_wait_queue, &wait);
415 trace_vc4_wait_for_seqno_end(dev, seqno);
416
417 return ret;
418}
419
420static void
421vc4_flush_caches(struct drm_device *dev)
422{
423 struct vc4_dev *vc4 = to_vc4_dev(dev);
424
425 /* Flush the GPU L2 caches. These caches sit on top of system
426 * L3 (the 128kb or so shared with the CPU), and are
427 * non-allocating in the L3.
428 */
429 V3D_WRITE(V3D_L2CACTL,
430 V3D_L2CACTL_L2CCLR);
431
432 V3D_WRITE(V3D_SLCACTL,
433 VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) |
434 VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC) |
435 VC4_SET_FIELD(0xf, V3D_SLCACTL_UCC) |
436 VC4_SET_FIELD(0xf, V3D_SLCACTL_ICC));
437}
438
439static void
440vc4_flush_texture_caches(struct drm_device *dev)
441{
442 struct vc4_dev *vc4 = to_vc4_dev(dev);
443
444 V3D_WRITE(V3D_L2CACTL,
445 V3D_L2CACTL_L2CCLR);
446
447 V3D_WRITE(V3D_SLCACTL,
448 VC4_SET_FIELD(0xf, V3D_SLCACTL_T1CC) |
449 VC4_SET_FIELD(0xf, V3D_SLCACTL_T0CC));
450}
451
452/* Sets the registers for the next job to be actually be executed in
453 * the hardware.
454 *
455 * The job_lock should be held during this.
456 */
457void
458vc4_submit_next_bin_job(struct drm_device *dev)
459{
460 struct vc4_dev *vc4 = to_vc4_dev(dev);
461 struct vc4_exec_info *exec;
462
463again:
464 exec = vc4_first_bin_job(vc4);
465 if (!exec)
466 return;
467
468 vc4_flush_caches(dev);
469
470 /* Only start the perfmon if it was not already started by a previous
471 * job.
472 */
473 if (exec->perfmon && vc4->active_perfmon != exec->perfmon)
474 vc4_perfmon_start(vc4, exec->perfmon);
475
476 /* Either put the job in the binner if it uses the binner, or
477 * immediately move it to the to-be-rendered queue.
478 */
479 if (exec->ct0ca != exec->ct0ea) {
480 submit_cl(dev, 0, exec->ct0ca, exec->ct0ea);
481 } else {
482 struct vc4_exec_info *next;
483
484 vc4_move_job_to_render(dev, exec);
485 next = vc4_first_bin_job(vc4);
486
487 /* We can't start the next bin job if the previous job had a
488 * different perfmon instance attached to it. The same goes
489 * if one of them had a perfmon attached to it and the other
490 * one doesn't.
491 */
492 if (next && next->perfmon == exec->perfmon)
493 goto again;
494 }
495}
496
497void
498vc4_submit_next_render_job(struct drm_device *dev)
499{
500 struct vc4_dev *vc4 = to_vc4_dev(dev);
501 struct vc4_exec_info *exec = vc4_first_render_job(vc4);
502
503 if (!exec)
504 return;
505
506 /* A previous RCL may have written to one of our textures, and
507 * our full cache flush at bin time may have occurred before
508 * that RCL completed. Flush the texture cache now, but not
509 * the instructions or uniforms (since we don't write those
510 * from an RCL).
511 */
512 vc4_flush_texture_caches(dev);
513
514 submit_cl(dev, 1, exec->ct1ca, exec->ct1ea);
515}
516
517void
518vc4_move_job_to_render(struct drm_device *dev, struct vc4_exec_info *exec)
519{
520 struct vc4_dev *vc4 = to_vc4_dev(dev);
521 bool was_empty = list_empty(&vc4->render_job_list);
522
523 list_move_tail(&exec->head, &vc4->render_job_list);
524 if (was_empty)
525 vc4_submit_next_render_job(dev);
526}
527
528static void
529vc4_update_bo_seqnos(struct vc4_exec_info *exec, uint64_t seqno)
530{
531 struct vc4_bo *bo;
532 unsigned i;
533
534 for (i = 0; i < exec->bo_count; i++) {
535 bo = to_vc4_bo(&exec->bo[i]->base);
536 bo->seqno = seqno;
537
538 reservation_object_add_shared_fence(bo->resv, exec->fence);
539 }
540
541 list_for_each_entry(bo, &exec->unref_list, unref_head) {
542 bo->seqno = seqno;
543 }
544
545 for (i = 0; i < exec->rcl_write_bo_count; i++) {
546 bo = to_vc4_bo(&exec->rcl_write_bo[i]->base);
547 bo->write_seqno = seqno;
548
549 reservation_object_add_excl_fence(bo->resv, exec->fence);
550 }
551}
552
553static void
554vc4_unlock_bo_reservations(struct drm_device *dev,
555 struct vc4_exec_info *exec,
556 struct ww_acquire_ctx *acquire_ctx)
557{
558 int i;
559
560 for (i = 0; i < exec->bo_count; i++) {
561 struct vc4_bo *bo = to_vc4_bo(&exec->bo[i]->base);
562
563 ww_mutex_unlock(&bo->resv->lock);
564 }
565
566 ww_acquire_fini(acquire_ctx);
567}
568
569/* Takes the reservation lock on all the BOs being referenced, so that
570 * at queue submit time we can update the reservations.
571 *
572 * We don't lock the RCL the tile alloc/state BOs, or overflow memory
573 * (all of which are on exec->unref_list). They're entirely private
574 * to vc4, so we don't attach dma-buf fences to them.
575 */
576static int
577vc4_lock_bo_reservations(struct drm_device *dev,
578 struct vc4_exec_info *exec,
579 struct ww_acquire_ctx *acquire_ctx)
580{
581 int contended_lock = -1;
582 int i, ret;
583 struct vc4_bo *bo;
584
585 ww_acquire_init(acquire_ctx, &reservation_ww_class);
586
587retry:
588 if (contended_lock != -1) {
589 bo = to_vc4_bo(&exec->bo[contended_lock]->base);
590 ret = ww_mutex_lock_slow_interruptible(&bo->resv->lock,
591 acquire_ctx);
592 if (ret) {
593 ww_acquire_done(acquire_ctx);
594 return ret;
595 }
596 }
597
598 for (i = 0; i < exec->bo_count; i++) {
599 if (i == contended_lock)
600 continue;
601
602 bo = to_vc4_bo(&exec->bo[i]->base);
603
604 ret = ww_mutex_lock_interruptible(&bo->resv->lock, acquire_ctx);
605 if (ret) {
606 int j;
607
608 for (j = 0; j < i; j++) {
609 bo = to_vc4_bo(&exec->bo[j]->base);
610 ww_mutex_unlock(&bo->resv->lock);
611 }
612
613 if (contended_lock != -1 && contended_lock >= i) {
614 bo = to_vc4_bo(&exec->bo[contended_lock]->base);
615
616 ww_mutex_unlock(&bo->resv->lock);
617 }
618
619 if (ret == -EDEADLK) {
620 contended_lock = i;
621 goto retry;
622 }
623
624 ww_acquire_done(acquire_ctx);
625 return ret;
626 }
627 }
628
629 ww_acquire_done(acquire_ctx);
630
631 /* Reserve space for our shared (read-only) fence references,
632 * before we commit the CL to the hardware.
633 */
634 for (i = 0; i < exec->bo_count; i++) {
635 bo = to_vc4_bo(&exec->bo[i]->base);
636
637 ret = reservation_object_reserve_shared(bo->resv);
638 if (ret) {
639 vc4_unlock_bo_reservations(dev, exec, acquire_ctx);
640 return ret;
641 }
642 }
643
644 return 0;
645}
646
647/* Queues a struct vc4_exec_info for execution. If no job is
648 * currently executing, then submits it.
649 *
650 * Unlike most GPUs, our hardware only handles one command list at a
651 * time. To queue multiple jobs at once, we'd need to edit the
652 * previous command list to have a jump to the new one at the end, and
653 * then bump the end address. That's a change for a later date,
654 * though.
655 */
656static int
657vc4_queue_submit(struct drm_device *dev, struct vc4_exec_info *exec,
658 struct ww_acquire_ctx *acquire_ctx)
659{
660 struct vc4_dev *vc4 = to_vc4_dev(dev);
661 struct vc4_exec_info *renderjob;
662 uint64_t seqno;
663 unsigned long irqflags;
664 struct vc4_fence *fence;
665
666 fence = kzalloc(sizeof(*fence), GFP_KERNEL);
667 if (!fence)
668 return -ENOMEM;
669 fence->dev = dev;
670
671 spin_lock_irqsave(&vc4->job_lock, irqflags);
672
673 seqno = ++vc4->emit_seqno;
674 exec->seqno = seqno;
675
676 dma_fence_init(&fence->base, &vc4_fence_ops, &vc4->job_lock,
677 vc4->dma_fence_context, exec->seqno);
678 fence->seqno = exec->seqno;
679 exec->fence = &fence->base;
680
681 vc4_update_bo_seqnos(exec, seqno);
682
683 vc4_unlock_bo_reservations(dev, exec, acquire_ctx);
684
685 list_add_tail(&exec->head, &vc4->bin_job_list);
686
687 /* If no bin job was executing and if the render job (if any) has the
688 * same perfmon as our job attached to it (or if both jobs don't have
689 * perfmon activated), then kick ours off. Otherwise, it'll get
690 * started when the previous job's flush/render done interrupt occurs.
691 */
692 renderjob = vc4_first_render_job(vc4);
693 if (vc4_first_bin_job(vc4) == exec &&
694 (!renderjob || renderjob->perfmon == exec->perfmon)) {
695 vc4_submit_next_bin_job(dev);
696 vc4_queue_hangcheck(dev);
697 }
698
699 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
700
701 return 0;
702}
703
704/**
705 * vc4_cl_lookup_bos() - Sets up exec->bo[] with the GEM objects
706 * referenced by the job.
707 * @dev: DRM device
708 * @file_priv: DRM file for this fd
709 * @exec: V3D job being set up
710 *
711 * The command validator needs to reference BOs by their index within
712 * the submitted job's BO list. This does the validation of the job's
713 * BO list and reference counting for the lifetime of the job.
714 */
715static int
716vc4_cl_lookup_bos(struct drm_device *dev,
717 struct drm_file *file_priv,
718 struct vc4_exec_info *exec)
719{
720 struct drm_vc4_submit_cl *args = exec->args;
721 uint32_t *handles;
722 int ret = 0;
723 int i;
724
725 exec->bo_count = args->bo_handle_count;
726
727 if (!exec->bo_count) {
728 /* See comment on bo_index for why we have to check
729 * this.
730 */
731 DRM_DEBUG("Rendering requires BOs to validate\n");
732 return -EINVAL;
733 }
734
735 exec->bo = kvmalloc_array(exec->bo_count,
736 sizeof(struct drm_gem_cma_object *),
737 GFP_KERNEL | __GFP_ZERO);
738 if (!exec->bo) {
739 DRM_ERROR("Failed to allocate validated BO pointers\n");
740 return -ENOMEM;
741 }
742
743 handles = kvmalloc_array(exec->bo_count, sizeof(uint32_t), GFP_KERNEL);
744 if (!handles) {
745 ret = -ENOMEM;
746 DRM_ERROR("Failed to allocate incoming GEM handles\n");
747 goto fail;
748 }
749
750 if (copy_from_user(handles, u64_to_user_ptr(args->bo_handles),
751 exec->bo_count * sizeof(uint32_t))) {
752 ret = -EFAULT;
753 DRM_ERROR("Failed to copy in GEM handles\n");
754 goto fail;
755 }
756
757 spin_lock(&file_priv->table_lock);
758 for (i = 0; i < exec->bo_count; i++) {
759 struct drm_gem_object *bo = idr_find(&file_priv->object_idr,
760 handles[i]);
761 if (!bo) {
762 DRM_DEBUG("Failed to look up GEM BO %d: %d\n",
763 i, handles[i]);
764 ret = -EINVAL;
765 break;
766 }
767
768 drm_gem_object_get(bo);
769 exec->bo[i] = (struct drm_gem_cma_object *)bo;
770 }
771 spin_unlock(&file_priv->table_lock);
772
773 if (ret)
774 goto fail_put_bo;
775
776 for (i = 0; i < exec->bo_count; i++) {
777 ret = vc4_bo_inc_usecnt(to_vc4_bo(&exec->bo[i]->base));
778 if (ret)
779 goto fail_dec_usecnt;
780 }
781
782 kvfree(handles);
783 return 0;
784
785fail_dec_usecnt:
786 /* Decrease usecnt on acquired objects.
787 * We cannot rely on vc4_complete_exec() to release resources here,
788 * because vc4_complete_exec() has no information about which BO has
789 * had its ->usecnt incremented.
790 * To make things easier we just free everything explicitly and set
791 * exec->bo to NULL so that vc4_complete_exec() skips the 'BO release'
792 * step.
793 */
794 for (i-- ; i >= 0; i--)
795 vc4_bo_dec_usecnt(to_vc4_bo(&exec->bo[i]->base));
796
797fail_put_bo:
798 /* Release any reference to acquired objects. */
799 for (i = 0; i < exec->bo_count && exec->bo[i]; i++)
800 drm_gem_object_put_unlocked(&exec->bo[i]->base);
801
802fail:
803 kvfree(handles);
804 kvfree(exec->bo);
805 exec->bo = NULL;
806 return ret;
807}
808
809static int
810vc4_get_bcl(struct drm_device *dev, struct vc4_exec_info *exec)
811{
812 struct drm_vc4_submit_cl *args = exec->args;
813 void *temp = NULL;
814 void *bin;
815 int ret = 0;
816 uint32_t bin_offset = 0;
817 uint32_t shader_rec_offset = roundup(bin_offset + args->bin_cl_size,
818 16);
819 uint32_t uniforms_offset = shader_rec_offset + args->shader_rec_size;
820 uint32_t exec_size = uniforms_offset + args->uniforms_size;
821 uint32_t temp_size = exec_size + (sizeof(struct vc4_shader_state) *
822 args->shader_rec_count);
823 struct vc4_bo *bo;
824
825 if (shader_rec_offset < args->bin_cl_size ||
826 uniforms_offset < shader_rec_offset ||
827 exec_size < uniforms_offset ||
828 args->shader_rec_count >= (UINT_MAX /
829 sizeof(struct vc4_shader_state)) ||
830 temp_size < exec_size) {
831 DRM_DEBUG("overflow in exec arguments\n");
832 ret = -EINVAL;
833 goto fail;
834 }
835
836 /* Allocate space where we'll store the copied in user command lists
837 * and shader records.
838 *
839 * We don't just copy directly into the BOs because we need to
840 * read the contents back for validation, and I think the
841 * bo->vaddr is uncached access.
842 */
843 temp = kvmalloc_array(temp_size, 1, GFP_KERNEL);
844 if (!temp) {
845 DRM_ERROR("Failed to allocate storage for copying "
846 "in bin/render CLs.\n");
847 ret = -ENOMEM;
848 goto fail;
849 }
850 bin = temp + bin_offset;
851 exec->shader_rec_u = temp + shader_rec_offset;
852 exec->uniforms_u = temp + uniforms_offset;
853 exec->shader_state = temp + exec_size;
854 exec->shader_state_size = args->shader_rec_count;
855
856 if (copy_from_user(bin,
857 u64_to_user_ptr(args->bin_cl),
858 args->bin_cl_size)) {
859 ret = -EFAULT;
860 goto fail;
861 }
862
863 if (copy_from_user(exec->shader_rec_u,
864 u64_to_user_ptr(args->shader_rec),
865 args->shader_rec_size)) {
866 ret = -EFAULT;
867 goto fail;
868 }
869
870 if (copy_from_user(exec->uniforms_u,
871 u64_to_user_ptr(args->uniforms),
872 args->uniforms_size)) {
873 ret = -EFAULT;
874 goto fail;
875 }
876
877 bo = vc4_bo_create(dev, exec_size, true, VC4_BO_TYPE_BCL);
878 if (IS_ERR(bo)) {
879 DRM_ERROR("Couldn't allocate BO for binning\n");
880 ret = PTR_ERR(bo);
881 goto fail;
882 }
883 exec->exec_bo = &bo->base;
884
885 list_add_tail(&to_vc4_bo(&exec->exec_bo->base)->unref_head,
886 &exec->unref_list);
887
888 exec->ct0ca = exec->exec_bo->paddr + bin_offset;
889
890 exec->bin_u = bin;
891
892 exec->shader_rec_v = exec->exec_bo->vaddr + shader_rec_offset;
893 exec->shader_rec_p = exec->exec_bo->paddr + shader_rec_offset;
894 exec->shader_rec_size = args->shader_rec_size;
895
896 exec->uniforms_v = exec->exec_bo->vaddr + uniforms_offset;
897 exec->uniforms_p = exec->exec_bo->paddr + uniforms_offset;
898 exec->uniforms_size = args->uniforms_size;
899
900 ret = vc4_validate_bin_cl(dev,
901 exec->exec_bo->vaddr + bin_offset,
902 bin,
903 exec);
904 if (ret)
905 goto fail;
906
907 ret = vc4_validate_shader_recs(dev, exec);
908 if (ret)
909 goto fail;
910
911 /* Block waiting on any previous rendering into the CS's VBO,
912 * IB, or textures, so that pixels are actually written by the
913 * time we try to read them.
914 */
915 ret = vc4_wait_for_seqno(dev, exec->bin_dep_seqno, ~0ull, true);
916
917fail:
918 kvfree(temp);
919 return ret;
920}
921
922static void
923vc4_complete_exec(struct drm_device *dev, struct vc4_exec_info *exec)
924{
925 struct vc4_dev *vc4 = to_vc4_dev(dev);
926 unsigned long irqflags;
927 unsigned i;
928
929 /* If we got force-completed because of GPU reset rather than
930 * through our IRQ handler, signal the fence now.
931 */
932 if (exec->fence) {
933 dma_fence_signal(exec->fence);
934 dma_fence_put(exec->fence);
935 }
936
937 if (exec->bo) {
938 for (i = 0; i < exec->bo_count; i++) {
939 struct vc4_bo *bo = to_vc4_bo(&exec->bo[i]->base);
940
941 vc4_bo_dec_usecnt(bo);
942 drm_gem_object_put_unlocked(&exec->bo[i]->base);
943 }
944 kvfree(exec->bo);
945 }
946
947 while (!list_empty(&exec->unref_list)) {
948 struct vc4_bo *bo = list_first_entry(&exec->unref_list,
949 struct vc4_bo, unref_head);
950 list_del(&bo->unref_head);
951 drm_gem_object_put_unlocked(&bo->base.base);
952 }
953
954 /* Free up the allocation of any bin slots we used. */
955 spin_lock_irqsave(&vc4->job_lock, irqflags);
956 vc4->bin_alloc_used &= ~exec->bin_slots;
957 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
958
959 /* Release the reference we had on the perf monitor. */
960 vc4_perfmon_put(exec->perfmon);
961
962 mutex_lock(&vc4->power_lock);
963 if (--vc4->power_refcount == 0) {
964 pm_runtime_mark_last_busy(&vc4->v3d->pdev->dev);
965 pm_runtime_put_autosuspend(&vc4->v3d->pdev->dev);
966 }
967 mutex_unlock(&vc4->power_lock);
968
969 kfree(exec);
970}
971
972void
973vc4_job_handle_completed(struct vc4_dev *vc4)
974{
975 unsigned long irqflags;
976 struct vc4_seqno_cb *cb, *cb_temp;
977
978 spin_lock_irqsave(&vc4->job_lock, irqflags);
979 while (!list_empty(&vc4->job_done_list)) {
980 struct vc4_exec_info *exec =
981 list_first_entry(&vc4->job_done_list,
982 struct vc4_exec_info, head);
983 list_del(&exec->head);
984
985 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
986 vc4_complete_exec(vc4->dev, exec);
987 spin_lock_irqsave(&vc4->job_lock, irqflags);
988 }
989
990 list_for_each_entry_safe(cb, cb_temp, &vc4->seqno_cb_list, work.entry) {
991 if (cb->seqno <= vc4->finished_seqno) {
992 list_del_init(&cb->work.entry);
993 schedule_work(&cb->work);
994 }
995 }
996
997 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
998}
999
1000static void vc4_seqno_cb_work(struct work_struct *work)
1001{
1002 struct vc4_seqno_cb *cb = container_of(work, struct vc4_seqno_cb, work);
1003
1004 cb->func(cb);
1005}
1006
1007int vc4_queue_seqno_cb(struct drm_device *dev,
1008 struct vc4_seqno_cb *cb, uint64_t seqno,
1009 void (*func)(struct vc4_seqno_cb *cb))
1010{
1011 struct vc4_dev *vc4 = to_vc4_dev(dev);
1012 int ret = 0;
1013 unsigned long irqflags;
1014
1015 cb->func = func;
1016 INIT_WORK(&cb->work, vc4_seqno_cb_work);
1017
1018 spin_lock_irqsave(&vc4->job_lock, irqflags);
1019 if (seqno > vc4->finished_seqno) {
1020 cb->seqno = seqno;
1021 list_add_tail(&cb->work.entry, &vc4->seqno_cb_list);
1022 } else {
1023 schedule_work(&cb->work);
1024 }
1025 spin_unlock_irqrestore(&vc4->job_lock, irqflags);
1026
1027 return ret;
1028}
1029
1030/* Scheduled when any job has been completed, this walks the list of
1031 * jobs that had completed and unrefs their BOs and frees their exec
1032 * structs.
1033 */
1034static void
1035vc4_job_done_work(struct work_struct *work)
1036{
1037 struct vc4_dev *vc4 =
1038 container_of(work, struct vc4_dev, job_done_work);
1039
1040 vc4_job_handle_completed(vc4);
1041}
1042
1043static int
1044vc4_wait_for_seqno_ioctl_helper(struct drm_device *dev,
1045 uint64_t seqno,
1046 uint64_t *timeout_ns)
1047{
1048 unsigned long start = jiffies;
1049 int ret = vc4_wait_for_seqno(dev, seqno, *timeout_ns, true);
1050
1051 if ((ret == -EINTR || ret == -ERESTARTSYS) && *timeout_ns != ~0ull) {
1052 uint64_t delta = jiffies_to_nsecs(jiffies - start);
1053
1054 if (*timeout_ns >= delta)
1055 *timeout_ns -= delta;
1056 }
1057
1058 return ret;
1059}
1060
1061int
1062vc4_wait_seqno_ioctl(struct drm_device *dev, void *data,
1063 struct drm_file *file_priv)
1064{
1065 struct drm_vc4_wait_seqno *args = data;
1066
1067 return vc4_wait_for_seqno_ioctl_helper(dev, args->seqno,
1068 &args->timeout_ns);
1069}
1070
1071int
1072vc4_wait_bo_ioctl(struct drm_device *dev, void *data,
1073 struct drm_file *file_priv)
1074{
1075 int ret;
1076 struct drm_vc4_wait_bo *args = data;
1077 struct drm_gem_object *gem_obj;
1078 struct vc4_bo *bo;
1079
1080 if (args->pad != 0)
1081 return -EINVAL;
1082
1083 gem_obj = drm_gem_object_lookup(file_priv, args->handle);
1084 if (!gem_obj) {
1085 DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle);
1086 return -EINVAL;
1087 }
1088 bo = to_vc4_bo(gem_obj);
1089
1090 ret = vc4_wait_for_seqno_ioctl_helper(dev, bo->seqno,
1091 &args->timeout_ns);
1092
1093 drm_gem_object_put_unlocked(gem_obj);
1094 return ret;
1095}
1096
1097/**
1098 * vc4_submit_cl_ioctl() - Submits a job (frame) to the VC4.
1099 * @dev: DRM device
1100 * @data: ioctl argument
1101 * @file_priv: DRM file for this fd
1102 *
1103 * This is the main entrypoint for userspace to submit a 3D frame to
1104 * the GPU. Userspace provides the binner command list (if
1105 * applicable), and the kernel sets up the render command list to draw
1106 * to the framebuffer described in the ioctl, using the command lists
1107 * that the 3D engine's binner will produce.
1108 */
1109int
1110vc4_submit_cl_ioctl(struct drm_device *dev, void *data,
1111 struct drm_file *file_priv)
1112{
1113 struct vc4_dev *vc4 = to_vc4_dev(dev);
1114 struct vc4_file *vc4file = file_priv->driver_priv;
1115 struct drm_vc4_submit_cl *args = data;
1116 struct vc4_exec_info *exec;
1117 struct ww_acquire_ctx acquire_ctx;
1118 int ret = 0;
1119
1120 if ((args->flags & ~(VC4_SUBMIT_CL_USE_CLEAR_COLOR |
1121 VC4_SUBMIT_CL_FIXED_RCL_ORDER |
1122 VC4_SUBMIT_CL_RCL_ORDER_INCREASING_X |
1123 VC4_SUBMIT_CL_RCL_ORDER_INCREASING_Y)) != 0) {
1124 DRM_DEBUG("Unknown flags: 0x%02x\n", args->flags);
1125 return -EINVAL;
1126 }
1127
1128 if (args->pad2 != 0) {
1129 DRM_DEBUG("->pad2 must be set to zero\n");
1130 return -EINVAL;
1131 }
1132
1133 exec = kcalloc(1, sizeof(*exec), GFP_KERNEL);
1134 if (!exec) {
1135 DRM_ERROR("malloc failure on exec struct\n");
1136 return -ENOMEM;
1137 }
1138
1139 mutex_lock(&vc4->power_lock);
1140 if (vc4->power_refcount++ == 0) {
1141 ret = pm_runtime_get_sync(&vc4->v3d->pdev->dev);
1142 if (ret < 0) {
1143 mutex_unlock(&vc4->power_lock);
1144 vc4->power_refcount--;
1145 kfree(exec);
1146 return ret;
1147 }
1148 }
1149 mutex_unlock(&vc4->power_lock);
1150
1151 exec->args = args;
1152 INIT_LIST_HEAD(&exec->unref_list);
1153
1154 ret = vc4_cl_lookup_bos(dev, file_priv, exec);
1155 if (ret)
1156 goto fail;
1157
1158 if (args->perfmonid) {
1159 exec->perfmon = vc4_perfmon_find(vc4file,
1160 args->perfmonid);
1161 if (!exec->perfmon) {
1162 ret = -ENOENT;
1163 goto fail;
1164 }
1165 }
1166
1167 if (exec->args->bin_cl_size != 0) {
1168 ret = vc4_get_bcl(dev, exec);
1169 if (ret)
1170 goto fail;
1171 } else {
1172 exec->ct0ca = 0;
1173 exec->ct0ea = 0;
1174 }
1175
1176 ret = vc4_get_rcl(dev, exec);
1177 if (ret)
1178 goto fail;
1179
1180 ret = vc4_lock_bo_reservations(dev, exec, &acquire_ctx);
1181 if (ret)
1182 goto fail;
1183
1184 /* Clear this out of the struct we'll be putting in the queue,
1185 * since it's part of our stack.
1186 */
1187 exec->args = NULL;
1188
1189 ret = vc4_queue_submit(dev, exec, &acquire_ctx);
1190 if (ret)
1191 goto fail;
1192
1193 /* Return the seqno for our job. */
1194 args->seqno = vc4->emit_seqno;
1195
1196 return 0;
1197
1198fail:
1199 vc4_complete_exec(vc4->dev, exec);
1200
1201 return ret;
1202}
1203
1204void
1205vc4_gem_init(struct drm_device *dev)
1206{
1207 struct vc4_dev *vc4 = to_vc4_dev(dev);
1208
1209 vc4->dma_fence_context = dma_fence_context_alloc(1);
1210
1211 INIT_LIST_HEAD(&vc4->bin_job_list);
1212 INIT_LIST_HEAD(&vc4->render_job_list);
1213 INIT_LIST_HEAD(&vc4->job_done_list);
1214 INIT_LIST_HEAD(&vc4->seqno_cb_list);
1215 spin_lock_init(&vc4->job_lock);
1216
1217 INIT_WORK(&vc4->hangcheck.reset_work, vc4_reset_work);
1218 timer_setup(&vc4->hangcheck.timer, vc4_hangcheck_elapsed, 0);
1219
1220 INIT_WORK(&vc4->job_done_work, vc4_job_done_work);
1221
1222 mutex_init(&vc4->power_lock);
1223
1224 INIT_LIST_HEAD(&vc4->purgeable.list);
1225 mutex_init(&vc4->purgeable.lock);
1226}
1227
1228void
1229vc4_gem_destroy(struct drm_device *dev)
1230{
1231 struct vc4_dev *vc4 = to_vc4_dev(dev);
1232
1233 /* Waiting for exec to finish would need to be done before
1234 * unregistering V3D.
1235 */
1236 WARN_ON(vc4->emit_seqno != vc4->finished_seqno);
1237
1238 /* V3D should already have disabled its interrupt and cleared
1239 * the overflow allocation registers. Now free the object.
1240 */
1241 if (vc4->bin_bo) {
1242 drm_gem_object_put_unlocked(&vc4->bin_bo->base.base);
1243 vc4->bin_bo = NULL;
1244 }
1245
1246 if (vc4->hang_state)
1247 vc4_free_hang_state(dev, vc4->hang_state);
1248}
1249
1250int vc4_gem_madvise_ioctl(struct drm_device *dev, void *data,
1251 struct drm_file *file_priv)
1252{
1253 struct drm_vc4_gem_madvise *args = data;
1254 struct drm_gem_object *gem_obj;
1255 struct vc4_bo *bo;
1256 int ret;
1257
1258 switch (args->madv) {
1259 case VC4_MADV_DONTNEED:
1260 case VC4_MADV_WILLNEED:
1261 break;
1262 default:
1263 return -EINVAL;
1264 }
1265
1266 if (args->pad != 0)
1267 return -EINVAL;
1268
1269 gem_obj = drm_gem_object_lookup(file_priv, args->handle);
1270 if (!gem_obj) {
1271 DRM_DEBUG("Failed to look up GEM BO %d\n", args->handle);
1272 return -ENOENT;
1273 }
1274
1275 bo = to_vc4_bo(gem_obj);
1276
1277 /* Only BOs exposed to userspace can be purged. */
1278 if (bo->madv == __VC4_MADV_NOTSUPP) {
1279 DRM_DEBUG("madvise not supported on this BO\n");
1280 ret = -EINVAL;
1281 goto out_put_gem;
1282 }
1283
1284 /* Not sure it's safe to purge imported BOs. Let's just assume it's
1285 * not until proven otherwise.
1286 */
1287 if (gem_obj->import_attach) {
1288 DRM_DEBUG("madvise not supported on imported BOs\n");
1289 ret = -EINVAL;
1290 goto out_put_gem;
1291 }
1292
1293 mutex_lock(&bo->madv_lock);
1294
1295 if (args->madv == VC4_MADV_DONTNEED && bo->madv == VC4_MADV_WILLNEED &&
1296 !refcount_read(&bo->usecnt)) {
1297 /* If the BO is about to be marked as purgeable, is not used
1298 * and is not already purgeable or purged, add it to the
1299 * purgeable list.
1300 */
1301 vc4_bo_add_to_purgeable_pool(bo);
1302 } else if (args->madv == VC4_MADV_WILLNEED &&
1303 bo->madv == VC4_MADV_DONTNEED &&
1304 !refcount_read(&bo->usecnt)) {
1305 /* The BO has not been purged yet, just remove it from
1306 * the purgeable list.
1307 */
1308 vc4_bo_remove_from_purgeable_pool(bo);
1309 }
1310
1311 /* Save the purged state. */
1312 args->retained = bo->madv != __VC4_MADV_PURGED;
1313
1314 /* Update internal madv state only if the bo was not purged. */
1315 if (bo->madv != __VC4_MADV_PURGED)
1316 bo->madv = args->madv;
1317
1318 mutex_unlock(&bo->madv_lock);
1319
1320 ret = 0;
1321
1322out_put_gem:
1323 drm_gem_object_put_unlocked(gem_obj);
1324
1325 return ret;
1326}