Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Copyright (C) 2014 Emilio López
   3 * Emilio López <emilio@elopez.com.ar>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License as published by
   7 * the Free Software Foundation; either version 2 of the License, or
   8 * (at your option) any later version.
   9 */
  10
  11#include <linux/bitmap.h>
  12#include <linux/bitops.h>
  13#include <linux/clk.h>
  14#include <linux/dmaengine.h>
  15#include <linux/dmapool.h>
  16#include <linux/interrupt.h>
  17#include <linux/module.h>
  18#include <linux/of_dma.h>
  19#include <linux/platform_device.h>
  20#include <linux/slab.h>
  21#include <linux/spinlock.h>
  22
  23#include "virt-dma.h"
  24
  25/** Common macros to normal and dedicated DMA registers **/
  26
  27#define SUN4I_DMA_CFG_LOADING			BIT(31)
  28#define SUN4I_DMA_CFG_DST_DATA_WIDTH(width)	((width) << 25)
  29#define SUN4I_DMA_CFG_DST_BURST_LENGTH(len)	((len) << 23)
  30#define SUN4I_DMA_CFG_DST_ADDR_MODE(mode)	((mode) << 21)
  31#define SUN4I_DMA_CFG_DST_DRQ_TYPE(type)	((type) << 16)
  32#define SUN4I_DMA_CFG_SRC_DATA_WIDTH(width)	((width) << 9)
  33#define SUN4I_DMA_CFG_SRC_BURST_LENGTH(len)	((len) << 7)
  34#define SUN4I_DMA_CFG_SRC_ADDR_MODE(mode)	((mode) << 5)
  35#define SUN4I_DMA_CFG_SRC_DRQ_TYPE(type)	(type)
  36
  37/** Normal DMA register values **/
  38
  39/* Normal DMA source/destination data request type values */
  40#define SUN4I_NDMA_DRQ_TYPE_SDRAM		0x16
  41#define SUN4I_NDMA_DRQ_TYPE_LIMIT		(0x1F + 1)
  42
  43/** Normal DMA register layout **/
  44
  45/* Dedicated DMA source/destination address mode values */
  46#define SUN4I_NDMA_ADDR_MODE_LINEAR		0
  47#define SUN4I_NDMA_ADDR_MODE_IO			1
  48
  49/* Normal DMA configuration register layout */
  50#define SUN4I_NDMA_CFG_CONT_MODE		BIT(30)
  51#define SUN4I_NDMA_CFG_WAIT_STATE(n)		((n) << 27)
  52#define SUN4I_NDMA_CFG_DST_NON_SECURE		BIT(22)
  53#define SUN4I_NDMA_CFG_BYTE_COUNT_MODE_REMAIN	BIT(15)
  54#define SUN4I_NDMA_CFG_SRC_NON_SECURE		BIT(6)
  55
  56/** Dedicated DMA register values **/
  57
  58/* Dedicated DMA source/destination address mode values */
  59#define SUN4I_DDMA_ADDR_MODE_LINEAR		0
  60#define SUN4I_DDMA_ADDR_MODE_IO			1
  61#define SUN4I_DDMA_ADDR_MODE_HORIZONTAL_PAGE	2
  62#define SUN4I_DDMA_ADDR_MODE_VERTICAL_PAGE	3
  63
  64/* Dedicated DMA source/destination data request type values */
  65#define SUN4I_DDMA_DRQ_TYPE_SDRAM		0x1
  66#define SUN4I_DDMA_DRQ_TYPE_LIMIT		(0x1F + 1)
  67
  68/** Dedicated DMA register layout **/
  69
  70/* Dedicated DMA configuration register layout */
  71#define SUN4I_DDMA_CFG_BUSY			BIT(30)
  72#define SUN4I_DDMA_CFG_CONT_MODE		BIT(29)
  73#define SUN4I_DDMA_CFG_DST_NON_SECURE		BIT(28)
  74#define SUN4I_DDMA_CFG_BYTE_COUNT_MODE_REMAIN	BIT(15)
  75#define SUN4I_DDMA_CFG_SRC_NON_SECURE		BIT(12)
  76
  77/* Dedicated DMA parameter register layout */
  78#define SUN4I_DDMA_PARA_DST_DATA_BLK_SIZE(n)	(((n) - 1) << 24)
  79#define SUN4I_DDMA_PARA_DST_WAIT_CYCLES(n)	(((n) - 1) << 16)
  80#define SUN4I_DDMA_PARA_SRC_DATA_BLK_SIZE(n)	(((n) - 1) << 8)
  81#define SUN4I_DDMA_PARA_SRC_WAIT_CYCLES(n)	(((n) - 1) << 0)
  82
  83/** DMA register offsets **/
  84
  85/* General register offsets */
  86#define SUN4I_DMA_IRQ_ENABLE_REG		0x0
  87#define SUN4I_DMA_IRQ_PENDING_STATUS_REG	0x4
  88
  89/* Normal DMA register offsets */
  90#define SUN4I_NDMA_CHANNEL_REG_BASE(n)		(0x100 + (n) * 0x20)
  91#define SUN4I_NDMA_CFG_REG			0x0
  92#define SUN4I_NDMA_SRC_ADDR_REG			0x4
  93#define SUN4I_NDMA_DST_ADDR_REG		0x8
  94#define SUN4I_NDMA_BYTE_COUNT_REG		0xC
  95
  96/* Dedicated DMA register offsets */
  97#define SUN4I_DDMA_CHANNEL_REG_BASE(n)		(0x300 + (n) * 0x20)
  98#define SUN4I_DDMA_CFG_REG			0x0
  99#define SUN4I_DDMA_SRC_ADDR_REG			0x4
 100#define SUN4I_DDMA_DST_ADDR_REG		0x8
 101#define SUN4I_DDMA_BYTE_COUNT_REG		0xC
 102#define SUN4I_DDMA_PARA_REG			0x18
 103
 104/** DMA Driver **/
 105
 106/*
 107 * Normal DMA has 8 channels, and Dedicated DMA has another 8, so
 108 * that's 16 channels. As for endpoints, there's 29 and 21
 109 * respectively. Given that the Normal DMA endpoints (other than
 110 * SDRAM) can be used as tx/rx, we need 78 vchans in total
 111 */
 112#define SUN4I_NDMA_NR_MAX_CHANNELS	8
 113#define SUN4I_DDMA_NR_MAX_CHANNELS	8
 114#define SUN4I_DMA_NR_MAX_CHANNELS					\
 115	(SUN4I_NDMA_NR_MAX_CHANNELS + SUN4I_DDMA_NR_MAX_CHANNELS)
 116#define SUN4I_NDMA_NR_MAX_VCHANS	(29 * 2 - 1)
 117#define SUN4I_DDMA_NR_MAX_VCHANS	21
 118#define SUN4I_DMA_NR_MAX_VCHANS						\
 119	(SUN4I_NDMA_NR_MAX_VCHANS + SUN4I_DDMA_NR_MAX_VCHANS)
 120
 121/* This set of SUN4I_DDMA timing parameters were found experimentally while
 122 * working with the SPI driver and seem to make it behave correctly */
 123#define SUN4I_DDMA_MAGIC_SPI_PARAMETERS \
 124	(SUN4I_DDMA_PARA_DST_DATA_BLK_SIZE(1) |			\
 125	 SUN4I_DDMA_PARA_SRC_DATA_BLK_SIZE(1) |				\
 126	 SUN4I_DDMA_PARA_DST_WAIT_CYCLES(2) |				\
 127	 SUN4I_DDMA_PARA_SRC_WAIT_CYCLES(2))
 128
 129struct sun4i_dma_pchan {
 130	/* Register base of channel */
 131	void __iomem			*base;
 132	/* vchan currently being serviced */
 133	struct sun4i_dma_vchan		*vchan;
 134	/* Is this a dedicated pchan? */
 135	int				is_dedicated;
 136};
 137
 138struct sun4i_dma_vchan {
 139	struct virt_dma_chan		vc;
 140	struct dma_slave_config		cfg;
 141	struct sun4i_dma_pchan		*pchan;
 142	struct sun4i_dma_promise	*processing;
 143	struct sun4i_dma_contract	*contract;
 144	u8				endpoint;
 145	int				is_dedicated;
 146};
 147
 148struct sun4i_dma_promise {
 149	u32				cfg;
 150	u32				para;
 151	dma_addr_t			src;
 152	dma_addr_t			dst;
 153	size_t				len;
 154	struct list_head		list;
 155};
 156
 157/* A contract is a set of promises */
 158struct sun4i_dma_contract {
 159	struct virt_dma_desc		vd;
 160	struct list_head		demands;
 161	struct list_head		completed_demands;
 162	int				is_cyclic;
 163};
 164
 165struct sun4i_dma_dev {
 166	DECLARE_BITMAP(pchans_used, SUN4I_DMA_NR_MAX_CHANNELS);
 167	struct dma_device		slave;
 168	struct sun4i_dma_pchan		*pchans;
 169	struct sun4i_dma_vchan		*vchans;
 170	void __iomem			*base;
 171	struct clk			*clk;
 172	int				irq;
 173	spinlock_t			lock;
 174};
 175
 176static struct sun4i_dma_dev *to_sun4i_dma_dev(struct dma_device *dev)
 177{
 178	return container_of(dev, struct sun4i_dma_dev, slave);
 179}
 180
 181static struct sun4i_dma_vchan *to_sun4i_dma_vchan(struct dma_chan *chan)
 182{
 183	return container_of(chan, struct sun4i_dma_vchan, vc.chan);
 184}
 185
 186static struct sun4i_dma_contract *to_sun4i_dma_contract(struct virt_dma_desc *vd)
 187{
 188	return container_of(vd, struct sun4i_dma_contract, vd);
 189}
 190
 191static struct device *chan2dev(struct dma_chan *chan)
 192{
 193	return &chan->dev->device;
 194}
 195
 196static int convert_burst(u32 maxburst)
 197{
 198	if (maxburst > 8)
 199		return -EINVAL;
 200
 201	/* 1 -> 0, 4 -> 1, 8 -> 2 */
 202	return (maxburst >> 2);
 203}
 204
 205static int convert_buswidth(enum dma_slave_buswidth addr_width)
 206{
 207	if (addr_width > DMA_SLAVE_BUSWIDTH_4_BYTES)
 208		return -EINVAL;
 209
 210	/* 8 (1 byte) -> 0, 16 (2 bytes) -> 1, 32 (4 bytes) -> 2 */
 211	return (addr_width >> 1);
 212}
 213
 214static void sun4i_dma_free_chan_resources(struct dma_chan *chan)
 215{
 216	struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
 217
 218	vchan_free_chan_resources(&vchan->vc);
 219}
 220
 221static struct sun4i_dma_pchan *find_and_use_pchan(struct sun4i_dma_dev *priv,
 222						  struct sun4i_dma_vchan *vchan)
 223{
 224	struct sun4i_dma_pchan *pchan = NULL, *pchans = priv->pchans;
 225	unsigned long flags;
 226	int i, max;
 227
 228	/*
 229	 * pchans 0-SUN4I_NDMA_NR_MAX_CHANNELS are normal, and
 230	 * SUN4I_NDMA_NR_MAX_CHANNELS+ are dedicated ones
 231	 */
 232	if (vchan->is_dedicated) {
 233		i = SUN4I_NDMA_NR_MAX_CHANNELS;
 234		max = SUN4I_DMA_NR_MAX_CHANNELS;
 235	} else {
 236		i = 0;
 237		max = SUN4I_NDMA_NR_MAX_CHANNELS;
 238	}
 239
 240	spin_lock_irqsave(&priv->lock, flags);
 241	for_each_clear_bit_from(i, priv->pchans_used, max) {
 242		pchan = &pchans[i];
 243		pchan->vchan = vchan;
 244		set_bit(i, priv->pchans_used);
 245		break;
 246	}
 247	spin_unlock_irqrestore(&priv->lock, flags);
 248
 249	return pchan;
 250}
 251
 252static void release_pchan(struct sun4i_dma_dev *priv,
 253			  struct sun4i_dma_pchan *pchan)
 254{
 255	unsigned long flags;
 256	int nr = pchan - priv->pchans;
 257
 258	spin_lock_irqsave(&priv->lock, flags);
 259
 260	pchan->vchan = NULL;
 261	clear_bit(nr, priv->pchans_used);
 262
 263	spin_unlock_irqrestore(&priv->lock, flags);
 264}
 265
 266static void configure_pchan(struct sun4i_dma_pchan *pchan,
 267			    struct sun4i_dma_promise *d)
 268{
 269	/*
 270	 * Configure addresses and misc parameters depending on type
 271	 * SUN4I_DDMA has an extra field with timing parameters
 272	 */
 273	if (pchan->is_dedicated) {
 274		writel_relaxed(d->src, pchan->base + SUN4I_DDMA_SRC_ADDR_REG);
 275		writel_relaxed(d->dst, pchan->base + SUN4I_DDMA_DST_ADDR_REG);
 276		writel_relaxed(d->len, pchan->base + SUN4I_DDMA_BYTE_COUNT_REG);
 277		writel_relaxed(d->para, pchan->base + SUN4I_DDMA_PARA_REG);
 278		writel_relaxed(d->cfg, pchan->base + SUN4I_DDMA_CFG_REG);
 279	} else {
 280		writel_relaxed(d->src, pchan->base + SUN4I_NDMA_SRC_ADDR_REG);
 281		writel_relaxed(d->dst, pchan->base + SUN4I_NDMA_DST_ADDR_REG);
 282		writel_relaxed(d->len, pchan->base + SUN4I_NDMA_BYTE_COUNT_REG);
 283		writel_relaxed(d->cfg, pchan->base + SUN4I_NDMA_CFG_REG);
 284	}
 285}
 286
 287static void set_pchan_interrupt(struct sun4i_dma_dev *priv,
 288				struct sun4i_dma_pchan *pchan,
 289				int half, int end)
 290{
 291	u32 reg;
 292	int pchan_number = pchan - priv->pchans;
 293	unsigned long flags;
 294
 295	spin_lock_irqsave(&priv->lock, flags);
 296
 297	reg = readl_relaxed(priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
 298
 299	if (half)
 300		reg |= BIT(pchan_number * 2);
 301	else
 302		reg &= ~BIT(pchan_number * 2);
 303
 304	if (end)
 305		reg |= BIT(pchan_number * 2 + 1);
 306	else
 307		reg &= ~BIT(pchan_number * 2 + 1);
 308
 309	writel_relaxed(reg, priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
 310
 311	spin_unlock_irqrestore(&priv->lock, flags);
 312}
 313
 314/**
 315 * Execute pending operations on a vchan
 316 *
 317 * When given a vchan, this function will try to acquire a suitable
 318 * pchan and, if successful, will configure it to fulfill a promise
 319 * from the next pending contract.
 320 *
 321 * This function must be called with &vchan->vc.lock held.
 322 */
 323static int __execute_vchan_pending(struct sun4i_dma_dev *priv,
 324				   struct sun4i_dma_vchan *vchan)
 325{
 326	struct sun4i_dma_promise *promise = NULL;
 327	struct sun4i_dma_contract *contract = NULL;
 328	struct sun4i_dma_pchan *pchan;
 329	struct virt_dma_desc *vd;
 330	int ret;
 331
 332	lockdep_assert_held(&vchan->vc.lock);
 333
 334	/* We need a pchan to do anything, so secure one if available */
 335	pchan = find_and_use_pchan(priv, vchan);
 336	if (!pchan)
 337		return -EBUSY;
 338
 339	/*
 340	 * Channel endpoints must not be repeated, so if this vchan
 341	 * has already submitted some work, we can't do anything else
 342	 */
 343	if (vchan->processing) {
 344		dev_dbg(chan2dev(&vchan->vc.chan),
 345			"processing something to this endpoint already\n");
 346		ret = -EBUSY;
 347		goto release_pchan;
 348	}
 349
 350	do {
 351		/* Figure out which contract we're working with today */
 352		vd = vchan_next_desc(&vchan->vc);
 353		if (!vd) {
 354			dev_dbg(chan2dev(&vchan->vc.chan),
 355				"No pending contract found");
 356			ret = 0;
 357			goto release_pchan;
 358		}
 359
 360		contract = to_sun4i_dma_contract(vd);
 361		if (list_empty(&contract->demands)) {
 362			/* The contract has been completed so mark it as such */
 363			list_del(&contract->vd.node);
 364			vchan_cookie_complete(&contract->vd);
 365			dev_dbg(chan2dev(&vchan->vc.chan),
 366				"Empty contract found and marked complete");
 367		}
 368	} while (list_empty(&contract->demands));
 369
 370	/* Now find out what we need to do */
 371	promise = list_first_entry(&contract->demands,
 372				   struct sun4i_dma_promise, list);
 373	vchan->processing = promise;
 374
 375	/* ... and make it reality */
 376	if (promise) {
 377		vchan->contract = contract;
 378		vchan->pchan = pchan;
 379		set_pchan_interrupt(priv, pchan, contract->is_cyclic, 1);
 380		configure_pchan(pchan, promise);
 381	}
 382
 383	return 0;
 384
 385release_pchan:
 386	release_pchan(priv, pchan);
 387	return ret;
 388}
 389
 390static int sanitize_config(struct dma_slave_config *sconfig,
 391			   enum dma_transfer_direction direction)
 392{
 393	switch (direction) {
 394	case DMA_MEM_TO_DEV:
 395		if ((sconfig->dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) ||
 396		    !sconfig->dst_maxburst)
 397			return -EINVAL;
 398
 399		if (sconfig->src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
 400			sconfig->src_addr_width = sconfig->dst_addr_width;
 401
 402		if (!sconfig->src_maxburst)
 403			sconfig->src_maxburst = sconfig->dst_maxburst;
 404
 405		break;
 406
 407	case DMA_DEV_TO_MEM:
 408		if ((sconfig->src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) ||
 409		    !sconfig->src_maxburst)
 410			return -EINVAL;
 411
 412		if (sconfig->dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
 413			sconfig->dst_addr_width = sconfig->src_addr_width;
 414
 415		if (!sconfig->dst_maxburst)
 416			sconfig->dst_maxburst = sconfig->src_maxburst;
 417
 418		break;
 419	default:
 420		return 0;
 421	}
 422
 423	return 0;
 424}
 425
 426/**
 427 * Generate a promise, to be used in a normal DMA contract.
 428 *
 429 * A NDMA promise contains all the information required to program the
 430 * normal part of the DMA Engine and get data copied. A non-executed
 431 * promise will live in the demands list on a contract. Once it has been
 432 * completed, it will be moved to the completed demands list for later freeing.
 433 * All linked promises will be freed when the corresponding contract is freed
 434 */
 435static struct sun4i_dma_promise *
 436generate_ndma_promise(struct dma_chan *chan, dma_addr_t src, dma_addr_t dest,
 437		      size_t len, struct dma_slave_config *sconfig,
 438		      enum dma_transfer_direction direction)
 439{
 440	struct sun4i_dma_promise *promise;
 441	int ret;
 442
 443	ret = sanitize_config(sconfig, direction);
 444	if (ret)
 445		return NULL;
 446
 447	promise = kzalloc(sizeof(*promise), GFP_NOWAIT);
 448	if (!promise)
 449		return NULL;
 450
 451	promise->src = src;
 452	promise->dst = dest;
 453	promise->len = len;
 454	promise->cfg = SUN4I_DMA_CFG_LOADING |
 455		SUN4I_NDMA_CFG_BYTE_COUNT_MODE_REMAIN;
 456
 457	dev_dbg(chan2dev(chan),
 458		"src burst %d, dst burst %d, src buswidth %d, dst buswidth %d",
 459		sconfig->src_maxburst, sconfig->dst_maxburst,
 460		sconfig->src_addr_width, sconfig->dst_addr_width);
 461
 462	/* Source burst */
 463	ret = convert_burst(sconfig->src_maxburst);
 464	if (ret < 0)
 465		goto fail;
 466	promise->cfg |= SUN4I_DMA_CFG_SRC_BURST_LENGTH(ret);
 467
 468	/* Destination burst */
 469	ret = convert_burst(sconfig->dst_maxburst);
 470	if (ret < 0)
 471		goto fail;
 472	promise->cfg |= SUN4I_DMA_CFG_DST_BURST_LENGTH(ret);
 473
 474	/* Source bus width */
 475	ret = convert_buswidth(sconfig->src_addr_width);
 476	if (ret < 0)
 477		goto fail;
 478	promise->cfg |= SUN4I_DMA_CFG_SRC_DATA_WIDTH(ret);
 479
 480	/* Destination bus width */
 481	ret = convert_buswidth(sconfig->dst_addr_width);
 482	if (ret < 0)
 483		goto fail;
 484	promise->cfg |= SUN4I_DMA_CFG_DST_DATA_WIDTH(ret);
 485
 486	return promise;
 487
 488fail:
 489	kfree(promise);
 490	return NULL;
 491}
 492
 493/**
 494 * Generate a promise, to be used in a dedicated DMA contract.
 495 *
 496 * A DDMA promise contains all the information required to program the
 497 * Dedicated part of the DMA Engine and get data copied. A non-executed
 498 * promise will live in the demands list on a contract. Once it has been
 499 * completed, it will be moved to the completed demands list for later freeing.
 500 * All linked promises will be freed when the corresponding contract is freed
 501 */
 502static struct sun4i_dma_promise *
 503generate_ddma_promise(struct dma_chan *chan, dma_addr_t src, dma_addr_t dest,
 504		      size_t len, struct dma_slave_config *sconfig)
 505{
 506	struct sun4i_dma_promise *promise;
 507	int ret;
 508
 509	promise = kzalloc(sizeof(*promise), GFP_NOWAIT);
 510	if (!promise)
 511		return NULL;
 512
 513	promise->src = src;
 514	promise->dst = dest;
 515	promise->len = len;
 516	promise->cfg = SUN4I_DMA_CFG_LOADING |
 517		SUN4I_DDMA_CFG_BYTE_COUNT_MODE_REMAIN;
 518
 519	/* Source burst */
 520	ret = convert_burst(sconfig->src_maxburst);
 521	if (ret < 0)
 522		goto fail;
 523	promise->cfg |= SUN4I_DMA_CFG_SRC_BURST_LENGTH(ret);
 524
 525	/* Destination burst */
 526	ret = convert_burst(sconfig->dst_maxburst);
 527	if (ret < 0)
 528		goto fail;
 529	promise->cfg |= SUN4I_DMA_CFG_DST_BURST_LENGTH(ret);
 530
 531	/* Source bus width */
 532	ret = convert_buswidth(sconfig->src_addr_width);
 533	if (ret < 0)
 534		goto fail;
 535	promise->cfg |= SUN4I_DMA_CFG_SRC_DATA_WIDTH(ret);
 536
 537	/* Destination bus width */
 538	ret = convert_buswidth(sconfig->dst_addr_width);
 539	if (ret < 0)
 540		goto fail;
 541	promise->cfg |= SUN4I_DMA_CFG_DST_DATA_WIDTH(ret);
 542
 543	return promise;
 544
 545fail:
 546	kfree(promise);
 547	return NULL;
 548}
 549
 550/**
 551 * Generate a contract
 552 *
 553 * Contracts function as DMA descriptors. As our hardware does not support
 554 * linked lists, we need to implement SG via software. We use a contract
 555 * to hold all the pieces of the request and process them serially one
 556 * after another. Each piece is represented as a promise.
 557 */
 558static struct sun4i_dma_contract *generate_dma_contract(void)
 559{
 560	struct sun4i_dma_contract *contract;
 561
 562	contract = kzalloc(sizeof(*contract), GFP_NOWAIT);
 563	if (!contract)
 564		return NULL;
 565
 566	INIT_LIST_HEAD(&contract->demands);
 567	INIT_LIST_HEAD(&contract->completed_demands);
 568
 569	return contract;
 570}
 571
 572/**
 573 * Get next promise on a cyclic transfer
 574 *
 575 * Cyclic contracts contain a series of promises which are executed on a
 576 * loop. This function returns the next promise from a cyclic contract,
 577 * so it can be programmed into the hardware.
 578 */
 579static struct sun4i_dma_promise *
 580get_next_cyclic_promise(struct sun4i_dma_contract *contract)
 581{
 582	struct sun4i_dma_promise *promise;
 583
 584	promise = list_first_entry_or_null(&contract->demands,
 585					   struct sun4i_dma_promise, list);
 586	if (!promise) {
 587		list_splice_init(&contract->completed_demands,
 588				 &contract->demands);
 589		promise = list_first_entry(&contract->demands,
 590					   struct sun4i_dma_promise, list);
 591	}
 592
 593	return promise;
 594}
 595
 596/**
 597 * Free a contract and all its associated promises
 598 */
 599static void sun4i_dma_free_contract(struct virt_dma_desc *vd)
 600{
 601	struct sun4i_dma_contract *contract = to_sun4i_dma_contract(vd);
 602	struct sun4i_dma_promise *promise, *tmp;
 603
 604	/* Free all the demands and completed demands */
 605	list_for_each_entry_safe(promise, tmp, &contract->demands, list)
 606		kfree(promise);
 607
 608	list_for_each_entry_safe(promise, tmp, &contract->completed_demands, list)
 609		kfree(promise);
 610
 611	kfree(contract);
 612}
 613
 614static struct dma_async_tx_descriptor *
 615sun4i_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest,
 616			  dma_addr_t src, size_t len, unsigned long flags)
 617{
 618	struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
 619	struct dma_slave_config *sconfig = &vchan->cfg;
 620	struct sun4i_dma_promise *promise;
 621	struct sun4i_dma_contract *contract;
 622
 623	contract = generate_dma_contract();
 624	if (!contract)
 625		return NULL;
 626
 627	/*
 628	 * We can only do the copy to bus aligned addresses, so
 629	 * choose the best one so we get decent performance. We also
 630	 * maximize the burst size for this same reason.
 631	 */
 632	sconfig->src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 633	sconfig->dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 634	sconfig->src_maxburst = 8;
 635	sconfig->dst_maxburst = 8;
 636
 637	if (vchan->is_dedicated)
 638		promise = generate_ddma_promise(chan, src, dest, len, sconfig);
 639	else
 640		promise = generate_ndma_promise(chan, src, dest, len, sconfig,
 641						DMA_MEM_TO_MEM);
 642
 643	if (!promise) {
 644		kfree(contract);
 645		return NULL;
 646	}
 647
 648	/* Configure memcpy mode */
 649	if (vchan->is_dedicated) {
 650		promise->cfg |= SUN4I_DMA_CFG_SRC_DRQ_TYPE(SUN4I_DDMA_DRQ_TYPE_SDRAM) |
 651				SUN4I_DMA_CFG_DST_DRQ_TYPE(SUN4I_DDMA_DRQ_TYPE_SDRAM);
 652	} else {
 653		promise->cfg |= SUN4I_DMA_CFG_SRC_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM) |
 654				SUN4I_DMA_CFG_DST_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM);
 655	}
 656
 657	/* Fill the contract with our only promise */
 658	list_add_tail(&promise->list, &contract->demands);
 659
 660	/* And add it to the vchan */
 661	return vchan_tx_prep(&vchan->vc, &contract->vd, flags);
 662}
 663
 664static struct dma_async_tx_descriptor *
 665sun4i_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf, size_t len,
 666			  size_t period_len, enum dma_transfer_direction dir,
 667			  unsigned long flags)
 668{
 669	struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
 670	struct dma_slave_config *sconfig = &vchan->cfg;
 671	struct sun4i_dma_promise *promise;
 672	struct sun4i_dma_contract *contract;
 673	dma_addr_t src, dest;
 674	u32 endpoints;
 675	int nr_periods, offset, plength, i;
 676
 677	if (!is_slave_direction(dir)) {
 678		dev_err(chan2dev(chan), "Invalid DMA direction\n");
 679		return NULL;
 680	}
 681
 682	if (vchan->is_dedicated) {
 683		/*
 684		 * As we are using this just for audio data, we need to use
 685		 * normal DMA. There is nothing stopping us from supporting
 686		 * dedicated DMA here as well, so if a client comes up and
 687		 * requires it, it will be simple to implement it.
 688		 */
 689		dev_err(chan2dev(chan),
 690			"Cyclic transfers are only supported on Normal DMA\n");
 691		return NULL;
 692	}
 693
 694	contract = generate_dma_contract();
 695	if (!contract)
 696		return NULL;
 697
 698	contract->is_cyclic = 1;
 699
 700	/* Figure out the endpoints and the address we need */
 701	if (dir == DMA_MEM_TO_DEV) {
 702		src = buf;
 703		dest = sconfig->dst_addr;
 704		endpoints = SUN4I_DMA_CFG_SRC_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM) |
 705			    SUN4I_DMA_CFG_DST_DRQ_TYPE(vchan->endpoint) |
 706			    SUN4I_DMA_CFG_DST_ADDR_MODE(SUN4I_NDMA_ADDR_MODE_IO);
 707	} else {
 708		src = sconfig->src_addr;
 709		dest = buf;
 710		endpoints = SUN4I_DMA_CFG_SRC_DRQ_TYPE(vchan->endpoint) |
 711			    SUN4I_DMA_CFG_SRC_ADDR_MODE(SUN4I_NDMA_ADDR_MODE_IO) |
 712			    SUN4I_DMA_CFG_DST_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM);
 713	}
 714
 715	/*
 716	 * We will be using half done interrupts to make two periods
 717	 * out of a promise, so we need to program the DMA engine less
 718	 * often
 719	 */
 720
 721	/*
 722	 * The engine can interrupt on half-transfer, so we can use
 723	 * this feature to program the engine half as often as if we
 724	 * didn't use it (keep in mind the hardware doesn't support
 725	 * linked lists).
 726	 *
 727	 * Say you have a set of periods (| marks the start/end, I for
 728	 * interrupt, P for programming the engine to do a new
 729	 * transfer), the easy but slow way would be to do
 730	 *
 731	 *  |---|---|---|---| (periods / promises)
 732	 *  P  I,P I,P I,P  I
 733	 *
 734	 * Using half transfer interrupts you can do
 735	 *
 736	 *  |-------|-------| (promises as configured on hw)
 737	 *  |---|---|---|---| (periods)
 738	 *  P   I  I,P  I   I
 739	 *
 740	 * Which requires half the engine programming for the same
 741	 * functionality.
 742	 */
 743	nr_periods = DIV_ROUND_UP(len / period_len, 2);
 744	for (i = 0; i < nr_periods; i++) {
 745		/* Calculate the offset in the buffer and the length needed */
 746		offset = i * period_len * 2;
 747		plength = min((len - offset), (period_len * 2));
 748		if (dir == DMA_MEM_TO_DEV)
 749			src = buf + offset;
 750		else
 751			dest = buf + offset;
 752
 753		/* Make the promise */
 754		promise = generate_ndma_promise(chan, src, dest,
 755						plength, sconfig, dir);
 756		if (!promise) {
 757			/* TODO: should we free everything? */
 758			return NULL;
 759		}
 760		promise->cfg |= endpoints;
 761
 762		/* Then add it to the contract */
 763		list_add_tail(&promise->list, &contract->demands);
 764	}
 765
 766	/* And add it to the vchan */
 767	return vchan_tx_prep(&vchan->vc, &contract->vd, flags);
 768}
 769
 770static struct dma_async_tx_descriptor *
 771sun4i_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
 772			unsigned int sg_len, enum dma_transfer_direction dir,
 773			unsigned long flags, void *context)
 774{
 775	struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
 776	struct dma_slave_config *sconfig = &vchan->cfg;
 777	struct sun4i_dma_promise *promise;
 778	struct sun4i_dma_contract *contract;
 779	u8 ram_type, io_mode, linear_mode;
 780	struct scatterlist *sg;
 781	dma_addr_t srcaddr, dstaddr;
 782	u32 endpoints, para;
 783	int i;
 784
 785	if (!sgl)
 786		return NULL;
 787
 788	if (!is_slave_direction(dir)) {
 789		dev_err(chan2dev(chan), "Invalid DMA direction\n");
 790		return NULL;
 791	}
 792
 793	contract = generate_dma_contract();
 794	if (!contract)
 795		return NULL;
 796
 797	if (vchan->is_dedicated) {
 798		io_mode = SUN4I_DDMA_ADDR_MODE_IO;
 799		linear_mode = SUN4I_DDMA_ADDR_MODE_LINEAR;
 800		ram_type = SUN4I_DDMA_DRQ_TYPE_SDRAM;
 801	} else {
 802		io_mode = SUN4I_NDMA_ADDR_MODE_IO;
 803		linear_mode = SUN4I_NDMA_ADDR_MODE_LINEAR;
 804		ram_type = SUN4I_NDMA_DRQ_TYPE_SDRAM;
 805	}
 806
 807	if (dir == DMA_MEM_TO_DEV)
 808		endpoints = SUN4I_DMA_CFG_DST_DRQ_TYPE(vchan->endpoint) |
 809			    SUN4I_DMA_CFG_DST_ADDR_MODE(io_mode) |
 810			    SUN4I_DMA_CFG_SRC_DRQ_TYPE(ram_type) |
 811			    SUN4I_DMA_CFG_SRC_ADDR_MODE(linear_mode);
 812	else
 813		endpoints = SUN4I_DMA_CFG_DST_DRQ_TYPE(ram_type) |
 814			    SUN4I_DMA_CFG_DST_ADDR_MODE(linear_mode) |
 815			    SUN4I_DMA_CFG_SRC_DRQ_TYPE(vchan->endpoint) |
 816			    SUN4I_DMA_CFG_SRC_ADDR_MODE(io_mode);
 817
 818	for_each_sg(sgl, sg, sg_len, i) {
 819		/* Figure out addresses */
 820		if (dir == DMA_MEM_TO_DEV) {
 821			srcaddr = sg_dma_address(sg);
 822			dstaddr = sconfig->dst_addr;
 823		} else {
 824			srcaddr = sconfig->src_addr;
 825			dstaddr = sg_dma_address(sg);
 826		}
 827
 828		/*
 829		 * These are the magic DMA engine timings that keep SPI going.
 830		 * I haven't seen any interface on DMAEngine to configure
 831		 * timings, and so far they seem to work for everything we
 832		 * support, so I've kept them here. I don't know if other
 833		 * devices need different timings because, as usual, we only
 834		 * have the "para" bitfield meanings, but no comment on what
 835		 * the values should be when doing a certain operation :|
 836		 */
 837		para = SUN4I_DDMA_MAGIC_SPI_PARAMETERS;
 838
 839		/* And make a suitable promise */
 840		if (vchan->is_dedicated)
 841			promise = generate_ddma_promise(chan, srcaddr, dstaddr,
 842							sg_dma_len(sg),
 843							sconfig);
 844		else
 845			promise = generate_ndma_promise(chan, srcaddr, dstaddr,
 846							sg_dma_len(sg),
 847							sconfig, dir);
 848
 849		if (!promise)
 850			return NULL; /* TODO: should we free everything? */
 851
 852		promise->cfg |= endpoints;
 853		promise->para = para;
 854
 855		/* Then add it to the contract */
 856		list_add_tail(&promise->list, &contract->demands);
 857	}
 858
 859	/*
 860	 * Once we've got all the promises ready, add the contract
 861	 * to the pending list on the vchan
 862	 */
 863	return vchan_tx_prep(&vchan->vc, &contract->vd, flags);
 864}
 865
 866static int sun4i_dma_terminate_all(struct dma_chan *chan)
 867{
 868	struct sun4i_dma_dev *priv = to_sun4i_dma_dev(chan->device);
 869	struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
 870	struct sun4i_dma_pchan *pchan = vchan->pchan;
 871	LIST_HEAD(head);
 872	unsigned long flags;
 873
 874	spin_lock_irqsave(&vchan->vc.lock, flags);
 875	vchan_get_all_descriptors(&vchan->vc, &head);
 876	spin_unlock_irqrestore(&vchan->vc.lock, flags);
 877
 878	/*
 879	 * Clearing the configuration register will halt the pchan. Interrupts
 880	 * may still trigger, so don't forget to disable them.
 881	 */
 882	if (pchan) {
 883		if (pchan->is_dedicated)
 884			writel(0, pchan->base + SUN4I_DDMA_CFG_REG);
 885		else
 886			writel(0, pchan->base + SUN4I_NDMA_CFG_REG);
 887		set_pchan_interrupt(priv, pchan, 0, 0);
 888		release_pchan(priv, pchan);
 889	}
 890
 891	spin_lock_irqsave(&vchan->vc.lock, flags);
 892	vchan_dma_desc_free_list(&vchan->vc, &head);
 893	/* Clear these so the vchan is usable again */
 894	vchan->processing = NULL;
 895	vchan->pchan = NULL;
 896	spin_unlock_irqrestore(&vchan->vc.lock, flags);
 897
 898	return 0;
 899}
 900
 901static int sun4i_dma_config(struct dma_chan *chan,
 902			    struct dma_slave_config *config)
 903{
 904	struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
 905
 906	memcpy(&vchan->cfg, config, sizeof(*config));
 907
 908	return 0;
 909}
 910
 911static struct dma_chan *sun4i_dma_of_xlate(struct of_phandle_args *dma_spec,
 912					   struct of_dma *ofdma)
 913{
 914	struct sun4i_dma_dev *priv = ofdma->of_dma_data;
 915	struct sun4i_dma_vchan *vchan;
 916	struct dma_chan *chan;
 917	u8 is_dedicated = dma_spec->args[0];
 918	u8 endpoint = dma_spec->args[1];
 919
 920	/* Check if type is Normal or Dedicated */
 921	if (is_dedicated != 0 && is_dedicated != 1)
 922		return NULL;
 923
 924	/* Make sure the endpoint looks sane */
 925	if ((is_dedicated && endpoint >= SUN4I_DDMA_DRQ_TYPE_LIMIT) ||
 926	    (!is_dedicated && endpoint >= SUN4I_NDMA_DRQ_TYPE_LIMIT))
 927		return NULL;
 928
 929	chan = dma_get_any_slave_channel(&priv->slave);
 930	if (!chan)
 931		return NULL;
 932
 933	/* Assign the endpoint to the vchan */
 934	vchan = to_sun4i_dma_vchan(chan);
 935	vchan->is_dedicated = is_dedicated;
 936	vchan->endpoint = endpoint;
 937
 938	return chan;
 939}
 940
 941static enum dma_status sun4i_dma_tx_status(struct dma_chan *chan,
 942					   dma_cookie_t cookie,
 943					   struct dma_tx_state *state)
 944{
 945	struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
 946	struct sun4i_dma_pchan *pchan = vchan->pchan;
 947	struct sun4i_dma_contract *contract;
 948	struct sun4i_dma_promise *promise;
 949	struct virt_dma_desc *vd;
 950	unsigned long flags;
 951	enum dma_status ret;
 952	size_t bytes = 0;
 953
 954	ret = dma_cookie_status(chan, cookie, state);
 955	if (!state || (ret == DMA_COMPLETE))
 956		return ret;
 957
 958	spin_lock_irqsave(&vchan->vc.lock, flags);
 959	vd = vchan_find_desc(&vchan->vc, cookie);
 960	if (!vd)
 961		goto exit;
 962	contract = to_sun4i_dma_contract(vd);
 963
 964	list_for_each_entry(promise, &contract->demands, list)
 965		bytes += promise->len;
 966
 967	/*
 968	 * The hardware is configured to return the remaining byte
 969	 * quantity. If possible, replace the first listed element's
 970	 * full size with the actual remaining amount
 971	 */
 972	promise = list_first_entry_or_null(&contract->demands,
 973					   struct sun4i_dma_promise, list);
 974	if (promise && pchan) {
 975		bytes -= promise->len;
 976		if (pchan->is_dedicated)
 977			bytes += readl(pchan->base + SUN4I_DDMA_BYTE_COUNT_REG);
 978		else
 979			bytes += readl(pchan->base + SUN4I_NDMA_BYTE_COUNT_REG);
 980	}
 981
 982exit:
 983
 984	dma_set_residue(state, bytes);
 985	spin_unlock_irqrestore(&vchan->vc.lock, flags);
 986
 987	return ret;
 988}
 989
 990static void sun4i_dma_issue_pending(struct dma_chan *chan)
 991{
 992	struct sun4i_dma_dev *priv = to_sun4i_dma_dev(chan->device);
 993	struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan);
 994	unsigned long flags;
 995
 996	spin_lock_irqsave(&vchan->vc.lock, flags);
 997
 998	/*
 999	 * If there are pending transactions for this vchan, push one of
1000	 * them into the engine to get the ball rolling.
1001	 */
1002	if (vchan_issue_pending(&vchan->vc))
1003		__execute_vchan_pending(priv, vchan);
1004
1005	spin_unlock_irqrestore(&vchan->vc.lock, flags);
1006}
1007
1008static irqreturn_t sun4i_dma_interrupt(int irq, void *dev_id)
1009{
1010	struct sun4i_dma_dev *priv = dev_id;
1011	struct sun4i_dma_pchan *pchans = priv->pchans, *pchan;
1012	struct sun4i_dma_vchan *vchan;
1013	struct sun4i_dma_contract *contract;
1014	struct sun4i_dma_promise *promise;
1015	unsigned long pendirq, irqs, disableirqs;
1016	int bit, i, free_room, allow_mitigation = 1;
1017
1018	pendirq = readl_relaxed(priv->base + SUN4I_DMA_IRQ_PENDING_STATUS_REG);
1019
1020handle_pending:
1021
1022	disableirqs = 0;
1023	free_room = 0;
1024
1025	for_each_set_bit(bit, &pendirq, 32) {
1026		pchan = &pchans[bit >> 1];
1027		vchan = pchan->vchan;
1028		if (!vchan) /* a terminated channel may still interrupt */
1029			continue;
1030		contract = vchan->contract;
1031
1032		/*
1033		 * Disable the IRQ and free the pchan if it's an end
1034		 * interrupt (odd bit)
1035		 */
1036		if (bit & 1) {
1037			spin_lock(&vchan->vc.lock);
1038
1039			/*
1040			 * Move the promise into the completed list now that
1041			 * we're done with it
1042			 */
1043			list_del(&vchan->processing->list);
1044			list_add_tail(&vchan->processing->list,
1045				      &contract->completed_demands);
1046
1047			/*
1048			 * Cyclic DMA transfers are special:
1049			 * - There's always something we can dispatch
1050			 * - We need to run the callback
1051			 * - Latency is very important, as this is used by audio
1052			 * We therefore just cycle through the list and dispatch
1053			 * whatever we have here, reusing the pchan. There's
1054			 * no need to run the thread after this.
1055			 *
1056			 * For non-cyclic transfers we need to look around,
1057			 * so we can program some more work, or notify the
1058			 * client that their transfers have been completed.
1059			 */
1060			if (contract->is_cyclic) {
1061				promise = get_next_cyclic_promise(contract);
1062				vchan->processing = promise;
1063				configure_pchan(pchan, promise);
1064				vchan_cyclic_callback(&contract->vd);
1065			} else {
1066				vchan->processing = NULL;
1067				vchan->pchan = NULL;
1068
1069				free_room = 1;
1070				disableirqs |= BIT(bit);
1071				release_pchan(priv, pchan);
1072			}
1073
1074			spin_unlock(&vchan->vc.lock);
1075		} else {
1076			/* Half done interrupt */
1077			if (contract->is_cyclic)
1078				vchan_cyclic_callback(&contract->vd);
1079			else
1080				disableirqs |= BIT(bit);
1081		}
1082	}
1083
1084	/* Disable the IRQs for events we handled */
1085	spin_lock(&priv->lock);
1086	irqs = readl_relaxed(priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
1087	writel_relaxed(irqs & ~disableirqs,
1088		       priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
1089	spin_unlock(&priv->lock);
1090
1091	/* Writing 1 to the pending field will clear the pending interrupt */
1092	writel_relaxed(pendirq, priv->base + SUN4I_DMA_IRQ_PENDING_STATUS_REG);
1093
1094	/*
1095	 * If a pchan was freed, we may be able to schedule something else,
1096	 * so have a look around
1097	 */
1098	if (free_room) {
1099		for (i = 0; i < SUN4I_DMA_NR_MAX_VCHANS; i++) {
1100			vchan = &priv->vchans[i];
1101			spin_lock(&vchan->vc.lock);
1102			__execute_vchan_pending(priv, vchan);
1103			spin_unlock(&vchan->vc.lock);
1104		}
1105	}
1106
1107	/*
1108	 * Handle newer interrupts if some showed up, but only do it once
1109	 * to avoid a too long a loop
1110	 */
1111	if (allow_mitigation) {
1112		pendirq = readl_relaxed(priv->base +
1113					SUN4I_DMA_IRQ_PENDING_STATUS_REG);
1114		if (pendirq) {
1115			allow_mitigation = 0;
1116			goto handle_pending;
1117		}
1118	}
1119
1120	return IRQ_HANDLED;
1121}
1122
1123static int sun4i_dma_probe(struct platform_device *pdev)
1124{
1125	struct sun4i_dma_dev *priv;
1126	struct resource *res;
1127	int i, j, ret;
1128
1129	priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL);
1130	if (!priv)
1131		return -ENOMEM;
1132
1133	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1134	priv->base = devm_ioremap_resource(&pdev->dev, res);
1135	if (IS_ERR(priv->base))
1136		return PTR_ERR(priv->base);
1137
1138	priv->irq = platform_get_irq(pdev, 0);
1139	if (priv->irq < 0) {
1140		dev_err(&pdev->dev, "Cannot claim IRQ\n");
1141		return priv->irq;
1142	}
1143
1144	priv->clk = devm_clk_get(&pdev->dev, NULL);
1145	if (IS_ERR(priv->clk)) {
1146		dev_err(&pdev->dev, "No clock specified\n");
1147		return PTR_ERR(priv->clk);
1148	}
1149
1150	platform_set_drvdata(pdev, priv);
1151	spin_lock_init(&priv->lock);
1152
1153	dma_cap_zero(priv->slave.cap_mask);
1154	dma_cap_set(DMA_PRIVATE, priv->slave.cap_mask);
1155	dma_cap_set(DMA_MEMCPY, priv->slave.cap_mask);
1156	dma_cap_set(DMA_CYCLIC, priv->slave.cap_mask);
1157	dma_cap_set(DMA_SLAVE, priv->slave.cap_mask);
1158
1159	INIT_LIST_HEAD(&priv->slave.channels);
1160	priv->slave.device_free_chan_resources	= sun4i_dma_free_chan_resources;
1161	priv->slave.device_tx_status		= sun4i_dma_tx_status;
1162	priv->slave.device_issue_pending	= sun4i_dma_issue_pending;
1163	priv->slave.device_prep_slave_sg	= sun4i_dma_prep_slave_sg;
1164	priv->slave.device_prep_dma_memcpy	= sun4i_dma_prep_dma_memcpy;
1165	priv->slave.device_prep_dma_cyclic	= sun4i_dma_prep_dma_cyclic;
1166	priv->slave.device_config		= sun4i_dma_config;
1167	priv->slave.device_terminate_all	= sun4i_dma_terminate_all;
1168	priv->slave.copy_align			= 2;
1169	priv->slave.src_addr_widths		= BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1170						  BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1171						  BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1172	priv->slave.dst_addr_widths		= BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |
1173						  BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |
1174						  BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
1175	priv->slave.directions			= BIT(DMA_DEV_TO_MEM) |
1176						  BIT(DMA_MEM_TO_DEV);
1177	priv->slave.residue_granularity		= DMA_RESIDUE_GRANULARITY_BURST;
1178
1179	priv->slave.dev = &pdev->dev;
1180
1181	priv->pchans = devm_kcalloc(&pdev->dev, SUN4I_DMA_NR_MAX_CHANNELS,
1182				    sizeof(struct sun4i_dma_pchan), GFP_KERNEL);
1183	priv->vchans = devm_kcalloc(&pdev->dev, SUN4I_DMA_NR_MAX_VCHANS,
1184				    sizeof(struct sun4i_dma_vchan), GFP_KERNEL);
1185	if (!priv->vchans || !priv->pchans)
1186		return -ENOMEM;
1187
1188	/*
1189	 * [0..SUN4I_NDMA_NR_MAX_CHANNELS) are normal pchans, and
1190	 * [SUN4I_NDMA_NR_MAX_CHANNELS..SUN4I_DMA_NR_MAX_CHANNELS) are
1191	 * dedicated ones
1192	 */
1193	for (i = 0; i < SUN4I_NDMA_NR_MAX_CHANNELS; i++)
1194		priv->pchans[i].base = priv->base +
1195			SUN4I_NDMA_CHANNEL_REG_BASE(i);
1196
1197	for (j = 0; i < SUN4I_DMA_NR_MAX_CHANNELS; i++, j++) {
1198		priv->pchans[i].base = priv->base +
1199			SUN4I_DDMA_CHANNEL_REG_BASE(j);
1200		priv->pchans[i].is_dedicated = 1;
1201	}
1202
1203	for (i = 0; i < SUN4I_DMA_NR_MAX_VCHANS; i++) {
1204		struct sun4i_dma_vchan *vchan = &priv->vchans[i];
1205
1206		spin_lock_init(&vchan->vc.lock);
1207		vchan->vc.desc_free = sun4i_dma_free_contract;
1208		vchan_init(&vchan->vc, &priv->slave);
1209	}
1210
1211	ret = clk_prepare_enable(priv->clk);
1212	if (ret) {
1213		dev_err(&pdev->dev, "Couldn't enable the clock\n");
1214		return ret;
1215	}
1216
1217	/*
1218	 * Make sure the IRQs are all disabled and accounted for. The bootloader
1219	 * likes to leave these dirty
1220	 */
1221	writel(0, priv->base + SUN4I_DMA_IRQ_ENABLE_REG);
1222	writel(0xFFFFFFFF, priv->base + SUN4I_DMA_IRQ_PENDING_STATUS_REG);
1223
1224	ret = devm_request_irq(&pdev->dev, priv->irq, sun4i_dma_interrupt,
1225			       0, dev_name(&pdev->dev), priv);
1226	if (ret) {
1227		dev_err(&pdev->dev, "Cannot request IRQ\n");
1228		goto err_clk_disable;
1229	}
1230
1231	ret = dma_async_device_register(&priv->slave);
1232	if (ret) {
1233		dev_warn(&pdev->dev, "Failed to register DMA engine device\n");
1234		goto err_clk_disable;
1235	}
1236
1237	ret = of_dma_controller_register(pdev->dev.of_node, sun4i_dma_of_xlate,
1238					 priv);
1239	if (ret) {
1240		dev_err(&pdev->dev, "of_dma_controller_register failed\n");
1241		goto err_dma_unregister;
1242	}
1243
1244	dev_dbg(&pdev->dev, "Successfully probed SUN4I_DMA\n");
1245
1246	return 0;
1247
1248err_dma_unregister:
1249	dma_async_device_unregister(&priv->slave);
1250err_clk_disable:
1251	clk_disable_unprepare(priv->clk);
1252	return ret;
1253}
1254
1255static int sun4i_dma_remove(struct platform_device *pdev)
1256{
1257	struct sun4i_dma_dev *priv = platform_get_drvdata(pdev);
1258
1259	/* Disable IRQ so no more work is scheduled */
1260	disable_irq(priv->irq);
1261
1262	of_dma_controller_free(pdev->dev.of_node);
1263	dma_async_device_unregister(&priv->slave);
1264
1265	clk_disable_unprepare(priv->clk);
1266
1267	return 0;
1268}
1269
1270static const struct of_device_id sun4i_dma_match[] = {
1271	{ .compatible = "allwinner,sun4i-a10-dma" },
1272	{ /* sentinel */ },
1273};
1274MODULE_DEVICE_TABLE(of, sun4i_dma_match);
1275
1276static struct platform_driver sun4i_dma_driver = {
1277	.probe	= sun4i_dma_probe,
1278	.remove	= sun4i_dma_remove,
1279	.driver	= {
1280		.name		= "sun4i-dma",
1281		.of_match_table	= sun4i_dma_match,
1282	},
1283};
1284
1285module_platform_driver(sun4i_dma_driver);
1286
1287MODULE_DESCRIPTION("Allwinner A10 Dedicated DMA Controller Driver");
1288MODULE_AUTHOR("Emilio López <emilio@elopez.com.ar>");
1289MODULE_LICENSE("GPL");