Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Faraday Technology FTTMR010 timer driver
  4 * Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org>
  5 *
  6 * Based on a rewrite of arch/arm/mach-gemini/timer.c:
  7 * Copyright (C) 2001-2006 Storlink, Corp.
  8 * Copyright (C) 2008-2009 Paulius Zaleckas <paulius.zaleckas@teltonika.lt>
  9 */
 10#include <linux/interrupt.h>
 11#include <linux/io.h>
 12#include <linux/of.h>
 13#include <linux/of_address.h>
 14#include <linux/of_irq.h>
 15#include <linux/clockchips.h>
 16#include <linux/clocksource.h>
 17#include <linux/sched_clock.h>
 18#include <linux/clk.h>
 19#include <linux/slab.h>
 20#include <linux/bitops.h>
 21#include <linux/delay.h>
 22
 23/*
 24 * Register definitions for the timers
 25 */
 26#define TIMER1_COUNT		(0x00)
 27#define TIMER1_LOAD		(0x04)
 28#define TIMER1_MATCH1		(0x08)
 29#define TIMER1_MATCH2		(0x0c)
 30#define TIMER2_COUNT		(0x10)
 31#define TIMER2_LOAD		(0x14)
 32#define TIMER2_MATCH1		(0x18)
 33#define TIMER2_MATCH2		(0x1c)
 34#define TIMER3_COUNT		(0x20)
 35#define TIMER3_LOAD		(0x24)
 36#define TIMER3_MATCH1		(0x28)
 37#define TIMER3_MATCH2		(0x2c)
 38#define TIMER_CR		(0x30)
 39#define TIMER_INTR_STATE	(0x34)
 40#define TIMER_INTR_MASK		(0x38)
 41
 42#define TIMER_1_CR_ENABLE	BIT(0)
 43#define TIMER_1_CR_CLOCK	BIT(1)
 44#define TIMER_1_CR_INT		BIT(2)
 45#define TIMER_2_CR_ENABLE	BIT(3)
 46#define TIMER_2_CR_CLOCK	BIT(4)
 47#define TIMER_2_CR_INT		BIT(5)
 48#define TIMER_3_CR_ENABLE	BIT(6)
 49#define TIMER_3_CR_CLOCK	BIT(7)
 50#define TIMER_3_CR_INT		BIT(8)
 51#define TIMER_1_CR_UPDOWN	BIT(9)
 52#define TIMER_2_CR_UPDOWN	BIT(10)
 53#define TIMER_3_CR_UPDOWN	BIT(11)
 54
 55/*
 56 * The Aspeed AST2400 moves bits around in the control register
 57 * and lacks bits for setting the timer to count upwards.
 58 */
 59#define TIMER_1_CR_ASPEED_ENABLE	BIT(0)
 60#define TIMER_1_CR_ASPEED_CLOCK		BIT(1)
 61#define TIMER_1_CR_ASPEED_INT		BIT(2)
 62#define TIMER_2_CR_ASPEED_ENABLE	BIT(4)
 63#define TIMER_2_CR_ASPEED_CLOCK		BIT(5)
 64#define TIMER_2_CR_ASPEED_INT		BIT(6)
 65#define TIMER_3_CR_ASPEED_ENABLE	BIT(8)
 66#define TIMER_3_CR_ASPEED_CLOCK		BIT(9)
 67#define TIMER_3_CR_ASPEED_INT		BIT(10)
 68
 69#define TIMER_1_INT_MATCH1	BIT(0)
 70#define TIMER_1_INT_MATCH2	BIT(1)
 71#define TIMER_1_INT_OVERFLOW	BIT(2)
 72#define TIMER_2_INT_MATCH1	BIT(3)
 73#define TIMER_2_INT_MATCH2	BIT(4)
 74#define TIMER_2_INT_OVERFLOW	BIT(5)
 75#define TIMER_3_INT_MATCH1	BIT(6)
 76#define TIMER_3_INT_MATCH2	BIT(7)
 77#define TIMER_3_INT_OVERFLOW	BIT(8)
 78#define TIMER_INT_ALL_MASK	0x1ff
 79
 80struct fttmr010 {
 81	void __iomem *base;
 82	unsigned int tick_rate;
 83	bool count_down;
 84	u32 t1_enable_val;
 85	struct clock_event_device clkevt;
 86#ifdef CONFIG_ARM
 87	struct delay_timer delay_timer;
 88#endif
 89};
 90
 91/*
 92 * A local singleton used by sched_clock and delay timer reads, which are
 93 * fast and stateless
 94 */
 95static struct fttmr010 *local_fttmr;
 96
 97static inline struct fttmr010 *to_fttmr010(struct clock_event_device *evt)
 98{
 99	return container_of(evt, struct fttmr010, clkevt);
100}
101
102static unsigned long fttmr010_read_current_timer_up(void)
103{
104	return readl(local_fttmr->base + TIMER2_COUNT);
105}
106
107static unsigned long fttmr010_read_current_timer_down(void)
108{
109	return ~readl(local_fttmr->base + TIMER2_COUNT);
110}
111
112static u64 notrace fttmr010_read_sched_clock_up(void)
113{
114	return fttmr010_read_current_timer_up();
115}
116
117static u64 notrace fttmr010_read_sched_clock_down(void)
118{
119	return fttmr010_read_current_timer_down();
120}
121
122static int fttmr010_timer_set_next_event(unsigned long cycles,
123				       struct clock_event_device *evt)
124{
125	struct fttmr010 *fttmr010 = to_fttmr010(evt);
126	u32 cr;
127
128	/* Stop */
129	cr = readl(fttmr010->base + TIMER_CR);
130	cr &= ~fttmr010->t1_enable_val;
131	writel(cr, fttmr010->base + TIMER_CR);
132
133	/* Setup the match register forward/backward in time */
134	cr = readl(fttmr010->base + TIMER1_COUNT);
135	if (fttmr010->count_down)
136		cr -= cycles;
137	else
138		cr += cycles;
139	writel(cr, fttmr010->base + TIMER1_MATCH1);
140
141	/* Start */
142	cr = readl(fttmr010->base + TIMER_CR);
143	cr |= fttmr010->t1_enable_val;
144	writel(cr, fttmr010->base + TIMER_CR);
145
146	return 0;
147}
148
149static int fttmr010_timer_shutdown(struct clock_event_device *evt)
150{
151	struct fttmr010 *fttmr010 = to_fttmr010(evt);
152	u32 cr;
153
154	/* Stop */
155	cr = readl(fttmr010->base + TIMER_CR);
156	cr &= ~fttmr010->t1_enable_val;
157	writel(cr, fttmr010->base + TIMER_CR);
158
159	return 0;
160}
161
162static int fttmr010_timer_set_oneshot(struct clock_event_device *evt)
163{
164	struct fttmr010 *fttmr010 = to_fttmr010(evt);
165	u32 cr;
166
167	/* Stop */
168	cr = readl(fttmr010->base + TIMER_CR);
169	cr &= ~fttmr010->t1_enable_val;
170	writel(cr, fttmr010->base + TIMER_CR);
171
172	/* Setup counter start from 0 or ~0 */
173	writel(0, fttmr010->base + TIMER1_COUNT);
174	if (fttmr010->count_down)
175		writel(~0, fttmr010->base + TIMER1_LOAD);
176	else
177		writel(0, fttmr010->base + TIMER1_LOAD);
178
179	/* Enable interrupt */
180	cr = readl(fttmr010->base + TIMER_INTR_MASK);
181	cr &= ~(TIMER_1_INT_OVERFLOW | TIMER_1_INT_MATCH2);
182	cr |= TIMER_1_INT_MATCH1;
183	writel(cr, fttmr010->base + TIMER_INTR_MASK);
184
185	return 0;
186}
187
188static int fttmr010_timer_set_periodic(struct clock_event_device *evt)
189{
190	struct fttmr010 *fttmr010 = to_fttmr010(evt);
191	u32 period = DIV_ROUND_CLOSEST(fttmr010->tick_rate, HZ);
192	u32 cr;
193
194	/* Stop */
195	cr = readl(fttmr010->base + TIMER_CR);
196	cr &= ~fttmr010->t1_enable_val;
197	writel(cr, fttmr010->base + TIMER_CR);
198
199	/* Setup timer to fire at 1/HZ intervals. */
200	if (fttmr010->count_down) {
201		writel(period, fttmr010->base + TIMER1_LOAD);
202		writel(0, fttmr010->base + TIMER1_MATCH1);
203	} else {
204		cr = 0xffffffff - (period - 1);
205		writel(cr, fttmr010->base + TIMER1_COUNT);
206		writel(cr, fttmr010->base + TIMER1_LOAD);
207
208		/* Enable interrupt on overflow */
209		cr = readl(fttmr010->base + TIMER_INTR_MASK);
210		cr &= ~(TIMER_1_INT_MATCH1 | TIMER_1_INT_MATCH2);
211		cr |= TIMER_1_INT_OVERFLOW;
212		writel(cr, fttmr010->base + TIMER_INTR_MASK);
213	}
214
215	/* Start the timer */
216	cr = readl(fttmr010->base + TIMER_CR);
217	cr |= fttmr010->t1_enable_val;
218	writel(cr, fttmr010->base + TIMER_CR);
219
220	return 0;
221}
222
223/*
224 * IRQ handler for the timer
225 */
226static irqreturn_t fttmr010_timer_interrupt(int irq, void *dev_id)
227{
228	struct clock_event_device *evt = dev_id;
229
230	evt->event_handler(evt);
231	return IRQ_HANDLED;
232}
233
234static int __init fttmr010_common_init(struct device_node *np, bool is_aspeed)
235{
236	struct fttmr010 *fttmr010;
237	int irq;
238	struct clk *clk;
239	int ret;
240	u32 val;
241
242	/*
243	 * These implementations require a clock reference.
244	 * FIXME: we currently only support clocking using PCLK
245	 * and using EXTCLK is not supported in the driver.
246	 */
247	clk = of_clk_get_by_name(np, "PCLK");
248	if (IS_ERR(clk)) {
249		pr_err("could not get PCLK\n");
250		return PTR_ERR(clk);
251	}
252	ret = clk_prepare_enable(clk);
253	if (ret) {
254		pr_err("failed to enable PCLK\n");
255		return ret;
256	}
257
258	fttmr010 = kzalloc(sizeof(*fttmr010), GFP_KERNEL);
259	if (!fttmr010) {
260		ret = -ENOMEM;
261		goto out_disable_clock;
262	}
263	fttmr010->tick_rate = clk_get_rate(clk);
264
265	fttmr010->base = of_iomap(np, 0);
266	if (!fttmr010->base) {
267		pr_err("Can't remap registers\n");
268		ret = -ENXIO;
269		goto out_free;
270	}
271	/* IRQ for timer 1 */
272	irq = irq_of_parse_and_map(np, 0);
273	if (irq <= 0) {
274		pr_err("Can't parse IRQ\n");
275		ret = -EINVAL;
276		goto out_unmap;
277	}
278
279	/*
280	 * The Aspeed AST2400 moves bits around in the control register,
281	 * otherwise it works the same.
282	 */
283	if (is_aspeed) {
284		fttmr010->t1_enable_val = TIMER_1_CR_ASPEED_ENABLE |
285			TIMER_1_CR_ASPEED_INT;
286		/* Downward not available */
287		fttmr010->count_down = true;
288	} else {
289		fttmr010->t1_enable_val = TIMER_1_CR_ENABLE | TIMER_1_CR_INT;
290	}
291
292	/*
293	 * Reset the interrupt mask and status
294	 */
295	writel(TIMER_INT_ALL_MASK, fttmr010->base + TIMER_INTR_MASK);
296	writel(0, fttmr010->base + TIMER_INTR_STATE);
297
298	/*
299	 * Enable timer 1 count up, timer 2 count up, except on Aspeed,
300	 * where everything just counts down.
301	 */
302	if (is_aspeed)
303		val = TIMER_2_CR_ASPEED_ENABLE;
304	else {
305		val = TIMER_2_CR_ENABLE;
306		if (!fttmr010->count_down)
307			val |= TIMER_1_CR_UPDOWN | TIMER_2_CR_UPDOWN;
308	}
309	writel(val, fttmr010->base + TIMER_CR);
310
311	/*
312	 * Setup free-running clocksource timer (interrupts
313	 * disabled.)
314	 */
315	local_fttmr = fttmr010;
316	writel(0, fttmr010->base + TIMER2_COUNT);
317	writel(0, fttmr010->base + TIMER2_MATCH1);
318	writel(0, fttmr010->base + TIMER2_MATCH2);
319
320	if (fttmr010->count_down) {
321		writel(~0, fttmr010->base + TIMER2_LOAD);
322		clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
323				      "FTTMR010-TIMER2",
324				      fttmr010->tick_rate,
325				      300, 32, clocksource_mmio_readl_down);
326		sched_clock_register(fttmr010_read_sched_clock_down, 32,
327				     fttmr010->tick_rate);
328	} else {
329		writel(0, fttmr010->base + TIMER2_LOAD);
330		clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
331				      "FTTMR010-TIMER2",
332				      fttmr010->tick_rate,
333				      300, 32, clocksource_mmio_readl_up);
334		sched_clock_register(fttmr010_read_sched_clock_up, 32,
335				     fttmr010->tick_rate);
336	}
337
338	/*
339	 * Setup clockevent timer (interrupt-driven) on timer 1.
340	 */
341	writel(0, fttmr010->base + TIMER1_COUNT);
342	writel(0, fttmr010->base + TIMER1_LOAD);
343	writel(0, fttmr010->base + TIMER1_MATCH1);
344	writel(0, fttmr010->base + TIMER1_MATCH2);
345	ret = request_irq(irq, fttmr010_timer_interrupt, IRQF_TIMER,
346			  "FTTMR010-TIMER1", &fttmr010->clkevt);
347	if (ret) {
348		pr_err("FTTMR010-TIMER1 no IRQ\n");
349		goto out_unmap;
350	}
351
352	fttmr010->clkevt.name = "FTTMR010-TIMER1";
353	/* Reasonably fast and accurate clock event */
354	fttmr010->clkevt.rating = 300;
355	fttmr010->clkevt.features = CLOCK_EVT_FEAT_PERIODIC |
356		CLOCK_EVT_FEAT_ONESHOT;
357	fttmr010->clkevt.set_next_event = fttmr010_timer_set_next_event;
358	fttmr010->clkevt.set_state_shutdown = fttmr010_timer_shutdown;
359	fttmr010->clkevt.set_state_periodic = fttmr010_timer_set_periodic;
360	fttmr010->clkevt.set_state_oneshot = fttmr010_timer_set_oneshot;
361	fttmr010->clkevt.tick_resume = fttmr010_timer_shutdown;
362	fttmr010->clkevt.cpumask = cpumask_of(0);
363	fttmr010->clkevt.irq = irq;
364	clockevents_config_and_register(&fttmr010->clkevt,
365					fttmr010->tick_rate,
366					1, 0xffffffff);
367
368#ifdef CONFIG_ARM
369	/* Also use this timer for delays */
370	if (fttmr010->count_down)
371		fttmr010->delay_timer.read_current_timer =
372			fttmr010_read_current_timer_down;
373	else
374		fttmr010->delay_timer.read_current_timer =
375			fttmr010_read_current_timer_up;
376	fttmr010->delay_timer.freq = fttmr010->tick_rate;
377	register_current_timer_delay(&fttmr010->delay_timer);
378#endif
379
380	return 0;
381
382out_unmap:
383	iounmap(fttmr010->base);
384out_free:
385	kfree(fttmr010);
386out_disable_clock:
387	clk_disable_unprepare(clk);
388
389	return ret;
390}
391
392static __init int aspeed_timer_init(struct device_node *np)
393{
394	return fttmr010_common_init(np, true);
395}
396
397static __init int fttmr010_timer_init(struct device_node *np)
398{
399	return fttmr010_common_init(np, false);
400}
401
402TIMER_OF_DECLARE(fttmr010, "faraday,fttmr010", fttmr010_timer_init);
403TIMER_OF_DECLARE(gemini, "cortina,gemini-timer", fttmr010_timer_init);
404TIMER_OF_DECLARE(moxart, "moxa,moxart-timer", fttmr010_timer_init);
405TIMER_OF_DECLARE(ast2400, "aspeed,ast2400-timer", aspeed_timer_init);
406TIMER_OF_DECLARE(ast2500, "aspeed,ast2500-timer", aspeed_timer_init);