Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * Copyright (C) 2016-17 Synopsys, Inc. (www.synopsys.com)
  3 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
  4 *
  5 * This program is free software; you can redistribute it and/or modify
  6 * it under the terms of the GNU General Public License version 2 as
  7 * published by the Free Software Foundation.
  8 */
  9
 10/* ARC700 has two 32bit independent prog Timers: TIMER0 and TIMER1, Each can be
 11 * programmed to go from @count to @limit and optionally interrupt.
 12 * We've designated TIMER0 for clockevents and TIMER1 for clocksource
 13 *
 14 * ARCv2 based HS38 cores have RTC (in-core) and GFRC (inside ARConnect/MCIP)
 15 * which are suitable for UP and SMP based clocksources respectively
 16 */
 17
 18#include <linux/interrupt.h>
 19#include <linux/clk.h>
 20#include <linux/clk-provider.h>
 21#include <linux/clocksource.h>
 22#include <linux/clockchips.h>
 23#include <linux/cpu.h>
 24#include <linux/of.h>
 25#include <linux/of_irq.h>
 26
 27#include <soc/arc/timers.h>
 28#include <soc/arc/mcip.h>
 29
 30
 31static unsigned long arc_timer_freq;
 32
 33static int noinline arc_get_timer_clk(struct device_node *node)
 34{
 35	struct clk *clk;
 36	int ret;
 37
 38	clk = of_clk_get(node, 0);
 39	if (IS_ERR(clk)) {
 40		pr_err("timer missing clk\n");
 41		return PTR_ERR(clk);
 42	}
 43
 44	ret = clk_prepare_enable(clk);
 45	if (ret) {
 46		pr_err("Couldn't enable parent clk\n");
 47		return ret;
 48	}
 49
 50	arc_timer_freq = clk_get_rate(clk);
 51
 52	return 0;
 53}
 54
 55/********** Clock Source Device *********/
 56
 57#ifdef CONFIG_ARC_TIMERS_64BIT
 58
 59static u64 arc_read_gfrc(struct clocksource *cs)
 60{
 61	unsigned long flags;
 62	u32 l, h;
 63
 64	local_irq_save(flags);
 65
 66	__mcip_cmd(CMD_GFRC_READ_LO, 0);
 67	l = read_aux_reg(ARC_REG_MCIP_READBACK);
 68
 69	__mcip_cmd(CMD_GFRC_READ_HI, 0);
 70	h = read_aux_reg(ARC_REG_MCIP_READBACK);
 71
 72	local_irq_restore(flags);
 73
 74	return (((u64)h) << 32) | l;
 75}
 76
 77static struct clocksource arc_counter_gfrc = {
 78	.name   = "ARConnect GFRC",
 79	.rating = 400,
 80	.read   = arc_read_gfrc,
 81	.mask   = CLOCKSOURCE_MASK(64),
 82	.flags  = CLOCK_SOURCE_IS_CONTINUOUS,
 83};
 84
 85static int __init arc_cs_setup_gfrc(struct device_node *node)
 86{
 87	struct mcip_bcr mp;
 88	int ret;
 89
 90	READ_BCR(ARC_REG_MCIP_BCR, mp);
 91	if (!mp.gfrc) {
 92		pr_warn("Global-64-bit-Ctr clocksource not detected\n");
 93		return -ENXIO;
 94	}
 95
 96	ret = arc_get_timer_clk(node);
 97	if (ret)
 98		return ret;
 99
100	return clocksource_register_hz(&arc_counter_gfrc, arc_timer_freq);
101}
102TIMER_OF_DECLARE(arc_gfrc, "snps,archs-timer-gfrc", arc_cs_setup_gfrc);
103
104#define AUX_RTC_CTRL	0x103
105#define AUX_RTC_LOW	0x104
106#define AUX_RTC_HIGH	0x105
107
108static u64 arc_read_rtc(struct clocksource *cs)
109{
110	unsigned long status;
111	u32 l, h;
112
113	/*
114	 * hardware has an internal state machine which tracks readout of
115	 * low/high and updates the CTRL.status if
116	 *  - interrupt/exception taken between the two reads
117	 *  - high increments after low has been read
118	 */
119	do {
120		l = read_aux_reg(AUX_RTC_LOW);
121		h = read_aux_reg(AUX_RTC_HIGH);
122		status = read_aux_reg(AUX_RTC_CTRL);
123	} while (!(status & _BITUL(31)));
124
125	return (((u64)h) << 32) | l;
126}
127
128static struct clocksource arc_counter_rtc = {
129	.name   = "ARCv2 RTC",
130	.rating = 350,
131	.read   = arc_read_rtc,
132	.mask   = CLOCKSOURCE_MASK(64),
133	.flags  = CLOCK_SOURCE_IS_CONTINUOUS,
134};
135
136static int __init arc_cs_setup_rtc(struct device_node *node)
137{
138	struct bcr_timer timer;
139	int ret;
140
141	READ_BCR(ARC_REG_TIMERS_BCR, timer);
142	if (!timer.rtc) {
143		pr_warn("Local-64-bit-Ctr clocksource not detected\n");
144		return -ENXIO;
145	}
146
147	/* Local to CPU hence not usable in SMP */
148	if (IS_ENABLED(CONFIG_SMP)) {
149		pr_warn("Local-64-bit-Ctr not usable in SMP\n");
150		return -EINVAL;
151	}
152
153	ret = arc_get_timer_clk(node);
154	if (ret)
155		return ret;
156
157	write_aux_reg(AUX_RTC_CTRL, 1);
158
159	return clocksource_register_hz(&arc_counter_rtc, arc_timer_freq);
160}
161TIMER_OF_DECLARE(arc_rtc, "snps,archs-timer-rtc", arc_cs_setup_rtc);
162
163#endif
164
165/*
166 * 32bit TIMER1 to keep counting monotonically and wraparound
167 */
168
169static u64 arc_read_timer1(struct clocksource *cs)
170{
171	return (u64) read_aux_reg(ARC_REG_TIMER1_CNT);
172}
173
174static struct clocksource arc_counter_timer1 = {
175	.name   = "ARC Timer1",
176	.rating = 300,
177	.read   = arc_read_timer1,
178	.mask   = CLOCKSOURCE_MASK(32),
179	.flags  = CLOCK_SOURCE_IS_CONTINUOUS,
180};
181
182static int __init arc_cs_setup_timer1(struct device_node *node)
183{
184	int ret;
185
186	/* Local to CPU hence not usable in SMP */
187	if (IS_ENABLED(CONFIG_SMP))
188		return -EINVAL;
189
190	ret = arc_get_timer_clk(node);
191	if (ret)
192		return ret;
193
194	write_aux_reg(ARC_REG_TIMER1_LIMIT, ARC_TIMERN_MAX);
195	write_aux_reg(ARC_REG_TIMER1_CNT, 0);
196	write_aux_reg(ARC_REG_TIMER1_CTRL, TIMER_CTRL_NH);
197
198	return clocksource_register_hz(&arc_counter_timer1, arc_timer_freq);
199}
200
201/********** Clock Event Device *********/
202
203static int arc_timer_irq;
204
205/*
206 * Arm the timer to interrupt after @cycles
207 * The distinction for oneshot/periodic is done in arc_event_timer_ack() below
208 */
209static void arc_timer_event_setup(unsigned int cycles)
210{
211	write_aux_reg(ARC_REG_TIMER0_LIMIT, cycles);
212	write_aux_reg(ARC_REG_TIMER0_CNT, 0);	/* start from 0 */
213
214	write_aux_reg(ARC_REG_TIMER0_CTRL, TIMER_CTRL_IE | TIMER_CTRL_NH);
215}
216
217
218static int arc_clkevent_set_next_event(unsigned long delta,
219				       struct clock_event_device *dev)
220{
221	arc_timer_event_setup(delta);
222	return 0;
223}
224
225static int arc_clkevent_set_periodic(struct clock_event_device *dev)
226{
227	/*
228	 * At X Hz, 1 sec = 1000ms -> X cycles;
229	 *		      10ms -> X / 100 cycles
230	 */
231	arc_timer_event_setup(arc_timer_freq / HZ);
232	return 0;
233}
234
235static DEFINE_PER_CPU(struct clock_event_device, arc_clockevent_device) = {
236	.name			= "ARC Timer0",
237	.features		= CLOCK_EVT_FEAT_ONESHOT |
238				  CLOCK_EVT_FEAT_PERIODIC,
239	.rating			= 300,
240	.set_next_event		= arc_clkevent_set_next_event,
241	.set_state_periodic	= arc_clkevent_set_periodic,
242};
243
244static irqreturn_t timer_irq_handler(int irq, void *dev_id)
245{
246	/*
247	 * Note that generic IRQ core could have passed @evt for @dev_id if
248	 * irq_set_chip_and_handler() asked for handle_percpu_devid_irq()
249	 */
250	struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
251	int irq_reenable = clockevent_state_periodic(evt);
252
253	/*
254	 * 1. ACK the interrupt
255	 *    - For ARC700, any write to CTRL reg ACKs it, so just rewrite
256	 *      Count when [N]ot [H]alted bit.
257	 *    - For HS3x, it is a bit subtle. On taken count-down interrupt,
258	 *      IP bit [3] is set, which needs to be cleared for ACK'ing.
259	 *      The write below can only update the other two bits, hence
260	 *      explicitly clears IP bit
261	 * 2. Re-arm interrupt if periodic by writing to IE bit [0]
262	 */
263	write_aux_reg(ARC_REG_TIMER0_CTRL, irq_reenable | TIMER_CTRL_NH);
264
265	evt->event_handler(evt);
266
267	return IRQ_HANDLED;
268}
269
270
271static int arc_timer_starting_cpu(unsigned int cpu)
272{
273	struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
274
275	evt->cpumask = cpumask_of(smp_processor_id());
276
277	clockevents_config_and_register(evt, arc_timer_freq, 0, ARC_TIMERN_MAX);
278	enable_percpu_irq(arc_timer_irq, 0);
279	return 0;
280}
281
282static int arc_timer_dying_cpu(unsigned int cpu)
283{
284	disable_percpu_irq(arc_timer_irq);
285	return 0;
286}
287
288/*
289 * clockevent setup for boot CPU
290 */
291static int __init arc_clockevent_setup(struct device_node *node)
292{
293	struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
294	int ret;
295
296	arc_timer_irq = irq_of_parse_and_map(node, 0);
297	if (arc_timer_irq <= 0) {
298		pr_err("clockevent: missing irq\n");
299		return -EINVAL;
300	}
301
302	ret = arc_get_timer_clk(node);
303	if (ret) {
304		pr_err("clockevent: missing clk\n");
305		return ret;
306	}
307
308	/* Needs apriori irq_set_percpu_devid() done in intc map function */
309	ret = request_percpu_irq(arc_timer_irq, timer_irq_handler,
310				 "Timer0 (per-cpu-tick)", evt);
311	if (ret) {
312		pr_err("clockevent: unable to request irq\n");
313		return ret;
314	}
315
316	ret = cpuhp_setup_state(CPUHP_AP_ARC_TIMER_STARTING,
317				"clockevents/arc/timer:starting",
318				arc_timer_starting_cpu,
319				arc_timer_dying_cpu);
320	if (ret) {
321		pr_err("Failed to setup hotplug state\n");
322		return ret;
323	}
324	return 0;
325}
326
327static int __init arc_of_timer_init(struct device_node *np)
328{
329	static int init_count = 0;
330	int ret;
331
332	if (!init_count) {
333		init_count = 1;
334		ret = arc_clockevent_setup(np);
335	} else {
336		ret = arc_cs_setup_timer1(np);
337	}
338
339	return ret;
340}
341TIMER_OF_DECLARE(arc_clkevt, "snps,arc-timer", arc_of_timer_init);