Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * cacheinfo support - processor cache information via sysfs
  4 *
  5 * Based on arch/x86/kernel/cpu/intel_cacheinfo.c
  6 * Author: Sudeep Holla <sudeep.holla@arm.com>
  7 */
  8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  9
 10#include <linux/acpi.h>
 11#include <linux/bitops.h>
 12#include <linux/cacheinfo.h>
 13#include <linux/compiler.h>
 14#include <linux/cpu.h>
 15#include <linux/device.h>
 16#include <linux/init.h>
 17#include <linux/of.h>
 18#include <linux/sched.h>
 19#include <linux/slab.h>
 20#include <linux/smp.h>
 21#include <linux/sysfs.h>
 22
 23/* pointer to per cpu cacheinfo */
 24static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo);
 25#define ci_cacheinfo(cpu)	(&per_cpu(ci_cpu_cacheinfo, cpu))
 26#define cache_leaves(cpu)	(ci_cacheinfo(cpu)->num_leaves)
 27#define per_cpu_cacheinfo(cpu)	(ci_cacheinfo(cpu)->info_list)
 28
 29struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu)
 30{
 31	return ci_cacheinfo(cpu);
 32}
 33
 34#ifdef CONFIG_OF
 35static int cache_setup_of_node(unsigned int cpu)
 36{
 37	struct device_node *np;
 38	struct cacheinfo *this_leaf;
 39	struct device *cpu_dev = get_cpu_device(cpu);
 40	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
 41	unsigned int index = 0;
 42
 43	/* skip if of_node is already populated */
 44	if (this_cpu_ci->info_list->of_node)
 45		return 0;
 46
 47	if (!cpu_dev) {
 48		pr_err("No cpu device for CPU %d\n", cpu);
 49		return -ENODEV;
 50	}
 51	np = cpu_dev->of_node;
 52	if (!np) {
 53		pr_err("Failed to find cpu%d device node\n", cpu);
 54		return -ENOENT;
 55	}
 56
 57	while (index < cache_leaves(cpu)) {
 58		this_leaf = this_cpu_ci->info_list + index;
 59		if (this_leaf->level != 1)
 60			np = of_find_next_cache_node(np);
 61		else
 62			np = of_node_get(np);/* cpu node itself */
 63		if (!np)
 64			break;
 65		this_leaf->of_node = np;
 66		index++;
 67	}
 68
 69	if (index != cache_leaves(cpu)) /* not all OF nodes populated */
 70		return -ENOENT;
 71
 72	return 0;
 73}
 74
 75static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
 76					   struct cacheinfo *sib_leaf)
 77{
 78	return sib_leaf->of_node == this_leaf->of_node;
 79}
 80
 81/* OF properties to query for a given cache type */
 82struct cache_type_info {
 83	const char *size_prop;
 84	const char *line_size_props[2];
 85	const char *nr_sets_prop;
 86};
 87
 88static const struct cache_type_info cache_type_info[] = {
 89	{
 90		.size_prop       = "cache-size",
 91		.line_size_props = { "cache-line-size",
 92				     "cache-block-size", },
 93		.nr_sets_prop    = "cache-sets",
 94	}, {
 95		.size_prop       = "i-cache-size",
 96		.line_size_props = { "i-cache-line-size",
 97				     "i-cache-block-size", },
 98		.nr_sets_prop    = "i-cache-sets",
 99	}, {
100		.size_prop       = "d-cache-size",
101		.line_size_props = { "d-cache-line-size",
102				     "d-cache-block-size", },
103		.nr_sets_prop    = "d-cache-sets",
104	},
105};
106
107static inline int get_cacheinfo_idx(enum cache_type type)
108{
109	if (type == CACHE_TYPE_UNIFIED)
110		return 0;
111	return type;
112}
113
114static void cache_size(struct cacheinfo *this_leaf)
115{
116	const char *propname;
117	const __be32 *cache_size;
118	int ct_idx;
119
120	ct_idx = get_cacheinfo_idx(this_leaf->type);
121	propname = cache_type_info[ct_idx].size_prop;
122
123	cache_size = of_get_property(this_leaf->of_node, propname, NULL);
124	if (cache_size)
125		this_leaf->size = of_read_number(cache_size, 1);
126}
127
128/* not cache_line_size() because that's a macro in include/linux/cache.h */
129static void cache_get_line_size(struct cacheinfo *this_leaf)
130{
131	const __be32 *line_size;
132	int i, lim, ct_idx;
133
134	ct_idx = get_cacheinfo_idx(this_leaf->type);
135	lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props);
136
137	for (i = 0; i < lim; i++) {
138		const char *propname;
139
140		propname = cache_type_info[ct_idx].line_size_props[i];
141		line_size = of_get_property(this_leaf->of_node, propname, NULL);
142		if (line_size)
143			break;
144	}
145
146	if (line_size)
147		this_leaf->coherency_line_size = of_read_number(line_size, 1);
148}
149
150static void cache_nr_sets(struct cacheinfo *this_leaf)
151{
152	const char *propname;
153	const __be32 *nr_sets;
154	int ct_idx;
155
156	ct_idx = get_cacheinfo_idx(this_leaf->type);
157	propname = cache_type_info[ct_idx].nr_sets_prop;
158
159	nr_sets = of_get_property(this_leaf->of_node, propname, NULL);
160	if (nr_sets)
161		this_leaf->number_of_sets = of_read_number(nr_sets, 1);
162}
163
164static void cache_associativity(struct cacheinfo *this_leaf)
165{
166	unsigned int line_size = this_leaf->coherency_line_size;
167	unsigned int nr_sets = this_leaf->number_of_sets;
168	unsigned int size = this_leaf->size;
169
170	/*
171	 * If the cache is fully associative, there is no need to
172	 * check the other properties.
173	 */
174	if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0))
175		this_leaf->ways_of_associativity = (size / nr_sets) / line_size;
176}
177
178static bool cache_node_is_unified(struct cacheinfo *this_leaf)
179{
180	return of_property_read_bool(this_leaf->of_node, "cache-unified");
181}
182
183static void cache_of_override_properties(unsigned int cpu)
184{
185	int index;
186	struct cacheinfo *this_leaf;
187	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
188
189	for (index = 0; index < cache_leaves(cpu); index++) {
190		this_leaf = this_cpu_ci->info_list + index;
191		/*
192		 * init_cache_level must setup the cache level correctly
193		 * overriding the architecturally specified levels, so
194		 * if type is NONE at this stage, it should be unified
195		 */
196		if (this_leaf->type == CACHE_TYPE_NOCACHE &&
197		    cache_node_is_unified(this_leaf))
198			this_leaf->type = CACHE_TYPE_UNIFIED;
199		cache_size(this_leaf);
200		cache_get_line_size(this_leaf);
201		cache_nr_sets(this_leaf);
202		cache_associativity(this_leaf);
203	}
204}
205#else
206static void cache_of_override_properties(unsigned int cpu) { }
207static inline int cache_setup_of_node(unsigned int cpu) { return 0; }
208static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
209					   struct cacheinfo *sib_leaf)
210{
211	/*
212	 * For non-DT systems, assume unique level 1 cache, system-wide
213	 * shared caches for all other levels. This will be used only if
214	 * arch specific code has not populated shared_cpu_map
215	 */
216	return !(this_leaf->level == 1);
217}
218#endif
219
220static int cache_shared_cpu_map_setup(unsigned int cpu)
221{
222	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
223	struct cacheinfo *this_leaf, *sib_leaf;
224	unsigned int index;
225	int ret = 0;
226
227	if (this_cpu_ci->cpu_map_populated)
228		return 0;
229
230	if (of_have_populated_dt())
231		ret = cache_setup_of_node(cpu);
232	else if (!acpi_disabled)
233		/* No cache property/hierarchy support yet in ACPI */
234		ret = -ENOTSUPP;
235	if (ret)
236		return ret;
237
238	for (index = 0; index < cache_leaves(cpu); index++) {
239		unsigned int i;
240
241		this_leaf = this_cpu_ci->info_list + index;
242		/* skip if shared_cpu_map is already populated */
243		if (!cpumask_empty(&this_leaf->shared_cpu_map))
244			continue;
245
246		cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
247		for_each_online_cpu(i) {
248			struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);
249
250			if (i == cpu || !sib_cpu_ci->info_list)
251				continue;/* skip if itself or no cacheinfo */
252			sib_leaf = sib_cpu_ci->info_list + index;
253			if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
254				cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map);
255				cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
256			}
257		}
258	}
259
260	return 0;
261}
262
263static void cache_shared_cpu_map_remove(unsigned int cpu)
264{
265	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
266	struct cacheinfo *this_leaf, *sib_leaf;
267	unsigned int sibling, index;
268
269	for (index = 0; index < cache_leaves(cpu); index++) {
270		this_leaf = this_cpu_ci->info_list + index;
271		for_each_cpu(sibling, &this_leaf->shared_cpu_map) {
272			struct cpu_cacheinfo *sib_cpu_ci;
273
274			if (sibling == cpu) /* skip itself */
275				continue;
276
277			sib_cpu_ci = get_cpu_cacheinfo(sibling);
278			if (!sib_cpu_ci->info_list)
279				continue;
280
281			sib_leaf = sib_cpu_ci->info_list + index;
282			cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map);
283			cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map);
284		}
285		of_node_put(this_leaf->of_node);
286	}
287}
288
289static void cache_override_properties(unsigned int cpu)
290{
291	if (of_have_populated_dt())
292		return cache_of_override_properties(cpu);
293}
294
295static void free_cache_attributes(unsigned int cpu)
296{
297	if (!per_cpu_cacheinfo(cpu))
298		return;
299
300	cache_shared_cpu_map_remove(cpu);
301
302	kfree(per_cpu_cacheinfo(cpu));
303	per_cpu_cacheinfo(cpu) = NULL;
304}
305
306int __weak init_cache_level(unsigned int cpu)
307{
308	return -ENOENT;
309}
310
311int __weak populate_cache_leaves(unsigned int cpu)
312{
313	return -ENOENT;
314}
315
316static int detect_cache_attributes(unsigned int cpu)
317{
318	int ret;
319
320	if (init_cache_level(cpu) || !cache_leaves(cpu))
321		return -ENOENT;
322
323	per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu),
324					 sizeof(struct cacheinfo), GFP_KERNEL);
325	if (per_cpu_cacheinfo(cpu) == NULL)
326		return -ENOMEM;
327
328	ret = populate_cache_leaves(cpu);
329	if (ret)
330		goto free_ci;
331	/*
332	 * For systems using DT for cache hierarchy, of_node and shared_cpu_map
333	 * will be set up here only if they are not populated already
334	 */
335	ret = cache_shared_cpu_map_setup(cpu);
336	if (ret) {
337		pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu);
338		goto free_ci;
339	}
340
341	cache_override_properties(cpu);
342	return 0;
343
344free_ci:
345	free_cache_attributes(cpu);
346	return ret;
347}
348
349/* pointer to cpuX/cache device */
350static DEFINE_PER_CPU(struct device *, ci_cache_dev);
351#define per_cpu_cache_dev(cpu)	(per_cpu(ci_cache_dev, cpu))
352
353static cpumask_t cache_dev_map;
354
355/* pointer to array of devices for cpuX/cache/indexY */
356static DEFINE_PER_CPU(struct device **, ci_index_dev);
357#define per_cpu_index_dev(cpu)	(per_cpu(ci_index_dev, cpu))
358#define per_cache_index_dev(cpu, idx)	((per_cpu_index_dev(cpu))[idx])
359
360#define show_one(file_name, object)				\
361static ssize_t file_name##_show(struct device *dev,		\
362		struct device_attribute *attr, char *buf)	\
363{								\
364	struct cacheinfo *this_leaf = dev_get_drvdata(dev);	\
365	return sprintf(buf, "%u\n", this_leaf->object);		\
366}
367
368show_one(id, id);
369show_one(level, level);
370show_one(coherency_line_size, coherency_line_size);
371show_one(number_of_sets, number_of_sets);
372show_one(physical_line_partition, physical_line_partition);
373show_one(ways_of_associativity, ways_of_associativity);
374
375static ssize_t size_show(struct device *dev,
376			 struct device_attribute *attr, char *buf)
377{
378	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
379
380	return sprintf(buf, "%uK\n", this_leaf->size >> 10);
381}
382
383static ssize_t shared_cpumap_show_func(struct device *dev, bool list, char *buf)
384{
385	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
386	const struct cpumask *mask = &this_leaf->shared_cpu_map;
387
388	return cpumap_print_to_pagebuf(list, buf, mask);
389}
390
391static ssize_t shared_cpu_map_show(struct device *dev,
392				   struct device_attribute *attr, char *buf)
393{
394	return shared_cpumap_show_func(dev, false, buf);
395}
396
397static ssize_t shared_cpu_list_show(struct device *dev,
398				    struct device_attribute *attr, char *buf)
399{
400	return shared_cpumap_show_func(dev, true, buf);
401}
402
403static ssize_t type_show(struct device *dev,
404			 struct device_attribute *attr, char *buf)
405{
406	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
407
408	switch (this_leaf->type) {
409	case CACHE_TYPE_DATA:
410		return sprintf(buf, "Data\n");
411	case CACHE_TYPE_INST:
412		return sprintf(buf, "Instruction\n");
413	case CACHE_TYPE_UNIFIED:
414		return sprintf(buf, "Unified\n");
415	default:
416		return -EINVAL;
417	}
418}
419
420static ssize_t allocation_policy_show(struct device *dev,
421				      struct device_attribute *attr, char *buf)
422{
423	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
424	unsigned int ci_attr = this_leaf->attributes;
425	int n = 0;
426
427	if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE))
428		n = sprintf(buf, "ReadWriteAllocate\n");
429	else if (ci_attr & CACHE_READ_ALLOCATE)
430		n = sprintf(buf, "ReadAllocate\n");
431	else if (ci_attr & CACHE_WRITE_ALLOCATE)
432		n = sprintf(buf, "WriteAllocate\n");
433	return n;
434}
435
436static ssize_t write_policy_show(struct device *dev,
437				 struct device_attribute *attr, char *buf)
438{
439	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
440	unsigned int ci_attr = this_leaf->attributes;
441	int n = 0;
442
443	if (ci_attr & CACHE_WRITE_THROUGH)
444		n = sprintf(buf, "WriteThrough\n");
445	else if (ci_attr & CACHE_WRITE_BACK)
446		n = sprintf(buf, "WriteBack\n");
447	return n;
448}
449
450static DEVICE_ATTR_RO(id);
451static DEVICE_ATTR_RO(level);
452static DEVICE_ATTR_RO(type);
453static DEVICE_ATTR_RO(coherency_line_size);
454static DEVICE_ATTR_RO(ways_of_associativity);
455static DEVICE_ATTR_RO(number_of_sets);
456static DEVICE_ATTR_RO(size);
457static DEVICE_ATTR_RO(allocation_policy);
458static DEVICE_ATTR_RO(write_policy);
459static DEVICE_ATTR_RO(shared_cpu_map);
460static DEVICE_ATTR_RO(shared_cpu_list);
461static DEVICE_ATTR_RO(physical_line_partition);
462
463static struct attribute *cache_default_attrs[] = {
464	&dev_attr_id.attr,
465	&dev_attr_type.attr,
466	&dev_attr_level.attr,
467	&dev_attr_shared_cpu_map.attr,
468	&dev_attr_shared_cpu_list.attr,
469	&dev_attr_coherency_line_size.attr,
470	&dev_attr_ways_of_associativity.attr,
471	&dev_attr_number_of_sets.attr,
472	&dev_attr_size.attr,
473	&dev_attr_allocation_policy.attr,
474	&dev_attr_write_policy.attr,
475	&dev_attr_physical_line_partition.attr,
476	NULL
477};
478
479static umode_t
480cache_default_attrs_is_visible(struct kobject *kobj,
481			       struct attribute *attr, int unused)
482{
483	struct device *dev = kobj_to_dev(kobj);
484	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
485	const struct cpumask *mask = &this_leaf->shared_cpu_map;
486	umode_t mode = attr->mode;
487
488	if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID))
489		return mode;
490	if ((attr == &dev_attr_type.attr) && this_leaf->type)
491		return mode;
492	if ((attr == &dev_attr_level.attr) && this_leaf->level)
493		return mode;
494	if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask))
495		return mode;
496	if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask))
497		return mode;
498	if ((attr == &dev_attr_coherency_line_size.attr) &&
499	    this_leaf->coherency_line_size)
500		return mode;
501	if ((attr == &dev_attr_ways_of_associativity.attr) &&
502	    this_leaf->size) /* allow 0 = full associativity */
503		return mode;
504	if ((attr == &dev_attr_number_of_sets.attr) &&
505	    this_leaf->number_of_sets)
506		return mode;
507	if ((attr == &dev_attr_size.attr) && this_leaf->size)
508		return mode;
509	if ((attr == &dev_attr_write_policy.attr) &&
510	    (this_leaf->attributes & CACHE_WRITE_POLICY_MASK))
511		return mode;
512	if ((attr == &dev_attr_allocation_policy.attr) &&
513	    (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK))
514		return mode;
515	if ((attr == &dev_attr_physical_line_partition.attr) &&
516	    this_leaf->physical_line_partition)
517		return mode;
518
519	return 0;
520}
521
522static const struct attribute_group cache_default_group = {
523	.attrs = cache_default_attrs,
524	.is_visible = cache_default_attrs_is_visible,
525};
526
527static const struct attribute_group *cache_default_groups[] = {
528	&cache_default_group,
529	NULL,
530};
531
532static const struct attribute_group *cache_private_groups[] = {
533	&cache_default_group,
534	NULL, /* Place holder for private group */
535	NULL,
536};
537
538const struct attribute_group *
539__weak cache_get_priv_group(struct cacheinfo *this_leaf)
540{
541	return NULL;
542}
543
544static const struct attribute_group **
545cache_get_attribute_groups(struct cacheinfo *this_leaf)
546{
547	const struct attribute_group *priv_group =
548			cache_get_priv_group(this_leaf);
549
550	if (!priv_group)
551		return cache_default_groups;
552
553	if (!cache_private_groups[1])
554		cache_private_groups[1] = priv_group;
555
556	return cache_private_groups;
557}
558
559/* Add/Remove cache interface for CPU device */
560static void cpu_cache_sysfs_exit(unsigned int cpu)
561{
562	int i;
563	struct device *ci_dev;
564
565	if (per_cpu_index_dev(cpu)) {
566		for (i = 0; i < cache_leaves(cpu); i++) {
567			ci_dev = per_cache_index_dev(cpu, i);
568			if (!ci_dev)
569				continue;
570			device_unregister(ci_dev);
571		}
572		kfree(per_cpu_index_dev(cpu));
573		per_cpu_index_dev(cpu) = NULL;
574	}
575	device_unregister(per_cpu_cache_dev(cpu));
576	per_cpu_cache_dev(cpu) = NULL;
577}
578
579static int cpu_cache_sysfs_init(unsigned int cpu)
580{
581	struct device *dev = get_cpu_device(cpu);
582
583	if (per_cpu_cacheinfo(cpu) == NULL)
584		return -ENOENT;
585
586	per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache");
587	if (IS_ERR(per_cpu_cache_dev(cpu)))
588		return PTR_ERR(per_cpu_cache_dev(cpu));
589
590	/* Allocate all required memory */
591	per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu),
592					 sizeof(struct device *), GFP_KERNEL);
593	if (unlikely(per_cpu_index_dev(cpu) == NULL))
594		goto err_out;
595
596	return 0;
597
598err_out:
599	cpu_cache_sysfs_exit(cpu);
600	return -ENOMEM;
601}
602
603static int cache_add_dev(unsigned int cpu)
604{
605	unsigned int i;
606	int rc;
607	struct device *ci_dev, *parent;
608	struct cacheinfo *this_leaf;
609	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
610	const struct attribute_group **cache_groups;
611
612	rc = cpu_cache_sysfs_init(cpu);
613	if (unlikely(rc < 0))
614		return rc;
615
616	parent = per_cpu_cache_dev(cpu);
617	for (i = 0; i < cache_leaves(cpu); i++) {
618		this_leaf = this_cpu_ci->info_list + i;
619		if (this_leaf->disable_sysfs)
620			continue;
621		cache_groups = cache_get_attribute_groups(this_leaf);
622		ci_dev = cpu_device_create(parent, this_leaf, cache_groups,
623					   "index%1u", i);
624		if (IS_ERR(ci_dev)) {
625			rc = PTR_ERR(ci_dev);
626			goto err;
627		}
628		per_cache_index_dev(cpu, i) = ci_dev;
629	}
630	cpumask_set_cpu(cpu, &cache_dev_map);
631
632	return 0;
633err:
634	cpu_cache_sysfs_exit(cpu);
635	return rc;
636}
637
638static int cacheinfo_cpu_online(unsigned int cpu)
639{
640	int rc = detect_cache_attributes(cpu);
641
642	if (rc)
643		return rc;
644	rc = cache_add_dev(cpu);
645	if (rc)
646		free_cache_attributes(cpu);
647	return rc;
648}
649
650static int cacheinfo_cpu_pre_down(unsigned int cpu)
651{
652	if (cpumask_test_and_clear_cpu(cpu, &cache_dev_map))
653		cpu_cache_sysfs_exit(cpu);
654
655	free_cache_attributes(cpu);
656	return 0;
657}
658
659static int __init cacheinfo_sysfs_init(void)
660{
661	return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "base/cacheinfo:online",
662				 cacheinfo_cpu_online, cacheinfo_cpu_pre_down);
663}
664device_initcall(cacheinfo_sysfs_init);