Linux Audio

Check our new training course

Loading...
v3.1
   1/* lanai.c -- Copyright 1999-2003 by Mitchell Blank Jr <mitch@sfgoth.com>
   2 *
   3 *  This program is free software; you can redistribute it and/or
   4 *  modify it under the terms of the GNU General Public License
   5 *  as published by the Free Software Foundation; either version
   6 *  2 of the License, or (at your option) any later version.
   7 *
   8 * This driver supports ATM cards based on the Efficient "Lanai"
   9 * chipset such as the Speedstream 3010 and the ENI-25p.  The
  10 * Speedstream 3060 is currently not supported since we don't
  11 * have the code to drive the on-board Alcatel DSL chipset (yet).
  12 *
  13 * Thanks to Efficient for supporting this project with hardware,
  14 * documentation, and by answering my questions.
  15 *
  16 * Things not working yet:
  17 *
  18 * o  We don't support the Speedstream 3060 yet - this card has
  19 *    an on-board DSL modem chip by Alcatel and the driver will
  20 *    need some extra code added to handle it
  21 *
  22 * o  Note that due to limitations of the Lanai only one VCC can be
  23 *    in CBR at once
  24 *
  25 * o We don't currently parse the EEPROM at all.  The code is all
  26 *   there as per the spec, but it doesn't actually work.  I think
  27 *   there may be some issues with the docs.  Anyway, do NOT
  28 *   enable it yet - bugs in that code may actually damage your
  29 *   hardware!  Because of this you should hardware an ESI before
  30 *   trying to use this in a LANE or MPOA environment.
  31 *
  32 * o  AAL0 is stubbed in but the actual rx/tx path isn't written yet:
  33 *	vcc_tx_aal0() needs to send or queue a SKB
  34 *	vcc_tx_unqueue_aal0() needs to attempt to send queued SKBs
  35 *	vcc_rx_aal0() needs to handle AAL0 interrupts
  36 *    This isn't too much work - I just wanted to get other things
  37 *    done first.
  38 *
  39 * o  lanai_change_qos() isn't written yet
  40 *
  41 * o  There aren't any ioctl's yet -- I'd like to eventually support
  42 *    setting loopback and LED modes that way.
  43 *
  44 * o  If the segmentation engine or DMA gets shut down we should restart
  45 *    card as per section 17.0i.  (see lanai_reset)
  46 *
  47 * o setsockopt(SO_CIRANGE) isn't done (although despite what the
  48 *   API says it isn't exactly commonly implemented)
  49 */
  50
  51/* Version history:
  52 *   v.1.00 -- 26-JUL-2003 -- PCI/DMA updates
  53 *   v.0.02 -- 11-JAN-2000 -- Endian fixes
  54 *   v.0.01 -- 30-NOV-1999 -- Initial release
  55 */
  56
  57#include <linux/module.h>
  58#include <linux/slab.h>
  59#include <linux/mm.h>
  60#include <linux/atmdev.h>
  61#include <asm/io.h>
  62#include <asm/byteorder.h>
  63#include <linux/spinlock.h>
  64#include <linux/pci.h>
  65#include <linux/dma-mapping.h>
  66#include <linux/init.h>
  67#include <linux/delay.h>
  68#include <linux/interrupt.h>
  69
  70/* -------------------- TUNABLE PARAMATERS: */
  71
  72/*
  73 * Maximum number of VCIs per card.  Setting it lower could theoretically
  74 * save some memory, but since we allocate our vcc list with get_free_pages,
  75 * it's not really likely for most architectures
  76 */
  77#define NUM_VCI			(1024)
  78
  79/*
  80 * Enable extra debugging
  81 */
  82#define DEBUG
  83/*
  84 * Debug _all_ register operations with card, except the memory test.
  85 * Also disables the timed poll to prevent extra chattiness.  This
  86 * isn't for normal use
  87 */
  88#undef DEBUG_RW
  89
  90/*
  91 * The programming guide specifies a full test of the on-board SRAM
  92 * at initialization time.  Undefine to remove this
  93 */
  94#define FULL_MEMORY_TEST
  95
  96/*
  97 * This is the number of (4 byte) service entries that we will
  98 * try to allocate at startup.  Note that we will end up with
  99 * one PAGE_SIZE's worth regardless of what this is set to
 100 */
 101#define SERVICE_ENTRIES		(1024)
 102/* TODO: make above a module load-time option */
 103
 104/*
 105 * We normally read the onboard EEPROM in order to discover our MAC
 106 * address.  Undefine to _not_ do this
 107 */
 108/* #define READ_EEPROM */ /* ***DONT ENABLE YET*** */
 109/* TODO: make above a module load-time option (also) */
 110
 111/*
 112 * Depth of TX fifo (in 128 byte units; range 2-31)
 113 * Smaller numbers are better for network latency
 114 * Larger numbers are better for PCI latency
 115 * I'm really sure where the best tradeoff is, but the BSD driver uses
 116 * 7 and it seems to work ok.
 117 */
 118#define TX_FIFO_DEPTH		(7)
 119/* TODO: make above a module load-time option */
 120
 121/*
 122 * How often (in jiffies) we will try to unstick stuck connections -
 123 * shouldn't need to happen much
 124 */
 125#define LANAI_POLL_PERIOD	(10*HZ)
 126/* TODO: make above a module load-time option */
 127
 128/*
 129 * When allocating an AAL5 receiving buffer, try to make it at least
 130 * large enough to hold this many max_sdu sized PDUs
 131 */
 132#define AAL5_RX_MULTIPLIER	(3)
 133/* TODO: make above a module load-time option */
 134
 135/*
 136 * Same for transmitting buffer
 137 */
 138#define AAL5_TX_MULTIPLIER	(3)
 139/* TODO: make above a module load-time option */
 140
 141/*
 142 * When allocating an AAL0 transmiting buffer, how many cells should fit.
 143 * Remember we'll end up with a PAGE_SIZE of them anyway, so this isn't
 144 * really critical
 145 */
 146#define AAL0_TX_MULTIPLIER	(40)
 147/* TODO: make above a module load-time option */
 148
 149/*
 150 * How large should we make the AAL0 receiving buffer.  Remember that this
 151 * is shared between all AAL0 VC's
 152 */
 153#define AAL0_RX_BUFFER_SIZE	(PAGE_SIZE)
 154/* TODO: make above a module load-time option */
 155
 156/*
 157 * Should we use Lanai's "powerdown" feature when no vcc's are bound?
 158 */
 159/* #define USE_POWERDOWN */
 160/* TODO: make above a module load-time option (also) */
 161
 162/* -------------------- DEBUGGING AIDS: */
 163
 164#define DEV_LABEL "lanai"
 165
 166#ifdef DEBUG
 167
 168#define DPRINTK(format, args...) \
 169	printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
 170#define APRINTK(truth, format, args...) \
 171	do { \
 172		if (unlikely(!(truth))) \
 173			printk(KERN_ERR DEV_LABEL ": " format, ##args); \
 174	} while (0)
 175
 176#else /* !DEBUG */
 177
 178#define DPRINTK(format, args...)
 179#define APRINTK(truth, format, args...)
 180
 181#endif /* DEBUG */
 182
 183#ifdef DEBUG_RW
 184#define RWDEBUG(format, args...) \
 185	printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
 186#else /* !DEBUG_RW */
 187#define RWDEBUG(format, args...)
 188#endif
 189
 190/* -------------------- DATA DEFINITIONS: */
 191
 192#define LANAI_MAPPING_SIZE	(0x40000)
 193#define LANAI_EEPROM_SIZE	(128)
 194
 195typedef int vci_t;
 196typedef void __iomem *bus_addr_t;
 197
 198/* DMA buffer in host memory for TX, RX, or service list. */
 199struct lanai_buffer {
 200	u32 *start;	/* From get_free_pages */
 201	u32 *end;	/* One past last byte */
 202	u32 *ptr;	/* Pointer to current host location */
 203	dma_addr_t dmaaddr;
 204};
 205
 206struct lanai_vcc_stats {
 207	unsigned rx_nomem;
 208	union {
 209		struct {
 210			unsigned rx_badlen;
 211			unsigned service_trash;
 212			unsigned service_stream;
 213			unsigned service_rxcrc;
 214		} aal5;
 215		struct {
 216		} aal0;
 217	} x;
 218};
 219
 220struct lanai_dev;			/* Forward declaration */
 221
 222/*
 223 * This is the card-specific per-vcc data.  Note that unlike some other
 224 * drivers there is NOT a 1-to-1 correspondance between these and
 225 * atm_vcc's - each one of these represents an actual 2-way vcc, but
 226 * an atm_vcc can be 1-way and share with a 1-way vcc in the other
 227 * direction.  To make it weirder, there can even be 0-way vccs
 228 * bound to us, waiting to do a change_qos
 229 */
 230struct lanai_vcc {
 231	bus_addr_t vbase;		/* Base of VCC's registers */
 232	struct lanai_vcc_stats stats;
 233	int nref;			/* # of atm_vcc's who reference us */
 234	vci_t vci;
 235	struct {
 236		struct lanai_buffer buf;
 237		struct atm_vcc *atmvcc;	/* atm_vcc who is receiver */
 238	} rx;
 239	struct {
 240		struct lanai_buffer buf;
 241		struct atm_vcc *atmvcc;	/* atm_vcc who is transmitter */
 242		int endptr;		/* last endptr from service entry */
 243		struct sk_buff_head backlog;
 244		void (*unqueue)(struct lanai_dev *, struct lanai_vcc *, int);
 245	} tx;
 246};
 247
 248enum lanai_type {
 249	lanai2	= PCI_DEVICE_ID_EF_ATM_LANAI2,
 250	lanaihb	= PCI_DEVICE_ID_EF_ATM_LANAIHB
 251};
 252
 253struct lanai_dev_stats {
 254	unsigned ovfl_trash;	/* # of cells dropped - buffer overflow */
 255	unsigned vci_trash;	/* # of cells dropped - closed vci */
 256	unsigned hec_err;	/* # of cells dropped - bad HEC */
 257	unsigned atm_ovfl;	/* # of cells dropped - rx fifo overflow */
 258	unsigned pcierr_parity_detect;
 259	unsigned pcierr_serr_set;
 260	unsigned pcierr_master_abort;
 261	unsigned pcierr_m_target_abort;
 262	unsigned pcierr_s_target_abort;
 263	unsigned pcierr_master_parity;
 264	unsigned service_notx;
 265	unsigned service_norx;
 266	unsigned service_rxnotaal5;
 267	unsigned dma_reenable;
 268	unsigned card_reset;
 269};
 270
 271struct lanai_dev {
 272	bus_addr_t base;
 273	struct lanai_dev_stats stats;
 274	struct lanai_buffer service;
 275	struct lanai_vcc **vccs;
 276#ifdef USE_POWERDOWN
 277	int nbound;			/* number of bound vccs */
 278#endif
 279	enum lanai_type type;
 280	vci_t num_vci;			/* Currently just NUM_VCI */
 281	u8 eeprom[LANAI_EEPROM_SIZE];
 282	u32 serialno, magicno;
 283	struct pci_dev *pci;
 284	DECLARE_BITMAP(backlog_vccs, NUM_VCI);   /* VCCs with tx backlog */
 285	DECLARE_BITMAP(transmit_ready, NUM_VCI); /* VCCs with transmit space */
 286	struct timer_list timer;
 287	int naal0;
 288	struct lanai_buffer aal0buf;	/* AAL0 RX buffers */
 289	u32 conf1, conf2;		/* CONFIG[12] registers */
 290	u32 status;			/* STATUS register */
 291	spinlock_t endtxlock;
 292	spinlock_t servicelock;
 293	struct atm_vcc *cbrvcc;
 294	int number;
 295	int board_rev;
 296/* TODO - look at race conditions with maintence of conf1/conf2 */
 297/* TODO - transmit locking: should we use _irq not _irqsave? */
 298/* TODO - organize above in some rational fashion (see <asm/cache.h>) */
 299};
 300
 301/*
 302 * Each device has two bitmaps for each VCC (baclog_vccs and transmit_ready)
 303 * This function iterates one of these, calling a given function for each
 304 * vci with their bit set
 305 */
 306static void vci_bitfield_iterate(struct lanai_dev *lanai,
 307	const unsigned long *lp,
 308	void (*func)(struct lanai_dev *,vci_t vci))
 309{
 310	vci_t vci;
 311
 312	for_each_set_bit(vci, lp, NUM_VCI)
 313		func(lanai, vci);
 314}
 315
 316/* -------------------- BUFFER  UTILITIES: */
 317
 318/*
 319 * Lanai needs DMA buffers aligned to 256 bytes of at least 1024 bytes -
 320 * usually any page allocation will do.  Just to be safe in case
 321 * PAGE_SIZE is insanely tiny, though...
 322 */
 323#define LANAI_PAGE_SIZE   ((PAGE_SIZE >= 1024) ? PAGE_SIZE : 1024)
 324
 325/*
 326 * Allocate a buffer in host RAM for service list, RX, or TX
 327 * Returns buf->start==NULL if no memory
 328 * Note that the size will be rounded up 2^n bytes, and
 329 * if we can't allocate that we'll settle for something smaller
 330 * until minbytes
 331 */
 332static void lanai_buf_allocate(struct lanai_buffer *buf,
 333	size_t bytes, size_t minbytes, struct pci_dev *pci)
 334{
 335	int size;
 336
 337	if (bytes > (128 * 1024))	/* max lanai buffer size */
 338		bytes = 128 * 1024;
 339	for (size = LANAI_PAGE_SIZE; size < bytes; size *= 2)
 340		;
 341	if (minbytes < LANAI_PAGE_SIZE)
 342		minbytes = LANAI_PAGE_SIZE;
 343	do {
 344		/*
 345		 * Technically we could use non-consistent mappings for
 346		 * everything, but the way the lanai uses DMA memory would
 347		 * make that a terrific pain.  This is much simpler.
 348		 */
 349		buf->start = pci_alloc_consistent(pci, size, &buf->dmaaddr);
 
 350		if (buf->start != NULL) {	/* Success */
 351			/* Lanai requires 256-byte alignment of DMA bufs */
 352			APRINTK((buf->dmaaddr & ~0xFFFFFF00) == 0,
 353			    "bad dmaaddr: 0x%lx\n",
 354			    (unsigned long) buf->dmaaddr);
 355			buf->ptr = buf->start;
 356			buf->end = (u32 *)
 357			    (&((unsigned char *) buf->start)[size]);
 358			memset(buf->start, 0, size);
 359			break;
 360		}
 361		size /= 2;
 362	} while (size >= minbytes);
 363}
 364
 365/* size of buffer in bytes */
 366static inline size_t lanai_buf_size(const struct lanai_buffer *buf)
 367{
 368	return ((unsigned long) buf->end) - ((unsigned long) buf->start);
 369}
 370
 371static void lanai_buf_deallocate(struct lanai_buffer *buf,
 372	struct pci_dev *pci)
 373{
 374	if (buf->start != NULL) {
 375		pci_free_consistent(pci, lanai_buf_size(buf),
 376		    buf->start, buf->dmaaddr);
 377		buf->start = buf->end = buf->ptr = NULL;
 378	}
 379}
 380
 381/* size of buffer as "card order" (0=1k .. 7=128k) */
 382static int lanai_buf_size_cardorder(const struct lanai_buffer *buf)
 383{
 384	int order = get_order(lanai_buf_size(buf)) + (PAGE_SHIFT - 10);
 385
 386	/* This can only happen if PAGE_SIZE is gigantic, but just in case */
 387	if (order > 7)
 388		order = 7;
 389	return order;
 390}
 391
 392/* -------------------- PORT I/O UTILITIES: */
 393
 394/* Registers (and their bit-fields) */
 395enum lanai_register {
 396	Reset_Reg		= 0x00,	/* Reset; read for chip type; bits: */
 397#define   RESET_GET_BOARD_REV(x)    (((x)>> 0)&0x03)	/* Board revision */
 398#define   RESET_GET_BOARD_ID(x)	    (((x)>> 2)&0x03)	/* Board ID */
 399#define     BOARD_ID_LANAI256		(0)	/* 25.6M adapter card */
 400	Endian_Reg		= 0x04,	/* Endian setting */
 401	IntStatus_Reg		= 0x08,	/* Interrupt status */
 402	IntStatusMasked_Reg	= 0x0C,	/* Interrupt status (masked) */
 403	IntAck_Reg		= 0x10,	/* Interrupt acknowledge */
 404	IntAckMasked_Reg	= 0x14,	/* Interrupt acknowledge (masked) */
 405	IntStatusSet_Reg	= 0x18,	/* Get status + enable/disable */
 406	IntStatusSetMasked_Reg	= 0x1C,	/* Get status + en/di (masked) */
 407	IntControlEna_Reg	= 0x20,	/* Interrupt control enable */
 408	IntControlDis_Reg	= 0x24,	/* Interrupt control disable */
 409	Status_Reg		= 0x28,	/* Status */
 410#define   STATUS_PROMDATA	 (0x00000001)	/* PROM_DATA pin */
 411#define   STATUS_WAITING	 (0x00000002)	/* Interrupt being delayed */
 412#define	  STATUS_SOOL		 (0x00000004)	/* SOOL alarm */
 413#define   STATUS_LOCD		 (0x00000008)	/* LOCD alarm */
 414#define	  STATUS_LED		 (0x00000010)	/* LED (HAPPI) output */
 415#define   STATUS_GPIN		 (0x00000020)	/* GPIN pin */
 416#define   STATUS_BUTTBUSY	 (0x00000040)	/* Butt register is pending */
 417	Config1_Reg		= 0x2C,	/* Config word 1; bits: */
 418#define   CONFIG1_PROMDATA	 (0x00000001)	/* PROM_DATA pin */
 419#define   CONFIG1_PROMCLK	 (0x00000002)	/* PROM_CLK pin */
 420#define   CONFIG1_SET_READMODE(x) ((x)*0x004)	/* PCI BM reads; values: */
 421#define     READMODE_PLAIN	    (0)		/*   Plain memory read */
 422#define     READMODE_LINE	    (2)		/*   Memory read line */
 423#define     READMODE_MULTIPLE	    (3)		/*   Memory read multiple */
 424#define   CONFIG1_DMA_ENABLE	 (0x00000010)	/* Turn on DMA */
 425#define   CONFIG1_POWERDOWN	 (0x00000020)	/* Turn off clocks */
 426#define   CONFIG1_SET_LOOPMODE(x) ((x)*0x080)	/* Clock&loop mode; values: */
 427#define     LOOPMODE_NORMAL	    (0)		/*   Normal - no loop */
 428#define     LOOPMODE_TIME	    (1)
 429#define     LOOPMODE_DIAG	    (2)
 430#define     LOOPMODE_LINE	    (3)
 431#define   CONFIG1_MASK_LOOPMODE  (0x00000180)
 432#define   CONFIG1_SET_LEDMODE(x) ((x)*0x0200)	/* Mode of LED; values: */
 433#define     LEDMODE_NOT_SOOL	    (0)		/*   !SOOL */
 434#define	    LEDMODE_OFF		    (1)		/*   0     */
 435#define	    LEDMODE_ON		    (2)		/*   1     */
 436#define	    LEDMODE_NOT_LOCD	    (3)		/*   !LOCD */
 437#define	    LEDMORE_GPIN	    (4)		/*   GPIN  */
 438#define     LEDMODE_NOT_GPIN	    (7)		/*   !GPIN */
 439#define   CONFIG1_MASK_LEDMODE	 (0x00000E00)
 440#define   CONFIG1_GPOUT1	 (0x00001000)	/* Toggle for reset */
 441#define   CONFIG1_GPOUT2	 (0x00002000)	/* Loopback PHY */
 442#define   CONFIG1_GPOUT3	 (0x00004000)	/* Loopback lanai */
 443	Config2_Reg		= 0x30,	/* Config word 2; bits: */
 444#define   CONFIG2_HOWMANY	 (0x00000001)	/* >512 VCIs? */
 445#define   CONFIG2_PTI7_MODE	 (0x00000002)	/* Make PTI=7 RM, not OAM */
 446#define   CONFIG2_VPI_CHK_DIS	 (0x00000004)	/* Ignore RX VPI value */
 447#define   CONFIG2_HEC_DROP	 (0x00000008)	/* Drop cells w/ HEC errors */
 448#define   CONFIG2_VCI0_NORMAL	 (0x00000010)	/* Treat VCI=0 normally */
 449#define   CONFIG2_CBR_ENABLE	 (0x00000020)	/* Deal with CBR traffic */
 450#define   CONFIG2_TRASH_ALL	 (0x00000040)	/* Trashing incoming cells */
 451#define   CONFIG2_TX_DISABLE	 (0x00000080)	/* Trashing outgoing cells */
 452#define   CONFIG2_SET_TRASH	 (0x00000100)	/* Turn trashing on */
 453	Statistics_Reg		= 0x34,	/* Statistics; bits: */
 454#define   STATS_GET_FIFO_OVFL(x)    (((x)>> 0)&0xFF)	/* FIFO overflowed */
 455#define   STATS_GET_HEC_ERR(x)      (((x)>> 8)&0xFF)	/* HEC was bad */
 456#define   STATS_GET_BAD_VCI(x)      (((x)>>16)&0xFF)	/* VCI not open */
 457#define   STATS_GET_BUF_OVFL(x)     (((x)>>24)&0xFF)	/* VCC buffer full */
 458	ServiceStuff_Reg	= 0x38,	/* Service stuff; bits: */
 459#define   SSTUFF_SET_SIZE(x) ((x)*0x20000000)	/* size of service buffer */
 460#define   SSTUFF_SET_ADDR(x)	    ((x)>>8)	/* set address of buffer */
 461	ServWrite_Reg		= 0x3C,	/* ServWrite Pointer */
 462	ServRead_Reg		= 0x40,	/* ServRead Pointer */
 463	TxDepth_Reg		= 0x44,	/* FIFO Transmit Depth */
 464	Butt_Reg		= 0x48,	/* Butt register */
 465	CBR_ICG_Reg		= 0x50,
 466	CBR_PTR_Reg		= 0x54,
 467	PingCount_Reg		= 0x58,	/* Ping count */
 468	DMA_Addr_Reg		= 0x5C	/* DMA address */
 469};
 470
 471static inline bus_addr_t reg_addr(const struct lanai_dev *lanai,
 472	enum lanai_register reg)
 473{
 474	return lanai->base + reg;
 475}
 476
 477static inline u32 reg_read(const struct lanai_dev *lanai,
 478	enum lanai_register reg)
 479{
 480	u32 t;
 481	t = readl(reg_addr(lanai, reg));
 482	RWDEBUG("R [0x%08X] 0x%02X = 0x%08X\n", (unsigned int) lanai->base,
 483	    (int) reg, t);
 484	return t;
 485}
 486
 487static inline void reg_write(const struct lanai_dev *lanai, u32 val,
 488	enum lanai_register reg)
 489{
 490	RWDEBUG("W [0x%08X] 0x%02X < 0x%08X\n", (unsigned int) lanai->base,
 491	    (int) reg, val);
 492	writel(val, reg_addr(lanai, reg));
 493}
 494
 495static inline void conf1_write(const struct lanai_dev *lanai)
 496{
 497	reg_write(lanai, lanai->conf1, Config1_Reg);
 498}
 499
 500static inline void conf2_write(const struct lanai_dev *lanai)
 501{
 502	reg_write(lanai, lanai->conf2, Config2_Reg);
 503}
 504
 505/* Same as conf2_write(), but defers I/O if we're powered down */
 506static inline void conf2_write_if_powerup(const struct lanai_dev *lanai)
 507{
 508#ifdef USE_POWERDOWN
 509	if (unlikely((lanai->conf1 & CONFIG1_POWERDOWN) != 0))
 510		return;
 511#endif /* USE_POWERDOWN */
 512	conf2_write(lanai);
 513}
 514
 515static inline void reset_board(const struct lanai_dev *lanai)
 516{
 517	DPRINTK("about to reset board\n");
 518	reg_write(lanai, 0, Reset_Reg);
 519	/*
 520	 * If we don't delay a little while here then we can end up
 521	 * leaving the card in a VERY weird state and lock up the
 522	 * PCI bus.  This isn't documented anywhere but I've convinced
 523	 * myself after a lot of painful experimentation
 524	 */
 525	udelay(5);
 526}
 527
 528/* -------------------- CARD SRAM UTILITIES: */
 529
 530/* The SRAM is mapped into normal PCI memory space - the only catch is
 531 * that it is only 16-bits wide but must be accessed as 32-bit.  The
 532 * 16 high bits will be zero.  We don't hide this, since they get
 533 * programmed mostly like discrete registers anyway
 534 */
 535#define SRAM_START (0x20000)
 536#define SRAM_BYTES (0x20000)	/* Again, half don't really exist */
 537
 538static inline bus_addr_t sram_addr(const struct lanai_dev *lanai, int offset)
 539{
 540	return lanai->base + SRAM_START + offset;
 541}
 542
 543static inline u32 sram_read(const struct lanai_dev *lanai, int offset)
 544{
 545	return readl(sram_addr(lanai, offset));
 546}
 547
 548static inline void sram_write(const struct lanai_dev *lanai,
 549	u32 val, int offset)
 550{
 551	writel(val, sram_addr(lanai, offset));
 552}
 553
 554static int __devinit sram_test_word(const struct lanai_dev *lanai,
 555				    int offset, u32 pattern)
 556{
 557	u32 readback;
 558	sram_write(lanai, pattern, offset);
 559	readback = sram_read(lanai, offset);
 560	if (likely(readback == pattern))
 561		return 0;
 562	printk(KERN_ERR DEV_LABEL
 563	    "(itf %d): SRAM word at %d bad: wrote 0x%X, read 0x%X\n",
 564	    lanai->number, offset,
 565	    (unsigned int) pattern, (unsigned int) readback);
 566	return -EIO;
 567}
 568
 569static int __devinit sram_test_pass(const struct lanai_dev *lanai, u32 pattern)
 570{
 571	int offset, result = 0;
 572	for (offset = 0; offset < SRAM_BYTES && result == 0; offset += 4)
 573		result = sram_test_word(lanai, offset, pattern);
 574	return result;
 575}
 576
 577static int __devinit sram_test_and_clear(const struct lanai_dev *lanai)
 578{
 579#ifdef FULL_MEMORY_TEST
 580	int result;
 581	DPRINTK("testing SRAM\n");
 582	if ((result = sram_test_pass(lanai, 0x5555)) != 0)
 583		return result;
 584	if ((result = sram_test_pass(lanai, 0xAAAA)) != 0)
 585		return result;
 586#endif
 587	DPRINTK("clearing SRAM\n");
 588	return sram_test_pass(lanai, 0x0000);
 589}
 590
 591/* -------------------- CARD-BASED VCC TABLE UTILITIES: */
 592
 593/* vcc table */
 594enum lanai_vcc_offset {
 595	vcc_rxaddr1		= 0x00,	/* Location1, plus bits: */
 596#define   RXADDR1_SET_SIZE(x) ((x)*0x0000100)	/* size of RX buffer */
 597#define   RXADDR1_SET_RMMODE(x) ((x)*0x00800)	/* RM cell action; values: */
 598#define     RMMODE_TRASH	  (0)		/*   discard */
 599#define     RMMODE_PRESERVE	  (1)		/*   input as AAL0 */
 600#define     RMMODE_PIPE		  (2)		/*   pipe to coscheduler */
 601#define     RMMODE_PIPEALL	  (3)		/*   pipe non-RM too */
 602#define   RXADDR1_OAM_PRESERVE	 (0x00002000)	/* Input OAM cells as AAL0 */
 603#define   RXADDR1_SET_MODE(x) ((x)*0x0004000)	/* Reassembly mode */
 604#define     RXMODE_TRASH	  (0)		/*   discard */
 605#define     RXMODE_AAL0		  (1)		/*   non-AAL5 mode */
 606#define     RXMODE_AAL5		  (2)		/*   AAL5, intr. each PDU */
 607#define     RXMODE_AAL5_STREAM	  (3)		/*   AAL5 w/o per-PDU intr */
 608	vcc_rxaddr2		= 0x04,	/* Location2 */
 609	vcc_rxcrc1		= 0x08,	/* RX CRC claculation space */
 610	vcc_rxcrc2		= 0x0C,
 611	vcc_rxwriteptr		= 0x10, /* RX writeptr, plus bits: */
 612#define   RXWRITEPTR_LASTEFCI	 (0x00002000)	/* Last PDU had EFCI bit */
 613#define   RXWRITEPTR_DROPPING	 (0x00004000)	/* Had error, dropping */
 614#define   RXWRITEPTR_TRASHING	 (0x00008000)	/* Trashing */
 615	vcc_rxbufstart		= 0x14,	/* RX bufstart, plus bits: */
 616#define   RXBUFSTART_CLP	 (0x00004000)
 617#define   RXBUFSTART_CI		 (0x00008000)
 618	vcc_rxreadptr		= 0x18,	/* RX readptr */
 619	vcc_txicg		= 0x1C, /* TX ICG */
 620	vcc_txaddr1		= 0x20,	/* Location1, plus bits: */
 621#define   TXADDR1_SET_SIZE(x) ((x)*0x0000100)	/* size of TX buffer */
 622#define   TXADDR1_ABR		 (0x00008000)	/* use ABR (doesn't work) */
 623	vcc_txaddr2		= 0x24,	/* Location2 */
 624	vcc_txcrc1		= 0x28,	/* TX CRC claculation space */
 625	vcc_txcrc2		= 0x2C,
 626	vcc_txreadptr		= 0x30, /* TX Readptr, plus bits: */
 627#define   TXREADPTR_GET_PTR(x) ((x)&0x01FFF)
 628#define   TXREADPTR_MASK_DELTA	(0x0000E000)	/* ? */
 629	vcc_txendptr		= 0x34, /* TX Endptr, plus bits: */
 630#define   TXENDPTR_CLP		(0x00002000)
 631#define   TXENDPTR_MASK_PDUMODE	(0x0000C000)	/* PDU mode; values: */
 632#define     PDUMODE_AAL0	 (0*0x04000)
 633#define     PDUMODE_AAL5	 (2*0x04000)
 634#define     PDUMODE_AAL5STREAM	 (3*0x04000)
 635	vcc_txwriteptr		= 0x38,	/* TX Writeptr */
 636#define   TXWRITEPTR_GET_PTR(x) ((x)&0x1FFF)
 637	vcc_txcbr_next		= 0x3C	/* # of next CBR VCI in ring */
 638#define   TXCBR_NEXT_BOZO	(0x00008000)	/* "bozo bit" */
 639};
 640
 641#define CARDVCC_SIZE	(0x40)
 642
 643static inline bus_addr_t cardvcc_addr(const struct lanai_dev *lanai,
 644	vci_t vci)
 645{
 646	return sram_addr(lanai, vci * CARDVCC_SIZE);
 647}
 648
 649static inline u32 cardvcc_read(const struct lanai_vcc *lvcc,
 650	enum lanai_vcc_offset offset)
 651{
 652	u32 val;
 653	APRINTK(lvcc->vbase != NULL, "cardvcc_read: unbound vcc!\n");
 654	val= readl(lvcc->vbase + offset);
 655	RWDEBUG("VR vci=%04d 0x%02X = 0x%08X\n",
 656	    lvcc->vci, (int) offset, val);
 657	return val;
 658}
 659
 660static inline void cardvcc_write(const struct lanai_vcc *lvcc,
 661	u32 val, enum lanai_vcc_offset offset)
 662{
 663	APRINTK(lvcc->vbase != NULL, "cardvcc_write: unbound vcc!\n");
 664	APRINTK((val & ~0xFFFF) == 0,
 665	    "cardvcc_write: bad val 0x%X (vci=%d, addr=0x%02X)\n",
 666	    (unsigned int) val, lvcc->vci, (unsigned int) offset);
 667	RWDEBUG("VW vci=%04d 0x%02X > 0x%08X\n",
 668	    lvcc->vci, (unsigned int) offset, (unsigned int) val);
 669	writel(val, lvcc->vbase + offset);
 670}
 671
 672/* -------------------- COMPUTE SIZE OF AN AAL5 PDU: */
 673
 674/* How many bytes will an AAL5 PDU take to transmit - remember that:
 675 *   o  we need to add 8 bytes for length, CPI, UU, and CRC
 676 *   o  we need to round up to 48 bytes for cells
 677 */
 678static inline int aal5_size(int size)
 679{
 680	int cells = (size + 8 + 47) / 48;
 681	return cells * 48;
 682}
 683
 684/* How many bytes can we send if we have "space" space, assuming we have
 685 * to send full cells
 686 */
 687static inline int aal5_spacefor(int space)
 688{
 689	int cells = space / 48;
 690	return cells * 48;
 691}
 692
 693/* -------------------- FREE AN ATM SKB: */
 694
 695static inline void lanai_free_skb(struct atm_vcc *atmvcc, struct sk_buff *skb)
 696{
 697	if (atmvcc->pop != NULL)
 698		atmvcc->pop(atmvcc, skb);
 699	else
 700		dev_kfree_skb_any(skb);
 701}
 702
 703/* -------------------- TURN VCCS ON AND OFF: */
 704
 705static void host_vcc_start_rx(const struct lanai_vcc *lvcc)
 706{
 707	u32 addr1;
 708	if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5) {
 709		dma_addr_t dmaaddr = lvcc->rx.buf.dmaaddr;
 710		cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc1);
 711		cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc2);
 712		cardvcc_write(lvcc, 0, vcc_rxwriteptr);
 713		cardvcc_write(lvcc, 0, vcc_rxbufstart);
 714		cardvcc_write(lvcc, 0, vcc_rxreadptr);
 715		cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_rxaddr2);
 716		addr1 = ((dmaaddr >> 8) & 0xFF) |
 717		    RXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->rx.buf))|
 718		    RXADDR1_SET_RMMODE(RMMODE_TRASH) |	/* ??? */
 719		 /* RXADDR1_OAM_PRESERVE |	--- no OAM support yet */
 720		    RXADDR1_SET_MODE(RXMODE_AAL5);
 721	} else
 722		addr1 = RXADDR1_SET_RMMODE(RMMODE_PRESERVE) | /* ??? */
 723		    RXADDR1_OAM_PRESERVE |		      /* ??? */
 724		    RXADDR1_SET_MODE(RXMODE_AAL0);
 725	/* This one must be last! */
 726	cardvcc_write(lvcc, addr1, vcc_rxaddr1);
 727}
 728
 729static void host_vcc_start_tx(const struct lanai_vcc *lvcc)
 730{
 731	dma_addr_t dmaaddr = lvcc->tx.buf.dmaaddr;
 732	cardvcc_write(lvcc, 0, vcc_txicg);
 733	cardvcc_write(lvcc, 0xFFFF, vcc_txcrc1);
 734	cardvcc_write(lvcc, 0xFFFF, vcc_txcrc2);
 735	cardvcc_write(lvcc, 0, vcc_txreadptr);
 736	cardvcc_write(lvcc, 0, vcc_txendptr);
 737	cardvcc_write(lvcc, 0, vcc_txwriteptr);
 738	cardvcc_write(lvcc,
 739		(lvcc->tx.atmvcc->qos.txtp.traffic_class == ATM_CBR) ?
 740		TXCBR_NEXT_BOZO | lvcc->vci : 0, vcc_txcbr_next);
 741	cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_txaddr2);
 742	cardvcc_write(lvcc,
 743	    ((dmaaddr >> 8) & 0xFF) |
 744	    TXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->tx.buf)),
 745	    vcc_txaddr1);
 746}
 747
 748/* Shutdown receiving on card */
 749static void lanai_shutdown_rx_vci(const struct lanai_vcc *lvcc)
 750{
 751	if (lvcc->vbase == NULL)	/* We were never bound to a VCI */
 752		return;
 753	/* 15.1.1 - set to trashing, wait one cell time (15us) */
 754	cardvcc_write(lvcc,
 755	    RXADDR1_SET_RMMODE(RMMODE_TRASH) |
 756	    RXADDR1_SET_MODE(RXMODE_TRASH), vcc_rxaddr1);
 757	udelay(15);
 758	/* 15.1.2 - clear rest of entries */
 759	cardvcc_write(lvcc, 0, vcc_rxaddr2);
 760	cardvcc_write(lvcc, 0, vcc_rxcrc1);
 761	cardvcc_write(lvcc, 0, vcc_rxcrc2);
 762	cardvcc_write(lvcc, 0, vcc_rxwriteptr);
 763	cardvcc_write(lvcc, 0, vcc_rxbufstart);
 764	cardvcc_write(lvcc, 0, vcc_rxreadptr);
 765}
 766
 767/* Shutdown transmitting on card.
 768 * Unfortunately the lanai needs us to wait until all the data
 769 * drains out of the buffer before we can dealloc it, so this
 770 * can take awhile -- up to 370ms for a full 128KB buffer
 771 * assuming everone else is quiet.  In theory the time is
 772 * boundless if there's a CBR VCC holding things up.
 773 */
 774static void lanai_shutdown_tx_vci(struct lanai_dev *lanai,
 775	struct lanai_vcc *lvcc)
 776{
 777	struct sk_buff *skb;
 778	unsigned long flags, timeout;
 779	int read, write, lastread = -1;
 780	APRINTK(!in_interrupt(),
 781	    "lanai_shutdown_tx_vci called w/o process context!\n");
 782	if (lvcc->vbase == NULL)	/* We were never bound to a VCI */
 783		return;
 784	/* 15.2.1 - wait for queue to drain */
 785	while ((skb = skb_dequeue(&lvcc->tx.backlog)) != NULL)
 786		lanai_free_skb(lvcc->tx.atmvcc, skb);
 787	read_lock_irqsave(&vcc_sklist_lock, flags);
 788	__clear_bit(lvcc->vci, lanai->backlog_vccs);
 789	read_unlock_irqrestore(&vcc_sklist_lock, flags);
 790	/*
 791	 * We need to wait for the VCC to drain but don't wait forever.  We
 792	 * give each 1K of buffer size 1/128th of a second to clear out.
 793	 * TODO: maybe disable CBR if we're about to timeout?
 794	 */
 795	timeout = jiffies +
 796	    (((lanai_buf_size(&lvcc->tx.buf) / 1024) * HZ) >> 7);
 797	write = TXWRITEPTR_GET_PTR(cardvcc_read(lvcc, vcc_txwriteptr));
 798	for (;;) {
 799		read = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
 800		if (read == write &&	   /* Is TX buffer empty? */
 801		    (lvcc->tx.atmvcc->qos.txtp.traffic_class != ATM_CBR ||
 802		    (cardvcc_read(lvcc, vcc_txcbr_next) &
 803		    TXCBR_NEXT_BOZO) == 0))
 804			break;
 805		if (read != lastread) {	   /* Has there been any progress? */
 806			lastread = read;
 807			timeout += HZ / 10;
 808		}
 809		if (unlikely(time_after(jiffies, timeout))) {
 810			printk(KERN_ERR DEV_LABEL "(itf %d): Timed out on "
 811			    "backlog closing vci %d\n",
 812			    lvcc->tx.atmvcc->dev->number, lvcc->vci);
 813			DPRINTK("read, write = %d, %d\n", read, write);
 814			break;
 815		}
 816		msleep(40);
 817	}
 818	/* 15.2.2 - clear out all tx registers */
 819	cardvcc_write(lvcc, 0, vcc_txreadptr);
 820	cardvcc_write(lvcc, 0, vcc_txwriteptr);
 821	cardvcc_write(lvcc, 0, vcc_txendptr);
 822	cardvcc_write(lvcc, 0, vcc_txcrc1);
 823	cardvcc_write(lvcc, 0, vcc_txcrc2);
 824	cardvcc_write(lvcc, 0, vcc_txaddr2);
 825	cardvcc_write(lvcc, 0, vcc_txaddr1);
 826}
 827
 828/* -------------------- MANAGING AAL0 RX BUFFER: */
 829
 830static inline int aal0_buffer_allocate(struct lanai_dev *lanai)
 831{
 832	DPRINTK("aal0_buffer_allocate: allocating AAL0 RX buffer\n");
 833	lanai_buf_allocate(&lanai->aal0buf, AAL0_RX_BUFFER_SIZE, 80,
 834			   lanai->pci);
 835	return (lanai->aal0buf.start == NULL) ? -ENOMEM : 0;
 836}
 837
 838static inline void aal0_buffer_free(struct lanai_dev *lanai)
 839{
 840	DPRINTK("aal0_buffer_allocate: freeing AAL0 RX buffer\n");
 841	lanai_buf_deallocate(&lanai->aal0buf, lanai->pci);
 842}
 843
 844/* -------------------- EEPROM UTILITIES: */
 845
 846/* Offsets of data in the EEPROM */
 847#define EEPROM_COPYRIGHT	(0)
 848#define EEPROM_COPYRIGHT_LEN	(44)
 849#define EEPROM_CHECKSUM		(62)
 850#define EEPROM_CHECKSUM_REV	(63)
 851#define EEPROM_MAC		(64)
 852#define EEPROM_MAC_REV		(70)
 853#define EEPROM_SERIAL		(112)
 854#define EEPROM_SERIAL_REV	(116)
 855#define EEPROM_MAGIC		(120)
 856#define EEPROM_MAGIC_REV	(124)
 857
 858#define EEPROM_MAGIC_VALUE	(0x5AB478D2)
 859
 860#ifndef READ_EEPROM
 861
 862/* Stub functions to use if EEPROM reading is disabled */
 863static int __devinit eeprom_read(struct lanai_dev *lanai)
 864{
 865	printk(KERN_INFO DEV_LABEL "(itf %d): *NOT* reading EEPROM\n",
 866	    lanai->number);
 867	memset(&lanai->eeprom[EEPROM_MAC], 0, 6);
 868	return 0;
 869}
 870
 871static int __devinit eeprom_validate(struct lanai_dev *lanai)
 872{
 873	lanai->serialno = 0;
 874	lanai->magicno = EEPROM_MAGIC_VALUE;
 875	return 0;
 876}
 877
 878#else /* READ_EEPROM */
 879
 880static int __devinit eeprom_read(struct lanai_dev *lanai)
 881{
 882	int i, address;
 883	u8 data;
 884	u32 tmp;
 885#define set_config1(x)   do { lanai->conf1 = x; conf1_write(lanai); \
 886			    } while (0)
 887#define clock_h()	 set_config1(lanai->conf1 | CONFIG1_PROMCLK)
 888#define clock_l()	 set_config1(lanai->conf1 &~ CONFIG1_PROMCLK)
 889#define data_h()	 set_config1(lanai->conf1 | CONFIG1_PROMDATA)
 890#define data_l()	 set_config1(lanai->conf1 &~ CONFIG1_PROMDATA)
 891#define pre_read()	 do { data_h(); clock_h(); udelay(5); } while (0)
 892#define read_pin()	 (reg_read(lanai, Status_Reg) & STATUS_PROMDATA)
 893#define send_stop()	 do { data_l(); udelay(5); clock_h(); udelay(5); \
 894			      data_h(); udelay(5); } while (0)
 895	/* start with both clock and data high */
 896	data_h(); clock_h(); udelay(5);
 897	for (address = 0; address < LANAI_EEPROM_SIZE; address++) {
 898		data = (address << 1) | 1;	/* Command=read + address */
 899		/* send start bit */
 900		data_l(); udelay(5);
 901		clock_l(); udelay(5);
 902		for (i = 128; i != 0; i >>= 1) {   /* write command out */
 903			tmp = (lanai->conf1 & ~CONFIG1_PROMDATA) |
 904			    ((data & i) ? CONFIG1_PROMDATA : 0);
 905			if (lanai->conf1 != tmp) {
 906				set_config1(tmp);
 907				udelay(5);	/* Let new data settle */
 908			}
 909			clock_h(); udelay(5); clock_l(); udelay(5);
 910		}
 911		/* look for ack */
 912		data_h(); clock_h(); udelay(5);
 913		if (read_pin() != 0)
 914			goto error;	/* No ack seen */
 915		clock_l(); udelay(5);
 916		/* read back result */
 917		for (data = 0, i = 7; i >= 0; i--) {
 918			data_h(); clock_h(); udelay(5);
 919			data = (data << 1) | !!read_pin();
 920			clock_l(); udelay(5);
 921		}
 922		/* look again for ack */
 923		data_h(); clock_h(); udelay(5);
 924		if (read_pin() == 0)
 925			goto error;	/* Spurious ack */
 926		clock_l(); udelay(5);
 927		send_stop();
 928		lanai->eeprom[address] = data;
 929		DPRINTK("EEPROM 0x%04X %02X\n",
 930		    (unsigned int) address, (unsigned int) data);
 931	}
 932	return 0;
 933    error:
 934	clock_l(); udelay(5);		/* finish read */
 935	send_stop();
 936	printk(KERN_ERR DEV_LABEL "(itf %d): error reading EEPROM byte %d\n",
 937	    lanai->number, address);
 938	return -EIO;
 939#undef set_config1
 940#undef clock_h
 941#undef clock_l
 942#undef data_h
 943#undef data_l
 944#undef pre_read
 945#undef read_pin
 946#undef send_stop
 947}
 948
 949/* read a big-endian 4-byte value out of eeprom */
 950static inline u32 eeprom_be4(const struct lanai_dev *lanai, int address)
 951{
 952	return be32_to_cpup((const u32 *) &lanai->eeprom[address]);
 953}
 954
 955/* Checksum/validate EEPROM contents */
 956static int __devinit eeprom_validate(struct lanai_dev *lanai)
 957{
 958	int i, s;
 959	u32 v;
 960	const u8 *e = lanai->eeprom;
 961#ifdef DEBUG
 962	/* First, see if we can get an ASCIIZ string out of the copyright */
 963	for (i = EEPROM_COPYRIGHT;
 964	    i < (EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN); i++)
 965		if (e[i] < 0x20 || e[i] > 0x7E)
 966			break;
 967	if ( i != EEPROM_COPYRIGHT &&
 968	    i != EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN && e[i] == '\0')
 969		DPRINTK("eeprom: copyright = \"%s\"\n",
 970		    (char *) &e[EEPROM_COPYRIGHT]);
 971	else
 972		DPRINTK("eeprom: copyright not found\n");
 973#endif
 974	/* Validate checksum */
 975	for (i = s = 0; i < EEPROM_CHECKSUM; i++)
 976		s += e[i];
 977	s &= 0xFF;
 978	if (s != e[EEPROM_CHECKSUM]) {
 979		printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM checksum bad "
 980		    "(wanted 0x%02X, got 0x%02X)\n", lanai->number,
 981		    (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM]);
 982		return -EIO;
 983	}
 984	s ^= 0xFF;
 985	if (s != e[EEPROM_CHECKSUM_REV]) {
 986		printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM inverse checksum "
 987		    "bad (wanted 0x%02X, got 0x%02X)\n", lanai->number,
 988		    (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM_REV]);
 989		return -EIO;
 990	}
 991	/* Verify MAC address */
 992	for (i = 0; i < 6; i++)
 993		if ((e[EEPROM_MAC + i] ^ e[EEPROM_MAC_REV + i]) != 0xFF) {
 994			printk(KERN_ERR DEV_LABEL
 995			    "(itf %d) : EEPROM MAC addresses don't match "
 996			    "(0x%02X, inverse 0x%02X)\n", lanai->number,
 997			    (unsigned int) e[EEPROM_MAC + i],
 998			    (unsigned int) e[EEPROM_MAC_REV + i]);
 999			return -EIO;
1000		}
1001	DPRINTK("eeprom: MAC address = %pM\n", &e[EEPROM_MAC]);
1002	/* Verify serial number */
1003	lanai->serialno = eeprom_be4(lanai, EEPROM_SERIAL);
1004	v = eeprom_be4(lanai, EEPROM_SERIAL_REV);
1005	if ((lanai->serialno ^ v) != 0xFFFFFFFF) {
1006		printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM serial numbers "
1007		    "don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
1008		    (unsigned int) lanai->serialno, (unsigned int) v);
1009		return -EIO;
1010	}
1011	DPRINTK("eeprom: Serial number = %d\n", (unsigned int) lanai->serialno);
1012	/* Verify magic number */
1013	lanai->magicno = eeprom_be4(lanai, EEPROM_MAGIC);
1014	v = eeprom_be4(lanai, EEPROM_MAGIC_REV);
1015	if ((lanai->magicno ^ v) != 0xFFFFFFFF) {
1016		printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM magic numbers "
1017		    "don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
1018		    lanai->magicno, v);
1019		return -EIO;
1020	}
1021	DPRINTK("eeprom: Magic number = 0x%08X\n", lanai->magicno);
1022	if (lanai->magicno != EEPROM_MAGIC_VALUE)
1023		printk(KERN_WARNING DEV_LABEL "(itf %d): warning - EEPROM "
1024		    "magic not what expected (got 0x%08X, not 0x%08X)\n",
1025		    lanai->number, (unsigned int) lanai->magicno,
1026		    (unsigned int) EEPROM_MAGIC_VALUE);
1027	return 0;
1028}
1029
1030#endif /* READ_EEPROM */
1031
1032static inline const u8 *eeprom_mac(const struct lanai_dev *lanai)
1033{
1034	return &lanai->eeprom[EEPROM_MAC];
1035}
1036
1037/* -------------------- INTERRUPT HANDLING UTILITIES: */
1038
1039/* Interrupt types */
1040#define INT_STATS	(0x00000002)	/* Statistics counter overflow */
1041#define INT_SOOL	(0x00000004)	/* SOOL changed state */
1042#define INT_LOCD	(0x00000008)	/* LOCD changed state */
1043#define INT_LED		(0x00000010)	/* LED (HAPPI) changed state */
1044#define INT_GPIN	(0x00000020)	/* GPIN changed state */
1045#define INT_PING	(0x00000040)	/* PING_COUNT fulfilled */
1046#define INT_WAKE	(0x00000080)	/* Lanai wants bus */
1047#define INT_CBR0	(0x00000100)	/* CBR sched hit VCI 0 */
1048#define INT_LOCK	(0x00000200)	/* Service list overflow */
1049#define INT_MISMATCH	(0x00000400)	/* TX magic list mismatch */
1050#define INT_AAL0_STR	(0x00000800)	/* Non-AAL5 buffer half filled */
1051#define INT_AAL0	(0x00001000)	/* Non-AAL5 data available */
1052#define INT_SERVICE	(0x00002000)	/* Service list entries available */
1053#define INT_TABORTSENT	(0x00004000)	/* Target abort sent by lanai */
1054#define INT_TABORTBM	(0x00008000)	/* Abort rcv'd as bus master */
1055#define INT_TIMEOUTBM	(0x00010000)	/* No response to bus master */
1056#define INT_PCIPARITY	(0x00020000)	/* Parity error on PCI */
1057
1058/* Sets of the above */
1059#define INT_ALL		(0x0003FFFE)	/* All interrupts */
1060#define INT_STATUS	(0x0000003C)	/* Some status pin changed */
1061#define INT_DMASHUT	(0x00038000)	/* DMA engine got shut down */
1062#define INT_SEGSHUT	(0x00000700)	/* Segmentation got shut down */
1063
1064static inline u32 intr_pending(const struct lanai_dev *lanai)
1065{
1066	return reg_read(lanai, IntStatusMasked_Reg);
1067}
1068
1069static inline void intr_enable(const struct lanai_dev *lanai, u32 i)
1070{
1071	reg_write(lanai, i, IntControlEna_Reg);
1072}
1073
1074static inline void intr_disable(const struct lanai_dev *lanai, u32 i)
1075{
1076	reg_write(lanai, i, IntControlDis_Reg);
1077}
1078
1079/* -------------------- CARD/PCI STATUS: */
1080
1081static void status_message(int itf, const char *name, int status)
1082{
1083	static const char *onoff[2] = { "off to on", "on to off" };
1084	printk(KERN_INFO DEV_LABEL "(itf %d): %s changed from %s\n",
1085	    itf, name, onoff[!status]);
1086}
1087
1088static void lanai_check_status(struct lanai_dev *lanai)
1089{
1090	u32 new = reg_read(lanai, Status_Reg);
1091	u32 changes = new ^ lanai->status;
1092	lanai->status = new;
1093#define e(flag, name) \
1094		if (changes & flag) \
1095			status_message(lanai->number, name, new & flag)
1096	e(STATUS_SOOL, "SOOL");
1097	e(STATUS_LOCD, "LOCD");
1098	e(STATUS_LED, "LED");
1099	e(STATUS_GPIN, "GPIN");
1100#undef e
1101}
1102
1103static void pcistatus_got(int itf, const char *name)
1104{
1105	printk(KERN_INFO DEV_LABEL "(itf %d): PCI got %s error\n", itf, name);
1106}
1107
1108static void pcistatus_check(struct lanai_dev *lanai, int clearonly)
1109{
1110	u16 s;
1111	int result;
1112	result = pci_read_config_word(lanai->pci, PCI_STATUS, &s);
1113	if (result != PCIBIOS_SUCCESSFUL) {
1114		printk(KERN_ERR DEV_LABEL "(itf %d): can't read PCI_STATUS: "
1115		    "%d\n", lanai->number, result);
1116		return;
1117	}
1118	s &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR |
1119	    PCI_STATUS_REC_MASTER_ABORT | PCI_STATUS_REC_TARGET_ABORT |
1120	    PCI_STATUS_SIG_TARGET_ABORT | PCI_STATUS_PARITY;
1121	if (s == 0)
1122		return;
1123	result = pci_write_config_word(lanai->pci, PCI_STATUS, s);
1124	if (result != PCIBIOS_SUCCESSFUL)
1125		printk(KERN_ERR DEV_LABEL "(itf %d): can't write PCI_STATUS: "
1126		    "%d\n", lanai->number, result);
1127	if (clearonly)
1128		return;
1129#define e(flag, name, stat) \
1130		if (s & flag) { \
1131			pcistatus_got(lanai->number, name); \
1132			++lanai->stats.pcierr_##stat; \
1133		}
1134	e(PCI_STATUS_DETECTED_PARITY, "parity", parity_detect);
1135	e(PCI_STATUS_SIG_SYSTEM_ERROR, "signalled system", serr_set);
1136	e(PCI_STATUS_REC_MASTER_ABORT, "master", master_abort);
1137	e(PCI_STATUS_REC_TARGET_ABORT, "master target", m_target_abort);
1138	e(PCI_STATUS_SIG_TARGET_ABORT, "slave", s_target_abort);
1139	e(PCI_STATUS_PARITY, "master parity", master_parity);
1140#undef e
1141}
1142
1143/* -------------------- VCC TX BUFFER UTILITIES: */
1144
1145/* space left in tx buffer in bytes */
1146static inline int vcc_tx_space(const struct lanai_vcc *lvcc, int endptr)
1147{
1148	int r;
1149	r = endptr * 16;
1150	r -= ((unsigned long) lvcc->tx.buf.ptr) -
1151	    ((unsigned long) lvcc->tx.buf.start);
1152	r -= 16;	/* Leave "bubble" - if start==end it looks empty */
1153	if (r < 0)
1154		r += lanai_buf_size(&lvcc->tx.buf);
1155	return r;
1156}
1157
1158/* test if VCC is currently backlogged */
1159static inline int vcc_is_backlogged(const struct lanai_vcc *lvcc)
1160{
1161	return !skb_queue_empty(&lvcc->tx.backlog);
1162}
1163
1164/* Bit fields in the segmentation buffer descriptor */
1165#define DESCRIPTOR_MAGIC	(0xD0000000)
1166#define DESCRIPTOR_AAL5		(0x00008000)
1167#define DESCRIPTOR_AAL5_STREAM	(0x00004000)
1168#define DESCRIPTOR_CLP		(0x00002000)
1169
1170/* Add 32-bit descriptor with its padding */
1171static inline void vcc_tx_add_aal5_descriptor(struct lanai_vcc *lvcc,
1172	u32 flags, int len)
1173{
1174	int pos;
1175	APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 0,
1176	    "vcc_tx_add_aal5_descriptor: bad ptr=%p\n", lvcc->tx.buf.ptr);
1177	lvcc->tx.buf.ptr += 4;	/* Hope the values REALLY don't matter */
1178	pos = ((unsigned char *) lvcc->tx.buf.ptr) -
1179	    (unsigned char *) lvcc->tx.buf.start;
1180	APRINTK((pos & ~0x0001FFF0) == 0,
1181	    "vcc_tx_add_aal5_descriptor: bad pos (%d) before, vci=%d, "
1182	    "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
1183	    lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
1184	pos = (pos + len) & (lanai_buf_size(&lvcc->tx.buf) - 1);
1185	APRINTK((pos & ~0x0001FFF0) == 0,
1186	    "vcc_tx_add_aal5_descriptor: bad pos (%d) after, vci=%d, "
1187	    "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
1188	    lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
1189	lvcc->tx.buf.ptr[-1] =
1190	    cpu_to_le32(DESCRIPTOR_MAGIC | DESCRIPTOR_AAL5 |
1191	    ((lvcc->tx.atmvcc->atm_options & ATM_ATMOPT_CLP) ?
1192	    DESCRIPTOR_CLP : 0) | flags | pos >> 4);
1193	if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
1194		lvcc->tx.buf.ptr = lvcc->tx.buf.start;
1195}
1196
1197/* Add 32-bit AAL5 trailer and leave room for its CRC */
1198static inline void vcc_tx_add_aal5_trailer(struct lanai_vcc *lvcc,
1199	int len, int cpi, int uu)
1200{
1201	APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 8,
1202	    "vcc_tx_add_aal5_trailer: bad ptr=%p\n", lvcc->tx.buf.ptr);
1203	lvcc->tx.buf.ptr += 2;
1204	lvcc->tx.buf.ptr[-2] = cpu_to_be32((uu << 24) | (cpi << 16) | len);
1205	if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
1206		lvcc->tx.buf.ptr = lvcc->tx.buf.start;
1207}
1208
1209static inline void vcc_tx_memcpy(struct lanai_vcc *lvcc,
1210	const unsigned char *src, int n)
1211{
1212	unsigned char *e;
1213	int m;
1214	e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
1215	m = e - (unsigned char *) lvcc->tx.buf.end;
1216	if (m < 0)
1217		m = 0;
1218	memcpy(lvcc->tx.buf.ptr, src, n - m);
1219	if (m != 0) {
1220		memcpy(lvcc->tx.buf.start, src + n - m, m);
1221		e = ((unsigned char *) lvcc->tx.buf.start) + m;
1222	}
1223	lvcc->tx.buf.ptr = (u32 *) e;
1224}
1225
1226static inline void vcc_tx_memzero(struct lanai_vcc *lvcc, int n)
1227{
1228	unsigned char *e;
1229	int m;
1230	if (n == 0)
1231		return;
1232	e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
1233	m = e - (unsigned char *) lvcc->tx.buf.end;
1234	if (m < 0)
1235		m = 0;
1236	memset(lvcc->tx.buf.ptr, 0, n - m);
1237	if (m != 0) {
1238		memset(lvcc->tx.buf.start, 0, m);
1239		e = ((unsigned char *) lvcc->tx.buf.start) + m;
1240	}
1241	lvcc->tx.buf.ptr = (u32 *) e;
1242}
1243
1244/* Update "butt" register to specify new WritePtr */
1245static inline void lanai_endtx(struct lanai_dev *lanai,
1246	const struct lanai_vcc *lvcc)
1247{
1248	int i, ptr = ((unsigned char *) lvcc->tx.buf.ptr) -
1249	    (unsigned char *) lvcc->tx.buf.start;
1250	APRINTK((ptr & ~0x0001FFF0) == 0,
1251	    "lanai_endtx: bad ptr (%d), vci=%d, start,ptr,end=%p,%p,%p\n",
1252	    ptr, lvcc->vci, lvcc->tx.buf.start, lvcc->tx.buf.ptr,
1253	    lvcc->tx.buf.end);
1254
1255	/*
1256	 * Since the "butt register" is a shared resounce on the card we
1257	 * serialize all accesses to it through this spinlock.  This is
1258	 * mostly just paranoia since the register is rarely "busy" anyway
1259	 * but is needed for correctness.
1260	 */
1261	spin_lock(&lanai->endtxlock);
1262	/*
1263	 * We need to check if the "butt busy" bit is set before
1264	 * updating the butt register.  In theory this should
1265	 * never happen because the ATM card is plenty fast at
1266	 * updating the register.  Still, we should make sure
1267	 */
1268	for (i = 0; reg_read(lanai, Status_Reg) & STATUS_BUTTBUSY; i++) {
1269		if (unlikely(i > 50)) {
1270			printk(KERN_ERR DEV_LABEL "(itf %d): butt register "
1271			    "always busy!\n", lanai->number);
1272			break;
1273		}
1274		udelay(5);
1275	}
1276	/*
1277	 * Before we tall the card to start work we need to be sure 100% of
1278	 * the info in the service buffer has been written before we tell
1279	 * the card about it
1280	 */
1281	wmb();
1282	reg_write(lanai, (ptr << 12) | lvcc->vci, Butt_Reg);
1283	spin_unlock(&lanai->endtxlock);
1284}
1285
1286/*
1287 * Add one AAL5 PDU to lvcc's transmit buffer.  Caller garauntees there's
1288 * space available.  "pdusize" is the number of bytes the PDU will take
1289 */
1290static void lanai_send_one_aal5(struct lanai_dev *lanai,
1291	struct lanai_vcc *lvcc, struct sk_buff *skb, int pdusize)
1292{
1293	int pad;
1294	APRINTK(pdusize == aal5_size(skb->len),
1295	    "lanai_send_one_aal5: wrong size packet (%d != %d)\n",
1296	    pdusize, aal5_size(skb->len));
1297	vcc_tx_add_aal5_descriptor(lvcc, 0, pdusize);
1298	pad = pdusize - skb->len - 8;
1299	APRINTK(pad >= 0, "pad is negative (%d)\n", pad);
1300	APRINTK(pad < 48, "pad is too big (%d)\n", pad);
1301	vcc_tx_memcpy(lvcc, skb->data, skb->len);
1302	vcc_tx_memzero(lvcc, pad);
1303	vcc_tx_add_aal5_trailer(lvcc, skb->len, 0, 0);
1304	lanai_endtx(lanai, lvcc);
1305	lanai_free_skb(lvcc->tx.atmvcc, skb);
1306	atomic_inc(&lvcc->tx.atmvcc->stats->tx);
1307}
1308
1309/* Try to fill the buffer - don't call unless there is backlog */
1310static void vcc_tx_unqueue_aal5(struct lanai_dev *lanai,
1311	struct lanai_vcc *lvcc, int endptr)
1312{
1313	int n;
1314	struct sk_buff *skb;
1315	int space = vcc_tx_space(lvcc, endptr);
1316	APRINTK(vcc_is_backlogged(lvcc),
1317	    "vcc_tx_unqueue() called with empty backlog (vci=%d)\n",
1318	    lvcc->vci);
1319	while (space >= 64) {
1320		skb = skb_dequeue(&lvcc->tx.backlog);
1321		if (skb == NULL)
1322			goto no_backlog;
1323		n = aal5_size(skb->len);
1324		if (n + 16 > space) {
1325			/* No room for this packet - put it back on queue */
1326			skb_queue_head(&lvcc->tx.backlog, skb);
1327			return;
1328		}
1329		lanai_send_one_aal5(lanai, lvcc, skb, n);
1330		space -= n + 16;
1331	}
1332	if (!vcc_is_backlogged(lvcc)) {
1333	    no_backlog:
1334		__clear_bit(lvcc->vci, lanai->backlog_vccs);
1335	}
1336}
1337
1338/* Given an skb that we want to transmit either send it now or queue */
1339static void vcc_tx_aal5(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1340	struct sk_buff *skb)
1341{
1342	int space, n;
1343	if (vcc_is_backlogged(lvcc))		/* Already backlogged */
1344		goto queue_it;
1345	space = vcc_tx_space(lvcc,
1346		    TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr)));
1347	n = aal5_size(skb->len);
1348	APRINTK(n + 16 >= 64, "vcc_tx_aal5: n too small (%d)\n", n);
1349	if (space < n + 16) {			/* No space for this PDU */
1350		__set_bit(lvcc->vci, lanai->backlog_vccs);
1351	    queue_it:
1352		skb_queue_tail(&lvcc->tx.backlog, skb);
1353		return;
1354	}
1355	lanai_send_one_aal5(lanai, lvcc, skb, n);
1356}
1357
1358static void vcc_tx_unqueue_aal0(struct lanai_dev *lanai,
1359	struct lanai_vcc *lvcc, int endptr)
1360{
1361	printk(KERN_INFO DEV_LABEL
1362	    ": vcc_tx_unqueue_aal0: not implemented\n");
1363}
1364
1365static void vcc_tx_aal0(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1366	struct sk_buff *skb)
1367{
1368	printk(KERN_INFO DEV_LABEL ": vcc_tx_aal0: not implemented\n");
1369	/* Remember to increment lvcc->tx.atmvcc->stats->tx */
1370	lanai_free_skb(lvcc->tx.atmvcc, skb);
1371}
1372
1373/* -------------------- VCC RX BUFFER UTILITIES: */
1374
1375/* unlike the _tx_ cousins, this doesn't update ptr */
1376static inline void vcc_rx_memcpy(unsigned char *dest,
1377	const struct lanai_vcc *lvcc, int n)
1378{
1379	int m = ((const unsigned char *) lvcc->rx.buf.ptr) + n -
1380	    ((const unsigned char *) (lvcc->rx.buf.end));
1381	if (m < 0)
1382		m = 0;
1383	memcpy(dest, lvcc->rx.buf.ptr, n - m);
1384	memcpy(dest + n - m, lvcc->rx.buf.start, m);
1385	/* Make sure that these copies don't get reordered */
1386	barrier();
1387}
1388
1389/* Receive AAL5 data on a VCC with a particular endptr */
1390static void vcc_rx_aal5(struct lanai_vcc *lvcc, int endptr)
1391{
1392	int size;
1393	struct sk_buff *skb;
1394	const u32 *x;
1395	u32 *end = &lvcc->rx.buf.start[endptr * 4];
1396	int n = ((unsigned long) end) - ((unsigned long) lvcc->rx.buf.ptr);
1397	if (n < 0)
1398		n += lanai_buf_size(&lvcc->rx.buf);
1399	APRINTK(n >= 0 && n < lanai_buf_size(&lvcc->rx.buf) && !(n & 15),
1400	    "vcc_rx_aal5: n out of range (%d/%Zu)\n",
1401	    n, lanai_buf_size(&lvcc->rx.buf));
1402	/* Recover the second-to-last word to get true pdu length */
1403	if ((x = &end[-2]) < lvcc->rx.buf.start)
1404		x = &lvcc->rx.buf.end[-2];
1405	/*
1406	 * Before we actually read from the buffer, make sure the memory
1407	 * changes have arrived
1408	 */
1409	rmb();
1410	size = be32_to_cpup(x) & 0xffff;
1411	if (unlikely(n != aal5_size(size))) {
1412		/* Make sure size matches padding */
1413		printk(KERN_INFO DEV_LABEL "(itf %d): Got bad AAL5 length "
1414		    "on vci=%d - size=%d n=%d\n",
1415		    lvcc->rx.atmvcc->dev->number, lvcc->vci, size, n);
1416		lvcc->stats.x.aal5.rx_badlen++;
1417		goto out;
1418	}
1419	skb = atm_alloc_charge(lvcc->rx.atmvcc, size, GFP_ATOMIC);
1420	if (unlikely(skb == NULL)) {
1421		lvcc->stats.rx_nomem++;
1422		goto out;
1423	}
1424	skb_put(skb, size);
1425	vcc_rx_memcpy(skb->data, lvcc, size);
1426	ATM_SKB(skb)->vcc = lvcc->rx.atmvcc;
1427	__net_timestamp(skb);
1428	lvcc->rx.atmvcc->push(lvcc->rx.atmvcc, skb);
1429	atomic_inc(&lvcc->rx.atmvcc->stats->rx);
1430    out:
1431	lvcc->rx.buf.ptr = end;
1432	cardvcc_write(lvcc, endptr, vcc_rxreadptr);
1433}
1434
1435static void vcc_rx_aal0(struct lanai_dev *lanai)
1436{
1437	printk(KERN_INFO DEV_LABEL ": vcc_rx_aal0: not implemented\n");
1438	/* Remember to get read_lock(&vcc_sklist_lock) while looking up VC */
1439	/* Remember to increment lvcc->rx.atmvcc->stats->rx */
1440}
1441
1442/* -------------------- MANAGING HOST-BASED VCC TABLE: */
1443
1444/* Decide whether to use vmalloc or get_zeroed_page for VCC table */
1445#if (NUM_VCI * BITS_PER_LONG) <= PAGE_SIZE
1446#define VCCTABLE_GETFREEPAGE
1447#else
1448#include <linux/vmalloc.h>
1449#endif
1450
1451static int __devinit vcc_table_allocate(struct lanai_dev *lanai)
1452{
1453#ifdef VCCTABLE_GETFREEPAGE
1454	APRINTK((lanai->num_vci) * sizeof(struct lanai_vcc *) <= PAGE_SIZE,
1455	    "vcc table > PAGE_SIZE!");
1456	lanai->vccs = (struct lanai_vcc **) get_zeroed_page(GFP_KERNEL);
1457	return (lanai->vccs == NULL) ? -ENOMEM : 0;
1458#else
1459	int bytes = (lanai->num_vci) * sizeof(struct lanai_vcc *);
1460	lanai->vccs = (struct lanai_vcc **) vmalloc(bytes);
1461	if (unlikely(lanai->vccs == NULL))
1462		return -ENOMEM;
1463	memset(lanai->vccs, 0, bytes);
1464	return 0;
1465#endif
1466}
1467
1468static inline void vcc_table_deallocate(const struct lanai_dev *lanai)
1469{
1470#ifdef VCCTABLE_GETFREEPAGE
1471	free_page((unsigned long) lanai->vccs);
1472#else
1473	vfree(lanai->vccs);
1474#endif
1475}
1476
1477/* Allocate a fresh lanai_vcc, with the appropriate things cleared */
1478static inline struct lanai_vcc *new_lanai_vcc(void)
1479{
1480	struct lanai_vcc *lvcc;
1481	lvcc =  kzalloc(sizeof(*lvcc), GFP_KERNEL);
1482	if (likely(lvcc != NULL)) {
1483		skb_queue_head_init(&lvcc->tx.backlog);
1484#ifdef DEBUG
1485		lvcc->vci = -1;
1486#endif
1487	}
1488	return lvcc;
1489}
1490
1491static int lanai_get_sized_buffer(struct lanai_dev *lanai,
1492	struct lanai_buffer *buf, int max_sdu, int multiplier,
1493	const char *name)
1494{
1495	int size;
1496	if (unlikely(max_sdu < 1))
1497		max_sdu = 1;
1498	max_sdu = aal5_size(max_sdu);
1499	size = (max_sdu + 16) * multiplier + 16;
1500	lanai_buf_allocate(buf, size, max_sdu + 32, lanai->pci);
1501	if (unlikely(buf->start == NULL))
1502		return -ENOMEM;
1503	if (unlikely(lanai_buf_size(buf) < size))
1504		printk(KERN_WARNING DEV_LABEL "(itf %d): wanted %d bytes "
1505		    "for %s buffer, got only %Zu\n", lanai->number, size,
1506		    name, lanai_buf_size(buf));
1507	DPRINTK("Allocated %Zu byte %s buffer\n", lanai_buf_size(buf), name);
1508	return 0;
1509}
1510
1511/* Setup a RX buffer for a currently unbound AAL5 vci */
1512static inline int lanai_setup_rx_vci_aal5(struct lanai_dev *lanai,
1513	struct lanai_vcc *lvcc, const struct atm_qos *qos)
1514{
1515	return lanai_get_sized_buffer(lanai, &lvcc->rx.buf,
1516	    qos->rxtp.max_sdu, AAL5_RX_MULTIPLIER, "RX");
1517}
1518
1519/* Setup a TX buffer for a currently unbound AAL5 vci */
1520static int lanai_setup_tx_vci(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1521	const struct atm_qos *qos)
1522{
1523	int max_sdu, multiplier;
1524	if (qos->aal == ATM_AAL0) {
1525		lvcc->tx.unqueue = vcc_tx_unqueue_aal0;
1526		max_sdu = ATM_CELL_SIZE - 1;
1527		multiplier = AAL0_TX_MULTIPLIER;
1528	} else {
1529		lvcc->tx.unqueue = vcc_tx_unqueue_aal5;
1530		max_sdu = qos->txtp.max_sdu;
1531		multiplier = AAL5_TX_MULTIPLIER;
1532	}
1533	return lanai_get_sized_buffer(lanai, &lvcc->tx.buf, max_sdu,
1534	    multiplier, "TX");
1535}
1536
1537static inline void host_vcc_bind(struct lanai_dev *lanai,
1538	struct lanai_vcc *lvcc, vci_t vci)
1539{
1540	if (lvcc->vbase != NULL)
1541		return;    /* We already were bound in the other direction */
1542	DPRINTK("Binding vci %d\n", vci);
1543#ifdef USE_POWERDOWN
1544	if (lanai->nbound++ == 0) {
1545		DPRINTK("Coming out of powerdown\n");
1546		lanai->conf1 &= ~CONFIG1_POWERDOWN;
1547		conf1_write(lanai);
1548		conf2_write(lanai);
1549	}
1550#endif
1551	lvcc->vbase = cardvcc_addr(lanai, vci);
1552	lanai->vccs[lvcc->vci = vci] = lvcc;
1553}
1554
1555static inline void host_vcc_unbind(struct lanai_dev *lanai,
1556	struct lanai_vcc *lvcc)
1557{
1558	if (lvcc->vbase == NULL)
1559		return;	/* This vcc was never bound */
1560	DPRINTK("Unbinding vci %d\n", lvcc->vci);
1561	lvcc->vbase = NULL;
1562	lanai->vccs[lvcc->vci] = NULL;
1563#ifdef USE_POWERDOWN
1564	if (--lanai->nbound == 0) {
1565		DPRINTK("Going into powerdown\n");
1566		lanai->conf1 |= CONFIG1_POWERDOWN;
1567		conf1_write(lanai);
1568	}
1569#endif
1570}
1571
1572/* -------------------- RESET CARD: */
1573
1574static void lanai_reset(struct lanai_dev *lanai)
1575{
1576	printk(KERN_CRIT DEV_LABEL "(itf %d): *NOT* reseting - not "
1577	    "implemented\n", lanai->number);
1578	/* TODO */
1579	/* The following is just a hack until we write the real
1580	 * resetter - at least ack whatever interrupt sent us
1581	 * here
1582	 */
1583	reg_write(lanai, INT_ALL, IntAck_Reg);
1584	lanai->stats.card_reset++;
1585}
1586
1587/* -------------------- SERVICE LIST UTILITIES: */
1588
1589/*
1590 * Allocate service buffer and tell card about it
1591 */
1592static int __devinit service_buffer_allocate(struct lanai_dev *lanai)
1593{
1594	lanai_buf_allocate(&lanai->service, SERVICE_ENTRIES * 4, 8,
1595	    lanai->pci);
1596	if (unlikely(lanai->service.start == NULL))
1597		return -ENOMEM;
1598	DPRINTK("allocated service buffer at 0x%08lX, size %Zu(%d)\n",
1599	    (unsigned long) lanai->service.start,
1600	    lanai_buf_size(&lanai->service),
1601	    lanai_buf_size_cardorder(&lanai->service));
1602	/* Clear ServWrite register to be safe */
1603	reg_write(lanai, 0, ServWrite_Reg);
1604	/* ServiceStuff register contains size and address of buffer */
1605	reg_write(lanai,
1606	    SSTUFF_SET_SIZE(lanai_buf_size_cardorder(&lanai->service)) |
1607	    SSTUFF_SET_ADDR(lanai->service.dmaaddr),
1608	    ServiceStuff_Reg);
1609	return 0;
1610}
1611
1612static inline void service_buffer_deallocate(struct lanai_dev *lanai)
1613{
1614	lanai_buf_deallocate(&lanai->service, lanai->pci);
1615}
1616
1617/* Bitfields in service list */
1618#define SERVICE_TX	(0x80000000)	/* Was from transmission */
1619#define SERVICE_TRASH	(0x40000000)	/* RXed PDU was trashed */
1620#define SERVICE_CRCERR	(0x20000000)	/* RXed PDU had CRC error */
1621#define SERVICE_CI	(0x10000000)	/* RXed PDU had CI set */
1622#define SERVICE_CLP	(0x08000000)	/* RXed PDU had CLP set */
1623#define SERVICE_STREAM	(0x04000000)	/* RX Stream mode */
1624#define SERVICE_GET_VCI(x) (((x)>>16)&0x3FF)
1625#define SERVICE_GET_END(x) ((x)&0x1FFF)
1626
1627/* Handle one thing from the service list - returns true if it marked a
1628 * VCC ready for xmit
1629 */
1630static int handle_service(struct lanai_dev *lanai, u32 s)
1631{
1632	vci_t vci = SERVICE_GET_VCI(s);
1633	struct lanai_vcc *lvcc;
1634	read_lock(&vcc_sklist_lock);
1635	lvcc = lanai->vccs[vci];
1636	if (unlikely(lvcc == NULL)) {
1637		read_unlock(&vcc_sklist_lock);
1638		DPRINTK("(itf %d) got service entry 0x%X for nonexistent "
1639		    "vcc %d\n", lanai->number, (unsigned int) s, vci);
1640		if (s & SERVICE_TX)
1641			lanai->stats.service_notx++;
1642		else
1643			lanai->stats.service_norx++;
1644		return 0;
1645	}
1646	if (s & SERVICE_TX) {			/* segmentation interrupt */
1647		if (unlikely(lvcc->tx.atmvcc == NULL)) {
1648			read_unlock(&vcc_sklist_lock);
1649			DPRINTK("(itf %d) got service entry 0x%X for non-TX "
1650			    "vcc %d\n", lanai->number, (unsigned int) s, vci);
1651			lanai->stats.service_notx++;
1652			return 0;
1653		}
1654		__set_bit(vci, lanai->transmit_ready);
1655		lvcc->tx.endptr = SERVICE_GET_END(s);
1656		read_unlock(&vcc_sklist_lock);
1657		return 1;
1658	}
1659	if (unlikely(lvcc->rx.atmvcc == NULL)) {
1660		read_unlock(&vcc_sklist_lock);
1661		DPRINTK("(itf %d) got service entry 0x%X for non-RX "
1662		    "vcc %d\n", lanai->number, (unsigned int) s, vci);
1663		lanai->stats.service_norx++;
1664		return 0;
1665	}
1666	if (unlikely(lvcc->rx.atmvcc->qos.aal != ATM_AAL5)) {
1667		read_unlock(&vcc_sklist_lock);
1668		DPRINTK("(itf %d) got RX service entry 0x%X for non-AAL5 "
1669		    "vcc %d\n", lanai->number, (unsigned int) s, vci);
1670		lanai->stats.service_rxnotaal5++;
1671		atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1672		return 0;
1673	}
1674	if (likely(!(s & (SERVICE_TRASH | SERVICE_STREAM | SERVICE_CRCERR)))) {
1675		vcc_rx_aal5(lvcc, SERVICE_GET_END(s));
1676		read_unlock(&vcc_sklist_lock);
1677		return 0;
1678	}
1679	if (s & SERVICE_TRASH) {
1680		int bytes;
1681		read_unlock(&vcc_sklist_lock);
1682		DPRINTK("got trashed rx pdu on vci %d\n", vci);
1683		atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1684		lvcc->stats.x.aal5.service_trash++;
1685		bytes = (SERVICE_GET_END(s) * 16) -
1686		    (((unsigned long) lvcc->rx.buf.ptr) -
1687		    ((unsigned long) lvcc->rx.buf.start)) + 47;
1688		if (bytes < 0)
1689			bytes += lanai_buf_size(&lvcc->rx.buf);
1690		lanai->stats.ovfl_trash += (bytes / 48);
1691		return 0;
1692	}
1693	if (s & SERVICE_STREAM) {
1694		read_unlock(&vcc_sklist_lock);
1695		atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1696		lvcc->stats.x.aal5.service_stream++;
1697		printk(KERN_ERR DEV_LABEL "(itf %d): Got AAL5 stream "
1698		    "PDU on VCI %d!\n", lanai->number, vci);
1699		lanai_reset(lanai);
1700		return 0;
1701	}
1702	DPRINTK("got rx crc error on vci %d\n", vci);
1703	atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1704	lvcc->stats.x.aal5.service_rxcrc++;
1705	lvcc->rx.buf.ptr = &lvcc->rx.buf.start[SERVICE_GET_END(s) * 4];
1706	cardvcc_write(lvcc, SERVICE_GET_END(s), vcc_rxreadptr);
1707	read_unlock(&vcc_sklist_lock);
1708	return 0;
1709}
1710
1711/* Try transmitting on all VCIs that we marked ready to serve */
1712static void iter_transmit(struct lanai_dev *lanai, vci_t vci)
1713{
1714	struct lanai_vcc *lvcc = lanai->vccs[vci];
1715	if (vcc_is_backlogged(lvcc))
1716		lvcc->tx.unqueue(lanai, lvcc, lvcc->tx.endptr);
1717}
1718
1719/* Run service queue -- called from interrupt context or with
1720 * interrupts otherwise disabled and with the lanai->servicelock
1721 * lock held
1722 */
1723static void run_service(struct lanai_dev *lanai)
1724{
1725	int ntx = 0;
1726	u32 wreg = reg_read(lanai, ServWrite_Reg);
1727	const u32 *end = lanai->service.start + wreg;
1728	while (lanai->service.ptr != end) {
1729		ntx += handle_service(lanai,
1730		    le32_to_cpup(lanai->service.ptr++));
1731		if (lanai->service.ptr >= lanai->service.end)
1732			lanai->service.ptr = lanai->service.start;
1733	}
1734	reg_write(lanai, wreg, ServRead_Reg);
1735	if (ntx != 0) {
1736		read_lock(&vcc_sklist_lock);
1737		vci_bitfield_iterate(lanai, lanai->transmit_ready,
1738		    iter_transmit);
1739		bitmap_zero(lanai->transmit_ready, NUM_VCI);
1740		read_unlock(&vcc_sklist_lock);
1741	}
1742}
1743
1744/* -------------------- GATHER STATISTICS: */
1745
1746static void get_statistics(struct lanai_dev *lanai)
1747{
1748	u32 statreg = reg_read(lanai, Statistics_Reg);
1749	lanai->stats.atm_ovfl += STATS_GET_FIFO_OVFL(statreg);
1750	lanai->stats.hec_err += STATS_GET_HEC_ERR(statreg);
1751	lanai->stats.vci_trash += STATS_GET_BAD_VCI(statreg);
1752	lanai->stats.ovfl_trash += STATS_GET_BUF_OVFL(statreg);
1753}
1754
1755/* -------------------- POLLING TIMER: */
1756
1757#ifndef DEBUG_RW
1758/* Try to undequeue 1 backlogged vcc */
1759static void iter_dequeue(struct lanai_dev *lanai, vci_t vci)
1760{
1761	struct lanai_vcc *lvcc = lanai->vccs[vci];
1762	int endptr;
1763	if (lvcc == NULL || lvcc->tx.atmvcc == NULL ||
1764	    !vcc_is_backlogged(lvcc)) {
1765		__clear_bit(vci, lanai->backlog_vccs);
1766		return;
1767	}
1768	endptr = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
1769	lvcc->tx.unqueue(lanai, lvcc, endptr);
1770}
1771#endif /* !DEBUG_RW */
1772
1773static void lanai_timed_poll(unsigned long arg)
1774{
1775	struct lanai_dev *lanai = (struct lanai_dev *) arg;
1776#ifndef DEBUG_RW
1777	unsigned long flags;
1778#ifdef USE_POWERDOWN
1779	if (lanai->conf1 & CONFIG1_POWERDOWN)
1780		return;
1781#endif /* USE_POWERDOWN */
1782	local_irq_save(flags);
1783	/* If we can grab the spinlock, check if any services need to be run */
1784	if (spin_trylock(&lanai->servicelock)) {
1785		run_service(lanai);
1786		spin_unlock(&lanai->servicelock);
1787	}
1788	/* ...and see if any backlogged VCs can make progress */
1789	/* unfortunately linux has no read_trylock() currently */
1790	read_lock(&vcc_sklist_lock);
1791	vci_bitfield_iterate(lanai, lanai->backlog_vccs, iter_dequeue);
1792	read_unlock(&vcc_sklist_lock);
1793	local_irq_restore(flags);
1794
1795	get_statistics(lanai);
1796#endif /* !DEBUG_RW */
1797	mod_timer(&lanai->timer, jiffies + LANAI_POLL_PERIOD);
1798}
1799
1800static inline void lanai_timed_poll_start(struct lanai_dev *lanai)
1801{
1802	init_timer(&lanai->timer);
1803	lanai->timer.expires = jiffies + LANAI_POLL_PERIOD;
1804	lanai->timer.data = (unsigned long) lanai;
1805	lanai->timer.function = lanai_timed_poll;
1806	add_timer(&lanai->timer);
1807}
1808
1809static inline void lanai_timed_poll_stop(struct lanai_dev *lanai)
1810{
1811	del_timer_sync(&lanai->timer);
1812}
1813
1814/* -------------------- INTERRUPT SERVICE: */
1815
1816static inline void lanai_int_1(struct lanai_dev *lanai, u32 reason)
1817{
1818	u32 ack = 0;
1819	if (reason & INT_SERVICE) {
1820		ack = INT_SERVICE;
1821		spin_lock(&lanai->servicelock);
1822		run_service(lanai);
1823		spin_unlock(&lanai->servicelock);
1824	}
1825	if (reason & (INT_AAL0_STR | INT_AAL0)) {
1826		ack |= reason & (INT_AAL0_STR | INT_AAL0);
1827		vcc_rx_aal0(lanai);
1828	}
1829	/* The rest of the interrupts are pretty rare */
1830	if (ack == reason)
1831		goto done;
1832	if (reason & INT_STATS) {
1833		reason &= ~INT_STATS;	/* No need to ack */
1834		get_statistics(lanai);
1835	}
1836	if (reason & INT_STATUS) {
1837		ack |= reason & INT_STATUS;
1838		lanai_check_status(lanai);
1839	}
1840	if (unlikely(reason & INT_DMASHUT)) {
1841		printk(KERN_ERR DEV_LABEL "(itf %d): driver error - DMA "
1842		    "shutdown, reason=0x%08X, address=0x%08X\n",
1843		    lanai->number, (unsigned int) (reason & INT_DMASHUT),
1844		    (unsigned int) reg_read(lanai, DMA_Addr_Reg));
1845		if (reason & INT_TABORTBM) {
1846			lanai_reset(lanai);
1847			return;
1848		}
1849		ack |= (reason & INT_DMASHUT);
1850		printk(KERN_ERR DEV_LABEL "(itf %d): re-enabling DMA\n",
1851		    lanai->number);
1852		conf1_write(lanai);
1853		lanai->stats.dma_reenable++;
1854		pcistatus_check(lanai, 0);
1855	}
1856	if (unlikely(reason & INT_TABORTSENT)) {
1857		ack |= (reason & INT_TABORTSENT);
1858		printk(KERN_ERR DEV_LABEL "(itf %d): sent PCI target abort\n",
1859		    lanai->number);
1860		pcistatus_check(lanai, 0);
1861	}
1862	if (unlikely(reason & INT_SEGSHUT)) {
1863		printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
1864		    "segmentation shutdown, reason=0x%08X\n", lanai->number,
1865		    (unsigned int) (reason & INT_SEGSHUT));
1866		lanai_reset(lanai);
1867		return;
1868	}
1869	if (unlikely(reason & (INT_PING | INT_WAKE))) {
1870		printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
1871		    "unexpected interrupt 0x%08X, resetting\n",
1872		    lanai->number,
1873		    (unsigned int) (reason & (INT_PING | INT_WAKE)));
1874		lanai_reset(lanai);
1875		return;
1876	}
1877#ifdef DEBUG
1878	if (unlikely(ack != reason)) {
1879		DPRINTK("unacked ints: 0x%08X\n",
1880		    (unsigned int) (reason & ~ack));
1881		ack = reason;
1882	}
1883#endif
1884   done:
1885	if (ack != 0)
1886		reg_write(lanai, ack, IntAck_Reg);
1887}
1888
1889static irqreturn_t lanai_int(int irq, void *devid)
1890{
1891	struct lanai_dev *lanai = devid;
1892	u32 reason;
1893
1894#ifdef USE_POWERDOWN
1895	/*
1896	 * If we're powered down we shouldn't be generating any interrupts -
1897	 * so assume that this is a shared interrupt line and it's for someone
1898	 * else
1899	 */
1900	if (unlikely(lanai->conf1 & CONFIG1_POWERDOWN))
1901		return IRQ_NONE;
1902#endif
1903
1904	reason = intr_pending(lanai);
1905	if (reason == 0)
1906		return IRQ_NONE;	/* Must be for someone else */
1907
1908	do {
1909		if (unlikely(reason == 0xFFFFFFFF))
1910			break;		/* Maybe we've been unplugged? */
1911		lanai_int_1(lanai, reason);
1912		reason = intr_pending(lanai);
1913	} while (reason != 0);
1914
1915	return IRQ_HANDLED;
1916}
1917
1918/* TODO - it would be nice if we could use the "delayed interrupt" system
1919 *   to some advantage
1920 */
1921
1922/* -------------------- CHECK BOARD ID/REV: */
1923
1924/*
1925 * The board id and revision are stored both in the reset register and
1926 * in the PCI configuration space - the documentation says to check
1927 * each of them.  If revp!=NULL we store the revision there
1928 */
1929static int check_board_id_and_rev(const char *name, u32 val, int *revp)
1930{
1931	DPRINTK("%s says board_id=%d, board_rev=%d\n", name,
1932		(int) RESET_GET_BOARD_ID(val),
1933		(int) RESET_GET_BOARD_REV(val));
1934	if (RESET_GET_BOARD_ID(val) != BOARD_ID_LANAI256) {
1935		printk(KERN_ERR DEV_LABEL ": Found %s board-id %d -- not a "
1936		    "Lanai 25.6\n", name, (int) RESET_GET_BOARD_ID(val));
1937		return -ENODEV;
1938	}
1939	if (revp != NULL)
1940		*revp = RESET_GET_BOARD_REV(val);
1941	return 0;
1942}
1943
1944/* -------------------- PCI INITIALIZATION/SHUTDOWN: */
1945
1946static int __devinit lanai_pci_start(struct lanai_dev *lanai)
1947{
1948	struct pci_dev *pci = lanai->pci;
1949	int result;
1950
1951	if (pci_enable_device(pci) != 0) {
1952		printk(KERN_ERR DEV_LABEL "(itf %d): can't enable "
1953		    "PCI device", lanai->number);
1954		return -ENXIO;
1955	}
1956	pci_set_master(pci);
1957	if (pci_set_dma_mask(pci, DMA_BIT_MASK(32)) != 0) {
1958		printk(KERN_WARNING DEV_LABEL
1959		    "(itf %d): No suitable DMA available.\n", lanai->number);
1960		return -EBUSY;
1961	}
1962	if (pci_set_consistent_dma_mask(pci, DMA_BIT_MASK(32)) != 0) {
1963		printk(KERN_WARNING DEV_LABEL
1964		    "(itf %d): No suitable DMA available.\n", lanai->number);
1965		return -EBUSY;
1966	}
1967	result = check_board_id_and_rev("PCI", pci->subsystem_device, NULL);
1968	if (result != 0)
1969		return result;
1970	/* Set latency timer to zero as per lanai docs */
1971	result = pci_write_config_byte(pci, PCI_LATENCY_TIMER, 0);
1972	if (result != PCIBIOS_SUCCESSFUL) {
1973		printk(KERN_ERR DEV_LABEL "(itf %d): can't write "
1974		    "PCI_LATENCY_TIMER: %d\n", lanai->number, result);
1975		return -EINVAL;
1976	}
1977	pcistatus_check(lanai, 1);
1978	pcistatus_check(lanai, 0);
1979	return 0;
1980}
1981
1982/* -------------------- VPI/VCI ALLOCATION: */
1983
1984/*
1985 * We _can_ use VCI==0 for normal traffic, but only for UBR (or we'll
1986 * get a CBRZERO interrupt), and we can use it only if no one is receiving
1987 * AAL0 traffic (since they will use the same queue) - according to the
1988 * docs we shouldn't even use it for AAL0 traffic
1989 */
1990static inline int vci0_is_ok(struct lanai_dev *lanai,
1991	const struct atm_qos *qos)
1992{
1993	if (qos->txtp.traffic_class == ATM_CBR || qos->aal == ATM_AAL0)
1994		return 0;
1995	if (qos->rxtp.traffic_class != ATM_NONE) {
1996		if (lanai->naal0 != 0)
1997			return 0;
1998		lanai->conf2 |= CONFIG2_VCI0_NORMAL;
1999		conf2_write_if_powerup(lanai);
2000	}
2001	return 1;
2002}
2003
2004/* return true if vci is currently unused, or if requested qos is
2005 * compatible
2006 */
2007static int vci_is_ok(struct lanai_dev *lanai, vci_t vci,
2008	const struct atm_vcc *atmvcc)
2009{
2010	const struct atm_qos *qos = &atmvcc->qos;
2011	const struct lanai_vcc *lvcc = lanai->vccs[vci];
2012	if (vci == 0 && !vci0_is_ok(lanai, qos))
2013		return 0;
2014	if (unlikely(lvcc != NULL)) {
2015		if (qos->rxtp.traffic_class != ATM_NONE &&
2016		    lvcc->rx.atmvcc != NULL && lvcc->rx.atmvcc != atmvcc)
2017			return 0;
2018		if (qos->txtp.traffic_class != ATM_NONE &&
2019		    lvcc->tx.atmvcc != NULL && lvcc->tx.atmvcc != atmvcc)
2020			return 0;
2021		if (qos->txtp.traffic_class == ATM_CBR &&
2022		    lanai->cbrvcc != NULL && lanai->cbrvcc != atmvcc)
2023			return 0;
2024	}
2025	if (qos->aal == ATM_AAL0 && lanai->naal0 == 0 &&
2026	    qos->rxtp.traffic_class != ATM_NONE) {
2027		const struct lanai_vcc *vci0 = lanai->vccs[0];
2028		if (vci0 != NULL && vci0->rx.atmvcc != NULL)
2029			return 0;
2030		lanai->conf2 &= ~CONFIG2_VCI0_NORMAL;
2031		conf2_write_if_powerup(lanai);
2032	}
2033	return 1;
2034}
2035
2036static int lanai_normalize_ci(struct lanai_dev *lanai,
2037	const struct atm_vcc *atmvcc, short *vpip, vci_t *vcip)
2038{
2039	switch (*vpip) {
2040		case ATM_VPI_ANY:
2041			*vpip = 0;
2042			/* FALLTHROUGH */
2043		case 0:
2044			break;
2045		default:
2046			return -EADDRINUSE;
2047	}
2048	switch (*vcip) {
2049		case ATM_VCI_ANY:
2050			for (*vcip = ATM_NOT_RSV_VCI; *vcip < lanai->num_vci;
2051			    (*vcip)++)
2052				if (vci_is_ok(lanai, *vcip, atmvcc))
2053					return 0;
2054			return -EADDRINUSE;
2055		default:
2056			if (*vcip >= lanai->num_vci || *vcip < 0 ||
2057			    !vci_is_ok(lanai, *vcip, atmvcc))
2058				return -EADDRINUSE;
2059	}
2060	return 0;
2061}
2062
2063/* -------------------- MANAGE CBR: */
2064
2065/*
2066 * CBR ICG is stored as a fixed-point number with 4 fractional bits.
2067 * Note that storing a number greater than 2046.0 will result in
2068 * incorrect shaping
2069 */
2070#define CBRICG_FRAC_BITS	(4)
2071#define CBRICG_MAX		(2046 << CBRICG_FRAC_BITS)
2072
2073/*
2074 * ICG is related to PCR with the formula PCR = MAXPCR / (ICG + 1)
2075 * where MAXPCR is (according to the docs) 25600000/(54*8),
2076 * which is equal to (3125<<9)/27.
2077 *
2078 * Solving for ICG, we get:
2079 *    ICG = MAXPCR/PCR - 1
2080 *    ICG = (3125<<9)/(27*PCR) - 1
2081 *    ICG = ((3125<<9) - (27*PCR)) / (27*PCR)
2082 *
2083 * The end result is supposed to be a fixed-point number with FRAC_BITS
2084 * bits of a fractional part, so we keep everything in the numerator
2085 * shifted by that much as we compute
2086 *
2087 */
2088static int pcr_to_cbricg(const struct atm_qos *qos)
2089{
2090	int rounddown = 0;	/* 1 = Round PCR down, i.e. round ICG _up_ */
2091	int x, icg, pcr = atm_pcr_goal(&qos->txtp);
2092	if (pcr == 0)		/* Use maximum bandwidth */
2093		return 0;
2094	if (pcr < 0) {
2095		rounddown = 1;
2096		pcr = -pcr;
2097	}
2098	x = pcr * 27;
2099	icg = (3125 << (9 + CBRICG_FRAC_BITS)) - (x << CBRICG_FRAC_BITS);
2100	if (rounddown)
2101		icg += x - 1;
2102	icg /= x;
2103	if (icg > CBRICG_MAX)
2104		icg = CBRICG_MAX;
2105	DPRINTK("pcr_to_cbricg: pcr=%d rounddown=%c icg=%d\n",
2106	    pcr, rounddown ? 'Y' : 'N', icg);
2107	return icg;
2108}
2109
2110static inline void lanai_cbr_setup(struct lanai_dev *lanai)
2111{
2112	reg_write(lanai, pcr_to_cbricg(&lanai->cbrvcc->qos), CBR_ICG_Reg);
2113	reg_write(lanai, lanai->cbrvcc->vci, CBR_PTR_Reg);
2114	lanai->conf2 |= CONFIG2_CBR_ENABLE;
2115	conf2_write(lanai);
2116}
2117
2118static inline void lanai_cbr_shutdown(struct lanai_dev *lanai)
2119{
2120	lanai->conf2 &= ~CONFIG2_CBR_ENABLE;
2121	conf2_write(lanai);
2122}
2123
2124/* -------------------- OPERATIONS: */
2125
2126/* setup a newly detected device */
2127static int __devinit lanai_dev_open(struct atm_dev *atmdev)
2128{
2129	struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2130	unsigned long raw_base;
2131	int result;
2132
2133	DPRINTK("In lanai_dev_open()\n");
2134	/* Basic device fields */
2135	lanai->number = atmdev->number;
2136	lanai->num_vci = NUM_VCI;
2137	bitmap_zero(lanai->backlog_vccs, NUM_VCI);
2138	bitmap_zero(lanai->transmit_ready, NUM_VCI);
2139	lanai->naal0 = 0;
2140#ifdef USE_POWERDOWN
2141	lanai->nbound = 0;
2142#endif
2143	lanai->cbrvcc = NULL;
2144	memset(&lanai->stats, 0, sizeof lanai->stats);
2145	spin_lock_init(&lanai->endtxlock);
2146	spin_lock_init(&lanai->servicelock);
2147	atmdev->ci_range.vpi_bits = 0;
2148	atmdev->ci_range.vci_bits = 0;
2149	while (1 << atmdev->ci_range.vci_bits < lanai->num_vci)
2150		atmdev->ci_range.vci_bits++;
2151	atmdev->link_rate = ATM_25_PCR;
2152
2153	/* 3.2: PCI initialization */
2154	if ((result = lanai_pci_start(lanai)) != 0)
2155		goto error;
2156	raw_base = lanai->pci->resource[0].start;
2157	lanai->base = (bus_addr_t) ioremap(raw_base, LANAI_MAPPING_SIZE);
2158	if (lanai->base == NULL) {
2159		printk(KERN_ERR DEV_LABEL ": couldn't remap I/O space\n");
 
2160		goto error_pci;
2161	}
2162	/* 3.3: Reset lanai and PHY */
2163	reset_board(lanai);
2164	lanai->conf1 = reg_read(lanai, Config1_Reg);
2165	lanai->conf1 &= ~(CONFIG1_GPOUT1 | CONFIG1_POWERDOWN |
2166	    CONFIG1_MASK_LEDMODE);
2167	lanai->conf1 |= CONFIG1_SET_LEDMODE(LEDMODE_NOT_SOOL);
2168	reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
2169	udelay(1000);
2170	conf1_write(lanai);
2171
2172	/*
2173	 * 3.4: Turn on endian mode for big-endian hardware
2174	 *   We don't actually want to do this - the actual bit fields
2175	 *   in the endian register are not documented anywhere.
2176	 *   Instead we do the bit-flipping ourselves on big-endian
2177	 *   hardware.
2178	 *
2179	 * 3.5: get the board ID/rev by reading the reset register
2180	 */
2181	result = check_board_id_and_rev("register",
2182	    reg_read(lanai, Reset_Reg), &lanai->board_rev);
2183	if (result != 0)
2184		goto error_unmap;
2185
2186	/* 3.6: read EEPROM */
2187	if ((result = eeprom_read(lanai)) != 0)
2188		goto error_unmap;
2189	if ((result = eeprom_validate(lanai)) != 0)
2190		goto error_unmap;
2191
2192	/* 3.7: re-reset PHY, do loopback tests, setup PHY */
2193	reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
2194	udelay(1000);
2195	conf1_write(lanai);
2196	/* TODO - loopback tests */
2197	lanai->conf1 |= (CONFIG1_GPOUT2 | CONFIG1_GPOUT3 | CONFIG1_DMA_ENABLE);
2198	conf1_write(lanai);
2199
2200	/* 3.8/3.9: test and initialize card SRAM */
2201	if ((result = sram_test_and_clear(lanai)) != 0)
2202		goto error_unmap;
2203
2204	/* 3.10: initialize lanai registers */
2205	lanai->conf1 |= CONFIG1_DMA_ENABLE;
2206	conf1_write(lanai);
2207	if ((result = service_buffer_allocate(lanai)) != 0)
2208		goto error_unmap;
2209	if ((result = vcc_table_allocate(lanai)) != 0)
2210		goto error_service;
2211	lanai->conf2 = (lanai->num_vci >= 512 ? CONFIG2_HOWMANY : 0) |
2212	    CONFIG2_HEC_DROP |	/* ??? */ CONFIG2_PTI7_MODE;
2213	conf2_write(lanai);
2214	reg_write(lanai, TX_FIFO_DEPTH, TxDepth_Reg);
2215	reg_write(lanai, 0, CBR_ICG_Reg);	/* CBR defaults to no limit */
2216	if ((result = request_irq(lanai->pci->irq, lanai_int, IRQF_SHARED,
2217	    DEV_LABEL, lanai)) != 0) {
2218		printk(KERN_ERR DEV_LABEL ": can't allocate interrupt\n");
2219		goto error_vcctable;
2220	}
2221	mb();				/* Make sure that all that made it */
2222	intr_enable(lanai, INT_ALL & ~(INT_PING | INT_WAKE));
2223	/* 3.11: initialize loop mode (i.e. turn looping off) */
2224	lanai->conf1 = (lanai->conf1 & ~CONFIG1_MASK_LOOPMODE) |
2225	    CONFIG1_SET_LOOPMODE(LOOPMODE_NORMAL) |
2226	    CONFIG1_GPOUT2 | CONFIG1_GPOUT3;
2227	conf1_write(lanai);
2228	lanai->status = reg_read(lanai, Status_Reg);
2229	/* We're now done initializing this card */
2230#ifdef USE_POWERDOWN
2231	lanai->conf1 |= CONFIG1_POWERDOWN;
2232	conf1_write(lanai);
2233#endif
2234	memcpy(atmdev->esi, eeprom_mac(lanai), ESI_LEN);
2235	lanai_timed_poll_start(lanai);
2236	printk(KERN_NOTICE DEV_LABEL "(itf %d): rev.%d, base=0x%lx, irq=%u "
2237		"(%pMF)\n", lanai->number, (int) lanai->pci->revision,
2238		(unsigned long) lanai->base, lanai->pci->irq, atmdev->esi);
2239	printk(KERN_NOTICE DEV_LABEL "(itf %d): LANAI%s, serialno=%u(0x%X), "
2240	    "board_rev=%d\n", lanai->number,
2241	    lanai->type==lanai2 ? "2" : "HB", (unsigned int) lanai->serialno,
2242	    (unsigned int) lanai->serialno, lanai->board_rev);
2243	return 0;
2244
2245    error_vcctable:
2246	vcc_table_deallocate(lanai);
2247    error_service:
2248	service_buffer_deallocate(lanai);
2249    error_unmap:
2250	reset_board(lanai);
2251#ifdef USE_POWERDOWN
2252	lanai->conf1 = reg_read(lanai, Config1_Reg) | CONFIG1_POWERDOWN;
2253	conf1_write(lanai);
2254#endif
2255	iounmap(lanai->base);
2256    error_pci:
2257	pci_disable_device(lanai->pci);
2258    error:
2259	return result;
2260}
2261
2262/* called when device is being shutdown, and all vcc's are gone - higher
2263 * levels will deallocate the atm device for us
2264 */
2265static void lanai_dev_close(struct atm_dev *atmdev)
2266{
2267	struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2268	printk(KERN_INFO DEV_LABEL "(itf %d): shutting down interface\n",
2269	    lanai->number);
2270	lanai_timed_poll_stop(lanai);
2271#ifdef USE_POWERDOWN
2272	lanai->conf1 = reg_read(lanai, Config1_Reg) & ~CONFIG1_POWERDOWN;
2273	conf1_write(lanai);
2274#endif
2275	intr_disable(lanai, INT_ALL);
2276	free_irq(lanai->pci->irq, lanai);
2277	reset_board(lanai);
2278#ifdef USE_POWERDOWN
2279	lanai->conf1 |= CONFIG1_POWERDOWN;
2280	conf1_write(lanai);
2281#endif
2282	pci_disable_device(lanai->pci);
2283	vcc_table_deallocate(lanai);
2284	service_buffer_deallocate(lanai);
2285	iounmap(lanai->base);
2286	kfree(lanai);
2287}
2288
2289/* close a vcc */
2290static void lanai_close(struct atm_vcc *atmvcc)
2291{
2292	struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
2293	struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2294	if (lvcc == NULL)
2295		return;
2296	clear_bit(ATM_VF_READY, &atmvcc->flags);
2297	clear_bit(ATM_VF_PARTIAL, &atmvcc->flags);
2298	if (lvcc->rx.atmvcc == atmvcc) {
2299		lanai_shutdown_rx_vci(lvcc);
2300		if (atmvcc->qos.aal == ATM_AAL0) {
2301			if (--lanai->naal0 <= 0)
2302				aal0_buffer_free(lanai);
2303		} else
2304			lanai_buf_deallocate(&lvcc->rx.buf, lanai->pci);
2305		lvcc->rx.atmvcc = NULL;
2306	}
2307	if (lvcc->tx.atmvcc == atmvcc) {
2308		if (atmvcc == lanai->cbrvcc) {
2309			if (lvcc->vbase != NULL)
2310				lanai_cbr_shutdown(lanai);
2311			lanai->cbrvcc = NULL;
2312		}
2313		lanai_shutdown_tx_vci(lanai, lvcc);
2314		lanai_buf_deallocate(&lvcc->tx.buf, lanai->pci);
2315		lvcc->tx.atmvcc = NULL;
2316	}
2317	if (--lvcc->nref == 0) {
2318		host_vcc_unbind(lanai, lvcc);
2319		kfree(lvcc);
2320	}
2321	atmvcc->dev_data = NULL;
2322	clear_bit(ATM_VF_ADDR, &atmvcc->flags);
2323}
2324
2325/* open a vcc on the card to vpi/vci */
2326static int lanai_open(struct atm_vcc *atmvcc)
2327{
2328	struct lanai_dev *lanai;
2329	struct lanai_vcc *lvcc;
2330	int result = 0;
2331	int vci = atmvcc->vci;
2332	short vpi = atmvcc->vpi;
2333	/* we don't support partial open - it's not really useful anyway */
2334	if ((test_bit(ATM_VF_PARTIAL, &atmvcc->flags)) ||
2335	    (vpi == ATM_VPI_UNSPEC) || (vci == ATM_VCI_UNSPEC))
2336		return -EINVAL;
2337	lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2338	result = lanai_normalize_ci(lanai, atmvcc, &vpi, &vci);
2339	if (unlikely(result != 0))
2340		goto out;
2341	set_bit(ATM_VF_ADDR, &atmvcc->flags);
2342	if (atmvcc->qos.aal != ATM_AAL0 && atmvcc->qos.aal != ATM_AAL5)
2343		return -EINVAL;
2344	DPRINTK(DEV_LABEL "(itf %d): open %d.%d\n", lanai->number,
2345	    (int) vpi, vci);
2346	lvcc = lanai->vccs[vci];
2347	if (lvcc == NULL) {
2348		lvcc = new_lanai_vcc();
2349		if (unlikely(lvcc == NULL))
2350			return -ENOMEM;
2351		atmvcc->dev_data = lvcc;
2352	}
2353	lvcc->nref++;
2354	if (atmvcc->qos.rxtp.traffic_class != ATM_NONE) {
2355		APRINTK(lvcc->rx.atmvcc == NULL, "rx.atmvcc!=NULL, vci=%d\n",
2356		    vci);
2357		if (atmvcc->qos.aal == ATM_AAL0) {
2358			if (lanai->naal0 == 0)
2359				result = aal0_buffer_allocate(lanai);
2360		} else
2361			result = lanai_setup_rx_vci_aal5(
2362			    lanai, lvcc, &atmvcc->qos);
2363		if (unlikely(result != 0))
2364			goto out_free;
2365		lvcc->rx.atmvcc = atmvcc;
2366		lvcc->stats.rx_nomem = 0;
2367		lvcc->stats.x.aal5.rx_badlen = 0;
2368		lvcc->stats.x.aal5.service_trash = 0;
2369		lvcc->stats.x.aal5.service_stream = 0;
2370		lvcc->stats.x.aal5.service_rxcrc = 0;
2371		if (atmvcc->qos.aal == ATM_AAL0)
2372			lanai->naal0++;
2373	}
2374	if (atmvcc->qos.txtp.traffic_class != ATM_NONE) {
2375		APRINTK(lvcc->tx.atmvcc == NULL, "tx.atmvcc!=NULL, vci=%d\n",
2376		    vci);
2377		result = lanai_setup_tx_vci(lanai, lvcc, &atmvcc->qos);
2378		if (unlikely(result != 0))
2379			goto out_free;
2380		lvcc->tx.atmvcc = atmvcc;
2381		if (atmvcc->qos.txtp.traffic_class == ATM_CBR) {
2382			APRINTK(lanai->cbrvcc == NULL,
2383			    "cbrvcc!=NULL, vci=%d\n", vci);
2384			lanai->cbrvcc = atmvcc;
2385		}
2386	}
2387	host_vcc_bind(lanai, lvcc, vci);
2388	/*
2389	 * Make sure everything made it to RAM before we tell the card about
2390	 * the VCC
2391	 */
2392	wmb();
2393	if (atmvcc == lvcc->rx.atmvcc)
2394		host_vcc_start_rx(lvcc);
2395	if (atmvcc == lvcc->tx.atmvcc) {
2396		host_vcc_start_tx(lvcc);
2397		if (lanai->cbrvcc == atmvcc)
2398			lanai_cbr_setup(lanai);
2399	}
2400	set_bit(ATM_VF_READY, &atmvcc->flags);
2401	return 0;
2402    out_free:
2403	lanai_close(atmvcc);
2404    out:
2405	return result;
2406}
2407
2408static int lanai_send(struct atm_vcc *atmvcc, struct sk_buff *skb)
2409{
2410	struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
2411	struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2412	unsigned long flags;
2413	if (unlikely(lvcc == NULL || lvcc->vbase == NULL ||
2414	      lvcc->tx.atmvcc != atmvcc))
2415		goto einval;
2416#ifdef DEBUG
2417	if (unlikely(skb == NULL)) {
2418		DPRINTK("lanai_send: skb==NULL for vci=%d\n", atmvcc->vci);
2419		goto einval;
2420	}
2421	if (unlikely(lanai == NULL)) {
2422		DPRINTK("lanai_send: lanai==NULL for vci=%d\n", atmvcc->vci);
2423		goto einval;
2424	}
2425#endif
2426	ATM_SKB(skb)->vcc = atmvcc;
2427	switch (atmvcc->qos.aal) {
2428		case ATM_AAL5:
2429			read_lock_irqsave(&vcc_sklist_lock, flags);
2430			vcc_tx_aal5(lanai, lvcc, skb);
2431			read_unlock_irqrestore(&vcc_sklist_lock, flags);
2432			return 0;
2433		case ATM_AAL0:
2434			if (unlikely(skb->len != ATM_CELL_SIZE-1))
2435				goto einval;
2436  /* NOTE - this next line is technically invalid - we haven't unshared skb */
2437			cpu_to_be32s((u32 *) skb->data);
2438			read_lock_irqsave(&vcc_sklist_lock, flags);
2439			vcc_tx_aal0(lanai, lvcc, skb);
2440			read_unlock_irqrestore(&vcc_sklist_lock, flags);
2441			return 0;
2442	}
2443	DPRINTK("lanai_send: bad aal=%d on vci=%d\n", (int) atmvcc->qos.aal,
2444	    atmvcc->vci);
2445    einval:
2446	lanai_free_skb(atmvcc, skb);
2447	return -EINVAL;
2448}
2449
2450static int lanai_change_qos(struct atm_vcc *atmvcc,
2451	/*const*/ struct atm_qos *qos, int flags)
2452{
2453	return -EBUSY;		/* TODO: need to write this */
2454}
2455
2456#ifndef CONFIG_PROC_FS
2457#define lanai_proc_read NULL
2458#else
2459static int lanai_proc_read(struct atm_dev *atmdev, loff_t *pos, char *page)
2460{
2461	struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2462	loff_t left = *pos;
2463	struct lanai_vcc *lvcc;
2464	if (left-- == 0)
2465		return sprintf(page, DEV_LABEL "(itf %d): chip=LANAI%s, "
2466		    "serial=%u, magic=0x%08X, num_vci=%d\n",
2467		    atmdev->number, lanai->type==lanai2 ? "2" : "HB",
2468		    (unsigned int) lanai->serialno,
2469		    (unsigned int) lanai->magicno, lanai->num_vci);
2470	if (left-- == 0)
2471		return sprintf(page, "revision: board=%d, pci_if=%d\n",
2472		    lanai->board_rev, (int) lanai->pci->revision);
2473	if (left-- == 0)
2474		return sprintf(page, "EEPROM ESI: %pM\n",
2475		    &lanai->eeprom[EEPROM_MAC]);
2476	if (left-- == 0)
2477		return sprintf(page, "status: SOOL=%d, LOCD=%d, LED=%d, "
2478		    "GPIN=%d\n", (lanai->status & STATUS_SOOL) ? 1 : 0,
2479		    (lanai->status & STATUS_LOCD) ? 1 : 0,
2480		    (lanai->status & STATUS_LED) ? 1 : 0,
2481		    (lanai->status & STATUS_GPIN) ? 1 : 0);
2482	if (left-- == 0)
2483		return sprintf(page, "global buffer sizes: service=%Zu, "
2484		    "aal0_rx=%Zu\n", lanai_buf_size(&lanai->service),
2485		    lanai->naal0 ? lanai_buf_size(&lanai->aal0buf) : 0);
2486	if (left-- == 0) {
2487		get_statistics(lanai);
2488		return sprintf(page, "cells in error: overflow=%u, "
2489		    "closed_vci=%u, bad_HEC=%u, rx_fifo=%u\n",
2490		    lanai->stats.ovfl_trash, lanai->stats.vci_trash,
2491		    lanai->stats.hec_err, lanai->stats.atm_ovfl);
2492	}
2493	if (left-- == 0)
2494		return sprintf(page, "PCI errors: parity_detect=%u, "
2495		    "master_abort=%u, master_target_abort=%u,\n",
2496		    lanai->stats.pcierr_parity_detect,
2497		    lanai->stats.pcierr_serr_set,
2498		    lanai->stats.pcierr_m_target_abort);
2499	if (left-- == 0)
2500		return sprintf(page, "            slave_target_abort=%u, "
2501		    "master_parity=%u\n", lanai->stats.pcierr_s_target_abort,
2502		    lanai->stats.pcierr_master_parity);
2503	if (left-- == 0)
2504		return sprintf(page, "                     no_tx=%u, "
2505		    "no_rx=%u, bad_rx_aal=%u\n", lanai->stats.service_norx,
2506		    lanai->stats.service_notx,
2507		    lanai->stats.service_rxnotaal5);
2508	if (left-- == 0)
2509		return sprintf(page, "resets: dma=%u, card=%u\n",
2510		    lanai->stats.dma_reenable, lanai->stats.card_reset);
2511	/* At this point, "left" should be the VCI we're looking for */
2512	read_lock(&vcc_sklist_lock);
2513	for (; ; left++) {
2514		if (left >= NUM_VCI) {
2515			left = 0;
2516			goto out;
2517		}
2518		if ((lvcc = lanai->vccs[left]) != NULL)
2519			break;
2520		(*pos)++;
2521	}
2522	/* Note that we re-use "left" here since we're done with it */
2523	left = sprintf(page, "VCI %4d: nref=%d, rx_nomem=%u",  (vci_t) left,
2524	    lvcc->nref, lvcc->stats.rx_nomem);
2525	if (lvcc->rx.atmvcc != NULL) {
2526		left += sprintf(&page[left], ",\n          rx_AAL=%d",
2527		    lvcc->rx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0);
2528		if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5)
2529			left += sprintf(&page[left], ", rx_buf_size=%Zu, "
2530			    "rx_bad_len=%u,\n          rx_service_trash=%u, "
2531			    "rx_service_stream=%u, rx_bad_crc=%u",
2532			    lanai_buf_size(&lvcc->rx.buf),
2533			    lvcc->stats.x.aal5.rx_badlen,
2534			    lvcc->stats.x.aal5.service_trash,
2535			    lvcc->stats.x.aal5.service_stream,
2536			    lvcc->stats.x.aal5.service_rxcrc);
2537	}
2538	if (lvcc->tx.atmvcc != NULL)
2539		left += sprintf(&page[left], ",\n          tx_AAL=%d, "
2540		    "tx_buf_size=%Zu, tx_qos=%cBR, tx_backlogged=%c",
2541		    lvcc->tx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0,
2542		    lanai_buf_size(&lvcc->tx.buf),
2543		    lvcc->tx.atmvcc == lanai->cbrvcc ? 'C' : 'U',
2544		    vcc_is_backlogged(lvcc) ? 'Y' : 'N');
2545	page[left++] = '\n';
2546	page[left] = '\0';
2547    out:
2548	read_unlock(&vcc_sklist_lock);
2549	return left;
2550}
2551#endif /* CONFIG_PROC_FS */
2552
2553/* -------------------- HOOKS: */
2554
2555static const struct atmdev_ops ops = {
2556	.dev_close	= lanai_dev_close,
2557	.open		= lanai_open,
2558	.close		= lanai_close,
2559	.getsockopt	= NULL,
2560	.setsockopt	= NULL,
2561	.send		= lanai_send,
2562	.phy_put	= NULL,
2563	.phy_get	= NULL,
2564	.change_qos	= lanai_change_qos,
2565	.proc_read	= lanai_proc_read,
2566	.owner		= THIS_MODULE
2567};
2568
2569/* initialize one probed card */
2570static int __devinit lanai_init_one(struct pci_dev *pci,
2571				    const struct pci_device_id *ident)
2572{
2573	struct lanai_dev *lanai;
2574	struct atm_dev *atmdev;
2575	int result;
2576
2577	lanai = kmalloc(sizeof(*lanai), GFP_KERNEL);
2578	if (lanai == NULL) {
2579		printk(KERN_ERR DEV_LABEL
2580		       ": couldn't allocate dev_data structure!\n");
2581		return -ENOMEM;
2582	}
2583
2584	atmdev = atm_dev_register(DEV_LABEL, &pci->dev, &ops, -1, NULL);
2585	if (atmdev == NULL) {
2586		printk(KERN_ERR DEV_LABEL
2587		    ": couldn't register atm device!\n");
2588		kfree(lanai);
2589		return -EBUSY;
2590	}
2591
2592	atmdev->dev_data = lanai;
2593	lanai->pci = pci;
2594	lanai->type = (enum lanai_type) ident->device;
2595
2596	result = lanai_dev_open(atmdev);
2597	if (result != 0) {
2598		DPRINTK("lanai_start() failed, err=%d\n", -result);
2599		atm_dev_deregister(atmdev);
2600		kfree(lanai);
2601	}
2602	return result;
2603}
2604
2605static struct pci_device_id lanai_pci_tbl[] = {
2606	{ PCI_VDEVICE(EF, PCI_DEVICE_ID_EF_ATM_LANAI2) },
2607	{ PCI_VDEVICE(EF, PCI_DEVICE_ID_EF_ATM_LANAIHB) },
2608	{ 0, }	/* terminal entry */
2609};
2610MODULE_DEVICE_TABLE(pci, lanai_pci_tbl);
2611
2612static struct pci_driver lanai_driver = {
2613	.name     = DEV_LABEL,
2614	.id_table = lanai_pci_tbl,
2615	.probe    = lanai_init_one,
2616};
2617
2618static int __init lanai_module_init(void)
2619{
2620	int x;
2621
2622	x = pci_register_driver(&lanai_driver);
2623	if (x != 0)
2624		printk(KERN_ERR DEV_LABEL ": no adapter found\n");
2625	return x;
2626}
2627
2628static void __exit lanai_module_exit(void)
2629{
2630	/* We'll only get called when all the interfaces are already
2631	 * gone, so there isn't much to do
2632	 */
2633	DPRINTK("cleanup_module()\n");
2634	pci_unregister_driver(&lanai_driver);
2635}
2636
2637module_init(lanai_module_init);
2638module_exit(lanai_module_exit);
2639
2640MODULE_AUTHOR("Mitchell Blank Jr <mitch@sfgoth.com>");
2641MODULE_DESCRIPTION("Efficient Networks Speedstream 3010 driver");
2642MODULE_LICENSE("GPL");
v4.17
   1/* lanai.c -- Copyright 1999-2003 by Mitchell Blank Jr <mitch@sfgoth.com>
   2 *
   3 *  This program is free software; you can redistribute it and/or
   4 *  modify it under the terms of the GNU General Public License
   5 *  as published by the Free Software Foundation; either version
   6 *  2 of the License, or (at your option) any later version.
   7 *
   8 * This driver supports ATM cards based on the Efficient "Lanai"
   9 * chipset such as the Speedstream 3010 and the ENI-25p.  The
  10 * Speedstream 3060 is currently not supported since we don't
  11 * have the code to drive the on-board Alcatel DSL chipset (yet).
  12 *
  13 * Thanks to Efficient for supporting this project with hardware,
  14 * documentation, and by answering my questions.
  15 *
  16 * Things not working yet:
  17 *
  18 * o  We don't support the Speedstream 3060 yet - this card has
  19 *    an on-board DSL modem chip by Alcatel and the driver will
  20 *    need some extra code added to handle it
  21 *
  22 * o  Note that due to limitations of the Lanai only one VCC can be
  23 *    in CBR at once
  24 *
  25 * o We don't currently parse the EEPROM at all.  The code is all
  26 *   there as per the spec, but it doesn't actually work.  I think
  27 *   there may be some issues with the docs.  Anyway, do NOT
  28 *   enable it yet - bugs in that code may actually damage your
  29 *   hardware!  Because of this you should hardware an ESI before
  30 *   trying to use this in a LANE or MPOA environment.
  31 *
  32 * o  AAL0 is stubbed in but the actual rx/tx path isn't written yet:
  33 *	vcc_tx_aal0() needs to send or queue a SKB
  34 *	vcc_tx_unqueue_aal0() needs to attempt to send queued SKBs
  35 *	vcc_rx_aal0() needs to handle AAL0 interrupts
  36 *    This isn't too much work - I just wanted to get other things
  37 *    done first.
  38 *
  39 * o  lanai_change_qos() isn't written yet
  40 *
  41 * o  There aren't any ioctl's yet -- I'd like to eventually support
  42 *    setting loopback and LED modes that way.
  43 *
  44 * o  If the segmentation engine or DMA gets shut down we should restart
  45 *    card as per section 17.0i.  (see lanai_reset)
  46 *
  47 * o setsockopt(SO_CIRANGE) isn't done (although despite what the
  48 *   API says it isn't exactly commonly implemented)
  49 */
  50
  51/* Version history:
  52 *   v.1.00 -- 26-JUL-2003 -- PCI/DMA updates
  53 *   v.0.02 -- 11-JAN-2000 -- Endian fixes
  54 *   v.0.01 -- 30-NOV-1999 -- Initial release
  55 */
  56
  57#include <linux/module.h>
  58#include <linux/slab.h>
  59#include <linux/mm.h>
  60#include <linux/atmdev.h>
  61#include <asm/io.h>
  62#include <asm/byteorder.h>
  63#include <linux/spinlock.h>
  64#include <linux/pci.h>
  65#include <linux/dma-mapping.h>
  66#include <linux/init.h>
  67#include <linux/delay.h>
  68#include <linux/interrupt.h>
  69
  70/* -------------------- TUNABLE PARAMATERS: */
  71
  72/*
  73 * Maximum number of VCIs per card.  Setting it lower could theoretically
  74 * save some memory, but since we allocate our vcc list with get_free_pages,
  75 * it's not really likely for most architectures
  76 */
  77#define NUM_VCI			(1024)
  78
  79/*
  80 * Enable extra debugging
  81 */
  82#define DEBUG
  83/*
  84 * Debug _all_ register operations with card, except the memory test.
  85 * Also disables the timed poll to prevent extra chattiness.  This
  86 * isn't for normal use
  87 */
  88#undef DEBUG_RW
  89
  90/*
  91 * The programming guide specifies a full test of the on-board SRAM
  92 * at initialization time.  Undefine to remove this
  93 */
  94#define FULL_MEMORY_TEST
  95
  96/*
  97 * This is the number of (4 byte) service entries that we will
  98 * try to allocate at startup.  Note that we will end up with
  99 * one PAGE_SIZE's worth regardless of what this is set to
 100 */
 101#define SERVICE_ENTRIES		(1024)
 102/* TODO: make above a module load-time option */
 103
 104/*
 105 * We normally read the onboard EEPROM in order to discover our MAC
 106 * address.  Undefine to _not_ do this
 107 */
 108/* #define READ_EEPROM */ /* ***DONT ENABLE YET*** */
 109/* TODO: make above a module load-time option (also) */
 110
 111/*
 112 * Depth of TX fifo (in 128 byte units; range 2-31)
 113 * Smaller numbers are better for network latency
 114 * Larger numbers are better for PCI latency
 115 * I'm really sure where the best tradeoff is, but the BSD driver uses
 116 * 7 and it seems to work ok.
 117 */
 118#define TX_FIFO_DEPTH		(7)
 119/* TODO: make above a module load-time option */
 120
 121/*
 122 * How often (in jiffies) we will try to unstick stuck connections -
 123 * shouldn't need to happen much
 124 */
 125#define LANAI_POLL_PERIOD	(10*HZ)
 126/* TODO: make above a module load-time option */
 127
 128/*
 129 * When allocating an AAL5 receiving buffer, try to make it at least
 130 * large enough to hold this many max_sdu sized PDUs
 131 */
 132#define AAL5_RX_MULTIPLIER	(3)
 133/* TODO: make above a module load-time option */
 134
 135/*
 136 * Same for transmitting buffer
 137 */
 138#define AAL5_TX_MULTIPLIER	(3)
 139/* TODO: make above a module load-time option */
 140
 141/*
 142 * When allocating an AAL0 transmiting buffer, how many cells should fit.
 143 * Remember we'll end up with a PAGE_SIZE of them anyway, so this isn't
 144 * really critical
 145 */
 146#define AAL0_TX_MULTIPLIER	(40)
 147/* TODO: make above a module load-time option */
 148
 149/*
 150 * How large should we make the AAL0 receiving buffer.  Remember that this
 151 * is shared between all AAL0 VC's
 152 */
 153#define AAL0_RX_BUFFER_SIZE	(PAGE_SIZE)
 154/* TODO: make above a module load-time option */
 155
 156/*
 157 * Should we use Lanai's "powerdown" feature when no vcc's are bound?
 158 */
 159/* #define USE_POWERDOWN */
 160/* TODO: make above a module load-time option (also) */
 161
 162/* -------------------- DEBUGGING AIDS: */
 163
 164#define DEV_LABEL "lanai"
 165
 166#ifdef DEBUG
 167
 168#define DPRINTK(format, args...) \
 169	printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
 170#define APRINTK(truth, format, args...) \
 171	do { \
 172		if (unlikely(!(truth))) \
 173			printk(KERN_ERR DEV_LABEL ": " format, ##args); \
 174	} while (0)
 175
 176#else /* !DEBUG */
 177
 178#define DPRINTK(format, args...)
 179#define APRINTK(truth, format, args...)
 180
 181#endif /* DEBUG */
 182
 183#ifdef DEBUG_RW
 184#define RWDEBUG(format, args...) \
 185	printk(KERN_DEBUG DEV_LABEL ": " format, ##args)
 186#else /* !DEBUG_RW */
 187#define RWDEBUG(format, args...)
 188#endif
 189
 190/* -------------------- DATA DEFINITIONS: */
 191
 192#define LANAI_MAPPING_SIZE	(0x40000)
 193#define LANAI_EEPROM_SIZE	(128)
 194
 195typedef int vci_t;
 196typedef void __iomem *bus_addr_t;
 197
 198/* DMA buffer in host memory for TX, RX, or service list. */
 199struct lanai_buffer {
 200	u32 *start;	/* From get_free_pages */
 201	u32 *end;	/* One past last byte */
 202	u32 *ptr;	/* Pointer to current host location */
 203	dma_addr_t dmaaddr;
 204};
 205
 206struct lanai_vcc_stats {
 207	unsigned rx_nomem;
 208	union {
 209		struct {
 210			unsigned rx_badlen;
 211			unsigned service_trash;
 212			unsigned service_stream;
 213			unsigned service_rxcrc;
 214		} aal5;
 215		struct {
 216		} aal0;
 217	} x;
 218};
 219
 220struct lanai_dev;			/* Forward declaration */
 221
 222/*
 223 * This is the card-specific per-vcc data.  Note that unlike some other
 224 * drivers there is NOT a 1-to-1 correspondance between these and
 225 * atm_vcc's - each one of these represents an actual 2-way vcc, but
 226 * an atm_vcc can be 1-way and share with a 1-way vcc in the other
 227 * direction.  To make it weirder, there can even be 0-way vccs
 228 * bound to us, waiting to do a change_qos
 229 */
 230struct lanai_vcc {
 231	bus_addr_t vbase;		/* Base of VCC's registers */
 232	struct lanai_vcc_stats stats;
 233	int nref;			/* # of atm_vcc's who reference us */
 234	vci_t vci;
 235	struct {
 236		struct lanai_buffer buf;
 237		struct atm_vcc *atmvcc;	/* atm_vcc who is receiver */
 238	} rx;
 239	struct {
 240		struct lanai_buffer buf;
 241		struct atm_vcc *atmvcc;	/* atm_vcc who is transmitter */
 242		int endptr;		/* last endptr from service entry */
 243		struct sk_buff_head backlog;
 244		void (*unqueue)(struct lanai_dev *, struct lanai_vcc *, int);
 245	} tx;
 246};
 247
 248enum lanai_type {
 249	lanai2	= PCI_DEVICE_ID_EF_ATM_LANAI2,
 250	lanaihb	= PCI_DEVICE_ID_EF_ATM_LANAIHB
 251};
 252
 253struct lanai_dev_stats {
 254	unsigned ovfl_trash;	/* # of cells dropped - buffer overflow */
 255	unsigned vci_trash;	/* # of cells dropped - closed vci */
 256	unsigned hec_err;	/* # of cells dropped - bad HEC */
 257	unsigned atm_ovfl;	/* # of cells dropped - rx fifo overflow */
 258	unsigned pcierr_parity_detect;
 259	unsigned pcierr_serr_set;
 260	unsigned pcierr_master_abort;
 261	unsigned pcierr_m_target_abort;
 262	unsigned pcierr_s_target_abort;
 263	unsigned pcierr_master_parity;
 264	unsigned service_notx;
 265	unsigned service_norx;
 266	unsigned service_rxnotaal5;
 267	unsigned dma_reenable;
 268	unsigned card_reset;
 269};
 270
 271struct lanai_dev {
 272	bus_addr_t base;
 273	struct lanai_dev_stats stats;
 274	struct lanai_buffer service;
 275	struct lanai_vcc **vccs;
 276#ifdef USE_POWERDOWN
 277	int nbound;			/* number of bound vccs */
 278#endif
 279	enum lanai_type type;
 280	vci_t num_vci;			/* Currently just NUM_VCI */
 281	u8 eeprom[LANAI_EEPROM_SIZE];
 282	u32 serialno, magicno;
 283	struct pci_dev *pci;
 284	DECLARE_BITMAP(backlog_vccs, NUM_VCI);   /* VCCs with tx backlog */
 285	DECLARE_BITMAP(transmit_ready, NUM_VCI); /* VCCs with transmit space */
 286	struct timer_list timer;
 287	int naal0;
 288	struct lanai_buffer aal0buf;	/* AAL0 RX buffers */
 289	u32 conf1, conf2;		/* CONFIG[12] registers */
 290	u32 status;			/* STATUS register */
 291	spinlock_t endtxlock;
 292	spinlock_t servicelock;
 293	struct atm_vcc *cbrvcc;
 294	int number;
 295	int board_rev;
 296/* TODO - look at race conditions with maintence of conf1/conf2 */
 297/* TODO - transmit locking: should we use _irq not _irqsave? */
 298/* TODO - organize above in some rational fashion (see <asm/cache.h>) */
 299};
 300
 301/*
 302 * Each device has two bitmaps for each VCC (baclog_vccs and transmit_ready)
 303 * This function iterates one of these, calling a given function for each
 304 * vci with their bit set
 305 */
 306static void vci_bitfield_iterate(struct lanai_dev *lanai,
 307	const unsigned long *lp,
 308	void (*func)(struct lanai_dev *,vci_t vci))
 309{
 310	vci_t vci;
 311
 312	for_each_set_bit(vci, lp, NUM_VCI)
 313		func(lanai, vci);
 314}
 315
 316/* -------------------- BUFFER  UTILITIES: */
 317
 318/*
 319 * Lanai needs DMA buffers aligned to 256 bytes of at least 1024 bytes -
 320 * usually any page allocation will do.  Just to be safe in case
 321 * PAGE_SIZE is insanely tiny, though...
 322 */
 323#define LANAI_PAGE_SIZE   ((PAGE_SIZE >= 1024) ? PAGE_SIZE : 1024)
 324
 325/*
 326 * Allocate a buffer in host RAM for service list, RX, or TX
 327 * Returns buf->start==NULL if no memory
 328 * Note that the size will be rounded up 2^n bytes, and
 329 * if we can't allocate that we'll settle for something smaller
 330 * until minbytes
 331 */
 332static void lanai_buf_allocate(struct lanai_buffer *buf,
 333	size_t bytes, size_t minbytes, struct pci_dev *pci)
 334{
 335	int size;
 336
 337	if (bytes > (128 * 1024))	/* max lanai buffer size */
 338		bytes = 128 * 1024;
 339	for (size = LANAI_PAGE_SIZE; size < bytes; size *= 2)
 340		;
 341	if (minbytes < LANAI_PAGE_SIZE)
 342		minbytes = LANAI_PAGE_SIZE;
 343	do {
 344		/*
 345		 * Technically we could use non-consistent mappings for
 346		 * everything, but the way the lanai uses DMA memory would
 347		 * make that a terrific pain.  This is much simpler.
 348		 */
 349		buf->start = dma_alloc_coherent(&pci->dev,
 350						size, &buf->dmaaddr, GFP_KERNEL);
 351		if (buf->start != NULL) {	/* Success */
 352			/* Lanai requires 256-byte alignment of DMA bufs */
 353			APRINTK((buf->dmaaddr & ~0xFFFFFF00) == 0,
 354			    "bad dmaaddr: 0x%lx\n",
 355			    (unsigned long) buf->dmaaddr);
 356			buf->ptr = buf->start;
 357			buf->end = (u32 *)
 358			    (&((unsigned char *) buf->start)[size]);
 359			memset(buf->start, 0, size);
 360			break;
 361		}
 362		size /= 2;
 363	} while (size >= minbytes);
 364}
 365
 366/* size of buffer in bytes */
 367static inline size_t lanai_buf_size(const struct lanai_buffer *buf)
 368{
 369	return ((unsigned long) buf->end) - ((unsigned long) buf->start);
 370}
 371
 372static void lanai_buf_deallocate(struct lanai_buffer *buf,
 373	struct pci_dev *pci)
 374{
 375	if (buf->start != NULL) {
 376		dma_free_coherent(&pci->dev, lanai_buf_size(buf),
 377				  buf->start, buf->dmaaddr);
 378		buf->start = buf->end = buf->ptr = NULL;
 379	}
 380}
 381
 382/* size of buffer as "card order" (0=1k .. 7=128k) */
 383static int lanai_buf_size_cardorder(const struct lanai_buffer *buf)
 384{
 385	int order = get_order(lanai_buf_size(buf)) + (PAGE_SHIFT - 10);
 386
 387	/* This can only happen if PAGE_SIZE is gigantic, but just in case */
 388	if (order > 7)
 389		order = 7;
 390	return order;
 391}
 392
 393/* -------------------- PORT I/O UTILITIES: */
 394
 395/* Registers (and their bit-fields) */
 396enum lanai_register {
 397	Reset_Reg		= 0x00,	/* Reset; read for chip type; bits: */
 398#define   RESET_GET_BOARD_REV(x)    (((x)>> 0)&0x03)	/* Board revision */
 399#define   RESET_GET_BOARD_ID(x)	    (((x)>> 2)&0x03)	/* Board ID */
 400#define     BOARD_ID_LANAI256		(0)	/* 25.6M adapter card */
 401	Endian_Reg		= 0x04,	/* Endian setting */
 402	IntStatus_Reg		= 0x08,	/* Interrupt status */
 403	IntStatusMasked_Reg	= 0x0C,	/* Interrupt status (masked) */
 404	IntAck_Reg		= 0x10,	/* Interrupt acknowledge */
 405	IntAckMasked_Reg	= 0x14,	/* Interrupt acknowledge (masked) */
 406	IntStatusSet_Reg	= 0x18,	/* Get status + enable/disable */
 407	IntStatusSetMasked_Reg	= 0x1C,	/* Get status + en/di (masked) */
 408	IntControlEna_Reg	= 0x20,	/* Interrupt control enable */
 409	IntControlDis_Reg	= 0x24,	/* Interrupt control disable */
 410	Status_Reg		= 0x28,	/* Status */
 411#define   STATUS_PROMDATA	 (0x00000001)	/* PROM_DATA pin */
 412#define   STATUS_WAITING	 (0x00000002)	/* Interrupt being delayed */
 413#define	  STATUS_SOOL		 (0x00000004)	/* SOOL alarm */
 414#define   STATUS_LOCD		 (0x00000008)	/* LOCD alarm */
 415#define	  STATUS_LED		 (0x00000010)	/* LED (HAPPI) output */
 416#define   STATUS_GPIN		 (0x00000020)	/* GPIN pin */
 417#define   STATUS_BUTTBUSY	 (0x00000040)	/* Butt register is pending */
 418	Config1_Reg		= 0x2C,	/* Config word 1; bits: */
 419#define   CONFIG1_PROMDATA	 (0x00000001)	/* PROM_DATA pin */
 420#define   CONFIG1_PROMCLK	 (0x00000002)	/* PROM_CLK pin */
 421#define   CONFIG1_SET_READMODE(x) ((x)*0x004)	/* PCI BM reads; values: */
 422#define     READMODE_PLAIN	    (0)		/*   Plain memory read */
 423#define     READMODE_LINE	    (2)		/*   Memory read line */
 424#define     READMODE_MULTIPLE	    (3)		/*   Memory read multiple */
 425#define   CONFIG1_DMA_ENABLE	 (0x00000010)	/* Turn on DMA */
 426#define   CONFIG1_POWERDOWN	 (0x00000020)	/* Turn off clocks */
 427#define   CONFIG1_SET_LOOPMODE(x) ((x)*0x080)	/* Clock&loop mode; values: */
 428#define     LOOPMODE_NORMAL	    (0)		/*   Normal - no loop */
 429#define     LOOPMODE_TIME	    (1)
 430#define     LOOPMODE_DIAG	    (2)
 431#define     LOOPMODE_LINE	    (3)
 432#define   CONFIG1_MASK_LOOPMODE  (0x00000180)
 433#define   CONFIG1_SET_LEDMODE(x) ((x)*0x0200)	/* Mode of LED; values: */
 434#define     LEDMODE_NOT_SOOL	    (0)		/*   !SOOL */
 435#define	    LEDMODE_OFF		    (1)		/*   0     */
 436#define	    LEDMODE_ON		    (2)		/*   1     */
 437#define	    LEDMODE_NOT_LOCD	    (3)		/*   !LOCD */
 438#define	    LEDMORE_GPIN	    (4)		/*   GPIN  */
 439#define     LEDMODE_NOT_GPIN	    (7)		/*   !GPIN */
 440#define   CONFIG1_MASK_LEDMODE	 (0x00000E00)
 441#define   CONFIG1_GPOUT1	 (0x00001000)	/* Toggle for reset */
 442#define   CONFIG1_GPOUT2	 (0x00002000)	/* Loopback PHY */
 443#define   CONFIG1_GPOUT3	 (0x00004000)	/* Loopback lanai */
 444	Config2_Reg		= 0x30,	/* Config word 2; bits: */
 445#define   CONFIG2_HOWMANY	 (0x00000001)	/* >512 VCIs? */
 446#define   CONFIG2_PTI7_MODE	 (0x00000002)	/* Make PTI=7 RM, not OAM */
 447#define   CONFIG2_VPI_CHK_DIS	 (0x00000004)	/* Ignore RX VPI value */
 448#define   CONFIG2_HEC_DROP	 (0x00000008)	/* Drop cells w/ HEC errors */
 449#define   CONFIG2_VCI0_NORMAL	 (0x00000010)	/* Treat VCI=0 normally */
 450#define   CONFIG2_CBR_ENABLE	 (0x00000020)	/* Deal with CBR traffic */
 451#define   CONFIG2_TRASH_ALL	 (0x00000040)	/* Trashing incoming cells */
 452#define   CONFIG2_TX_DISABLE	 (0x00000080)	/* Trashing outgoing cells */
 453#define   CONFIG2_SET_TRASH	 (0x00000100)	/* Turn trashing on */
 454	Statistics_Reg		= 0x34,	/* Statistics; bits: */
 455#define   STATS_GET_FIFO_OVFL(x)    (((x)>> 0)&0xFF)	/* FIFO overflowed */
 456#define   STATS_GET_HEC_ERR(x)      (((x)>> 8)&0xFF)	/* HEC was bad */
 457#define   STATS_GET_BAD_VCI(x)      (((x)>>16)&0xFF)	/* VCI not open */
 458#define   STATS_GET_BUF_OVFL(x)     (((x)>>24)&0xFF)	/* VCC buffer full */
 459	ServiceStuff_Reg	= 0x38,	/* Service stuff; bits: */
 460#define   SSTUFF_SET_SIZE(x) ((x)*0x20000000)	/* size of service buffer */
 461#define   SSTUFF_SET_ADDR(x)	    ((x)>>8)	/* set address of buffer */
 462	ServWrite_Reg		= 0x3C,	/* ServWrite Pointer */
 463	ServRead_Reg		= 0x40,	/* ServRead Pointer */
 464	TxDepth_Reg		= 0x44,	/* FIFO Transmit Depth */
 465	Butt_Reg		= 0x48,	/* Butt register */
 466	CBR_ICG_Reg		= 0x50,
 467	CBR_PTR_Reg		= 0x54,
 468	PingCount_Reg		= 0x58,	/* Ping count */
 469	DMA_Addr_Reg		= 0x5C	/* DMA address */
 470};
 471
 472static inline bus_addr_t reg_addr(const struct lanai_dev *lanai,
 473	enum lanai_register reg)
 474{
 475	return lanai->base + reg;
 476}
 477
 478static inline u32 reg_read(const struct lanai_dev *lanai,
 479	enum lanai_register reg)
 480{
 481	u32 t;
 482	t = readl(reg_addr(lanai, reg));
 483	RWDEBUG("R [0x%08X] 0x%02X = 0x%08X\n", (unsigned int) lanai->base,
 484	    (int) reg, t);
 485	return t;
 486}
 487
 488static inline void reg_write(const struct lanai_dev *lanai, u32 val,
 489	enum lanai_register reg)
 490{
 491	RWDEBUG("W [0x%08X] 0x%02X < 0x%08X\n", (unsigned int) lanai->base,
 492	    (int) reg, val);
 493	writel(val, reg_addr(lanai, reg));
 494}
 495
 496static inline void conf1_write(const struct lanai_dev *lanai)
 497{
 498	reg_write(lanai, lanai->conf1, Config1_Reg);
 499}
 500
 501static inline void conf2_write(const struct lanai_dev *lanai)
 502{
 503	reg_write(lanai, lanai->conf2, Config2_Reg);
 504}
 505
 506/* Same as conf2_write(), but defers I/O if we're powered down */
 507static inline void conf2_write_if_powerup(const struct lanai_dev *lanai)
 508{
 509#ifdef USE_POWERDOWN
 510	if (unlikely((lanai->conf1 & CONFIG1_POWERDOWN) != 0))
 511		return;
 512#endif /* USE_POWERDOWN */
 513	conf2_write(lanai);
 514}
 515
 516static inline void reset_board(const struct lanai_dev *lanai)
 517{
 518	DPRINTK("about to reset board\n");
 519	reg_write(lanai, 0, Reset_Reg);
 520	/*
 521	 * If we don't delay a little while here then we can end up
 522	 * leaving the card in a VERY weird state and lock up the
 523	 * PCI bus.  This isn't documented anywhere but I've convinced
 524	 * myself after a lot of painful experimentation
 525	 */
 526	udelay(5);
 527}
 528
 529/* -------------------- CARD SRAM UTILITIES: */
 530
 531/* The SRAM is mapped into normal PCI memory space - the only catch is
 532 * that it is only 16-bits wide but must be accessed as 32-bit.  The
 533 * 16 high bits will be zero.  We don't hide this, since they get
 534 * programmed mostly like discrete registers anyway
 535 */
 536#define SRAM_START (0x20000)
 537#define SRAM_BYTES (0x20000)	/* Again, half don't really exist */
 538
 539static inline bus_addr_t sram_addr(const struct lanai_dev *lanai, int offset)
 540{
 541	return lanai->base + SRAM_START + offset;
 542}
 543
 544static inline u32 sram_read(const struct lanai_dev *lanai, int offset)
 545{
 546	return readl(sram_addr(lanai, offset));
 547}
 548
 549static inline void sram_write(const struct lanai_dev *lanai,
 550	u32 val, int offset)
 551{
 552	writel(val, sram_addr(lanai, offset));
 553}
 554
 555static int sram_test_word(const struct lanai_dev *lanai, int offset,
 556			  u32 pattern)
 557{
 558	u32 readback;
 559	sram_write(lanai, pattern, offset);
 560	readback = sram_read(lanai, offset);
 561	if (likely(readback == pattern))
 562		return 0;
 563	printk(KERN_ERR DEV_LABEL
 564	    "(itf %d): SRAM word at %d bad: wrote 0x%X, read 0x%X\n",
 565	    lanai->number, offset,
 566	    (unsigned int) pattern, (unsigned int) readback);
 567	return -EIO;
 568}
 569
 570static int sram_test_pass(const struct lanai_dev *lanai, u32 pattern)
 571{
 572	int offset, result = 0;
 573	for (offset = 0; offset < SRAM_BYTES && result == 0; offset += 4)
 574		result = sram_test_word(lanai, offset, pattern);
 575	return result;
 576}
 577
 578static int sram_test_and_clear(const struct lanai_dev *lanai)
 579{
 580#ifdef FULL_MEMORY_TEST
 581	int result;
 582	DPRINTK("testing SRAM\n");
 583	if ((result = sram_test_pass(lanai, 0x5555)) != 0)
 584		return result;
 585	if ((result = sram_test_pass(lanai, 0xAAAA)) != 0)
 586		return result;
 587#endif
 588	DPRINTK("clearing SRAM\n");
 589	return sram_test_pass(lanai, 0x0000);
 590}
 591
 592/* -------------------- CARD-BASED VCC TABLE UTILITIES: */
 593
 594/* vcc table */
 595enum lanai_vcc_offset {
 596	vcc_rxaddr1		= 0x00,	/* Location1, plus bits: */
 597#define   RXADDR1_SET_SIZE(x) ((x)*0x0000100)	/* size of RX buffer */
 598#define   RXADDR1_SET_RMMODE(x) ((x)*0x00800)	/* RM cell action; values: */
 599#define     RMMODE_TRASH	  (0)		/*   discard */
 600#define     RMMODE_PRESERVE	  (1)		/*   input as AAL0 */
 601#define     RMMODE_PIPE		  (2)		/*   pipe to coscheduler */
 602#define     RMMODE_PIPEALL	  (3)		/*   pipe non-RM too */
 603#define   RXADDR1_OAM_PRESERVE	 (0x00002000)	/* Input OAM cells as AAL0 */
 604#define   RXADDR1_SET_MODE(x) ((x)*0x0004000)	/* Reassembly mode */
 605#define     RXMODE_TRASH	  (0)		/*   discard */
 606#define     RXMODE_AAL0		  (1)		/*   non-AAL5 mode */
 607#define     RXMODE_AAL5		  (2)		/*   AAL5, intr. each PDU */
 608#define     RXMODE_AAL5_STREAM	  (3)		/*   AAL5 w/o per-PDU intr */
 609	vcc_rxaddr2		= 0x04,	/* Location2 */
 610	vcc_rxcrc1		= 0x08,	/* RX CRC claculation space */
 611	vcc_rxcrc2		= 0x0C,
 612	vcc_rxwriteptr		= 0x10, /* RX writeptr, plus bits: */
 613#define   RXWRITEPTR_LASTEFCI	 (0x00002000)	/* Last PDU had EFCI bit */
 614#define   RXWRITEPTR_DROPPING	 (0x00004000)	/* Had error, dropping */
 615#define   RXWRITEPTR_TRASHING	 (0x00008000)	/* Trashing */
 616	vcc_rxbufstart		= 0x14,	/* RX bufstart, plus bits: */
 617#define   RXBUFSTART_CLP	 (0x00004000)
 618#define   RXBUFSTART_CI		 (0x00008000)
 619	vcc_rxreadptr		= 0x18,	/* RX readptr */
 620	vcc_txicg		= 0x1C, /* TX ICG */
 621	vcc_txaddr1		= 0x20,	/* Location1, plus bits: */
 622#define   TXADDR1_SET_SIZE(x) ((x)*0x0000100)	/* size of TX buffer */
 623#define   TXADDR1_ABR		 (0x00008000)	/* use ABR (doesn't work) */
 624	vcc_txaddr2		= 0x24,	/* Location2 */
 625	vcc_txcrc1		= 0x28,	/* TX CRC claculation space */
 626	vcc_txcrc2		= 0x2C,
 627	vcc_txreadptr		= 0x30, /* TX Readptr, plus bits: */
 628#define   TXREADPTR_GET_PTR(x) ((x)&0x01FFF)
 629#define   TXREADPTR_MASK_DELTA	(0x0000E000)	/* ? */
 630	vcc_txendptr		= 0x34, /* TX Endptr, plus bits: */
 631#define   TXENDPTR_CLP		(0x00002000)
 632#define   TXENDPTR_MASK_PDUMODE	(0x0000C000)	/* PDU mode; values: */
 633#define     PDUMODE_AAL0	 (0*0x04000)
 634#define     PDUMODE_AAL5	 (2*0x04000)
 635#define     PDUMODE_AAL5STREAM	 (3*0x04000)
 636	vcc_txwriteptr		= 0x38,	/* TX Writeptr */
 637#define   TXWRITEPTR_GET_PTR(x) ((x)&0x1FFF)
 638	vcc_txcbr_next		= 0x3C	/* # of next CBR VCI in ring */
 639#define   TXCBR_NEXT_BOZO	(0x00008000)	/* "bozo bit" */
 640};
 641
 642#define CARDVCC_SIZE	(0x40)
 643
 644static inline bus_addr_t cardvcc_addr(const struct lanai_dev *lanai,
 645	vci_t vci)
 646{
 647	return sram_addr(lanai, vci * CARDVCC_SIZE);
 648}
 649
 650static inline u32 cardvcc_read(const struct lanai_vcc *lvcc,
 651	enum lanai_vcc_offset offset)
 652{
 653	u32 val;
 654	APRINTK(lvcc->vbase != NULL, "cardvcc_read: unbound vcc!\n");
 655	val= readl(lvcc->vbase + offset);
 656	RWDEBUG("VR vci=%04d 0x%02X = 0x%08X\n",
 657	    lvcc->vci, (int) offset, val);
 658	return val;
 659}
 660
 661static inline void cardvcc_write(const struct lanai_vcc *lvcc,
 662	u32 val, enum lanai_vcc_offset offset)
 663{
 664	APRINTK(lvcc->vbase != NULL, "cardvcc_write: unbound vcc!\n");
 665	APRINTK((val & ~0xFFFF) == 0,
 666	    "cardvcc_write: bad val 0x%X (vci=%d, addr=0x%02X)\n",
 667	    (unsigned int) val, lvcc->vci, (unsigned int) offset);
 668	RWDEBUG("VW vci=%04d 0x%02X > 0x%08X\n",
 669	    lvcc->vci, (unsigned int) offset, (unsigned int) val);
 670	writel(val, lvcc->vbase + offset);
 671}
 672
 673/* -------------------- COMPUTE SIZE OF AN AAL5 PDU: */
 674
 675/* How many bytes will an AAL5 PDU take to transmit - remember that:
 676 *   o  we need to add 8 bytes for length, CPI, UU, and CRC
 677 *   o  we need to round up to 48 bytes for cells
 678 */
 679static inline int aal5_size(int size)
 680{
 681	int cells = (size + 8 + 47) / 48;
 682	return cells * 48;
 683}
 684
 
 
 
 
 
 
 
 
 
 685/* -------------------- FREE AN ATM SKB: */
 686
 687static inline void lanai_free_skb(struct atm_vcc *atmvcc, struct sk_buff *skb)
 688{
 689	if (atmvcc->pop != NULL)
 690		atmvcc->pop(atmvcc, skb);
 691	else
 692		dev_kfree_skb_any(skb);
 693}
 694
 695/* -------------------- TURN VCCS ON AND OFF: */
 696
 697static void host_vcc_start_rx(const struct lanai_vcc *lvcc)
 698{
 699	u32 addr1;
 700	if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5) {
 701		dma_addr_t dmaaddr = lvcc->rx.buf.dmaaddr;
 702		cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc1);
 703		cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc2);
 704		cardvcc_write(lvcc, 0, vcc_rxwriteptr);
 705		cardvcc_write(lvcc, 0, vcc_rxbufstart);
 706		cardvcc_write(lvcc, 0, vcc_rxreadptr);
 707		cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_rxaddr2);
 708		addr1 = ((dmaaddr >> 8) & 0xFF) |
 709		    RXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->rx.buf))|
 710		    RXADDR1_SET_RMMODE(RMMODE_TRASH) |	/* ??? */
 711		 /* RXADDR1_OAM_PRESERVE |	--- no OAM support yet */
 712		    RXADDR1_SET_MODE(RXMODE_AAL5);
 713	} else
 714		addr1 = RXADDR1_SET_RMMODE(RMMODE_PRESERVE) | /* ??? */
 715		    RXADDR1_OAM_PRESERVE |		      /* ??? */
 716		    RXADDR1_SET_MODE(RXMODE_AAL0);
 717	/* This one must be last! */
 718	cardvcc_write(lvcc, addr1, vcc_rxaddr1);
 719}
 720
 721static void host_vcc_start_tx(const struct lanai_vcc *lvcc)
 722{
 723	dma_addr_t dmaaddr = lvcc->tx.buf.dmaaddr;
 724	cardvcc_write(lvcc, 0, vcc_txicg);
 725	cardvcc_write(lvcc, 0xFFFF, vcc_txcrc1);
 726	cardvcc_write(lvcc, 0xFFFF, vcc_txcrc2);
 727	cardvcc_write(lvcc, 0, vcc_txreadptr);
 728	cardvcc_write(lvcc, 0, vcc_txendptr);
 729	cardvcc_write(lvcc, 0, vcc_txwriteptr);
 730	cardvcc_write(lvcc,
 731		(lvcc->tx.atmvcc->qos.txtp.traffic_class == ATM_CBR) ?
 732		TXCBR_NEXT_BOZO | lvcc->vci : 0, vcc_txcbr_next);
 733	cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_txaddr2);
 734	cardvcc_write(lvcc,
 735	    ((dmaaddr >> 8) & 0xFF) |
 736	    TXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->tx.buf)),
 737	    vcc_txaddr1);
 738}
 739
 740/* Shutdown receiving on card */
 741static void lanai_shutdown_rx_vci(const struct lanai_vcc *lvcc)
 742{
 743	if (lvcc->vbase == NULL)	/* We were never bound to a VCI */
 744		return;
 745	/* 15.1.1 - set to trashing, wait one cell time (15us) */
 746	cardvcc_write(lvcc,
 747	    RXADDR1_SET_RMMODE(RMMODE_TRASH) |
 748	    RXADDR1_SET_MODE(RXMODE_TRASH), vcc_rxaddr1);
 749	udelay(15);
 750	/* 15.1.2 - clear rest of entries */
 751	cardvcc_write(lvcc, 0, vcc_rxaddr2);
 752	cardvcc_write(lvcc, 0, vcc_rxcrc1);
 753	cardvcc_write(lvcc, 0, vcc_rxcrc2);
 754	cardvcc_write(lvcc, 0, vcc_rxwriteptr);
 755	cardvcc_write(lvcc, 0, vcc_rxbufstart);
 756	cardvcc_write(lvcc, 0, vcc_rxreadptr);
 757}
 758
 759/* Shutdown transmitting on card.
 760 * Unfortunately the lanai needs us to wait until all the data
 761 * drains out of the buffer before we can dealloc it, so this
 762 * can take awhile -- up to 370ms for a full 128KB buffer
 763 * assuming everone else is quiet.  In theory the time is
 764 * boundless if there's a CBR VCC holding things up.
 765 */
 766static void lanai_shutdown_tx_vci(struct lanai_dev *lanai,
 767	struct lanai_vcc *lvcc)
 768{
 769	struct sk_buff *skb;
 770	unsigned long flags, timeout;
 771	int read, write, lastread = -1;
 772	APRINTK(!in_interrupt(),
 773	    "lanai_shutdown_tx_vci called w/o process context!\n");
 774	if (lvcc->vbase == NULL)	/* We were never bound to a VCI */
 775		return;
 776	/* 15.2.1 - wait for queue to drain */
 777	while ((skb = skb_dequeue(&lvcc->tx.backlog)) != NULL)
 778		lanai_free_skb(lvcc->tx.atmvcc, skb);
 779	read_lock_irqsave(&vcc_sklist_lock, flags);
 780	__clear_bit(lvcc->vci, lanai->backlog_vccs);
 781	read_unlock_irqrestore(&vcc_sklist_lock, flags);
 782	/*
 783	 * We need to wait for the VCC to drain but don't wait forever.  We
 784	 * give each 1K of buffer size 1/128th of a second to clear out.
 785	 * TODO: maybe disable CBR if we're about to timeout?
 786	 */
 787	timeout = jiffies +
 788	    (((lanai_buf_size(&lvcc->tx.buf) / 1024) * HZ) >> 7);
 789	write = TXWRITEPTR_GET_PTR(cardvcc_read(lvcc, vcc_txwriteptr));
 790	for (;;) {
 791		read = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
 792		if (read == write &&	   /* Is TX buffer empty? */
 793		    (lvcc->tx.atmvcc->qos.txtp.traffic_class != ATM_CBR ||
 794		    (cardvcc_read(lvcc, vcc_txcbr_next) &
 795		    TXCBR_NEXT_BOZO) == 0))
 796			break;
 797		if (read != lastread) {	   /* Has there been any progress? */
 798			lastread = read;
 799			timeout += HZ / 10;
 800		}
 801		if (unlikely(time_after(jiffies, timeout))) {
 802			printk(KERN_ERR DEV_LABEL "(itf %d): Timed out on "
 803			    "backlog closing vci %d\n",
 804			    lvcc->tx.atmvcc->dev->number, lvcc->vci);
 805			DPRINTK("read, write = %d, %d\n", read, write);
 806			break;
 807		}
 808		msleep(40);
 809	}
 810	/* 15.2.2 - clear out all tx registers */
 811	cardvcc_write(lvcc, 0, vcc_txreadptr);
 812	cardvcc_write(lvcc, 0, vcc_txwriteptr);
 813	cardvcc_write(lvcc, 0, vcc_txendptr);
 814	cardvcc_write(lvcc, 0, vcc_txcrc1);
 815	cardvcc_write(lvcc, 0, vcc_txcrc2);
 816	cardvcc_write(lvcc, 0, vcc_txaddr2);
 817	cardvcc_write(lvcc, 0, vcc_txaddr1);
 818}
 819
 820/* -------------------- MANAGING AAL0 RX BUFFER: */
 821
 822static inline int aal0_buffer_allocate(struct lanai_dev *lanai)
 823{
 824	DPRINTK("aal0_buffer_allocate: allocating AAL0 RX buffer\n");
 825	lanai_buf_allocate(&lanai->aal0buf, AAL0_RX_BUFFER_SIZE, 80,
 826			   lanai->pci);
 827	return (lanai->aal0buf.start == NULL) ? -ENOMEM : 0;
 828}
 829
 830static inline void aal0_buffer_free(struct lanai_dev *lanai)
 831{
 832	DPRINTK("aal0_buffer_allocate: freeing AAL0 RX buffer\n");
 833	lanai_buf_deallocate(&lanai->aal0buf, lanai->pci);
 834}
 835
 836/* -------------------- EEPROM UTILITIES: */
 837
 838/* Offsets of data in the EEPROM */
 839#define EEPROM_COPYRIGHT	(0)
 840#define EEPROM_COPYRIGHT_LEN	(44)
 841#define EEPROM_CHECKSUM		(62)
 842#define EEPROM_CHECKSUM_REV	(63)
 843#define EEPROM_MAC		(64)
 844#define EEPROM_MAC_REV		(70)
 845#define EEPROM_SERIAL		(112)
 846#define EEPROM_SERIAL_REV	(116)
 847#define EEPROM_MAGIC		(120)
 848#define EEPROM_MAGIC_REV	(124)
 849
 850#define EEPROM_MAGIC_VALUE	(0x5AB478D2)
 851
 852#ifndef READ_EEPROM
 853
 854/* Stub functions to use if EEPROM reading is disabled */
 855static int eeprom_read(struct lanai_dev *lanai)
 856{
 857	printk(KERN_INFO DEV_LABEL "(itf %d): *NOT* reading EEPROM\n",
 858	    lanai->number);
 859	memset(&lanai->eeprom[EEPROM_MAC], 0, 6);
 860	return 0;
 861}
 862
 863static int eeprom_validate(struct lanai_dev *lanai)
 864{
 865	lanai->serialno = 0;
 866	lanai->magicno = EEPROM_MAGIC_VALUE;
 867	return 0;
 868}
 869
 870#else /* READ_EEPROM */
 871
 872static int eeprom_read(struct lanai_dev *lanai)
 873{
 874	int i, address;
 875	u8 data;
 876	u32 tmp;
 877#define set_config1(x)   do { lanai->conf1 = x; conf1_write(lanai); \
 878			    } while (0)
 879#define clock_h()	 set_config1(lanai->conf1 | CONFIG1_PROMCLK)
 880#define clock_l()	 set_config1(lanai->conf1 &~ CONFIG1_PROMCLK)
 881#define data_h()	 set_config1(lanai->conf1 | CONFIG1_PROMDATA)
 882#define data_l()	 set_config1(lanai->conf1 &~ CONFIG1_PROMDATA)
 883#define pre_read()	 do { data_h(); clock_h(); udelay(5); } while (0)
 884#define read_pin()	 (reg_read(lanai, Status_Reg) & STATUS_PROMDATA)
 885#define send_stop()	 do { data_l(); udelay(5); clock_h(); udelay(5); \
 886			      data_h(); udelay(5); } while (0)
 887	/* start with both clock and data high */
 888	data_h(); clock_h(); udelay(5);
 889	for (address = 0; address < LANAI_EEPROM_SIZE; address++) {
 890		data = (address << 1) | 1;	/* Command=read + address */
 891		/* send start bit */
 892		data_l(); udelay(5);
 893		clock_l(); udelay(5);
 894		for (i = 128; i != 0; i >>= 1) {   /* write command out */
 895			tmp = (lanai->conf1 & ~CONFIG1_PROMDATA) |
 896			    ((data & i) ? CONFIG1_PROMDATA : 0);
 897			if (lanai->conf1 != tmp) {
 898				set_config1(tmp);
 899				udelay(5);	/* Let new data settle */
 900			}
 901			clock_h(); udelay(5); clock_l(); udelay(5);
 902		}
 903		/* look for ack */
 904		data_h(); clock_h(); udelay(5);
 905		if (read_pin() != 0)
 906			goto error;	/* No ack seen */
 907		clock_l(); udelay(5);
 908		/* read back result */
 909		for (data = 0, i = 7; i >= 0; i--) {
 910			data_h(); clock_h(); udelay(5);
 911			data = (data << 1) | !!read_pin();
 912			clock_l(); udelay(5);
 913		}
 914		/* look again for ack */
 915		data_h(); clock_h(); udelay(5);
 916		if (read_pin() == 0)
 917			goto error;	/* Spurious ack */
 918		clock_l(); udelay(5);
 919		send_stop();
 920		lanai->eeprom[address] = data;
 921		DPRINTK("EEPROM 0x%04X %02X\n",
 922		    (unsigned int) address, (unsigned int) data);
 923	}
 924	return 0;
 925    error:
 926	clock_l(); udelay(5);		/* finish read */
 927	send_stop();
 928	printk(KERN_ERR DEV_LABEL "(itf %d): error reading EEPROM byte %d\n",
 929	    lanai->number, address);
 930	return -EIO;
 931#undef set_config1
 932#undef clock_h
 933#undef clock_l
 934#undef data_h
 935#undef data_l
 936#undef pre_read
 937#undef read_pin
 938#undef send_stop
 939}
 940
 941/* read a big-endian 4-byte value out of eeprom */
 942static inline u32 eeprom_be4(const struct lanai_dev *lanai, int address)
 943{
 944	return be32_to_cpup((const u32 *) &lanai->eeprom[address]);
 945}
 946
 947/* Checksum/validate EEPROM contents */
 948static int eeprom_validate(struct lanai_dev *lanai)
 949{
 950	int i, s;
 951	u32 v;
 952	const u8 *e = lanai->eeprom;
 953#ifdef DEBUG
 954	/* First, see if we can get an ASCIIZ string out of the copyright */
 955	for (i = EEPROM_COPYRIGHT;
 956	    i < (EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN); i++)
 957		if (e[i] < 0x20 || e[i] > 0x7E)
 958			break;
 959	if ( i != EEPROM_COPYRIGHT &&
 960	    i != EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN && e[i] == '\0')
 961		DPRINTK("eeprom: copyright = \"%s\"\n",
 962		    (char *) &e[EEPROM_COPYRIGHT]);
 963	else
 964		DPRINTK("eeprom: copyright not found\n");
 965#endif
 966	/* Validate checksum */
 967	for (i = s = 0; i < EEPROM_CHECKSUM; i++)
 968		s += e[i];
 969	s &= 0xFF;
 970	if (s != e[EEPROM_CHECKSUM]) {
 971		printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM checksum bad "
 972		    "(wanted 0x%02X, got 0x%02X)\n", lanai->number,
 973		    (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM]);
 974		return -EIO;
 975	}
 976	s ^= 0xFF;
 977	if (s != e[EEPROM_CHECKSUM_REV]) {
 978		printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM inverse checksum "
 979		    "bad (wanted 0x%02X, got 0x%02X)\n", lanai->number,
 980		    (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM_REV]);
 981		return -EIO;
 982	}
 983	/* Verify MAC address */
 984	for (i = 0; i < 6; i++)
 985		if ((e[EEPROM_MAC + i] ^ e[EEPROM_MAC_REV + i]) != 0xFF) {
 986			printk(KERN_ERR DEV_LABEL
 987			    "(itf %d) : EEPROM MAC addresses don't match "
 988			    "(0x%02X, inverse 0x%02X)\n", lanai->number,
 989			    (unsigned int) e[EEPROM_MAC + i],
 990			    (unsigned int) e[EEPROM_MAC_REV + i]);
 991			return -EIO;
 992		}
 993	DPRINTK("eeprom: MAC address = %pM\n", &e[EEPROM_MAC]);
 994	/* Verify serial number */
 995	lanai->serialno = eeprom_be4(lanai, EEPROM_SERIAL);
 996	v = eeprom_be4(lanai, EEPROM_SERIAL_REV);
 997	if ((lanai->serialno ^ v) != 0xFFFFFFFF) {
 998		printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM serial numbers "
 999		    "don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
1000		    (unsigned int) lanai->serialno, (unsigned int) v);
1001		return -EIO;
1002	}
1003	DPRINTK("eeprom: Serial number = %d\n", (unsigned int) lanai->serialno);
1004	/* Verify magic number */
1005	lanai->magicno = eeprom_be4(lanai, EEPROM_MAGIC);
1006	v = eeprom_be4(lanai, EEPROM_MAGIC_REV);
1007	if ((lanai->magicno ^ v) != 0xFFFFFFFF) {
1008		printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM magic numbers "
1009		    "don't match (0x%08X, inverse 0x%08X)\n", lanai->number,
1010		    lanai->magicno, v);
1011		return -EIO;
1012	}
1013	DPRINTK("eeprom: Magic number = 0x%08X\n", lanai->magicno);
1014	if (lanai->magicno != EEPROM_MAGIC_VALUE)
1015		printk(KERN_WARNING DEV_LABEL "(itf %d): warning - EEPROM "
1016		    "magic not what expected (got 0x%08X, not 0x%08X)\n",
1017		    lanai->number, (unsigned int) lanai->magicno,
1018		    (unsigned int) EEPROM_MAGIC_VALUE);
1019	return 0;
1020}
1021
1022#endif /* READ_EEPROM */
1023
1024static inline const u8 *eeprom_mac(const struct lanai_dev *lanai)
1025{
1026	return &lanai->eeprom[EEPROM_MAC];
1027}
1028
1029/* -------------------- INTERRUPT HANDLING UTILITIES: */
1030
1031/* Interrupt types */
1032#define INT_STATS	(0x00000002)	/* Statistics counter overflow */
1033#define INT_SOOL	(0x00000004)	/* SOOL changed state */
1034#define INT_LOCD	(0x00000008)	/* LOCD changed state */
1035#define INT_LED		(0x00000010)	/* LED (HAPPI) changed state */
1036#define INT_GPIN	(0x00000020)	/* GPIN changed state */
1037#define INT_PING	(0x00000040)	/* PING_COUNT fulfilled */
1038#define INT_WAKE	(0x00000080)	/* Lanai wants bus */
1039#define INT_CBR0	(0x00000100)	/* CBR sched hit VCI 0 */
1040#define INT_LOCK	(0x00000200)	/* Service list overflow */
1041#define INT_MISMATCH	(0x00000400)	/* TX magic list mismatch */
1042#define INT_AAL0_STR	(0x00000800)	/* Non-AAL5 buffer half filled */
1043#define INT_AAL0	(0x00001000)	/* Non-AAL5 data available */
1044#define INT_SERVICE	(0x00002000)	/* Service list entries available */
1045#define INT_TABORTSENT	(0x00004000)	/* Target abort sent by lanai */
1046#define INT_TABORTBM	(0x00008000)	/* Abort rcv'd as bus master */
1047#define INT_TIMEOUTBM	(0x00010000)	/* No response to bus master */
1048#define INT_PCIPARITY	(0x00020000)	/* Parity error on PCI */
1049
1050/* Sets of the above */
1051#define INT_ALL		(0x0003FFFE)	/* All interrupts */
1052#define INT_STATUS	(0x0000003C)	/* Some status pin changed */
1053#define INT_DMASHUT	(0x00038000)	/* DMA engine got shut down */
1054#define INT_SEGSHUT	(0x00000700)	/* Segmentation got shut down */
1055
1056static inline u32 intr_pending(const struct lanai_dev *lanai)
1057{
1058	return reg_read(lanai, IntStatusMasked_Reg);
1059}
1060
1061static inline void intr_enable(const struct lanai_dev *lanai, u32 i)
1062{
1063	reg_write(lanai, i, IntControlEna_Reg);
1064}
1065
1066static inline void intr_disable(const struct lanai_dev *lanai, u32 i)
1067{
1068	reg_write(lanai, i, IntControlDis_Reg);
1069}
1070
1071/* -------------------- CARD/PCI STATUS: */
1072
1073static void status_message(int itf, const char *name, int status)
1074{
1075	static const char *onoff[2] = { "off to on", "on to off" };
1076	printk(KERN_INFO DEV_LABEL "(itf %d): %s changed from %s\n",
1077	    itf, name, onoff[!status]);
1078}
1079
1080static void lanai_check_status(struct lanai_dev *lanai)
1081{
1082	u32 new = reg_read(lanai, Status_Reg);
1083	u32 changes = new ^ lanai->status;
1084	lanai->status = new;
1085#define e(flag, name) \
1086		if (changes & flag) \
1087			status_message(lanai->number, name, new & flag)
1088	e(STATUS_SOOL, "SOOL");
1089	e(STATUS_LOCD, "LOCD");
1090	e(STATUS_LED, "LED");
1091	e(STATUS_GPIN, "GPIN");
1092#undef e
1093}
1094
1095static void pcistatus_got(int itf, const char *name)
1096{
1097	printk(KERN_INFO DEV_LABEL "(itf %d): PCI got %s error\n", itf, name);
1098}
1099
1100static void pcistatus_check(struct lanai_dev *lanai, int clearonly)
1101{
1102	u16 s;
1103	int result;
1104	result = pci_read_config_word(lanai->pci, PCI_STATUS, &s);
1105	if (result != PCIBIOS_SUCCESSFUL) {
1106		printk(KERN_ERR DEV_LABEL "(itf %d): can't read PCI_STATUS: "
1107		    "%d\n", lanai->number, result);
1108		return;
1109	}
1110	s &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR |
1111	    PCI_STATUS_REC_MASTER_ABORT | PCI_STATUS_REC_TARGET_ABORT |
1112	    PCI_STATUS_SIG_TARGET_ABORT | PCI_STATUS_PARITY;
1113	if (s == 0)
1114		return;
1115	result = pci_write_config_word(lanai->pci, PCI_STATUS, s);
1116	if (result != PCIBIOS_SUCCESSFUL)
1117		printk(KERN_ERR DEV_LABEL "(itf %d): can't write PCI_STATUS: "
1118		    "%d\n", lanai->number, result);
1119	if (clearonly)
1120		return;
1121#define e(flag, name, stat) \
1122		if (s & flag) { \
1123			pcistatus_got(lanai->number, name); \
1124			++lanai->stats.pcierr_##stat; \
1125		}
1126	e(PCI_STATUS_DETECTED_PARITY, "parity", parity_detect);
1127	e(PCI_STATUS_SIG_SYSTEM_ERROR, "signalled system", serr_set);
1128	e(PCI_STATUS_REC_MASTER_ABORT, "master", master_abort);
1129	e(PCI_STATUS_REC_TARGET_ABORT, "master target", m_target_abort);
1130	e(PCI_STATUS_SIG_TARGET_ABORT, "slave", s_target_abort);
1131	e(PCI_STATUS_PARITY, "master parity", master_parity);
1132#undef e
1133}
1134
1135/* -------------------- VCC TX BUFFER UTILITIES: */
1136
1137/* space left in tx buffer in bytes */
1138static inline int vcc_tx_space(const struct lanai_vcc *lvcc, int endptr)
1139{
1140	int r;
1141	r = endptr * 16;
1142	r -= ((unsigned long) lvcc->tx.buf.ptr) -
1143	    ((unsigned long) lvcc->tx.buf.start);
1144	r -= 16;	/* Leave "bubble" - if start==end it looks empty */
1145	if (r < 0)
1146		r += lanai_buf_size(&lvcc->tx.buf);
1147	return r;
1148}
1149
1150/* test if VCC is currently backlogged */
1151static inline int vcc_is_backlogged(const struct lanai_vcc *lvcc)
1152{
1153	return !skb_queue_empty(&lvcc->tx.backlog);
1154}
1155
1156/* Bit fields in the segmentation buffer descriptor */
1157#define DESCRIPTOR_MAGIC	(0xD0000000)
1158#define DESCRIPTOR_AAL5		(0x00008000)
1159#define DESCRIPTOR_AAL5_STREAM	(0x00004000)
1160#define DESCRIPTOR_CLP		(0x00002000)
1161
1162/* Add 32-bit descriptor with its padding */
1163static inline void vcc_tx_add_aal5_descriptor(struct lanai_vcc *lvcc,
1164	u32 flags, int len)
1165{
1166	int pos;
1167	APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 0,
1168	    "vcc_tx_add_aal5_descriptor: bad ptr=%p\n", lvcc->tx.buf.ptr);
1169	lvcc->tx.buf.ptr += 4;	/* Hope the values REALLY don't matter */
1170	pos = ((unsigned char *) lvcc->tx.buf.ptr) -
1171	    (unsigned char *) lvcc->tx.buf.start;
1172	APRINTK((pos & ~0x0001FFF0) == 0,
1173	    "vcc_tx_add_aal5_descriptor: bad pos (%d) before, vci=%d, "
1174	    "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
1175	    lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
1176	pos = (pos + len) & (lanai_buf_size(&lvcc->tx.buf) - 1);
1177	APRINTK((pos & ~0x0001FFF0) == 0,
1178	    "vcc_tx_add_aal5_descriptor: bad pos (%d) after, vci=%d, "
1179	    "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci,
1180	    lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end);
1181	lvcc->tx.buf.ptr[-1] =
1182	    cpu_to_le32(DESCRIPTOR_MAGIC | DESCRIPTOR_AAL5 |
1183	    ((lvcc->tx.atmvcc->atm_options & ATM_ATMOPT_CLP) ?
1184	    DESCRIPTOR_CLP : 0) | flags | pos >> 4);
1185	if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
1186		lvcc->tx.buf.ptr = lvcc->tx.buf.start;
1187}
1188
1189/* Add 32-bit AAL5 trailer and leave room for its CRC */
1190static inline void vcc_tx_add_aal5_trailer(struct lanai_vcc *lvcc,
1191	int len, int cpi, int uu)
1192{
1193	APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 8,
1194	    "vcc_tx_add_aal5_trailer: bad ptr=%p\n", lvcc->tx.buf.ptr);
1195	lvcc->tx.buf.ptr += 2;
1196	lvcc->tx.buf.ptr[-2] = cpu_to_be32((uu << 24) | (cpi << 16) | len);
1197	if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end)
1198		lvcc->tx.buf.ptr = lvcc->tx.buf.start;
1199}
1200
1201static inline void vcc_tx_memcpy(struct lanai_vcc *lvcc,
1202	const unsigned char *src, int n)
1203{
1204	unsigned char *e;
1205	int m;
1206	e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
1207	m = e - (unsigned char *) lvcc->tx.buf.end;
1208	if (m < 0)
1209		m = 0;
1210	memcpy(lvcc->tx.buf.ptr, src, n - m);
1211	if (m != 0) {
1212		memcpy(lvcc->tx.buf.start, src + n - m, m);
1213		e = ((unsigned char *) lvcc->tx.buf.start) + m;
1214	}
1215	lvcc->tx.buf.ptr = (u32 *) e;
1216}
1217
1218static inline void vcc_tx_memzero(struct lanai_vcc *lvcc, int n)
1219{
1220	unsigned char *e;
1221	int m;
1222	if (n == 0)
1223		return;
1224	e = ((unsigned char *) lvcc->tx.buf.ptr) + n;
1225	m = e - (unsigned char *) lvcc->tx.buf.end;
1226	if (m < 0)
1227		m = 0;
1228	memset(lvcc->tx.buf.ptr, 0, n - m);
1229	if (m != 0) {
1230		memset(lvcc->tx.buf.start, 0, m);
1231		e = ((unsigned char *) lvcc->tx.buf.start) + m;
1232	}
1233	lvcc->tx.buf.ptr = (u32 *) e;
1234}
1235
1236/* Update "butt" register to specify new WritePtr */
1237static inline void lanai_endtx(struct lanai_dev *lanai,
1238	const struct lanai_vcc *lvcc)
1239{
1240	int i, ptr = ((unsigned char *) lvcc->tx.buf.ptr) -
1241	    (unsigned char *) lvcc->tx.buf.start;
1242	APRINTK((ptr & ~0x0001FFF0) == 0,
1243	    "lanai_endtx: bad ptr (%d), vci=%d, start,ptr,end=%p,%p,%p\n",
1244	    ptr, lvcc->vci, lvcc->tx.buf.start, lvcc->tx.buf.ptr,
1245	    lvcc->tx.buf.end);
1246
1247	/*
1248	 * Since the "butt register" is a shared resounce on the card we
1249	 * serialize all accesses to it through this spinlock.  This is
1250	 * mostly just paranoia since the register is rarely "busy" anyway
1251	 * but is needed for correctness.
1252	 */
1253	spin_lock(&lanai->endtxlock);
1254	/*
1255	 * We need to check if the "butt busy" bit is set before
1256	 * updating the butt register.  In theory this should
1257	 * never happen because the ATM card is plenty fast at
1258	 * updating the register.  Still, we should make sure
1259	 */
1260	for (i = 0; reg_read(lanai, Status_Reg) & STATUS_BUTTBUSY; i++) {
1261		if (unlikely(i > 50)) {
1262			printk(KERN_ERR DEV_LABEL "(itf %d): butt register "
1263			    "always busy!\n", lanai->number);
1264			break;
1265		}
1266		udelay(5);
1267	}
1268	/*
1269	 * Before we tall the card to start work we need to be sure 100% of
1270	 * the info in the service buffer has been written before we tell
1271	 * the card about it
1272	 */
1273	wmb();
1274	reg_write(lanai, (ptr << 12) | lvcc->vci, Butt_Reg);
1275	spin_unlock(&lanai->endtxlock);
1276}
1277
1278/*
1279 * Add one AAL5 PDU to lvcc's transmit buffer.  Caller garauntees there's
1280 * space available.  "pdusize" is the number of bytes the PDU will take
1281 */
1282static void lanai_send_one_aal5(struct lanai_dev *lanai,
1283	struct lanai_vcc *lvcc, struct sk_buff *skb, int pdusize)
1284{
1285	int pad;
1286	APRINTK(pdusize == aal5_size(skb->len),
1287	    "lanai_send_one_aal5: wrong size packet (%d != %d)\n",
1288	    pdusize, aal5_size(skb->len));
1289	vcc_tx_add_aal5_descriptor(lvcc, 0, pdusize);
1290	pad = pdusize - skb->len - 8;
1291	APRINTK(pad >= 0, "pad is negative (%d)\n", pad);
1292	APRINTK(pad < 48, "pad is too big (%d)\n", pad);
1293	vcc_tx_memcpy(lvcc, skb->data, skb->len);
1294	vcc_tx_memzero(lvcc, pad);
1295	vcc_tx_add_aal5_trailer(lvcc, skb->len, 0, 0);
1296	lanai_endtx(lanai, lvcc);
1297	lanai_free_skb(lvcc->tx.atmvcc, skb);
1298	atomic_inc(&lvcc->tx.atmvcc->stats->tx);
1299}
1300
1301/* Try to fill the buffer - don't call unless there is backlog */
1302static void vcc_tx_unqueue_aal5(struct lanai_dev *lanai,
1303	struct lanai_vcc *lvcc, int endptr)
1304{
1305	int n;
1306	struct sk_buff *skb;
1307	int space = vcc_tx_space(lvcc, endptr);
1308	APRINTK(vcc_is_backlogged(lvcc),
1309	    "vcc_tx_unqueue() called with empty backlog (vci=%d)\n",
1310	    lvcc->vci);
1311	while (space >= 64) {
1312		skb = skb_dequeue(&lvcc->tx.backlog);
1313		if (skb == NULL)
1314			goto no_backlog;
1315		n = aal5_size(skb->len);
1316		if (n + 16 > space) {
1317			/* No room for this packet - put it back on queue */
1318			skb_queue_head(&lvcc->tx.backlog, skb);
1319			return;
1320		}
1321		lanai_send_one_aal5(lanai, lvcc, skb, n);
1322		space -= n + 16;
1323	}
1324	if (!vcc_is_backlogged(lvcc)) {
1325	    no_backlog:
1326		__clear_bit(lvcc->vci, lanai->backlog_vccs);
1327	}
1328}
1329
1330/* Given an skb that we want to transmit either send it now or queue */
1331static void vcc_tx_aal5(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1332	struct sk_buff *skb)
1333{
1334	int space, n;
1335	if (vcc_is_backlogged(lvcc))		/* Already backlogged */
1336		goto queue_it;
1337	space = vcc_tx_space(lvcc,
1338		    TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr)));
1339	n = aal5_size(skb->len);
1340	APRINTK(n + 16 >= 64, "vcc_tx_aal5: n too small (%d)\n", n);
1341	if (space < n + 16) {			/* No space for this PDU */
1342		__set_bit(lvcc->vci, lanai->backlog_vccs);
1343	    queue_it:
1344		skb_queue_tail(&lvcc->tx.backlog, skb);
1345		return;
1346	}
1347	lanai_send_one_aal5(lanai, lvcc, skb, n);
1348}
1349
1350static void vcc_tx_unqueue_aal0(struct lanai_dev *lanai,
1351	struct lanai_vcc *lvcc, int endptr)
1352{
1353	printk(KERN_INFO DEV_LABEL
1354	    ": vcc_tx_unqueue_aal0: not implemented\n");
1355}
1356
1357static void vcc_tx_aal0(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1358	struct sk_buff *skb)
1359{
1360	printk(KERN_INFO DEV_LABEL ": vcc_tx_aal0: not implemented\n");
1361	/* Remember to increment lvcc->tx.atmvcc->stats->tx */
1362	lanai_free_skb(lvcc->tx.atmvcc, skb);
1363}
1364
1365/* -------------------- VCC RX BUFFER UTILITIES: */
1366
1367/* unlike the _tx_ cousins, this doesn't update ptr */
1368static inline void vcc_rx_memcpy(unsigned char *dest,
1369	const struct lanai_vcc *lvcc, int n)
1370{
1371	int m = ((const unsigned char *) lvcc->rx.buf.ptr) + n -
1372	    ((const unsigned char *) (lvcc->rx.buf.end));
1373	if (m < 0)
1374		m = 0;
1375	memcpy(dest, lvcc->rx.buf.ptr, n - m);
1376	memcpy(dest + n - m, lvcc->rx.buf.start, m);
1377	/* Make sure that these copies don't get reordered */
1378	barrier();
1379}
1380
1381/* Receive AAL5 data on a VCC with a particular endptr */
1382static void vcc_rx_aal5(struct lanai_vcc *lvcc, int endptr)
1383{
1384	int size;
1385	struct sk_buff *skb;
1386	const u32 *x;
1387	u32 *end = &lvcc->rx.buf.start[endptr * 4];
1388	int n = ((unsigned long) end) - ((unsigned long) lvcc->rx.buf.ptr);
1389	if (n < 0)
1390		n += lanai_buf_size(&lvcc->rx.buf);
1391	APRINTK(n >= 0 && n < lanai_buf_size(&lvcc->rx.buf) && !(n & 15),
1392	    "vcc_rx_aal5: n out of range (%d/%zu)\n",
1393	    n, lanai_buf_size(&lvcc->rx.buf));
1394	/* Recover the second-to-last word to get true pdu length */
1395	if ((x = &end[-2]) < lvcc->rx.buf.start)
1396		x = &lvcc->rx.buf.end[-2];
1397	/*
1398	 * Before we actually read from the buffer, make sure the memory
1399	 * changes have arrived
1400	 */
1401	rmb();
1402	size = be32_to_cpup(x) & 0xffff;
1403	if (unlikely(n != aal5_size(size))) {
1404		/* Make sure size matches padding */
1405		printk(KERN_INFO DEV_LABEL "(itf %d): Got bad AAL5 length "
1406		    "on vci=%d - size=%d n=%d\n",
1407		    lvcc->rx.atmvcc->dev->number, lvcc->vci, size, n);
1408		lvcc->stats.x.aal5.rx_badlen++;
1409		goto out;
1410	}
1411	skb = atm_alloc_charge(lvcc->rx.atmvcc, size, GFP_ATOMIC);
1412	if (unlikely(skb == NULL)) {
1413		lvcc->stats.rx_nomem++;
1414		goto out;
1415	}
1416	skb_put(skb, size);
1417	vcc_rx_memcpy(skb->data, lvcc, size);
1418	ATM_SKB(skb)->vcc = lvcc->rx.atmvcc;
1419	__net_timestamp(skb);
1420	lvcc->rx.atmvcc->push(lvcc->rx.atmvcc, skb);
1421	atomic_inc(&lvcc->rx.atmvcc->stats->rx);
1422    out:
1423	lvcc->rx.buf.ptr = end;
1424	cardvcc_write(lvcc, endptr, vcc_rxreadptr);
1425}
1426
1427static void vcc_rx_aal0(struct lanai_dev *lanai)
1428{
1429	printk(KERN_INFO DEV_LABEL ": vcc_rx_aal0: not implemented\n");
1430	/* Remember to get read_lock(&vcc_sklist_lock) while looking up VC */
1431	/* Remember to increment lvcc->rx.atmvcc->stats->rx */
1432}
1433
1434/* -------------------- MANAGING HOST-BASED VCC TABLE: */
1435
1436/* Decide whether to use vmalloc or get_zeroed_page for VCC table */
1437#if (NUM_VCI * BITS_PER_LONG) <= PAGE_SIZE
1438#define VCCTABLE_GETFREEPAGE
1439#else
1440#include <linux/vmalloc.h>
1441#endif
1442
1443static int vcc_table_allocate(struct lanai_dev *lanai)
1444{
1445#ifdef VCCTABLE_GETFREEPAGE
1446	APRINTK((lanai->num_vci) * sizeof(struct lanai_vcc *) <= PAGE_SIZE,
1447	    "vcc table > PAGE_SIZE!");
1448	lanai->vccs = (struct lanai_vcc **) get_zeroed_page(GFP_KERNEL);
1449	return (lanai->vccs == NULL) ? -ENOMEM : 0;
1450#else
1451	int bytes = (lanai->num_vci) * sizeof(struct lanai_vcc *);
1452	lanai->vccs = vzalloc(bytes);
1453	if (unlikely(lanai->vccs == NULL))
1454		return -ENOMEM;
 
1455	return 0;
1456#endif
1457}
1458
1459static inline void vcc_table_deallocate(const struct lanai_dev *lanai)
1460{
1461#ifdef VCCTABLE_GETFREEPAGE
1462	free_page((unsigned long) lanai->vccs);
1463#else
1464	vfree(lanai->vccs);
1465#endif
1466}
1467
1468/* Allocate a fresh lanai_vcc, with the appropriate things cleared */
1469static inline struct lanai_vcc *new_lanai_vcc(void)
1470{
1471	struct lanai_vcc *lvcc;
1472	lvcc =  kzalloc(sizeof(*lvcc), GFP_KERNEL);
1473	if (likely(lvcc != NULL)) {
1474		skb_queue_head_init(&lvcc->tx.backlog);
1475#ifdef DEBUG
1476		lvcc->vci = -1;
1477#endif
1478	}
1479	return lvcc;
1480}
1481
1482static int lanai_get_sized_buffer(struct lanai_dev *lanai,
1483	struct lanai_buffer *buf, int max_sdu, int multiplier,
1484	const char *name)
1485{
1486	int size;
1487	if (unlikely(max_sdu < 1))
1488		max_sdu = 1;
1489	max_sdu = aal5_size(max_sdu);
1490	size = (max_sdu + 16) * multiplier + 16;
1491	lanai_buf_allocate(buf, size, max_sdu + 32, lanai->pci);
1492	if (unlikely(buf->start == NULL))
1493		return -ENOMEM;
1494	if (unlikely(lanai_buf_size(buf) < size))
1495		printk(KERN_WARNING DEV_LABEL "(itf %d): wanted %d bytes "
1496		    "for %s buffer, got only %zu\n", lanai->number, size,
1497		    name, lanai_buf_size(buf));
1498	DPRINTK("Allocated %zu byte %s buffer\n", lanai_buf_size(buf), name);
1499	return 0;
1500}
1501
1502/* Setup a RX buffer for a currently unbound AAL5 vci */
1503static inline int lanai_setup_rx_vci_aal5(struct lanai_dev *lanai,
1504	struct lanai_vcc *lvcc, const struct atm_qos *qos)
1505{
1506	return lanai_get_sized_buffer(lanai, &lvcc->rx.buf,
1507	    qos->rxtp.max_sdu, AAL5_RX_MULTIPLIER, "RX");
1508}
1509
1510/* Setup a TX buffer for a currently unbound AAL5 vci */
1511static int lanai_setup_tx_vci(struct lanai_dev *lanai, struct lanai_vcc *lvcc,
1512	const struct atm_qos *qos)
1513{
1514	int max_sdu, multiplier;
1515	if (qos->aal == ATM_AAL0) {
1516		lvcc->tx.unqueue = vcc_tx_unqueue_aal0;
1517		max_sdu = ATM_CELL_SIZE - 1;
1518		multiplier = AAL0_TX_MULTIPLIER;
1519	} else {
1520		lvcc->tx.unqueue = vcc_tx_unqueue_aal5;
1521		max_sdu = qos->txtp.max_sdu;
1522		multiplier = AAL5_TX_MULTIPLIER;
1523	}
1524	return lanai_get_sized_buffer(lanai, &lvcc->tx.buf, max_sdu,
1525	    multiplier, "TX");
1526}
1527
1528static inline void host_vcc_bind(struct lanai_dev *lanai,
1529	struct lanai_vcc *lvcc, vci_t vci)
1530{
1531	if (lvcc->vbase != NULL)
1532		return;    /* We already were bound in the other direction */
1533	DPRINTK("Binding vci %d\n", vci);
1534#ifdef USE_POWERDOWN
1535	if (lanai->nbound++ == 0) {
1536		DPRINTK("Coming out of powerdown\n");
1537		lanai->conf1 &= ~CONFIG1_POWERDOWN;
1538		conf1_write(lanai);
1539		conf2_write(lanai);
1540	}
1541#endif
1542	lvcc->vbase = cardvcc_addr(lanai, vci);
1543	lanai->vccs[lvcc->vci = vci] = lvcc;
1544}
1545
1546static inline void host_vcc_unbind(struct lanai_dev *lanai,
1547	struct lanai_vcc *lvcc)
1548{
1549	if (lvcc->vbase == NULL)
1550		return;	/* This vcc was never bound */
1551	DPRINTK("Unbinding vci %d\n", lvcc->vci);
1552	lvcc->vbase = NULL;
1553	lanai->vccs[lvcc->vci] = NULL;
1554#ifdef USE_POWERDOWN
1555	if (--lanai->nbound == 0) {
1556		DPRINTK("Going into powerdown\n");
1557		lanai->conf1 |= CONFIG1_POWERDOWN;
1558		conf1_write(lanai);
1559	}
1560#endif
1561}
1562
1563/* -------------------- RESET CARD: */
1564
1565static void lanai_reset(struct lanai_dev *lanai)
1566{
1567	printk(KERN_CRIT DEV_LABEL "(itf %d): *NOT* resetting - not "
1568	    "implemented\n", lanai->number);
1569	/* TODO */
1570	/* The following is just a hack until we write the real
1571	 * resetter - at least ack whatever interrupt sent us
1572	 * here
1573	 */
1574	reg_write(lanai, INT_ALL, IntAck_Reg);
1575	lanai->stats.card_reset++;
1576}
1577
1578/* -------------------- SERVICE LIST UTILITIES: */
1579
1580/*
1581 * Allocate service buffer and tell card about it
1582 */
1583static int service_buffer_allocate(struct lanai_dev *lanai)
1584{
1585	lanai_buf_allocate(&lanai->service, SERVICE_ENTRIES * 4, 8,
1586	    lanai->pci);
1587	if (unlikely(lanai->service.start == NULL))
1588		return -ENOMEM;
1589	DPRINTK("allocated service buffer at %p, size %zu(%d)\n",
1590	    lanai->service.start,
1591	    lanai_buf_size(&lanai->service),
1592	    lanai_buf_size_cardorder(&lanai->service));
1593	/* Clear ServWrite register to be safe */
1594	reg_write(lanai, 0, ServWrite_Reg);
1595	/* ServiceStuff register contains size and address of buffer */
1596	reg_write(lanai,
1597	    SSTUFF_SET_SIZE(lanai_buf_size_cardorder(&lanai->service)) |
1598	    SSTUFF_SET_ADDR(lanai->service.dmaaddr),
1599	    ServiceStuff_Reg);
1600	return 0;
1601}
1602
1603static inline void service_buffer_deallocate(struct lanai_dev *lanai)
1604{
1605	lanai_buf_deallocate(&lanai->service, lanai->pci);
1606}
1607
1608/* Bitfields in service list */
1609#define SERVICE_TX	(0x80000000)	/* Was from transmission */
1610#define SERVICE_TRASH	(0x40000000)	/* RXed PDU was trashed */
1611#define SERVICE_CRCERR	(0x20000000)	/* RXed PDU had CRC error */
1612#define SERVICE_CI	(0x10000000)	/* RXed PDU had CI set */
1613#define SERVICE_CLP	(0x08000000)	/* RXed PDU had CLP set */
1614#define SERVICE_STREAM	(0x04000000)	/* RX Stream mode */
1615#define SERVICE_GET_VCI(x) (((x)>>16)&0x3FF)
1616#define SERVICE_GET_END(x) ((x)&0x1FFF)
1617
1618/* Handle one thing from the service list - returns true if it marked a
1619 * VCC ready for xmit
1620 */
1621static int handle_service(struct lanai_dev *lanai, u32 s)
1622{
1623	vci_t vci = SERVICE_GET_VCI(s);
1624	struct lanai_vcc *lvcc;
1625	read_lock(&vcc_sklist_lock);
1626	lvcc = lanai->vccs[vci];
1627	if (unlikely(lvcc == NULL)) {
1628		read_unlock(&vcc_sklist_lock);
1629		DPRINTK("(itf %d) got service entry 0x%X for nonexistent "
1630		    "vcc %d\n", lanai->number, (unsigned int) s, vci);
1631		if (s & SERVICE_TX)
1632			lanai->stats.service_notx++;
1633		else
1634			lanai->stats.service_norx++;
1635		return 0;
1636	}
1637	if (s & SERVICE_TX) {			/* segmentation interrupt */
1638		if (unlikely(lvcc->tx.atmvcc == NULL)) {
1639			read_unlock(&vcc_sklist_lock);
1640			DPRINTK("(itf %d) got service entry 0x%X for non-TX "
1641			    "vcc %d\n", lanai->number, (unsigned int) s, vci);
1642			lanai->stats.service_notx++;
1643			return 0;
1644		}
1645		__set_bit(vci, lanai->transmit_ready);
1646		lvcc->tx.endptr = SERVICE_GET_END(s);
1647		read_unlock(&vcc_sklist_lock);
1648		return 1;
1649	}
1650	if (unlikely(lvcc->rx.atmvcc == NULL)) {
1651		read_unlock(&vcc_sklist_lock);
1652		DPRINTK("(itf %d) got service entry 0x%X for non-RX "
1653		    "vcc %d\n", lanai->number, (unsigned int) s, vci);
1654		lanai->stats.service_norx++;
1655		return 0;
1656	}
1657	if (unlikely(lvcc->rx.atmvcc->qos.aal != ATM_AAL5)) {
1658		read_unlock(&vcc_sklist_lock);
1659		DPRINTK("(itf %d) got RX service entry 0x%X for non-AAL5 "
1660		    "vcc %d\n", lanai->number, (unsigned int) s, vci);
1661		lanai->stats.service_rxnotaal5++;
1662		atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1663		return 0;
1664	}
1665	if (likely(!(s & (SERVICE_TRASH | SERVICE_STREAM | SERVICE_CRCERR)))) {
1666		vcc_rx_aal5(lvcc, SERVICE_GET_END(s));
1667		read_unlock(&vcc_sklist_lock);
1668		return 0;
1669	}
1670	if (s & SERVICE_TRASH) {
1671		int bytes;
1672		read_unlock(&vcc_sklist_lock);
1673		DPRINTK("got trashed rx pdu on vci %d\n", vci);
1674		atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1675		lvcc->stats.x.aal5.service_trash++;
1676		bytes = (SERVICE_GET_END(s) * 16) -
1677		    (((unsigned long) lvcc->rx.buf.ptr) -
1678		    ((unsigned long) lvcc->rx.buf.start)) + 47;
1679		if (bytes < 0)
1680			bytes += lanai_buf_size(&lvcc->rx.buf);
1681		lanai->stats.ovfl_trash += (bytes / 48);
1682		return 0;
1683	}
1684	if (s & SERVICE_STREAM) {
1685		read_unlock(&vcc_sklist_lock);
1686		atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1687		lvcc->stats.x.aal5.service_stream++;
1688		printk(KERN_ERR DEV_LABEL "(itf %d): Got AAL5 stream "
1689		    "PDU on VCI %d!\n", lanai->number, vci);
1690		lanai_reset(lanai);
1691		return 0;
1692	}
1693	DPRINTK("got rx crc error on vci %d\n", vci);
1694	atomic_inc(&lvcc->rx.atmvcc->stats->rx_err);
1695	lvcc->stats.x.aal5.service_rxcrc++;
1696	lvcc->rx.buf.ptr = &lvcc->rx.buf.start[SERVICE_GET_END(s) * 4];
1697	cardvcc_write(lvcc, SERVICE_GET_END(s), vcc_rxreadptr);
1698	read_unlock(&vcc_sklist_lock);
1699	return 0;
1700}
1701
1702/* Try transmitting on all VCIs that we marked ready to serve */
1703static void iter_transmit(struct lanai_dev *lanai, vci_t vci)
1704{
1705	struct lanai_vcc *lvcc = lanai->vccs[vci];
1706	if (vcc_is_backlogged(lvcc))
1707		lvcc->tx.unqueue(lanai, lvcc, lvcc->tx.endptr);
1708}
1709
1710/* Run service queue -- called from interrupt context or with
1711 * interrupts otherwise disabled and with the lanai->servicelock
1712 * lock held
1713 */
1714static void run_service(struct lanai_dev *lanai)
1715{
1716	int ntx = 0;
1717	u32 wreg = reg_read(lanai, ServWrite_Reg);
1718	const u32 *end = lanai->service.start + wreg;
1719	while (lanai->service.ptr != end) {
1720		ntx += handle_service(lanai,
1721		    le32_to_cpup(lanai->service.ptr++));
1722		if (lanai->service.ptr >= lanai->service.end)
1723			lanai->service.ptr = lanai->service.start;
1724	}
1725	reg_write(lanai, wreg, ServRead_Reg);
1726	if (ntx != 0) {
1727		read_lock(&vcc_sklist_lock);
1728		vci_bitfield_iterate(lanai, lanai->transmit_ready,
1729		    iter_transmit);
1730		bitmap_zero(lanai->transmit_ready, NUM_VCI);
1731		read_unlock(&vcc_sklist_lock);
1732	}
1733}
1734
1735/* -------------------- GATHER STATISTICS: */
1736
1737static void get_statistics(struct lanai_dev *lanai)
1738{
1739	u32 statreg = reg_read(lanai, Statistics_Reg);
1740	lanai->stats.atm_ovfl += STATS_GET_FIFO_OVFL(statreg);
1741	lanai->stats.hec_err += STATS_GET_HEC_ERR(statreg);
1742	lanai->stats.vci_trash += STATS_GET_BAD_VCI(statreg);
1743	lanai->stats.ovfl_trash += STATS_GET_BUF_OVFL(statreg);
1744}
1745
1746/* -------------------- POLLING TIMER: */
1747
1748#ifndef DEBUG_RW
1749/* Try to undequeue 1 backlogged vcc */
1750static void iter_dequeue(struct lanai_dev *lanai, vci_t vci)
1751{
1752	struct lanai_vcc *lvcc = lanai->vccs[vci];
1753	int endptr;
1754	if (lvcc == NULL || lvcc->tx.atmvcc == NULL ||
1755	    !vcc_is_backlogged(lvcc)) {
1756		__clear_bit(vci, lanai->backlog_vccs);
1757		return;
1758	}
1759	endptr = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr));
1760	lvcc->tx.unqueue(lanai, lvcc, endptr);
1761}
1762#endif /* !DEBUG_RW */
1763
1764static void lanai_timed_poll(struct timer_list *t)
1765{
1766	struct lanai_dev *lanai = from_timer(lanai, t, timer);
1767#ifndef DEBUG_RW
1768	unsigned long flags;
1769#ifdef USE_POWERDOWN
1770	if (lanai->conf1 & CONFIG1_POWERDOWN)
1771		return;
1772#endif /* USE_POWERDOWN */
1773	local_irq_save(flags);
1774	/* If we can grab the spinlock, check if any services need to be run */
1775	if (spin_trylock(&lanai->servicelock)) {
1776		run_service(lanai);
1777		spin_unlock(&lanai->servicelock);
1778	}
1779	/* ...and see if any backlogged VCs can make progress */
1780	/* unfortunately linux has no read_trylock() currently */
1781	read_lock(&vcc_sklist_lock);
1782	vci_bitfield_iterate(lanai, lanai->backlog_vccs, iter_dequeue);
1783	read_unlock(&vcc_sklist_lock);
1784	local_irq_restore(flags);
1785
1786	get_statistics(lanai);
1787#endif /* !DEBUG_RW */
1788	mod_timer(&lanai->timer, jiffies + LANAI_POLL_PERIOD);
1789}
1790
1791static inline void lanai_timed_poll_start(struct lanai_dev *lanai)
1792{
1793	timer_setup(&lanai->timer, lanai_timed_poll, 0);
1794	lanai->timer.expires = jiffies + LANAI_POLL_PERIOD;
 
 
1795	add_timer(&lanai->timer);
1796}
1797
1798static inline void lanai_timed_poll_stop(struct lanai_dev *lanai)
1799{
1800	del_timer_sync(&lanai->timer);
1801}
1802
1803/* -------------------- INTERRUPT SERVICE: */
1804
1805static inline void lanai_int_1(struct lanai_dev *lanai, u32 reason)
1806{
1807	u32 ack = 0;
1808	if (reason & INT_SERVICE) {
1809		ack = INT_SERVICE;
1810		spin_lock(&lanai->servicelock);
1811		run_service(lanai);
1812		spin_unlock(&lanai->servicelock);
1813	}
1814	if (reason & (INT_AAL0_STR | INT_AAL0)) {
1815		ack |= reason & (INT_AAL0_STR | INT_AAL0);
1816		vcc_rx_aal0(lanai);
1817	}
1818	/* The rest of the interrupts are pretty rare */
1819	if (ack == reason)
1820		goto done;
1821	if (reason & INT_STATS) {
1822		reason &= ~INT_STATS;	/* No need to ack */
1823		get_statistics(lanai);
1824	}
1825	if (reason & INT_STATUS) {
1826		ack |= reason & INT_STATUS;
1827		lanai_check_status(lanai);
1828	}
1829	if (unlikely(reason & INT_DMASHUT)) {
1830		printk(KERN_ERR DEV_LABEL "(itf %d): driver error - DMA "
1831		    "shutdown, reason=0x%08X, address=0x%08X\n",
1832		    lanai->number, (unsigned int) (reason & INT_DMASHUT),
1833		    (unsigned int) reg_read(lanai, DMA_Addr_Reg));
1834		if (reason & INT_TABORTBM) {
1835			lanai_reset(lanai);
1836			return;
1837		}
1838		ack |= (reason & INT_DMASHUT);
1839		printk(KERN_ERR DEV_LABEL "(itf %d): re-enabling DMA\n",
1840		    lanai->number);
1841		conf1_write(lanai);
1842		lanai->stats.dma_reenable++;
1843		pcistatus_check(lanai, 0);
1844	}
1845	if (unlikely(reason & INT_TABORTSENT)) {
1846		ack |= (reason & INT_TABORTSENT);
1847		printk(KERN_ERR DEV_LABEL "(itf %d): sent PCI target abort\n",
1848		    lanai->number);
1849		pcistatus_check(lanai, 0);
1850	}
1851	if (unlikely(reason & INT_SEGSHUT)) {
1852		printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
1853		    "segmentation shutdown, reason=0x%08X\n", lanai->number,
1854		    (unsigned int) (reason & INT_SEGSHUT));
1855		lanai_reset(lanai);
1856		return;
1857	}
1858	if (unlikely(reason & (INT_PING | INT_WAKE))) {
1859		printk(KERN_ERR DEV_LABEL "(itf %d): driver error - "
1860		    "unexpected interrupt 0x%08X, resetting\n",
1861		    lanai->number,
1862		    (unsigned int) (reason & (INT_PING | INT_WAKE)));
1863		lanai_reset(lanai);
1864		return;
1865	}
1866#ifdef DEBUG
1867	if (unlikely(ack != reason)) {
1868		DPRINTK("unacked ints: 0x%08X\n",
1869		    (unsigned int) (reason & ~ack));
1870		ack = reason;
1871	}
1872#endif
1873   done:
1874	if (ack != 0)
1875		reg_write(lanai, ack, IntAck_Reg);
1876}
1877
1878static irqreturn_t lanai_int(int irq, void *devid)
1879{
1880	struct lanai_dev *lanai = devid;
1881	u32 reason;
1882
1883#ifdef USE_POWERDOWN
1884	/*
1885	 * If we're powered down we shouldn't be generating any interrupts -
1886	 * so assume that this is a shared interrupt line and it's for someone
1887	 * else
1888	 */
1889	if (unlikely(lanai->conf1 & CONFIG1_POWERDOWN))
1890		return IRQ_NONE;
1891#endif
1892
1893	reason = intr_pending(lanai);
1894	if (reason == 0)
1895		return IRQ_NONE;	/* Must be for someone else */
1896
1897	do {
1898		if (unlikely(reason == 0xFFFFFFFF))
1899			break;		/* Maybe we've been unplugged? */
1900		lanai_int_1(lanai, reason);
1901		reason = intr_pending(lanai);
1902	} while (reason != 0);
1903
1904	return IRQ_HANDLED;
1905}
1906
1907/* TODO - it would be nice if we could use the "delayed interrupt" system
1908 *   to some advantage
1909 */
1910
1911/* -------------------- CHECK BOARD ID/REV: */
1912
1913/*
1914 * The board id and revision are stored both in the reset register and
1915 * in the PCI configuration space - the documentation says to check
1916 * each of them.  If revp!=NULL we store the revision there
1917 */
1918static int check_board_id_and_rev(const char *name, u32 val, int *revp)
1919{
1920	DPRINTK("%s says board_id=%d, board_rev=%d\n", name,
1921		(int) RESET_GET_BOARD_ID(val),
1922		(int) RESET_GET_BOARD_REV(val));
1923	if (RESET_GET_BOARD_ID(val) != BOARD_ID_LANAI256) {
1924		printk(KERN_ERR DEV_LABEL ": Found %s board-id %d -- not a "
1925		    "Lanai 25.6\n", name, (int) RESET_GET_BOARD_ID(val));
1926		return -ENODEV;
1927	}
1928	if (revp != NULL)
1929		*revp = RESET_GET_BOARD_REV(val);
1930	return 0;
1931}
1932
1933/* -------------------- PCI INITIALIZATION/SHUTDOWN: */
1934
1935static int lanai_pci_start(struct lanai_dev *lanai)
1936{
1937	struct pci_dev *pci = lanai->pci;
1938	int result;
1939
1940	if (pci_enable_device(pci) != 0) {
1941		printk(KERN_ERR DEV_LABEL "(itf %d): can't enable "
1942		    "PCI device", lanai->number);
1943		return -ENXIO;
1944	}
1945	pci_set_master(pci);
1946	if (dma_set_mask_and_coherent(&pci->dev, DMA_BIT_MASK(32)) != 0) {
 
 
 
 
 
1947		printk(KERN_WARNING DEV_LABEL
1948		    "(itf %d): No suitable DMA available.\n", lanai->number);
1949		return -EBUSY;
1950	}
1951	result = check_board_id_and_rev("PCI", pci->subsystem_device, NULL);
1952	if (result != 0)
1953		return result;
1954	/* Set latency timer to zero as per lanai docs */
1955	result = pci_write_config_byte(pci, PCI_LATENCY_TIMER, 0);
1956	if (result != PCIBIOS_SUCCESSFUL) {
1957		printk(KERN_ERR DEV_LABEL "(itf %d): can't write "
1958		    "PCI_LATENCY_TIMER: %d\n", lanai->number, result);
1959		return -EINVAL;
1960	}
1961	pcistatus_check(lanai, 1);
1962	pcistatus_check(lanai, 0);
1963	return 0;
1964}
1965
1966/* -------------------- VPI/VCI ALLOCATION: */
1967
1968/*
1969 * We _can_ use VCI==0 for normal traffic, but only for UBR (or we'll
1970 * get a CBRZERO interrupt), and we can use it only if no one is receiving
1971 * AAL0 traffic (since they will use the same queue) - according to the
1972 * docs we shouldn't even use it for AAL0 traffic
1973 */
1974static inline int vci0_is_ok(struct lanai_dev *lanai,
1975	const struct atm_qos *qos)
1976{
1977	if (qos->txtp.traffic_class == ATM_CBR || qos->aal == ATM_AAL0)
1978		return 0;
1979	if (qos->rxtp.traffic_class != ATM_NONE) {
1980		if (lanai->naal0 != 0)
1981			return 0;
1982		lanai->conf2 |= CONFIG2_VCI0_NORMAL;
1983		conf2_write_if_powerup(lanai);
1984	}
1985	return 1;
1986}
1987
1988/* return true if vci is currently unused, or if requested qos is
1989 * compatible
1990 */
1991static int vci_is_ok(struct lanai_dev *lanai, vci_t vci,
1992	const struct atm_vcc *atmvcc)
1993{
1994	const struct atm_qos *qos = &atmvcc->qos;
1995	const struct lanai_vcc *lvcc = lanai->vccs[vci];
1996	if (vci == 0 && !vci0_is_ok(lanai, qos))
1997		return 0;
1998	if (unlikely(lvcc != NULL)) {
1999		if (qos->rxtp.traffic_class != ATM_NONE &&
2000		    lvcc->rx.atmvcc != NULL && lvcc->rx.atmvcc != atmvcc)
2001			return 0;
2002		if (qos->txtp.traffic_class != ATM_NONE &&
2003		    lvcc->tx.atmvcc != NULL && lvcc->tx.atmvcc != atmvcc)
2004			return 0;
2005		if (qos->txtp.traffic_class == ATM_CBR &&
2006		    lanai->cbrvcc != NULL && lanai->cbrvcc != atmvcc)
2007			return 0;
2008	}
2009	if (qos->aal == ATM_AAL0 && lanai->naal0 == 0 &&
2010	    qos->rxtp.traffic_class != ATM_NONE) {
2011		const struct lanai_vcc *vci0 = lanai->vccs[0];
2012		if (vci0 != NULL && vci0->rx.atmvcc != NULL)
2013			return 0;
2014		lanai->conf2 &= ~CONFIG2_VCI0_NORMAL;
2015		conf2_write_if_powerup(lanai);
2016	}
2017	return 1;
2018}
2019
2020static int lanai_normalize_ci(struct lanai_dev *lanai,
2021	const struct atm_vcc *atmvcc, short *vpip, vci_t *vcip)
2022{
2023	switch (*vpip) {
2024		case ATM_VPI_ANY:
2025			*vpip = 0;
2026			/* FALLTHROUGH */
2027		case 0:
2028			break;
2029		default:
2030			return -EADDRINUSE;
2031	}
2032	switch (*vcip) {
2033		case ATM_VCI_ANY:
2034			for (*vcip = ATM_NOT_RSV_VCI; *vcip < lanai->num_vci;
2035			    (*vcip)++)
2036				if (vci_is_ok(lanai, *vcip, atmvcc))
2037					return 0;
2038			return -EADDRINUSE;
2039		default:
2040			if (*vcip >= lanai->num_vci || *vcip < 0 ||
2041			    !vci_is_ok(lanai, *vcip, atmvcc))
2042				return -EADDRINUSE;
2043	}
2044	return 0;
2045}
2046
2047/* -------------------- MANAGE CBR: */
2048
2049/*
2050 * CBR ICG is stored as a fixed-point number with 4 fractional bits.
2051 * Note that storing a number greater than 2046.0 will result in
2052 * incorrect shaping
2053 */
2054#define CBRICG_FRAC_BITS	(4)
2055#define CBRICG_MAX		(2046 << CBRICG_FRAC_BITS)
2056
2057/*
2058 * ICG is related to PCR with the formula PCR = MAXPCR / (ICG + 1)
2059 * where MAXPCR is (according to the docs) 25600000/(54*8),
2060 * which is equal to (3125<<9)/27.
2061 *
2062 * Solving for ICG, we get:
2063 *    ICG = MAXPCR/PCR - 1
2064 *    ICG = (3125<<9)/(27*PCR) - 1
2065 *    ICG = ((3125<<9) - (27*PCR)) / (27*PCR)
2066 *
2067 * The end result is supposed to be a fixed-point number with FRAC_BITS
2068 * bits of a fractional part, so we keep everything in the numerator
2069 * shifted by that much as we compute
2070 *
2071 */
2072static int pcr_to_cbricg(const struct atm_qos *qos)
2073{
2074	int rounddown = 0;	/* 1 = Round PCR down, i.e. round ICG _up_ */
2075	int x, icg, pcr = atm_pcr_goal(&qos->txtp);
2076	if (pcr == 0)		/* Use maximum bandwidth */
2077		return 0;
2078	if (pcr < 0) {
2079		rounddown = 1;
2080		pcr = -pcr;
2081	}
2082	x = pcr * 27;
2083	icg = (3125 << (9 + CBRICG_FRAC_BITS)) - (x << CBRICG_FRAC_BITS);
2084	if (rounddown)
2085		icg += x - 1;
2086	icg /= x;
2087	if (icg > CBRICG_MAX)
2088		icg = CBRICG_MAX;
2089	DPRINTK("pcr_to_cbricg: pcr=%d rounddown=%c icg=%d\n",
2090	    pcr, rounddown ? 'Y' : 'N', icg);
2091	return icg;
2092}
2093
2094static inline void lanai_cbr_setup(struct lanai_dev *lanai)
2095{
2096	reg_write(lanai, pcr_to_cbricg(&lanai->cbrvcc->qos), CBR_ICG_Reg);
2097	reg_write(lanai, lanai->cbrvcc->vci, CBR_PTR_Reg);
2098	lanai->conf2 |= CONFIG2_CBR_ENABLE;
2099	conf2_write(lanai);
2100}
2101
2102static inline void lanai_cbr_shutdown(struct lanai_dev *lanai)
2103{
2104	lanai->conf2 &= ~CONFIG2_CBR_ENABLE;
2105	conf2_write(lanai);
2106}
2107
2108/* -------------------- OPERATIONS: */
2109
2110/* setup a newly detected device */
2111static int lanai_dev_open(struct atm_dev *atmdev)
2112{
2113	struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2114	unsigned long raw_base;
2115	int result;
2116
2117	DPRINTK("In lanai_dev_open()\n");
2118	/* Basic device fields */
2119	lanai->number = atmdev->number;
2120	lanai->num_vci = NUM_VCI;
2121	bitmap_zero(lanai->backlog_vccs, NUM_VCI);
2122	bitmap_zero(lanai->transmit_ready, NUM_VCI);
2123	lanai->naal0 = 0;
2124#ifdef USE_POWERDOWN
2125	lanai->nbound = 0;
2126#endif
2127	lanai->cbrvcc = NULL;
2128	memset(&lanai->stats, 0, sizeof lanai->stats);
2129	spin_lock_init(&lanai->endtxlock);
2130	spin_lock_init(&lanai->servicelock);
2131	atmdev->ci_range.vpi_bits = 0;
2132	atmdev->ci_range.vci_bits = 0;
2133	while (1 << atmdev->ci_range.vci_bits < lanai->num_vci)
2134		atmdev->ci_range.vci_bits++;
2135	atmdev->link_rate = ATM_25_PCR;
2136
2137	/* 3.2: PCI initialization */
2138	if ((result = lanai_pci_start(lanai)) != 0)
2139		goto error;
2140	raw_base = lanai->pci->resource[0].start;
2141	lanai->base = (bus_addr_t) ioremap(raw_base, LANAI_MAPPING_SIZE);
2142	if (lanai->base == NULL) {
2143		printk(KERN_ERR DEV_LABEL ": couldn't remap I/O space\n");
2144		result = -ENOMEM;
2145		goto error_pci;
2146	}
2147	/* 3.3: Reset lanai and PHY */
2148	reset_board(lanai);
2149	lanai->conf1 = reg_read(lanai, Config1_Reg);
2150	lanai->conf1 &= ~(CONFIG1_GPOUT1 | CONFIG1_POWERDOWN |
2151	    CONFIG1_MASK_LEDMODE);
2152	lanai->conf1 |= CONFIG1_SET_LEDMODE(LEDMODE_NOT_SOOL);
2153	reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
2154	udelay(1000);
2155	conf1_write(lanai);
2156
2157	/*
2158	 * 3.4: Turn on endian mode for big-endian hardware
2159	 *   We don't actually want to do this - the actual bit fields
2160	 *   in the endian register are not documented anywhere.
2161	 *   Instead we do the bit-flipping ourselves on big-endian
2162	 *   hardware.
2163	 *
2164	 * 3.5: get the board ID/rev by reading the reset register
2165	 */
2166	result = check_board_id_and_rev("register",
2167	    reg_read(lanai, Reset_Reg), &lanai->board_rev);
2168	if (result != 0)
2169		goto error_unmap;
2170
2171	/* 3.6: read EEPROM */
2172	if ((result = eeprom_read(lanai)) != 0)
2173		goto error_unmap;
2174	if ((result = eeprom_validate(lanai)) != 0)
2175		goto error_unmap;
2176
2177	/* 3.7: re-reset PHY, do loopback tests, setup PHY */
2178	reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg);
2179	udelay(1000);
2180	conf1_write(lanai);
2181	/* TODO - loopback tests */
2182	lanai->conf1 |= (CONFIG1_GPOUT2 | CONFIG1_GPOUT3 | CONFIG1_DMA_ENABLE);
2183	conf1_write(lanai);
2184
2185	/* 3.8/3.9: test and initialize card SRAM */
2186	if ((result = sram_test_and_clear(lanai)) != 0)
2187		goto error_unmap;
2188
2189	/* 3.10: initialize lanai registers */
2190	lanai->conf1 |= CONFIG1_DMA_ENABLE;
2191	conf1_write(lanai);
2192	if ((result = service_buffer_allocate(lanai)) != 0)
2193		goto error_unmap;
2194	if ((result = vcc_table_allocate(lanai)) != 0)
2195		goto error_service;
2196	lanai->conf2 = (lanai->num_vci >= 512 ? CONFIG2_HOWMANY : 0) |
2197	    CONFIG2_HEC_DROP |	/* ??? */ CONFIG2_PTI7_MODE;
2198	conf2_write(lanai);
2199	reg_write(lanai, TX_FIFO_DEPTH, TxDepth_Reg);
2200	reg_write(lanai, 0, CBR_ICG_Reg);	/* CBR defaults to no limit */
2201	if ((result = request_irq(lanai->pci->irq, lanai_int, IRQF_SHARED,
2202	    DEV_LABEL, lanai)) != 0) {
2203		printk(KERN_ERR DEV_LABEL ": can't allocate interrupt\n");
2204		goto error_vcctable;
2205	}
2206	mb();				/* Make sure that all that made it */
2207	intr_enable(lanai, INT_ALL & ~(INT_PING | INT_WAKE));
2208	/* 3.11: initialize loop mode (i.e. turn looping off) */
2209	lanai->conf1 = (lanai->conf1 & ~CONFIG1_MASK_LOOPMODE) |
2210	    CONFIG1_SET_LOOPMODE(LOOPMODE_NORMAL) |
2211	    CONFIG1_GPOUT2 | CONFIG1_GPOUT3;
2212	conf1_write(lanai);
2213	lanai->status = reg_read(lanai, Status_Reg);
2214	/* We're now done initializing this card */
2215#ifdef USE_POWERDOWN
2216	lanai->conf1 |= CONFIG1_POWERDOWN;
2217	conf1_write(lanai);
2218#endif
2219	memcpy(atmdev->esi, eeprom_mac(lanai), ESI_LEN);
2220	lanai_timed_poll_start(lanai);
2221	printk(KERN_NOTICE DEV_LABEL "(itf %d): rev.%d, base=%p, irq=%u "
2222		"(%pMF)\n", lanai->number, (int) lanai->pci->revision,
2223		lanai->base, lanai->pci->irq, atmdev->esi);
2224	printk(KERN_NOTICE DEV_LABEL "(itf %d): LANAI%s, serialno=%u(0x%X), "
2225	    "board_rev=%d\n", lanai->number,
2226	    lanai->type==lanai2 ? "2" : "HB", (unsigned int) lanai->serialno,
2227	    (unsigned int) lanai->serialno, lanai->board_rev);
2228	return 0;
2229
2230    error_vcctable:
2231	vcc_table_deallocate(lanai);
2232    error_service:
2233	service_buffer_deallocate(lanai);
2234    error_unmap:
2235	reset_board(lanai);
2236#ifdef USE_POWERDOWN
2237	lanai->conf1 = reg_read(lanai, Config1_Reg) | CONFIG1_POWERDOWN;
2238	conf1_write(lanai);
2239#endif
2240	iounmap(lanai->base);
2241    error_pci:
2242	pci_disable_device(lanai->pci);
2243    error:
2244	return result;
2245}
2246
2247/* called when device is being shutdown, and all vcc's are gone - higher
2248 * levels will deallocate the atm device for us
2249 */
2250static void lanai_dev_close(struct atm_dev *atmdev)
2251{
2252	struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2253	printk(KERN_INFO DEV_LABEL "(itf %d): shutting down interface\n",
2254	    lanai->number);
2255	lanai_timed_poll_stop(lanai);
2256#ifdef USE_POWERDOWN
2257	lanai->conf1 = reg_read(lanai, Config1_Reg) & ~CONFIG1_POWERDOWN;
2258	conf1_write(lanai);
2259#endif
2260	intr_disable(lanai, INT_ALL);
2261	free_irq(lanai->pci->irq, lanai);
2262	reset_board(lanai);
2263#ifdef USE_POWERDOWN
2264	lanai->conf1 |= CONFIG1_POWERDOWN;
2265	conf1_write(lanai);
2266#endif
2267	pci_disable_device(lanai->pci);
2268	vcc_table_deallocate(lanai);
2269	service_buffer_deallocate(lanai);
2270	iounmap(lanai->base);
2271	kfree(lanai);
2272}
2273
2274/* close a vcc */
2275static void lanai_close(struct atm_vcc *atmvcc)
2276{
2277	struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
2278	struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2279	if (lvcc == NULL)
2280		return;
2281	clear_bit(ATM_VF_READY, &atmvcc->flags);
2282	clear_bit(ATM_VF_PARTIAL, &atmvcc->flags);
2283	if (lvcc->rx.atmvcc == atmvcc) {
2284		lanai_shutdown_rx_vci(lvcc);
2285		if (atmvcc->qos.aal == ATM_AAL0) {
2286			if (--lanai->naal0 <= 0)
2287				aal0_buffer_free(lanai);
2288		} else
2289			lanai_buf_deallocate(&lvcc->rx.buf, lanai->pci);
2290		lvcc->rx.atmvcc = NULL;
2291	}
2292	if (lvcc->tx.atmvcc == atmvcc) {
2293		if (atmvcc == lanai->cbrvcc) {
2294			if (lvcc->vbase != NULL)
2295				lanai_cbr_shutdown(lanai);
2296			lanai->cbrvcc = NULL;
2297		}
2298		lanai_shutdown_tx_vci(lanai, lvcc);
2299		lanai_buf_deallocate(&lvcc->tx.buf, lanai->pci);
2300		lvcc->tx.atmvcc = NULL;
2301	}
2302	if (--lvcc->nref == 0) {
2303		host_vcc_unbind(lanai, lvcc);
2304		kfree(lvcc);
2305	}
2306	atmvcc->dev_data = NULL;
2307	clear_bit(ATM_VF_ADDR, &atmvcc->flags);
2308}
2309
2310/* open a vcc on the card to vpi/vci */
2311static int lanai_open(struct atm_vcc *atmvcc)
2312{
2313	struct lanai_dev *lanai;
2314	struct lanai_vcc *lvcc;
2315	int result = 0;
2316	int vci = atmvcc->vci;
2317	short vpi = atmvcc->vpi;
2318	/* we don't support partial open - it's not really useful anyway */
2319	if ((test_bit(ATM_VF_PARTIAL, &atmvcc->flags)) ||
2320	    (vpi == ATM_VPI_UNSPEC) || (vci == ATM_VCI_UNSPEC))
2321		return -EINVAL;
2322	lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2323	result = lanai_normalize_ci(lanai, atmvcc, &vpi, &vci);
2324	if (unlikely(result != 0))
2325		goto out;
2326	set_bit(ATM_VF_ADDR, &atmvcc->flags);
2327	if (atmvcc->qos.aal != ATM_AAL0 && atmvcc->qos.aal != ATM_AAL5)
2328		return -EINVAL;
2329	DPRINTK(DEV_LABEL "(itf %d): open %d.%d\n", lanai->number,
2330	    (int) vpi, vci);
2331	lvcc = lanai->vccs[vci];
2332	if (lvcc == NULL) {
2333		lvcc = new_lanai_vcc();
2334		if (unlikely(lvcc == NULL))
2335			return -ENOMEM;
2336		atmvcc->dev_data = lvcc;
2337	}
2338	lvcc->nref++;
2339	if (atmvcc->qos.rxtp.traffic_class != ATM_NONE) {
2340		APRINTK(lvcc->rx.atmvcc == NULL, "rx.atmvcc!=NULL, vci=%d\n",
2341		    vci);
2342		if (atmvcc->qos.aal == ATM_AAL0) {
2343			if (lanai->naal0 == 0)
2344				result = aal0_buffer_allocate(lanai);
2345		} else
2346			result = lanai_setup_rx_vci_aal5(
2347			    lanai, lvcc, &atmvcc->qos);
2348		if (unlikely(result != 0))
2349			goto out_free;
2350		lvcc->rx.atmvcc = atmvcc;
2351		lvcc->stats.rx_nomem = 0;
2352		lvcc->stats.x.aal5.rx_badlen = 0;
2353		lvcc->stats.x.aal5.service_trash = 0;
2354		lvcc->stats.x.aal5.service_stream = 0;
2355		lvcc->stats.x.aal5.service_rxcrc = 0;
2356		if (atmvcc->qos.aal == ATM_AAL0)
2357			lanai->naal0++;
2358	}
2359	if (atmvcc->qos.txtp.traffic_class != ATM_NONE) {
2360		APRINTK(lvcc->tx.atmvcc == NULL, "tx.atmvcc!=NULL, vci=%d\n",
2361		    vci);
2362		result = lanai_setup_tx_vci(lanai, lvcc, &atmvcc->qos);
2363		if (unlikely(result != 0))
2364			goto out_free;
2365		lvcc->tx.atmvcc = atmvcc;
2366		if (atmvcc->qos.txtp.traffic_class == ATM_CBR) {
2367			APRINTK(lanai->cbrvcc == NULL,
2368			    "cbrvcc!=NULL, vci=%d\n", vci);
2369			lanai->cbrvcc = atmvcc;
2370		}
2371	}
2372	host_vcc_bind(lanai, lvcc, vci);
2373	/*
2374	 * Make sure everything made it to RAM before we tell the card about
2375	 * the VCC
2376	 */
2377	wmb();
2378	if (atmvcc == lvcc->rx.atmvcc)
2379		host_vcc_start_rx(lvcc);
2380	if (atmvcc == lvcc->tx.atmvcc) {
2381		host_vcc_start_tx(lvcc);
2382		if (lanai->cbrvcc == atmvcc)
2383			lanai_cbr_setup(lanai);
2384	}
2385	set_bit(ATM_VF_READY, &atmvcc->flags);
2386	return 0;
2387    out_free:
2388	lanai_close(atmvcc);
2389    out:
2390	return result;
2391}
2392
2393static int lanai_send(struct atm_vcc *atmvcc, struct sk_buff *skb)
2394{
2395	struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data;
2396	struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data;
2397	unsigned long flags;
2398	if (unlikely(lvcc == NULL || lvcc->vbase == NULL ||
2399	      lvcc->tx.atmvcc != atmvcc))
2400		goto einval;
2401#ifdef DEBUG
2402	if (unlikely(skb == NULL)) {
2403		DPRINTK("lanai_send: skb==NULL for vci=%d\n", atmvcc->vci);
2404		goto einval;
2405	}
2406	if (unlikely(lanai == NULL)) {
2407		DPRINTK("lanai_send: lanai==NULL for vci=%d\n", atmvcc->vci);
2408		goto einval;
2409	}
2410#endif
2411	ATM_SKB(skb)->vcc = atmvcc;
2412	switch (atmvcc->qos.aal) {
2413		case ATM_AAL5:
2414			read_lock_irqsave(&vcc_sklist_lock, flags);
2415			vcc_tx_aal5(lanai, lvcc, skb);
2416			read_unlock_irqrestore(&vcc_sklist_lock, flags);
2417			return 0;
2418		case ATM_AAL0:
2419			if (unlikely(skb->len != ATM_CELL_SIZE-1))
2420				goto einval;
2421  /* NOTE - this next line is technically invalid - we haven't unshared skb */
2422			cpu_to_be32s((u32 *) skb->data);
2423			read_lock_irqsave(&vcc_sklist_lock, flags);
2424			vcc_tx_aal0(lanai, lvcc, skb);
2425			read_unlock_irqrestore(&vcc_sklist_lock, flags);
2426			return 0;
2427	}
2428	DPRINTK("lanai_send: bad aal=%d on vci=%d\n", (int) atmvcc->qos.aal,
2429	    atmvcc->vci);
2430    einval:
2431	lanai_free_skb(atmvcc, skb);
2432	return -EINVAL;
2433}
2434
2435static int lanai_change_qos(struct atm_vcc *atmvcc,
2436	/*const*/ struct atm_qos *qos, int flags)
2437{
2438	return -EBUSY;		/* TODO: need to write this */
2439}
2440
2441#ifndef CONFIG_PROC_FS
2442#define lanai_proc_read NULL
2443#else
2444static int lanai_proc_read(struct atm_dev *atmdev, loff_t *pos, char *page)
2445{
2446	struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data;
2447	loff_t left = *pos;
2448	struct lanai_vcc *lvcc;
2449	if (left-- == 0)
2450		return sprintf(page, DEV_LABEL "(itf %d): chip=LANAI%s, "
2451		    "serial=%u, magic=0x%08X, num_vci=%d\n",
2452		    atmdev->number, lanai->type==lanai2 ? "2" : "HB",
2453		    (unsigned int) lanai->serialno,
2454		    (unsigned int) lanai->magicno, lanai->num_vci);
2455	if (left-- == 0)
2456		return sprintf(page, "revision: board=%d, pci_if=%d\n",
2457		    lanai->board_rev, (int) lanai->pci->revision);
2458	if (left-- == 0)
2459		return sprintf(page, "EEPROM ESI: %pM\n",
2460		    &lanai->eeprom[EEPROM_MAC]);
2461	if (left-- == 0)
2462		return sprintf(page, "status: SOOL=%d, LOCD=%d, LED=%d, "
2463		    "GPIN=%d\n", (lanai->status & STATUS_SOOL) ? 1 : 0,
2464		    (lanai->status & STATUS_LOCD) ? 1 : 0,
2465		    (lanai->status & STATUS_LED) ? 1 : 0,
2466		    (lanai->status & STATUS_GPIN) ? 1 : 0);
2467	if (left-- == 0)
2468		return sprintf(page, "global buffer sizes: service=%zu, "
2469		    "aal0_rx=%zu\n", lanai_buf_size(&lanai->service),
2470		    lanai->naal0 ? lanai_buf_size(&lanai->aal0buf) : 0);
2471	if (left-- == 0) {
2472		get_statistics(lanai);
2473		return sprintf(page, "cells in error: overflow=%u, "
2474		    "closed_vci=%u, bad_HEC=%u, rx_fifo=%u\n",
2475		    lanai->stats.ovfl_trash, lanai->stats.vci_trash,
2476		    lanai->stats.hec_err, lanai->stats.atm_ovfl);
2477	}
2478	if (left-- == 0)
2479		return sprintf(page, "PCI errors: parity_detect=%u, "
2480		    "master_abort=%u, master_target_abort=%u,\n",
2481		    lanai->stats.pcierr_parity_detect,
2482		    lanai->stats.pcierr_serr_set,
2483		    lanai->stats.pcierr_m_target_abort);
2484	if (left-- == 0)
2485		return sprintf(page, "            slave_target_abort=%u, "
2486		    "master_parity=%u\n", lanai->stats.pcierr_s_target_abort,
2487		    lanai->stats.pcierr_master_parity);
2488	if (left-- == 0)
2489		return sprintf(page, "                     no_tx=%u, "
2490		    "no_rx=%u, bad_rx_aal=%u\n", lanai->stats.service_norx,
2491		    lanai->stats.service_notx,
2492		    lanai->stats.service_rxnotaal5);
2493	if (left-- == 0)
2494		return sprintf(page, "resets: dma=%u, card=%u\n",
2495		    lanai->stats.dma_reenable, lanai->stats.card_reset);
2496	/* At this point, "left" should be the VCI we're looking for */
2497	read_lock(&vcc_sklist_lock);
2498	for (; ; left++) {
2499		if (left >= NUM_VCI) {
2500			left = 0;
2501			goto out;
2502		}
2503		if ((lvcc = lanai->vccs[left]) != NULL)
2504			break;
2505		(*pos)++;
2506	}
2507	/* Note that we re-use "left" here since we're done with it */
2508	left = sprintf(page, "VCI %4d: nref=%d, rx_nomem=%u",  (vci_t) left,
2509	    lvcc->nref, lvcc->stats.rx_nomem);
2510	if (lvcc->rx.atmvcc != NULL) {
2511		left += sprintf(&page[left], ",\n          rx_AAL=%d",
2512		    lvcc->rx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0);
2513		if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5)
2514			left += sprintf(&page[left], ", rx_buf_size=%zu, "
2515			    "rx_bad_len=%u,\n          rx_service_trash=%u, "
2516			    "rx_service_stream=%u, rx_bad_crc=%u",
2517			    lanai_buf_size(&lvcc->rx.buf),
2518			    lvcc->stats.x.aal5.rx_badlen,
2519			    lvcc->stats.x.aal5.service_trash,
2520			    lvcc->stats.x.aal5.service_stream,
2521			    lvcc->stats.x.aal5.service_rxcrc);
2522	}
2523	if (lvcc->tx.atmvcc != NULL)
2524		left += sprintf(&page[left], ",\n          tx_AAL=%d, "
2525		    "tx_buf_size=%zu, tx_qos=%cBR, tx_backlogged=%c",
2526		    lvcc->tx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0,
2527		    lanai_buf_size(&lvcc->tx.buf),
2528		    lvcc->tx.atmvcc == lanai->cbrvcc ? 'C' : 'U',
2529		    vcc_is_backlogged(lvcc) ? 'Y' : 'N');
2530	page[left++] = '\n';
2531	page[left] = '\0';
2532    out:
2533	read_unlock(&vcc_sklist_lock);
2534	return left;
2535}
2536#endif /* CONFIG_PROC_FS */
2537
2538/* -------------------- HOOKS: */
2539
2540static const struct atmdev_ops ops = {
2541	.dev_close	= lanai_dev_close,
2542	.open		= lanai_open,
2543	.close		= lanai_close,
2544	.getsockopt	= NULL,
2545	.setsockopt	= NULL,
2546	.send		= lanai_send,
2547	.phy_put	= NULL,
2548	.phy_get	= NULL,
2549	.change_qos	= lanai_change_qos,
2550	.proc_read	= lanai_proc_read,
2551	.owner		= THIS_MODULE
2552};
2553
2554/* initialize one probed card */
2555static int lanai_init_one(struct pci_dev *pci,
2556			  const struct pci_device_id *ident)
2557{
2558	struct lanai_dev *lanai;
2559	struct atm_dev *atmdev;
2560	int result;
2561
2562	lanai = kmalloc(sizeof(*lanai), GFP_KERNEL);
2563	if (lanai == NULL) {
2564		printk(KERN_ERR DEV_LABEL
2565		       ": couldn't allocate dev_data structure!\n");
2566		return -ENOMEM;
2567	}
2568
2569	atmdev = atm_dev_register(DEV_LABEL, &pci->dev, &ops, -1, NULL);
2570	if (atmdev == NULL) {
2571		printk(KERN_ERR DEV_LABEL
2572		    ": couldn't register atm device!\n");
2573		kfree(lanai);
2574		return -EBUSY;
2575	}
2576
2577	atmdev->dev_data = lanai;
2578	lanai->pci = pci;
2579	lanai->type = (enum lanai_type) ident->device;
2580
2581	result = lanai_dev_open(atmdev);
2582	if (result != 0) {
2583		DPRINTK("lanai_start() failed, err=%d\n", -result);
2584		atm_dev_deregister(atmdev);
2585		kfree(lanai);
2586	}
2587	return result;
2588}
2589
2590static const struct pci_device_id lanai_pci_tbl[] = {
2591	{ PCI_VDEVICE(EF, PCI_DEVICE_ID_EF_ATM_LANAI2) },
2592	{ PCI_VDEVICE(EF, PCI_DEVICE_ID_EF_ATM_LANAIHB) },
2593	{ 0, }	/* terminal entry */
2594};
2595MODULE_DEVICE_TABLE(pci, lanai_pci_tbl);
2596
2597static struct pci_driver lanai_driver = {
2598	.name     = DEV_LABEL,
2599	.id_table = lanai_pci_tbl,
2600	.probe    = lanai_init_one,
2601};
2602
2603module_pci_driver(lanai_driver);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2604
2605MODULE_AUTHOR("Mitchell Blank Jr <mitch@sfgoth.com>");
2606MODULE_DESCRIPTION("Efficient Networks Speedstream 3010 driver");
2607MODULE_LICENSE("GPL");