Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Utility functions for x86 operand and address decoding
   3 *
   4 * Copyright (C) Intel Corporation 2017
   5 */
   6#include <linux/kernel.h>
   7#include <linux/string.h>
   8#include <linux/ratelimit.h>
   9#include <linux/mmu_context.h>
  10#include <asm/desc_defs.h>
  11#include <asm/desc.h>
  12#include <asm/inat.h>
  13#include <asm/insn.h>
  14#include <asm/insn-eval.h>
  15#include <asm/ldt.h>
  16#include <asm/vm86.h>
  17
  18#undef pr_fmt
  19#define pr_fmt(fmt) "insn: " fmt
  20
  21enum reg_type {
  22	REG_TYPE_RM = 0,
  23	REG_TYPE_INDEX,
  24	REG_TYPE_BASE,
  25};
  26
  27/**
  28 * is_string_insn() - Determine if instruction is a string instruction
  29 * @insn:	Instruction containing the opcode to inspect
  30 *
  31 * Returns:
  32 *
  33 * true if the instruction, determined by the opcode, is any of the
  34 * string instructions as defined in the Intel Software Development manual.
  35 * False otherwise.
  36 */
  37static bool is_string_insn(struct insn *insn)
  38{
  39	insn_get_opcode(insn);
  40
  41	/* All string instructions have a 1-byte opcode. */
  42	if (insn->opcode.nbytes != 1)
  43		return false;
  44
  45	switch (insn->opcode.bytes[0]) {
  46	case 0x6c ... 0x6f:	/* INS, OUTS */
  47	case 0xa4 ... 0xa7:	/* MOVS, CMPS */
  48	case 0xaa ... 0xaf:	/* STOS, LODS, SCAS */
  49		return true;
  50	default:
  51		return false;
  52	}
  53}
  54
  55/**
  56 * get_seg_reg_override_idx() - obtain segment register override index
  57 * @insn:	Valid instruction with segment override prefixes
  58 *
  59 * Inspect the instruction prefixes in @insn and find segment overrides, if any.
  60 *
  61 * Returns:
  62 *
  63 * A constant identifying the segment register to use, among CS, SS, DS,
  64 * ES, FS, or GS. INAT_SEG_REG_DEFAULT is returned if no segment override
  65 * prefixes were found.
  66 *
  67 * -EINVAL in case of error.
  68 */
  69static int get_seg_reg_override_idx(struct insn *insn)
  70{
  71	int idx = INAT_SEG_REG_DEFAULT;
  72	int num_overrides = 0, i;
  73
  74	insn_get_prefixes(insn);
  75
  76	/* Look for any segment override prefixes. */
  77	for (i = 0; i < insn->prefixes.nbytes; i++) {
  78		insn_attr_t attr;
  79
  80		attr = inat_get_opcode_attribute(insn->prefixes.bytes[i]);
  81		switch (attr) {
  82		case INAT_MAKE_PREFIX(INAT_PFX_CS):
  83			idx = INAT_SEG_REG_CS;
  84			num_overrides++;
  85			break;
  86		case INAT_MAKE_PREFIX(INAT_PFX_SS):
  87			idx = INAT_SEG_REG_SS;
  88			num_overrides++;
  89			break;
  90		case INAT_MAKE_PREFIX(INAT_PFX_DS):
  91			idx = INAT_SEG_REG_DS;
  92			num_overrides++;
  93			break;
  94		case INAT_MAKE_PREFIX(INAT_PFX_ES):
  95			idx = INAT_SEG_REG_ES;
  96			num_overrides++;
  97			break;
  98		case INAT_MAKE_PREFIX(INAT_PFX_FS):
  99			idx = INAT_SEG_REG_FS;
 100			num_overrides++;
 101			break;
 102		case INAT_MAKE_PREFIX(INAT_PFX_GS):
 103			idx = INAT_SEG_REG_GS;
 104			num_overrides++;
 105			break;
 106		/* No default action needed. */
 107		}
 108	}
 109
 110	/* More than one segment override prefix leads to undefined behavior. */
 111	if (num_overrides > 1)
 112		return -EINVAL;
 113
 114	return idx;
 115}
 116
 117/**
 118 * check_seg_overrides() - check if segment override prefixes are allowed
 119 * @insn:	Valid instruction with segment override prefixes
 120 * @regoff:	Operand offset, in pt_regs, for which the check is performed
 121 *
 122 * For a particular register used in register-indirect addressing, determine if
 123 * segment override prefixes can be used. Specifically, no overrides are allowed
 124 * for rDI if used with a string instruction.
 125 *
 126 * Returns:
 127 *
 128 * True if segment override prefixes can be used with the register indicated
 129 * in @regoff. False if otherwise.
 130 */
 131static bool check_seg_overrides(struct insn *insn, int regoff)
 132{
 133	if (regoff == offsetof(struct pt_regs, di) && is_string_insn(insn))
 134		return false;
 135
 136	return true;
 137}
 138
 139/**
 140 * resolve_default_seg() - resolve default segment register index for an operand
 141 * @insn:	Instruction with opcode and address size. Must be valid.
 142 * @regs:	Register values as seen when entering kernel mode
 143 * @off:	Operand offset, in pt_regs, for which resolution is needed
 144 *
 145 * Resolve the default segment register index associated with the instruction
 146 * operand register indicated by @off. Such index is resolved based on defaults
 147 * described in the Intel Software Development Manual.
 148 *
 149 * Returns:
 150 *
 151 * If in protected mode, a constant identifying the segment register to use,
 152 * among CS, SS, ES or DS. If in long mode, INAT_SEG_REG_IGNORE.
 153 *
 154 * -EINVAL in case of error.
 155 */
 156static int resolve_default_seg(struct insn *insn, struct pt_regs *regs, int off)
 157{
 158	if (user_64bit_mode(regs))
 159		return INAT_SEG_REG_IGNORE;
 160	/*
 161	 * Resolve the default segment register as described in Section 3.7.4
 162	 * of the Intel Software Development Manual Vol. 1:
 163	 *
 164	 *  + DS for all references involving r[ABCD]X, and rSI.
 165	 *  + If used in a string instruction, ES for rDI. Otherwise, DS.
 166	 *  + AX, CX and DX are not valid register operands in 16-bit address
 167	 *    encodings but are valid for 32-bit and 64-bit encodings.
 168	 *  + -EDOM is reserved to identify for cases in which no register
 169	 *    is used (i.e., displacement-only addressing). Use DS.
 170	 *  + SS for rSP or rBP.
 171	 *  + CS for rIP.
 172	 */
 173
 174	switch (off) {
 175	case offsetof(struct pt_regs, ax):
 176	case offsetof(struct pt_regs, cx):
 177	case offsetof(struct pt_regs, dx):
 178		/* Need insn to verify address size. */
 179		if (insn->addr_bytes == 2)
 180			return -EINVAL;
 181
 182	case -EDOM:
 183	case offsetof(struct pt_regs, bx):
 184	case offsetof(struct pt_regs, si):
 185		return INAT_SEG_REG_DS;
 186
 187	case offsetof(struct pt_regs, di):
 188		if (is_string_insn(insn))
 189			return INAT_SEG_REG_ES;
 190		return INAT_SEG_REG_DS;
 191
 192	case offsetof(struct pt_regs, bp):
 193	case offsetof(struct pt_regs, sp):
 194		return INAT_SEG_REG_SS;
 195
 196	case offsetof(struct pt_regs, ip):
 197		return INAT_SEG_REG_CS;
 198
 199	default:
 200		return -EINVAL;
 201	}
 202}
 203
 204/**
 205 * resolve_seg_reg() - obtain segment register index
 206 * @insn:	Instruction with operands
 207 * @regs:	Register values as seen when entering kernel mode
 208 * @regoff:	Operand offset, in pt_regs, used to deterimine segment register
 209 *
 210 * Determine the segment register associated with the operands and, if
 211 * applicable, prefixes and the instruction pointed by @insn.
 212 *
 213 * The segment register associated to an operand used in register-indirect
 214 * addressing depends on:
 215 *
 216 * a) Whether running in long mode (in such a case segments are ignored, except
 217 * if FS or GS are used).
 218 *
 219 * b) Whether segment override prefixes can be used. Certain instructions and
 220 *    registers do not allow override prefixes.
 221 *
 222 * c) Whether segment overrides prefixes are found in the instruction prefixes.
 223 *
 224 * d) If there are not segment override prefixes or they cannot be used, the
 225 *    default segment register associated with the operand register is used.
 226 *
 227 * The function checks first if segment override prefixes can be used with the
 228 * operand indicated by @regoff. If allowed, obtain such overridden segment
 229 * register index. Lastly, if not prefixes were found or cannot be used, resolve
 230 * the segment register index to use based on the defaults described in the
 231 * Intel documentation. In long mode, all segment register indexes will be
 232 * ignored, except if overrides were found for FS or GS. All these operations
 233 * are done using helper functions.
 234 *
 235 * The operand register, @regoff, is represented as the offset from the base of
 236 * pt_regs.
 237 *
 238 * As stated, the main use of this function is to determine the segment register
 239 * index based on the instruction, its operands and prefixes. Hence, @insn
 240 * must be valid. However, if @regoff indicates rIP, we don't need to inspect
 241 * @insn at all as in this case CS is used in all cases. This case is checked
 242 * before proceeding further.
 243 *
 244 * Please note that this function does not return the value in the segment
 245 * register (i.e., the segment selector) but our defined index. The segment
 246 * selector needs to be obtained using get_segment_selector() and passing the
 247 * segment register index resolved by this function.
 248 *
 249 * Returns:
 250 *
 251 * An index identifying the segment register to use, among CS, SS, DS,
 252 * ES, FS, or GS. INAT_SEG_REG_IGNORE is returned if running in long mode.
 253 *
 254 * -EINVAL in case of error.
 255 */
 256static int resolve_seg_reg(struct insn *insn, struct pt_regs *regs, int regoff)
 257{
 258	int idx;
 259
 260	/*
 261	 * In the unlikely event of having to resolve the segment register
 262	 * index for rIP, do it first. Segment override prefixes should not
 263	 * be used. Hence, it is not necessary to inspect the instruction,
 264	 * which may be invalid at this point.
 265	 */
 266	if (regoff == offsetof(struct pt_regs, ip)) {
 267		if (user_64bit_mode(regs))
 268			return INAT_SEG_REG_IGNORE;
 269		else
 270			return INAT_SEG_REG_CS;
 271	}
 272
 273	if (!insn)
 274		return -EINVAL;
 275
 276	if (!check_seg_overrides(insn, regoff))
 277		return resolve_default_seg(insn, regs, regoff);
 278
 279	idx = get_seg_reg_override_idx(insn);
 280	if (idx < 0)
 281		return idx;
 282
 283	if (idx == INAT_SEG_REG_DEFAULT)
 284		return resolve_default_seg(insn, regs, regoff);
 285
 286	/*
 287	 * In long mode, segment override prefixes are ignored, except for
 288	 * overrides for FS and GS.
 289	 */
 290	if (user_64bit_mode(regs)) {
 291		if (idx != INAT_SEG_REG_FS &&
 292		    idx != INAT_SEG_REG_GS)
 293			idx = INAT_SEG_REG_IGNORE;
 294	}
 295
 296	return idx;
 297}
 298
 299/**
 300 * get_segment_selector() - obtain segment selector
 301 * @regs:		Register values as seen when entering kernel mode
 302 * @seg_reg_idx:	Segment register index to use
 303 *
 304 * Obtain the segment selector from any of the CS, SS, DS, ES, FS, GS segment
 305 * registers. In CONFIG_X86_32, the segment is obtained from either pt_regs or
 306 * kernel_vm86_regs as applicable. In CONFIG_X86_64, CS and SS are obtained
 307 * from pt_regs. DS, ES, FS and GS are obtained by reading the actual CPU
 308 * registers. This done for only for completeness as in CONFIG_X86_64 segment
 309 * registers are ignored.
 310 *
 311 * Returns:
 312 *
 313 * Value of the segment selector, including null when running in
 314 * long mode.
 315 *
 316 * -EINVAL on error.
 317 */
 318static short get_segment_selector(struct pt_regs *regs, int seg_reg_idx)
 319{
 320#ifdef CONFIG_X86_64
 321	unsigned short sel;
 322
 323	switch (seg_reg_idx) {
 324	case INAT_SEG_REG_IGNORE:
 325		return 0;
 326	case INAT_SEG_REG_CS:
 327		return (unsigned short)(regs->cs & 0xffff);
 328	case INAT_SEG_REG_SS:
 329		return (unsigned short)(regs->ss & 0xffff);
 330	case INAT_SEG_REG_DS:
 331		savesegment(ds, sel);
 332		return sel;
 333	case INAT_SEG_REG_ES:
 334		savesegment(es, sel);
 335		return sel;
 336	case INAT_SEG_REG_FS:
 337		savesegment(fs, sel);
 338		return sel;
 339	case INAT_SEG_REG_GS:
 340		savesegment(gs, sel);
 341		return sel;
 342	default:
 343		return -EINVAL;
 344	}
 345#else /* CONFIG_X86_32 */
 346	struct kernel_vm86_regs *vm86regs = (struct kernel_vm86_regs *)regs;
 347
 348	if (v8086_mode(regs)) {
 349		switch (seg_reg_idx) {
 350		case INAT_SEG_REG_CS:
 351			return (unsigned short)(regs->cs & 0xffff);
 352		case INAT_SEG_REG_SS:
 353			return (unsigned short)(regs->ss & 0xffff);
 354		case INAT_SEG_REG_DS:
 355			return vm86regs->ds;
 356		case INAT_SEG_REG_ES:
 357			return vm86regs->es;
 358		case INAT_SEG_REG_FS:
 359			return vm86regs->fs;
 360		case INAT_SEG_REG_GS:
 361			return vm86regs->gs;
 362		case INAT_SEG_REG_IGNORE:
 363			/* fall through */
 364		default:
 365			return -EINVAL;
 366		}
 367	}
 368
 369	switch (seg_reg_idx) {
 370	case INAT_SEG_REG_CS:
 371		return (unsigned short)(regs->cs & 0xffff);
 372	case INAT_SEG_REG_SS:
 373		return (unsigned short)(regs->ss & 0xffff);
 374	case INAT_SEG_REG_DS:
 375		return (unsigned short)(regs->ds & 0xffff);
 376	case INAT_SEG_REG_ES:
 377		return (unsigned short)(regs->es & 0xffff);
 378	case INAT_SEG_REG_FS:
 379		return (unsigned short)(regs->fs & 0xffff);
 380	case INAT_SEG_REG_GS:
 381		/*
 382		 * GS may or may not be in regs as per CONFIG_X86_32_LAZY_GS.
 383		 * The macro below takes care of both cases.
 384		 */
 385		return get_user_gs(regs);
 386	case INAT_SEG_REG_IGNORE:
 387		/* fall through */
 388	default:
 389		return -EINVAL;
 390	}
 391#endif /* CONFIG_X86_64 */
 392}
 393
 394static int get_reg_offset(struct insn *insn, struct pt_regs *regs,
 395			  enum reg_type type)
 396{
 397	int regno = 0;
 398
 399	static const int regoff[] = {
 400		offsetof(struct pt_regs, ax),
 401		offsetof(struct pt_regs, cx),
 402		offsetof(struct pt_regs, dx),
 403		offsetof(struct pt_regs, bx),
 404		offsetof(struct pt_regs, sp),
 405		offsetof(struct pt_regs, bp),
 406		offsetof(struct pt_regs, si),
 407		offsetof(struct pt_regs, di),
 408#ifdef CONFIG_X86_64
 409		offsetof(struct pt_regs, r8),
 410		offsetof(struct pt_regs, r9),
 411		offsetof(struct pt_regs, r10),
 412		offsetof(struct pt_regs, r11),
 413		offsetof(struct pt_regs, r12),
 414		offsetof(struct pt_regs, r13),
 415		offsetof(struct pt_regs, r14),
 416		offsetof(struct pt_regs, r15),
 417#endif
 418	};
 419	int nr_registers = ARRAY_SIZE(regoff);
 420	/*
 421	 * Don't possibly decode a 32-bit instructions as
 422	 * reading a 64-bit-only register.
 423	 */
 424	if (IS_ENABLED(CONFIG_X86_64) && !insn->x86_64)
 425		nr_registers -= 8;
 426
 427	switch (type) {
 428	case REG_TYPE_RM:
 429		regno = X86_MODRM_RM(insn->modrm.value);
 430
 431		/*
 432		 * ModRM.mod == 0 and ModRM.rm == 5 means a 32-bit displacement
 433		 * follows the ModRM byte.
 434		 */
 435		if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5)
 436			return -EDOM;
 437
 438		if (X86_REX_B(insn->rex_prefix.value))
 439			regno += 8;
 440		break;
 441
 442	case REG_TYPE_INDEX:
 443		regno = X86_SIB_INDEX(insn->sib.value);
 444		if (X86_REX_X(insn->rex_prefix.value))
 445			regno += 8;
 446
 447		/*
 448		 * If ModRM.mod != 3 and SIB.index = 4 the scale*index
 449		 * portion of the address computation is null. This is
 450		 * true only if REX.X is 0. In such a case, the SIB index
 451		 * is used in the address computation.
 452		 */
 453		if (X86_MODRM_MOD(insn->modrm.value) != 3 && regno == 4)
 454			return -EDOM;
 455		break;
 456
 457	case REG_TYPE_BASE:
 458		regno = X86_SIB_BASE(insn->sib.value);
 459		/*
 460		 * If ModRM.mod is 0 and SIB.base == 5, the base of the
 461		 * register-indirect addressing is 0. In this case, a
 462		 * 32-bit displacement follows the SIB byte.
 463		 */
 464		if (!X86_MODRM_MOD(insn->modrm.value) && regno == 5)
 465			return -EDOM;
 466
 467		if (X86_REX_B(insn->rex_prefix.value))
 468			regno += 8;
 469		break;
 470
 471	default:
 472		pr_err_ratelimited("invalid register type: %d\n", type);
 473		return -EINVAL;
 474	}
 475
 476	if (regno >= nr_registers) {
 477		WARN_ONCE(1, "decoded an instruction with an invalid register");
 478		return -EINVAL;
 479	}
 480	return regoff[regno];
 481}
 482
 483/**
 484 * get_reg_offset_16() - Obtain offset of register indicated by instruction
 485 * @insn:	Instruction containing ModRM byte
 486 * @regs:	Register values as seen when entering kernel mode
 487 * @offs1:	Offset of the first operand register
 488 * @offs2:	Offset of the second opeand register, if applicable
 489 *
 490 * Obtain the offset, in pt_regs, of the registers indicated by the ModRM byte
 491 * in @insn. This function is to be used with 16-bit address encodings. The
 492 * @offs1 and @offs2 will be written with the offset of the two registers
 493 * indicated by the instruction. In cases where any of the registers is not
 494 * referenced by the instruction, the value will be set to -EDOM.
 495 *
 496 * Returns:
 497 *
 498 * 0 on success, -EINVAL on error.
 499 */
 500static int get_reg_offset_16(struct insn *insn, struct pt_regs *regs,
 501			     int *offs1, int *offs2)
 502{
 503	/*
 504	 * 16-bit addressing can use one or two registers. Specifics of
 505	 * encodings are given in Table 2-1. "16-Bit Addressing Forms with the
 506	 * ModR/M Byte" of the Intel Software Development Manual.
 507	 */
 508	static const int regoff1[] = {
 509		offsetof(struct pt_regs, bx),
 510		offsetof(struct pt_regs, bx),
 511		offsetof(struct pt_regs, bp),
 512		offsetof(struct pt_regs, bp),
 513		offsetof(struct pt_regs, si),
 514		offsetof(struct pt_regs, di),
 515		offsetof(struct pt_regs, bp),
 516		offsetof(struct pt_regs, bx),
 517	};
 518
 519	static const int regoff2[] = {
 520		offsetof(struct pt_regs, si),
 521		offsetof(struct pt_regs, di),
 522		offsetof(struct pt_regs, si),
 523		offsetof(struct pt_regs, di),
 524		-EDOM,
 525		-EDOM,
 526		-EDOM,
 527		-EDOM,
 528	};
 529
 530	if (!offs1 || !offs2)
 531		return -EINVAL;
 532
 533	/* Operand is a register, use the generic function. */
 534	if (X86_MODRM_MOD(insn->modrm.value) == 3) {
 535		*offs1 = insn_get_modrm_rm_off(insn, regs);
 536		*offs2 = -EDOM;
 537		return 0;
 538	}
 539
 540	*offs1 = regoff1[X86_MODRM_RM(insn->modrm.value)];
 541	*offs2 = regoff2[X86_MODRM_RM(insn->modrm.value)];
 542
 543	/*
 544	 * If ModRM.mod is 0 and ModRM.rm is 110b, then we use displacement-
 545	 * only addressing. This means that no registers are involved in
 546	 * computing the effective address. Thus, ensure that the first
 547	 * register offset is invalild. The second register offset is already
 548	 * invalid under the aforementioned conditions.
 549	 */
 550	if ((X86_MODRM_MOD(insn->modrm.value) == 0) &&
 551	    (X86_MODRM_RM(insn->modrm.value) == 6))
 552		*offs1 = -EDOM;
 553
 554	return 0;
 555}
 556
 557/**
 558 * get_desc() - Obtain pointer to a segment descriptor
 559 * @sel:	Segment selector
 560 *
 561 * Given a segment selector, obtain a pointer to the segment descriptor.
 562 * Both global and local descriptor tables are supported.
 563 *
 564 * Returns:
 565 *
 566 * Pointer to segment descriptor on success.
 567 *
 568 * NULL on error.
 569 */
 570static struct desc_struct *get_desc(unsigned short sel)
 571{
 572	struct desc_ptr gdt_desc = {0, 0};
 573	unsigned long desc_base;
 574
 575#ifdef CONFIG_MODIFY_LDT_SYSCALL
 576	if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT) {
 577		struct desc_struct *desc = NULL;
 578		struct ldt_struct *ldt;
 579
 580		/* Bits [15:3] contain the index of the desired entry. */
 581		sel >>= 3;
 582
 583		mutex_lock(&current->active_mm->context.lock);
 584		ldt = current->active_mm->context.ldt;
 585		if (ldt && sel < ldt->nr_entries)
 586			desc = &ldt->entries[sel];
 587
 588		mutex_unlock(&current->active_mm->context.lock);
 589
 590		return desc;
 591	}
 592#endif
 593	native_store_gdt(&gdt_desc);
 594
 595	/*
 596	 * Segment descriptors have a size of 8 bytes. Thus, the index is
 597	 * multiplied by 8 to obtain the memory offset of the desired descriptor
 598	 * from the base of the GDT. As bits [15:3] of the segment selector
 599	 * contain the index, it can be regarded as multiplied by 8 already.
 600	 * All that remains is to clear bits [2:0].
 601	 */
 602	desc_base = sel & ~(SEGMENT_RPL_MASK | SEGMENT_TI_MASK);
 603
 604	if (desc_base > gdt_desc.size)
 605		return NULL;
 606
 607	return (struct desc_struct *)(gdt_desc.address + desc_base);
 608}
 609
 610/**
 611 * insn_get_seg_base() - Obtain base address of segment descriptor.
 612 * @regs:		Register values as seen when entering kernel mode
 613 * @seg_reg_idx:	Index of the segment register pointing to seg descriptor
 614 *
 615 * Obtain the base address of the segment as indicated by the segment descriptor
 616 * pointed by the segment selector. The segment selector is obtained from the
 617 * input segment register index @seg_reg_idx.
 618 *
 619 * Returns:
 620 *
 621 * In protected mode, base address of the segment. Zero in long mode,
 622 * except when FS or GS are used. In virtual-8086 mode, the segment
 623 * selector shifted 4 bits to the right.
 624 *
 625 * -1L in case of error.
 626 */
 627unsigned long insn_get_seg_base(struct pt_regs *regs, int seg_reg_idx)
 628{
 629	struct desc_struct *desc;
 630	short sel;
 631
 632	sel = get_segment_selector(regs, seg_reg_idx);
 633	if (sel < 0)
 634		return -1L;
 635
 636	if (v8086_mode(regs))
 637		/*
 638		 * Base is simply the segment selector shifted 4
 639		 * bits to the right.
 640		 */
 641		return (unsigned long)(sel << 4);
 642
 643	if (user_64bit_mode(regs)) {
 644		/*
 645		 * Only FS or GS will have a base address, the rest of
 646		 * the segments' bases are forced to 0.
 647		 */
 648		unsigned long base;
 649
 650		if (seg_reg_idx == INAT_SEG_REG_FS)
 651			rdmsrl(MSR_FS_BASE, base);
 652		else if (seg_reg_idx == INAT_SEG_REG_GS)
 653			/*
 654			 * swapgs was called at the kernel entry point. Thus,
 655			 * MSR_KERNEL_GS_BASE will have the user-space GS base.
 656			 */
 657			rdmsrl(MSR_KERNEL_GS_BASE, base);
 658		else
 659			base = 0;
 660		return base;
 661	}
 662
 663	/* In protected mode the segment selector cannot be null. */
 664	if (!sel)
 665		return -1L;
 666
 667	desc = get_desc(sel);
 668	if (!desc)
 669		return -1L;
 670
 671	return get_desc_base(desc);
 672}
 673
 674/**
 675 * get_seg_limit() - Obtain the limit of a segment descriptor
 676 * @regs:		Register values as seen when entering kernel mode
 677 * @seg_reg_idx:	Index of the segment register pointing to seg descriptor
 678 *
 679 * Obtain the limit of the segment as indicated by the segment descriptor
 680 * pointed by the segment selector. The segment selector is obtained from the
 681 * input segment register index @seg_reg_idx.
 682 *
 683 * Returns:
 684 *
 685 * In protected mode, the limit of the segment descriptor in bytes.
 686 * In long mode and virtual-8086 mode, segment limits are not enforced. Thus,
 687 * limit is returned as -1L to imply a limit-less segment.
 688 *
 689 * Zero is returned on error.
 690 */
 691static unsigned long get_seg_limit(struct pt_regs *regs, int seg_reg_idx)
 692{
 693	struct desc_struct *desc;
 694	unsigned long limit;
 695	short sel;
 696
 697	sel = get_segment_selector(regs, seg_reg_idx);
 698	if (sel < 0)
 699		return 0;
 700
 701	if (user_64bit_mode(regs) || v8086_mode(regs))
 702		return -1L;
 703
 704	if (!sel)
 705		return 0;
 706
 707	desc = get_desc(sel);
 708	if (!desc)
 709		return 0;
 710
 711	/*
 712	 * If the granularity bit is set, the limit is given in multiples
 713	 * of 4096. This also means that the 12 least significant bits are
 714	 * not tested when checking the segment limits. In practice,
 715	 * this means that the segment ends in (limit << 12) + 0xfff.
 716	 */
 717	limit = get_desc_limit(desc);
 718	if (desc->g)
 719		limit = (limit << 12) + 0xfff;
 720
 721	return limit;
 722}
 723
 724/**
 725 * insn_get_code_seg_params() - Obtain code segment parameters
 726 * @regs:	Structure with register values as seen when entering kernel mode
 727 *
 728 * Obtain address and operand sizes of the code segment. It is obtained from the
 729 * selector contained in the CS register in regs. In protected mode, the default
 730 * address is determined by inspecting the L and D bits of the segment
 731 * descriptor. In virtual-8086 mode, the default is always two bytes for both
 732 * address and operand sizes.
 733 *
 734 * Returns:
 735 *
 736 * An int containing ORed-in default parameters on success.
 737 *
 738 * -EINVAL on error.
 739 */
 740int insn_get_code_seg_params(struct pt_regs *regs)
 741{
 742	struct desc_struct *desc;
 743	short sel;
 744
 745	if (v8086_mode(regs))
 746		/* Address and operand size are both 16-bit. */
 747		return INSN_CODE_SEG_PARAMS(2, 2);
 748
 749	sel = get_segment_selector(regs, INAT_SEG_REG_CS);
 750	if (sel < 0)
 751		return sel;
 752
 753	desc = get_desc(sel);
 754	if (!desc)
 755		return -EINVAL;
 756
 757	/*
 758	 * The most significant byte of the Type field of the segment descriptor
 759	 * determines whether a segment contains data or code. If this is a data
 760	 * segment, return error.
 761	 */
 762	if (!(desc->type & BIT(3)))
 763		return -EINVAL;
 764
 765	switch ((desc->l << 1) | desc->d) {
 766	case 0: /*
 767		 * Legacy mode. CS.L=0, CS.D=0. Address and operand size are
 768		 * both 16-bit.
 769		 */
 770		return INSN_CODE_SEG_PARAMS(2, 2);
 771	case 1: /*
 772		 * Legacy mode. CS.L=0, CS.D=1. Address and operand size are
 773		 * both 32-bit.
 774		 */
 775		return INSN_CODE_SEG_PARAMS(4, 4);
 776	case 2: /*
 777		 * IA-32e 64-bit mode. CS.L=1, CS.D=0. Address size is 64-bit;
 778		 * operand size is 32-bit.
 779		 */
 780		return INSN_CODE_SEG_PARAMS(4, 8);
 781	case 3: /* Invalid setting. CS.L=1, CS.D=1 */
 782		/* fall through */
 783	default:
 784		return -EINVAL;
 785	}
 786}
 787
 788/**
 789 * insn_get_modrm_rm_off() - Obtain register in r/m part of the ModRM byte
 790 * @insn:	Instruction containing the ModRM byte
 791 * @regs:	Register values as seen when entering kernel mode
 792 *
 793 * Returns:
 794 *
 795 * The register indicated by the r/m part of the ModRM byte. The
 796 * register is obtained as an offset from the base of pt_regs. In specific
 797 * cases, the returned value can be -EDOM to indicate that the particular value
 798 * of ModRM does not refer to a register and shall be ignored.
 799 */
 800int insn_get_modrm_rm_off(struct insn *insn, struct pt_regs *regs)
 801{
 802	return get_reg_offset(insn, regs, REG_TYPE_RM);
 803}
 804
 805/**
 806 * get_seg_base_limit() - obtain base address and limit of a segment
 807 * @insn:	Instruction. Must be valid.
 808 * @regs:	Register values as seen when entering kernel mode
 809 * @regoff:	Operand offset, in pt_regs, used to resolve segment descriptor
 810 * @base:	Obtained segment base
 811 * @limit:	Obtained segment limit
 812 *
 813 * Obtain the base address and limit of the segment associated with the operand
 814 * @regoff and, if any or allowed, override prefixes in @insn. This function is
 815 * different from insn_get_seg_base() as the latter does not resolve the segment
 816 * associated with the instruction operand. If a limit is not needed (e.g.,
 817 * when running in long mode), @limit can be NULL.
 818 *
 819 * Returns:
 820 *
 821 * 0 on success. @base and @limit will contain the base address and of the
 822 * resolved segment, respectively.
 823 *
 824 * -EINVAL on error.
 825 */
 826static int get_seg_base_limit(struct insn *insn, struct pt_regs *regs,
 827			      int regoff, unsigned long *base,
 828			      unsigned long *limit)
 829{
 830	int seg_reg_idx;
 831
 832	if (!base)
 833		return -EINVAL;
 834
 835	seg_reg_idx = resolve_seg_reg(insn, regs, regoff);
 836	if (seg_reg_idx < 0)
 837		return seg_reg_idx;
 838
 839	*base = insn_get_seg_base(regs, seg_reg_idx);
 840	if (*base == -1L)
 841		return -EINVAL;
 842
 843	if (!limit)
 844		return 0;
 845
 846	*limit = get_seg_limit(regs, seg_reg_idx);
 847	if (!(*limit))
 848		return -EINVAL;
 849
 850	return 0;
 851}
 852
 853/**
 854 * get_eff_addr_reg() - Obtain effective address from register operand
 855 * @insn:	Instruction. Must be valid.
 856 * @regs:	Register values as seen when entering kernel mode
 857 * @regoff:	Obtained operand offset, in pt_regs, with the effective address
 858 * @eff_addr:	Obtained effective address
 859 *
 860 * Obtain the effective address stored in the register operand as indicated by
 861 * the ModRM byte. This function is to be used only with register addressing
 862 * (i.e.,  ModRM.mod is 3). The effective address is saved in @eff_addr. The
 863 * register operand, as an offset from the base of pt_regs, is saved in @regoff;
 864 * such offset can then be used to resolve the segment associated with the
 865 * operand. This function can be used with any of the supported address sizes
 866 * in x86.
 867 *
 868 * Returns:
 869 *
 870 * 0 on success. @eff_addr will have the effective address stored in the
 871 * operand indicated by ModRM. @regoff will have such operand as an offset from
 872 * the base of pt_regs.
 873 *
 874 * -EINVAL on error.
 875 */
 876static int get_eff_addr_reg(struct insn *insn, struct pt_regs *regs,
 877			    int *regoff, long *eff_addr)
 878{
 879	insn_get_modrm(insn);
 880
 881	if (!insn->modrm.nbytes)
 882		return -EINVAL;
 883
 884	if (X86_MODRM_MOD(insn->modrm.value) != 3)
 885		return -EINVAL;
 886
 887	*regoff = get_reg_offset(insn, regs, REG_TYPE_RM);
 888	if (*regoff < 0)
 889		return -EINVAL;
 890
 891	/* Ignore bytes that are outside the address size. */
 892	if (insn->addr_bytes == 2)
 893		*eff_addr = regs_get_register(regs, *regoff) & 0xffff;
 894	else if (insn->addr_bytes == 4)
 895		*eff_addr = regs_get_register(regs, *regoff) & 0xffffffff;
 896	else /* 64-bit address */
 897		*eff_addr = regs_get_register(regs, *regoff);
 898
 899	return 0;
 900}
 901
 902/**
 903 * get_eff_addr_modrm() - Obtain referenced effective address via ModRM
 904 * @insn:	Instruction. Must be valid.
 905 * @regs:	Register values as seen when entering kernel mode
 906 * @regoff:	Obtained operand offset, in pt_regs, associated with segment
 907 * @eff_addr:	Obtained effective address
 908 *
 909 * Obtain the effective address referenced by the ModRM byte of @insn. After
 910 * identifying the registers involved in the register-indirect memory reference,
 911 * its value is obtained from the operands in @regs. The computed address is
 912 * stored @eff_addr. Also, the register operand that indicates the associated
 913 * segment is stored in @regoff, this parameter can later be used to determine
 914 * such segment.
 915 *
 916 * Returns:
 917 *
 918 * 0 on success. @eff_addr will have the referenced effective address. @regoff
 919 * will have a register, as an offset from the base of pt_regs, that can be used
 920 * to resolve the associated segment.
 921 *
 922 * -EINVAL on error.
 923 */
 924static int get_eff_addr_modrm(struct insn *insn, struct pt_regs *regs,
 925			      int *regoff, long *eff_addr)
 926{
 927	long tmp;
 928
 929	if (insn->addr_bytes != 8 && insn->addr_bytes != 4)
 930		return -EINVAL;
 931
 932	insn_get_modrm(insn);
 933
 934	if (!insn->modrm.nbytes)
 935		return -EINVAL;
 936
 937	if (X86_MODRM_MOD(insn->modrm.value) > 2)
 938		return -EINVAL;
 939
 940	*regoff = get_reg_offset(insn, regs, REG_TYPE_RM);
 941
 942	/*
 943	 * -EDOM means that we must ignore the address_offset. In such a case,
 944	 * in 64-bit mode the effective address relative to the rIP of the
 945	 * following instruction.
 946	 */
 947	if (*regoff == -EDOM) {
 948		if (user_64bit_mode(regs))
 949			tmp = regs->ip + insn->length;
 950		else
 951			tmp = 0;
 952	} else if (*regoff < 0) {
 953		return -EINVAL;
 954	} else {
 955		tmp = regs_get_register(regs, *regoff);
 956	}
 957
 958	if (insn->addr_bytes == 4) {
 959		int addr32 = (int)(tmp & 0xffffffff) + insn->displacement.value;
 960
 961		*eff_addr = addr32 & 0xffffffff;
 962	} else {
 963		*eff_addr = tmp + insn->displacement.value;
 964	}
 965
 966	return 0;
 967}
 968
 969/**
 970 * get_eff_addr_modrm_16() - Obtain referenced effective address via ModRM
 971 * @insn:	Instruction. Must be valid.
 972 * @regs:	Register values as seen when entering kernel mode
 973 * @regoff:	Obtained operand offset, in pt_regs, associated with segment
 974 * @eff_addr:	Obtained effective address
 975 *
 976 * Obtain the 16-bit effective address referenced by the ModRM byte of @insn.
 977 * After identifying the registers involved in the register-indirect memory
 978 * reference, its value is obtained from the operands in @regs. The computed
 979 * address is stored @eff_addr. Also, the register operand that indicates
 980 * the associated segment is stored in @regoff, this parameter can later be used
 981 * to determine such segment.
 982 *
 983 * Returns:
 984 *
 985 * 0 on success. @eff_addr will have the referenced effective address. @regoff
 986 * will have a register, as an offset from the base of pt_regs, that can be used
 987 * to resolve the associated segment.
 988 *
 989 * -EINVAL on error.
 990 */
 991static int get_eff_addr_modrm_16(struct insn *insn, struct pt_regs *regs,
 992				 int *regoff, short *eff_addr)
 993{
 994	int addr_offset1, addr_offset2, ret;
 995	short addr1 = 0, addr2 = 0, displacement;
 996
 997	if (insn->addr_bytes != 2)
 998		return -EINVAL;
 999
1000	insn_get_modrm(insn);
1001
1002	if (!insn->modrm.nbytes)
1003		return -EINVAL;
1004
1005	if (X86_MODRM_MOD(insn->modrm.value) > 2)
1006		return -EINVAL;
1007
1008	ret = get_reg_offset_16(insn, regs, &addr_offset1, &addr_offset2);
1009	if (ret < 0)
1010		return -EINVAL;
1011
1012	/*
1013	 * Don't fail on invalid offset values. They might be invalid because
1014	 * they cannot be used for this particular value of ModRM. Instead, use
1015	 * them in the computation only if they contain a valid value.
1016	 */
1017	if (addr_offset1 != -EDOM)
1018		addr1 = regs_get_register(regs, addr_offset1) & 0xffff;
1019
1020	if (addr_offset2 != -EDOM)
1021		addr2 = regs_get_register(regs, addr_offset2) & 0xffff;
1022
1023	displacement = insn->displacement.value & 0xffff;
1024	*eff_addr = addr1 + addr2 + displacement;
1025
1026	/*
1027	 * The first operand register could indicate to use of either SS or DS
1028	 * registers to obtain the segment selector.  The second operand
1029	 * register can only indicate the use of DS. Thus, the first operand
1030	 * will be used to obtain the segment selector.
1031	 */
1032	*regoff = addr_offset1;
1033
1034	return 0;
1035}
1036
1037/**
1038 * get_eff_addr_sib() - Obtain referenced effective address via SIB
1039 * @insn:	Instruction. Must be valid.
1040 * @regs:	Register values as seen when entering kernel mode
1041 * @regoff:	Obtained operand offset, in pt_regs, associated with segment
1042 * @eff_addr:	Obtained effective address
1043 *
1044 * Obtain the effective address referenced by the SIB byte of @insn. After
1045 * identifying the registers involved in the indexed, register-indirect memory
1046 * reference, its value is obtained from the operands in @regs. The computed
1047 * address is stored @eff_addr. Also, the register operand that indicates the
1048 * associated segment is stored in @regoff, this parameter can later be used to
1049 * determine such segment.
1050 *
1051 * Returns:
1052 *
1053 * 0 on success. @eff_addr will have the referenced effective address.
1054 * @base_offset will have a register, as an offset from the base of pt_regs,
1055 * that can be used to resolve the associated segment.
1056 *
1057 * -EINVAL on error.
1058 */
1059static int get_eff_addr_sib(struct insn *insn, struct pt_regs *regs,
1060			    int *base_offset, long *eff_addr)
1061{
1062	long base, indx;
1063	int indx_offset;
1064
1065	if (insn->addr_bytes != 8 && insn->addr_bytes != 4)
1066		return -EINVAL;
1067
1068	insn_get_modrm(insn);
1069
1070	if (!insn->modrm.nbytes)
1071		return -EINVAL;
1072
1073	if (X86_MODRM_MOD(insn->modrm.value) > 2)
1074		return -EINVAL;
1075
1076	insn_get_sib(insn);
1077
1078	if (!insn->sib.nbytes)
1079		return -EINVAL;
1080
1081	*base_offset = get_reg_offset(insn, regs, REG_TYPE_BASE);
1082	indx_offset = get_reg_offset(insn, regs, REG_TYPE_INDEX);
1083
1084	/*
1085	 * Negative values in the base and index offset means an error when
1086	 * decoding the SIB byte. Except -EDOM, which means that the registers
1087	 * should not be used in the address computation.
1088	 */
1089	if (*base_offset == -EDOM)
1090		base = 0;
1091	else if (*base_offset < 0)
1092		return -EINVAL;
1093	else
1094		base = regs_get_register(regs, *base_offset);
1095
1096	if (indx_offset == -EDOM)
1097		indx = 0;
1098	else if (indx_offset < 0)
1099		return -EINVAL;
1100	else
1101		indx = regs_get_register(regs, indx_offset);
1102
1103	if (insn->addr_bytes == 4) {
1104		int addr32, base32, idx32;
1105
1106		base32 = base & 0xffffffff;
1107		idx32 = indx & 0xffffffff;
1108
1109		addr32 = base32 + idx32 * (1 << X86_SIB_SCALE(insn->sib.value));
1110		addr32 += insn->displacement.value;
1111
1112		*eff_addr = addr32 & 0xffffffff;
1113	} else {
1114		*eff_addr = base + indx * (1 << X86_SIB_SCALE(insn->sib.value));
1115		*eff_addr += insn->displacement.value;
1116	}
1117
1118	return 0;
1119}
1120
1121/**
1122 * get_addr_ref_16() - Obtain the 16-bit address referred by instruction
1123 * @insn:	Instruction containing ModRM byte and displacement
1124 * @regs:	Register values as seen when entering kernel mode
1125 *
1126 * This function is to be used with 16-bit address encodings. Obtain the memory
1127 * address referred by the instruction's ModRM and displacement bytes. Also, the
1128 * segment used as base is determined by either any segment override prefixes in
1129 * @insn or the default segment of the registers involved in the address
1130 * computation. In protected mode, segment limits are enforced.
1131 *
1132 * Returns:
1133 *
1134 * Linear address referenced by the instruction operands on success.
1135 *
1136 * -1L on error.
1137 */
1138static void __user *get_addr_ref_16(struct insn *insn, struct pt_regs *regs)
1139{
1140	unsigned long linear_addr = -1L, seg_base, seg_limit;
1141	int ret, regoff;
1142	short eff_addr;
1143	long tmp;
1144
1145	insn_get_modrm(insn);
1146	insn_get_displacement(insn);
1147
1148	if (insn->addr_bytes != 2)
1149		goto out;
1150
1151	if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1152		ret = get_eff_addr_reg(insn, regs, &regoff, &tmp);
1153		if (ret)
1154			goto out;
1155
1156		eff_addr = tmp;
1157	} else {
1158		ret = get_eff_addr_modrm_16(insn, regs, &regoff, &eff_addr);
1159		if (ret)
1160			goto out;
1161	}
1162
1163	ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit);
1164	if (ret)
1165		goto out;
1166
1167	/*
1168	 * Before computing the linear address, make sure the effective address
1169	 * is within the limits of the segment. In virtual-8086 mode, segment
1170	 * limits are not enforced. In such a case, the segment limit is -1L to
1171	 * reflect this fact.
1172	 */
1173	if ((unsigned long)(eff_addr & 0xffff) > seg_limit)
1174		goto out;
1175
1176	linear_addr = (unsigned long)(eff_addr & 0xffff) + seg_base;
1177
1178	/* Limit linear address to 20 bits */
1179	if (v8086_mode(regs))
1180		linear_addr &= 0xfffff;
1181
1182out:
1183	return (void __user *)linear_addr;
1184}
1185
1186/**
1187 * get_addr_ref_32() - Obtain a 32-bit linear address
1188 * @insn:	Instruction with ModRM, SIB bytes and displacement
1189 * @regs:	Register values as seen when entering kernel mode
1190 *
1191 * This function is to be used with 32-bit address encodings to obtain the
1192 * linear memory address referred by the instruction's ModRM, SIB,
1193 * displacement bytes and segment base address, as applicable. If in protected
1194 * mode, segment limits are enforced.
1195 *
1196 * Returns:
1197 *
1198 * Linear address referenced by instruction and registers on success.
1199 *
1200 * -1L on error.
1201 */
1202static void __user *get_addr_ref_32(struct insn *insn, struct pt_regs *regs)
1203{
1204	unsigned long linear_addr = -1L, seg_base, seg_limit;
1205	int eff_addr, regoff;
1206	long tmp;
1207	int ret;
1208
1209	if (insn->addr_bytes != 4)
1210		goto out;
1211
1212	if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1213		ret = get_eff_addr_reg(insn, regs, &regoff, &tmp);
1214		if (ret)
1215			goto out;
1216
1217		eff_addr = tmp;
1218
1219	} else {
1220		if (insn->sib.nbytes) {
1221			ret = get_eff_addr_sib(insn, regs, &regoff, &tmp);
1222			if (ret)
1223				goto out;
1224
1225			eff_addr = tmp;
1226		} else {
1227			ret = get_eff_addr_modrm(insn, regs, &regoff, &tmp);
1228			if (ret)
1229				goto out;
1230
1231			eff_addr = tmp;
1232		}
1233	}
1234
1235	ret = get_seg_base_limit(insn, regs, regoff, &seg_base, &seg_limit);
1236	if (ret)
1237		goto out;
1238
1239	/*
1240	 * In protected mode, before computing the linear address, make sure
1241	 * the effective address is within the limits of the segment.
1242	 * 32-bit addresses can be used in long and virtual-8086 modes if an
1243	 * address override prefix is used. In such cases, segment limits are
1244	 * not enforced. When in virtual-8086 mode, the segment limit is -1L
1245	 * to reflect this situation.
1246	 *
1247	 * After computed, the effective address is treated as an unsigned
1248	 * quantity.
1249	 */
1250	if (!user_64bit_mode(regs) && ((unsigned int)eff_addr > seg_limit))
1251		goto out;
1252
1253	/*
1254	 * Even though 32-bit address encodings are allowed in virtual-8086
1255	 * mode, the address range is still limited to [0x-0xffff].
1256	 */
1257	if (v8086_mode(regs) && (eff_addr & ~0xffff))
1258		goto out;
1259
1260	/*
1261	 * Data type long could be 64 bits in size. Ensure that our 32-bit
1262	 * effective address is not sign-extended when computing the linear
1263	 * address.
1264	 */
1265	linear_addr = (unsigned long)(eff_addr & 0xffffffff) + seg_base;
1266
1267	/* Limit linear address to 20 bits */
1268	if (v8086_mode(regs))
1269		linear_addr &= 0xfffff;
1270
1271out:
1272	return (void __user *)linear_addr;
1273}
1274
1275/**
1276 * get_addr_ref_64() - Obtain a 64-bit linear address
1277 * @insn:	Instruction struct with ModRM and SIB bytes and displacement
1278 * @regs:	Structure with register values as seen when entering kernel mode
1279 *
1280 * This function is to be used with 64-bit address encodings to obtain the
1281 * linear memory address referred by the instruction's ModRM, SIB,
1282 * displacement bytes and segment base address, as applicable.
1283 *
1284 * Returns:
1285 *
1286 * Linear address referenced by instruction and registers on success.
1287 *
1288 * -1L on error.
1289 */
1290#ifndef CONFIG_X86_64
1291static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs)
1292{
1293	return (void __user *)-1L;
1294}
1295#else
1296static void __user *get_addr_ref_64(struct insn *insn, struct pt_regs *regs)
1297{
1298	unsigned long linear_addr = -1L, seg_base;
1299	int regoff, ret;
1300	long eff_addr;
1301
1302	if (insn->addr_bytes != 8)
1303		goto out;
1304
1305	if (X86_MODRM_MOD(insn->modrm.value) == 3) {
1306		ret = get_eff_addr_reg(insn, regs, &regoff, &eff_addr);
1307		if (ret)
1308			goto out;
1309
1310	} else {
1311		if (insn->sib.nbytes) {
1312			ret = get_eff_addr_sib(insn, regs, &regoff, &eff_addr);
1313			if (ret)
1314				goto out;
1315		} else {
1316			ret = get_eff_addr_modrm(insn, regs, &regoff, &eff_addr);
1317			if (ret)
1318				goto out;
1319		}
1320
1321	}
1322
1323	ret = get_seg_base_limit(insn, regs, regoff, &seg_base, NULL);
1324	if (ret)
1325		goto out;
1326
1327	linear_addr = (unsigned long)eff_addr + seg_base;
1328
1329out:
1330	return (void __user *)linear_addr;
1331}
1332#endif /* CONFIG_X86_64 */
1333
1334/**
1335 * insn_get_addr_ref() - Obtain the linear address referred by instruction
1336 * @insn:	Instruction structure containing ModRM byte and displacement
1337 * @regs:	Structure with register values as seen when entering kernel mode
1338 *
1339 * Obtain the linear address referred by the instruction's ModRM, SIB and
1340 * displacement bytes, and segment base, as applicable. In protected mode,
1341 * segment limits are enforced.
1342 *
1343 * Returns:
1344 *
1345 * Linear address referenced by instruction and registers on success.
1346 *
1347 * -1L on error.
1348 */
1349void __user *insn_get_addr_ref(struct insn *insn, struct pt_regs *regs)
1350{
1351	if (!insn || !regs)
1352		return (void __user *)-1L;
1353
1354	switch (insn->addr_bytes) {
1355	case 2:
1356		return get_addr_ref_16(insn, regs);
1357	case 4:
1358		return get_addr_ref_32(insn, regs);
1359	case 8:
1360		return get_addr_ref_64(insn, regs);
1361	default:
1362		return (void __user *)-1L;
1363	}
1364}