Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 *	Intel SMP support routines.
  3 *
  4 *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
  5 *	(c) 1998-99, 2000, 2009 Ingo Molnar <mingo@redhat.com>
  6 *      (c) 2002,2003 Andi Kleen, SuSE Labs.
  7 *
  8 *	i386 and x86_64 integration by Glauber Costa <gcosta@redhat.com>
  9 *
 10 *	This code is released under the GNU General Public License version 2 or
 11 *	later.
 12 */
 13
 14#include <linux/init.h>
 15
 16#include <linux/mm.h>
 17#include <linux/delay.h>
 18#include <linux/spinlock.h>
 
 19#include <linux/kernel_stat.h>
 20#include <linux/mc146818rtc.h>
 21#include <linux/cache.h>
 22#include <linux/interrupt.h>
 23#include <linux/cpu.h>
 24#include <linux/gfp.h>
 25
 26#include <asm/mtrr.h>
 27#include <asm/tlbflush.h>
 28#include <asm/mmu_context.h>
 29#include <asm/proto.h>
 30#include <asm/apic.h>
 
 
 
 
 
 
 31/*
 32 *	Some notes on x86 processor bugs affecting SMP operation:
 33 *
 34 *	Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
 35 *	The Linux implications for SMP are handled as follows:
 36 *
 37 *	Pentium III / [Xeon]
 38 *		None of the E1AP-E3AP errata are visible to the user.
 39 *
 40 *	E1AP.	see PII A1AP
 41 *	E2AP.	see PII A2AP
 42 *	E3AP.	see PII A3AP
 43 *
 44 *	Pentium II / [Xeon]
 45 *		None of the A1AP-A3AP errata are visible to the user.
 46 *
 47 *	A1AP.	see PPro 1AP
 48 *	A2AP.	see PPro 2AP
 49 *	A3AP.	see PPro 7AP
 50 *
 51 *	Pentium Pro
 52 *		None of 1AP-9AP errata are visible to the normal user,
 53 *	except occasional delivery of 'spurious interrupt' as trap #15.
 54 *	This is very rare and a non-problem.
 55 *
 56 *	1AP.	Linux maps APIC as non-cacheable
 57 *	2AP.	worked around in hardware
 58 *	3AP.	fixed in C0 and above steppings microcode update.
 59 *		Linux does not use excessive STARTUP_IPIs.
 60 *	4AP.	worked around in hardware
 61 *	5AP.	symmetric IO mode (normal Linux operation) not affected.
 62 *		'noapic' mode has vector 0xf filled out properly.
 63 *	6AP.	'noapic' mode might be affected - fixed in later steppings
 64 *	7AP.	We do not assume writes to the LVT deassering IRQs
 65 *	8AP.	We do not enable low power mode (deep sleep) during MP bootup
 66 *	9AP.	We do not use mixed mode
 67 *
 68 *	Pentium
 69 *		There is a marginal case where REP MOVS on 100MHz SMP
 70 *	machines with B stepping processors can fail. XXX should provide
 71 *	an L1cache=Writethrough or L1cache=off option.
 72 *
 73 *		B stepping CPUs may hang. There are hardware work arounds
 74 *	for this. We warn about it in case your board doesn't have the work
 75 *	arounds. Basically that's so I can tell anyone with a B stepping
 76 *	CPU and SMP problems "tough".
 77 *
 78 *	Specific items [From Pentium Processor Specification Update]
 79 *
 80 *	1AP.	Linux doesn't use remote read
 81 *	2AP.	Linux doesn't trust APIC errors
 82 *	3AP.	We work around this
 83 *	4AP.	Linux never generated 3 interrupts of the same priority
 84 *		to cause a lost local interrupt.
 85 *	5AP.	Remote read is never used
 86 *	6AP.	not affected - worked around in hardware
 87 *	7AP.	not affected - worked around in hardware
 88 *	8AP.	worked around in hardware - we get explicit CS errors if not
 89 *	9AP.	only 'noapic' mode affected. Might generate spurious
 90 *		interrupts, we log only the first one and count the
 91 *		rest silently.
 92 *	10AP.	not affected - worked around in hardware
 93 *	11AP.	Linux reads the APIC between writes to avoid this, as per
 94 *		the documentation. Make sure you preserve this as it affects
 95 *		the C stepping chips too.
 96 *	12AP.	not affected - worked around in hardware
 97 *	13AP.	not affected - worked around in hardware
 98 *	14AP.	we always deassert INIT during bootup
 99 *	15AP.	not affected - worked around in hardware
100 *	16AP.	not affected - worked around in hardware
101 *	17AP.	not affected - worked around in hardware
102 *	18AP.	not affected - worked around in hardware
103 *	19AP.	not affected - worked around in BIOS
104 *
105 *	If this sounds worrying believe me these bugs are either ___RARE___,
106 *	or are signal timing bugs worked around in hardware and there's
107 *	about nothing of note with C stepping upwards.
108 */
109
 
 
 
110/*
111 * this function sends a 'reschedule' IPI to another CPU.
112 * it goes straight through and wastes no time serializing
113 * anything. Worst case is that we lose a reschedule ...
114 */
115static void native_smp_send_reschedule(int cpu)
116{
117	if (unlikely(cpu_is_offline(cpu))) {
118		WARN_ON(1);
119		return;
120	}
121	apic->send_IPI_mask(cpumask_of(cpu), RESCHEDULE_VECTOR);
122}
123
124void native_send_call_func_single_ipi(int cpu)
125{
126	apic->send_IPI_mask(cpumask_of(cpu), CALL_FUNCTION_SINGLE_VECTOR);
127}
128
129void native_send_call_func_ipi(const struct cpumask *mask)
130{
131	cpumask_var_t allbutself;
132
133	if (!alloc_cpumask_var(&allbutself, GFP_ATOMIC)) {
134		apic->send_IPI_mask(mask, CALL_FUNCTION_VECTOR);
135		return;
136	}
137
138	cpumask_copy(allbutself, cpu_online_mask);
139	cpumask_clear_cpu(smp_processor_id(), allbutself);
140
141	if (cpumask_equal(mask, allbutself) &&
142	    cpumask_equal(cpu_online_mask, cpu_callout_mask))
143		apic->send_IPI_allbutself(CALL_FUNCTION_VECTOR);
144	else
145		apic->send_IPI_mask(mask, CALL_FUNCTION_VECTOR);
146
147	free_cpumask_var(allbutself);
148}
149
 
 
 
 
 
 
 
 
 
 
 
 
150/*
151 * this function calls the 'stop' function on all other CPUs in the system.
152 */
153
154asmlinkage void smp_reboot_interrupt(void)
155{
156	ack_APIC_irq();
157	irq_enter();
158	stop_this_cpu(NULL);
159	irq_exit();
160}
161
162static void native_stop_other_cpus(int wait)
163{
164	unsigned long flags;
165	unsigned long timeout;
166
167	if (reboot_force)
168		return;
169
170	/*
171	 * Use an own vector here because smp_call_function
172	 * does lots of things not suitable in a panic situation.
173	 * On most systems we could also use an NMI here,
174	 * but there are a few systems around where NMI
175	 * is problematic so stay with an non NMI for now
176	 * (this implies we cannot stop CPUs spinning with irq off
177	 * currently)
 
 
 
 
 
178	 */
179	if (num_online_cpus() > 1) {
 
 
 
 
 
 
 
180		apic->send_IPI_allbutself(REBOOT_VECTOR);
181
182		/*
183		 * Don't wait longer than a second if the caller
184		 * didn't ask us to wait.
185		 */
186		timeout = USEC_PER_SEC;
187		while (num_online_cpus() > 1 && (wait || timeout--))
188			udelay(1);
189	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
190
 
 
 
 
 
 
 
 
 
 
191	local_irq_save(flags);
192	disable_local_APIC();
 
193	local_irq_restore(flags);
194}
195
196/*
197 * Reschedule call back.
 
198 */
199void smp_reschedule_interrupt(struct pt_regs *regs)
200{
201	ack_APIC_irq();
202	inc_irq_stat(irq_resched_count);
 
 
 
 
 
 
 
 
 
 
 
 
 
203	scheduler_ipi();
204	/*
205	 * KVM uses this interrupt to force a cpu out of guest mode
206	 */
207}
208
209void smp_call_function_interrupt(struct pt_regs *regs)
210{
211	ack_APIC_irq();
212	irq_enter();
213	generic_smp_call_function_interrupt();
214	inc_irq_stat(irq_call_count);
215	irq_exit();
 
 
216}
217
218void smp_call_function_single_interrupt(struct pt_regs *regs)
219{
220	ack_APIC_irq();
221	irq_enter();
222	generic_smp_call_function_single_interrupt();
223	inc_irq_stat(irq_call_count);
224	irq_exit();
 
 
225}
226
 
 
 
 
 
 
 
 
227struct smp_ops smp_ops = {
228	.smp_prepare_boot_cpu	= native_smp_prepare_boot_cpu,
229	.smp_prepare_cpus	= native_smp_prepare_cpus,
230	.smp_cpus_done		= native_smp_cpus_done,
231
232	.stop_other_cpus	= native_stop_other_cpus,
 
 
 
233	.smp_send_reschedule	= native_smp_send_reschedule,
234
235	.cpu_up			= native_cpu_up,
236	.cpu_die		= native_cpu_die,
237	.cpu_disable		= native_cpu_disable,
238	.play_dead		= native_play_dead,
239
240	.send_call_func_ipi	= native_send_call_func_ipi,
241	.send_call_func_single_ipi = native_send_call_func_single_ipi,
242};
243EXPORT_SYMBOL_GPL(smp_ops);
v4.17
  1/*
  2 *	Intel SMP support routines.
  3 *
  4 *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
  5 *	(c) 1998-99, 2000, 2009 Ingo Molnar <mingo@redhat.com>
  6 *      (c) 2002,2003 Andi Kleen, SuSE Labs.
  7 *
  8 *	i386 and x86_64 integration by Glauber Costa <gcosta@redhat.com>
  9 *
 10 *	This code is released under the GNU General Public License version 2 or
 11 *	later.
 12 */
 13
 14#include <linux/init.h>
 15
 16#include <linux/mm.h>
 17#include <linux/delay.h>
 18#include <linux/spinlock.h>
 19#include <linux/export.h>
 20#include <linux/kernel_stat.h>
 21#include <linux/mc146818rtc.h>
 22#include <linux/cache.h>
 23#include <linux/interrupt.h>
 24#include <linux/cpu.h>
 25#include <linux/gfp.h>
 26
 27#include <asm/mtrr.h>
 28#include <asm/tlbflush.h>
 29#include <asm/mmu_context.h>
 30#include <asm/proto.h>
 31#include <asm/apic.h>
 32#include <asm/nmi.h>
 33#include <asm/mce.h>
 34#include <asm/trace/irq_vectors.h>
 35#include <asm/kexec.h>
 36#include <asm/virtext.h>
 37
 38/*
 39 *	Some notes on x86 processor bugs affecting SMP operation:
 40 *
 41 *	Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
 42 *	The Linux implications for SMP are handled as follows:
 43 *
 44 *	Pentium III / [Xeon]
 45 *		None of the E1AP-E3AP errata are visible to the user.
 46 *
 47 *	E1AP.	see PII A1AP
 48 *	E2AP.	see PII A2AP
 49 *	E3AP.	see PII A3AP
 50 *
 51 *	Pentium II / [Xeon]
 52 *		None of the A1AP-A3AP errata are visible to the user.
 53 *
 54 *	A1AP.	see PPro 1AP
 55 *	A2AP.	see PPro 2AP
 56 *	A3AP.	see PPro 7AP
 57 *
 58 *	Pentium Pro
 59 *		None of 1AP-9AP errata are visible to the normal user,
 60 *	except occasional delivery of 'spurious interrupt' as trap #15.
 61 *	This is very rare and a non-problem.
 62 *
 63 *	1AP.	Linux maps APIC as non-cacheable
 64 *	2AP.	worked around in hardware
 65 *	3AP.	fixed in C0 and above steppings microcode update.
 66 *		Linux does not use excessive STARTUP_IPIs.
 67 *	4AP.	worked around in hardware
 68 *	5AP.	symmetric IO mode (normal Linux operation) not affected.
 69 *		'noapic' mode has vector 0xf filled out properly.
 70 *	6AP.	'noapic' mode might be affected - fixed in later steppings
 71 *	7AP.	We do not assume writes to the LVT deassering IRQs
 72 *	8AP.	We do not enable low power mode (deep sleep) during MP bootup
 73 *	9AP.	We do not use mixed mode
 74 *
 75 *	Pentium
 76 *		There is a marginal case where REP MOVS on 100MHz SMP
 77 *	machines with B stepping processors can fail. XXX should provide
 78 *	an L1cache=Writethrough or L1cache=off option.
 79 *
 80 *		B stepping CPUs may hang. There are hardware work arounds
 81 *	for this. We warn about it in case your board doesn't have the work
 82 *	arounds. Basically that's so I can tell anyone with a B stepping
 83 *	CPU and SMP problems "tough".
 84 *
 85 *	Specific items [From Pentium Processor Specification Update]
 86 *
 87 *	1AP.	Linux doesn't use remote read
 88 *	2AP.	Linux doesn't trust APIC errors
 89 *	3AP.	We work around this
 90 *	4AP.	Linux never generated 3 interrupts of the same priority
 91 *		to cause a lost local interrupt.
 92 *	5AP.	Remote read is never used
 93 *	6AP.	not affected - worked around in hardware
 94 *	7AP.	not affected - worked around in hardware
 95 *	8AP.	worked around in hardware - we get explicit CS errors if not
 96 *	9AP.	only 'noapic' mode affected. Might generate spurious
 97 *		interrupts, we log only the first one and count the
 98 *		rest silently.
 99 *	10AP.	not affected - worked around in hardware
100 *	11AP.	Linux reads the APIC between writes to avoid this, as per
101 *		the documentation. Make sure you preserve this as it affects
102 *		the C stepping chips too.
103 *	12AP.	not affected - worked around in hardware
104 *	13AP.	not affected - worked around in hardware
105 *	14AP.	we always deassert INIT during bootup
106 *	15AP.	not affected - worked around in hardware
107 *	16AP.	not affected - worked around in hardware
108 *	17AP.	not affected - worked around in hardware
109 *	18AP.	not affected - worked around in hardware
110 *	19AP.	not affected - worked around in BIOS
111 *
112 *	If this sounds worrying believe me these bugs are either ___RARE___,
113 *	or are signal timing bugs worked around in hardware and there's
114 *	about nothing of note with C stepping upwards.
115 */
116
117static atomic_t stopping_cpu = ATOMIC_INIT(-1);
118static bool smp_no_nmi_ipi = false;
119
120/*
121 * this function sends a 'reschedule' IPI to another CPU.
122 * it goes straight through and wastes no time serializing
123 * anything. Worst case is that we lose a reschedule ...
124 */
125static void native_smp_send_reschedule(int cpu)
126{
127	if (unlikely(cpu_is_offline(cpu))) {
128		WARN(1, "sched: Unexpected reschedule of offline CPU#%d!\n", cpu);
129		return;
130	}
131	apic->send_IPI(cpu, RESCHEDULE_VECTOR);
132}
133
134void native_send_call_func_single_ipi(int cpu)
135{
136	apic->send_IPI(cpu, CALL_FUNCTION_SINGLE_VECTOR);
137}
138
139void native_send_call_func_ipi(const struct cpumask *mask)
140{
141	cpumask_var_t allbutself;
142
143	if (!alloc_cpumask_var(&allbutself, GFP_ATOMIC)) {
144		apic->send_IPI_mask(mask, CALL_FUNCTION_VECTOR);
145		return;
146	}
147
148	cpumask_copy(allbutself, cpu_online_mask);
149	cpumask_clear_cpu(smp_processor_id(), allbutself);
150
151	if (cpumask_equal(mask, allbutself) &&
152	    cpumask_equal(cpu_online_mask, cpu_callout_mask))
153		apic->send_IPI_allbutself(CALL_FUNCTION_VECTOR);
154	else
155		apic->send_IPI_mask(mask, CALL_FUNCTION_VECTOR);
156
157	free_cpumask_var(allbutself);
158}
159
160static int smp_stop_nmi_callback(unsigned int val, struct pt_regs *regs)
161{
162	/* We are registered on stopping cpu too, avoid spurious NMI */
163	if (raw_smp_processor_id() == atomic_read(&stopping_cpu))
164		return NMI_HANDLED;
165
166	cpu_emergency_vmxoff();
167	stop_this_cpu(NULL);
168
169	return NMI_HANDLED;
170}
171
172/*
173 * this function calls the 'stop' function on all other CPUs in the system.
174 */
175
176asmlinkage __visible void smp_reboot_interrupt(void)
177{
178	ipi_entering_ack_irq();
179	cpu_emergency_vmxoff();
180	stop_this_cpu(NULL);
181	irq_exit();
182}
183
184static void native_stop_other_cpus(int wait)
185{
186	unsigned long flags;
187	unsigned long timeout;
188
189	if (reboot_force)
190		return;
191
192	/*
193	 * Use an own vector here because smp_call_function
194	 * does lots of things not suitable in a panic situation.
195	 */
196
197	/*
198	 * We start by using the REBOOT_VECTOR irq.
199	 * The irq is treated as a sync point to allow critical
200	 * regions of code on other cpus to release their spin locks
201	 * and re-enable irqs.  Jumping straight to an NMI might
202	 * accidentally cause deadlocks with further shutdown/panic
203	 * code.  By syncing, we give the cpus up to one second to
204	 * finish their work before we force them off with the NMI.
205	 */
206	if (num_online_cpus() > 1) {
207		/* did someone beat us here? */
208		if (atomic_cmpxchg(&stopping_cpu, -1, safe_smp_processor_id()) != -1)
209			return;
210
211		/* sync above data before sending IRQ */
212		wmb();
213
214		apic->send_IPI_allbutself(REBOOT_VECTOR);
215
216		/*
217		 * Don't wait longer than a second if the caller
218		 * didn't ask us to wait.
219		 */
220		timeout = USEC_PER_SEC;
221		while (num_online_cpus() > 1 && (wait || timeout--))
222			udelay(1);
223	}
224	
225	/* if the REBOOT_VECTOR didn't work, try with the NMI */
226	if ((num_online_cpus() > 1) && (!smp_no_nmi_ipi))  {
227		if (register_nmi_handler(NMI_LOCAL, smp_stop_nmi_callback,
228					 NMI_FLAG_FIRST, "smp_stop"))
229			/* Note: we ignore failures here */
230			/* Hope the REBOOT_IRQ is good enough */
231			goto finish;
232
233		/* sync above data before sending IRQ */
234		wmb();
235
236		pr_emerg("Shutting down cpus with NMI\n");
237
238		apic->send_IPI_allbutself(NMI_VECTOR);
239
240		/*
241		 * Don't wait longer than a 10 ms if the caller
242		 * didn't ask us to wait.
243		 */
244		timeout = USEC_PER_MSEC * 10;
245		while (num_online_cpus() > 1 && (wait || timeout--))
246			udelay(1);
247	}
248
249finish:
250	local_irq_save(flags);
251	disable_local_APIC();
252	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
253	local_irq_restore(flags);
254}
255
256/*
257 * Reschedule call back. KVM uses this interrupt to force a cpu out of
258 * guest mode
259 */
260__visible void __irq_entry smp_reschedule_interrupt(struct pt_regs *regs)
261{
262	ack_APIC_irq();
263	inc_irq_stat(irq_resched_count);
264
265	if (trace_resched_ipi_enabled()) {
266		/*
267		 * scheduler_ipi() might call irq_enter() as well, but
268		 * nested calls are fine.
269		 */
270		irq_enter();
271		trace_reschedule_entry(RESCHEDULE_VECTOR);
272		scheduler_ipi();
273		trace_reschedule_exit(RESCHEDULE_VECTOR);
274		irq_exit();
275		return;
276	}
277	scheduler_ipi();
 
 
 
278}
279
280__visible void __irq_entry smp_call_function_interrupt(struct pt_regs *regs)
281{
282	ipi_entering_ack_irq();
283	trace_call_function_entry(CALL_FUNCTION_VECTOR);
 
284	inc_irq_stat(irq_call_count);
285	generic_smp_call_function_interrupt();
286	trace_call_function_exit(CALL_FUNCTION_VECTOR);
287	exiting_irq();
288}
289
290__visible void __irq_entry smp_call_function_single_interrupt(struct pt_regs *r)
291{
292	ipi_entering_ack_irq();
293	trace_call_function_single_entry(CALL_FUNCTION_SINGLE_VECTOR);
 
294	inc_irq_stat(irq_call_count);
295	generic_smp_call_function_single_interrupt();
296	trace_call_function_single_exit(CALL_FUNCTION_SINGLE_VECTOR);
297	exiting_irq();
298}
299
300static int __init nonmi_ipi_setup(char *str)
301{
302	smp_no_nmi_ipi = true;
303	return 1;
304}
305
306__setup("nonmi_ipi", nonmi_ipi_setup);
307
308struct smp_ops smp_ops = {
309	.smp_prepare_boot_cpu	= native_smp_prepare_boot_cpu,
310	.smp_prepare_cpus	= native_smp_prepare_cpus,
311	.smp_cpus_done		= native_smp_cpus_done,
312
313	.stop_other_cpus	= native_stop_other_cpus,
314#if defined(CONFIG_KEXEC_CORE)
315	.crash_stop_other_cpus	= kdump_nmi_shootdown_cpus,
316#endif
317	.smp_send_reschedule	= native_smp_send_reschedule,
318
319	.cpu_up			= native_cpu_up,
320	.cpu_die		= native_cpu_die,
321	.cpu_disable		= native_cpu_disable,
322	.play_dead		= native_play_dead,
323
324	.send_call_func_ipi	= native_send_call_func_ipi,
325	.send_call_func_single_ipi = native_send_call_func_single_ipi,
326};
327EXPORT_SYMBOL_GPL(smp_ops);