Linux Audio

Check our new training course

Loading...
v3.1
 
  1/*
  2 *  arch/s390/mm/vmem.c
  3 *
  4 *    Copyright IBM Corp. 2006
  5 *    Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
  6 */
  7
  8#include <linux/bootmem.h>
  9#include <linux/pfn.h>
 10#include <linux/mm.h>
 11#include <linux/module.h>
 12#include <linux/list.h>
 13#include <linux/hugetlb.h>
 14#include <linux/slab.h>
 
 
 15#include <asm/pgalloc.h>
 16#include <asm/pgtable.h>
 17#include <asm/setup.h>
 18#include <asm/tlbflush.h>
 19#include <asm/sections.h>
 
 20
 21static DEFINE_MUTEX(vmem_mutex);
 22
 23struct memory_segment {
 24	struct list_head list;
 25	unsigned long start;
 26	unsigned long size;
 27};
 28
 29static LIST_HEAD(mem_segs);
 30
 31static void __ref *vmem_alloc_pages(unsigned int order)
 32{
 
 
 33	if (slab_is_available())
 34		return (void *)__get_free_pages(GFP_KERNEL, order);
 35	return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
 36}
 37
 38static inline pud_t *vmem_pud_alloc(void)
 39{
 40	pud_t *pud = NULL;
 41
 42#ifdef CONFIG_64BIT
 43	pud = vmem_alloc_pages(2);
 44	if (!pud)
 45		return NULL;
 46	clear_table((unsigned long *) pud, _REGION3_ENTRY_EMPTY, PAGE_SIZE * 4);
 47#endif
 48	return pud;
 49}
 50
 51static inline pmd_t *vmem_pmd_alloc(void)
 52{
 53	pmd_t *pmd = NULL;
 54
 55#ifdef CONFIG_64BIT
 56	pmd = vmem_alloc_pages(2);
 57	if (!pmd)
 58		return NULL;
 59	clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE * 4);
 60#endif
 61	return pmd;
 62}
 63
 64static pte_t __ref *vmem_pte_alloc(unsigned long address)
 65{
 
 66	pte_t *pte;
 67
 68	if (slab_is_available())
 69		pte = (pte_t *) page_table_alloc(&init_mm, address);
 70	else
 71		pte = alloc_bootmem(PTRS_PER_PTE * sizeof(pte_t));
 72	if (!pte)
 73		return NULL;
 74	clear_table((unsigned long *) pte, _PAGE_TYPE_EMPTY,
 75		    PTRS_PER_PTE * sizeof(pte_t));
 76	return pte;
 77}
 78
 79/*
 80 * Add a physical memory range to the 1:1 mapping.
 81 */
 82static int vmem_add_mem(unsigned long start, unsigned long size, int ro)
 83{
 84	unsigned long address;
 
 
 
 85	pgd_t *pg_dir;
 
 86	pud_t *pu_dir;
 87	pmd_t *pm_dir;
 88	pte_t *pt_dir;
 89	pte_t  pte;
 90	int ret = -ENOMEM;
 91
 92	for (address = start; address < start + size; address += PAGE_SIZE) {
 
 
 
 
 
 
 
 
 
 93		pg_dir = pgd_offset_k(address);
 94		if (pgd_none(*pg_dir)) {
 95			pu_dir = vmem_pud_alloc();
 
 
 
 
 
 
 
 96			if (!pu_dir)
 97				goto out;
 98			pgd_populate(&init_mm, pg_dir, pu_dir);
 
 
 
 
 
 
 
 
 
 99		}
100
101		pu_dir = pud_offset(pg_dir, address);
102		if (pud_none(*pu_dir)) {
103			pm_dir = vmem_pmd_alloc();
104			if (!pm_dir)
105				goto out;
106			pud_populate(&init_mm, pu_dir, pm_dir);
107		}
108
109		pte = mk_pte_phys(address, __pgprot(ro ? _PAGE_RO : 0));
110		pm_dir = pmd_offset(pu_dir, address);
111
112#ifdef __s390x__
113		if (MACHINE_HAS_HPAGE && !(address & ~HPAGE_MASK) &&
114		    (address + HPAGE_SIZE <= start + size) &&
115		    (address >= HPAGE_SIZE)) {
116			pte_val(pte) |= _SEGMENT_ENTRY_LARGE;
117			pmd_val(*pm_dir) = pte_val(pte);
118			address += HPAGE_SIZE - PAGE_SIZE;
119			continue;
120		}
121#endif
122		if (pmd_none(*pm_dir)) {
123			pt_dir = vmem_pte_alloc(address);
124			if (!pt_dir)
125				goto out;
126			pmd_populate(&init_mm, pm_dir, pt_dir);
127		}
128
129		pt_dir = pte_offset_kernel(pm_dir, address);
130		*pt_dir = pte;
 
 
131	}
132	ret = 0;
133out:
134	flush_tlb_kernel_range(start, start + size);
 
 
135	return ret;
136}
137
138/*
139 * Remove a physical memory range from the 1:1 mapping.
140 * Currently only invalidates page table entries.
141 */
142static void vmem_remove_range(unsigned long start, unsigned long size)
143{
144	unsigned long address;
 
 
145	pgd_t *pg_dir;
 
146	pud_t *pu_dir;
147	pmd_t *pm_dir;
148	pte_t *pt_dir;
149	pte_t  pte;
150
151	pte_val(pte) = _PAGE_TYPE_EMPTY;
152	for (address = start; address < start + size; address += PAGE_SIZE) {
153		pg_dir = pgd_offset_k(address);
154		pu_dir = pud_offset(pg_dir, address);
155		if (pud_none(*pu_dir))
 
 
 
 
 
 
 
 
 
 
156			continue;
 
 
 
 
 
 
 
157		pm_dir = pmd_offset(pu_dir, address);
158		if (pmd_none(*pm_dir))
 
159			continue;
160
161		if (pmd_huge(*pm_dir)) {
162			pmd_clear(pm_dir);
163			address += HPAGE_SIZE - PAGE_SIZE;
 
164			continue;
165		}
166
167		pt_dir = pte_offset_kernel(pm_dir, address);
168		*pt_dir = pte;
 
 
169	}
170	flush_tlb_kernel_range(start, start + size);
 
 
 
171}
172
173/*
174 * Add a backed mem_map array to the virtual mem_map array.
175 */
176int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
 
177{
178	unsigned long address, start_addr, end_addr;
 
179	pgd_t *pg_dir;
 
180	pud_t *pu_dir;
181	pmd_t *pm_dir;
182	pte_t *pt_dir;
183	pte_t  pte;
184	int ret = -ENOMEM;
185
186	start_addr = (unsigned long) start;
187	end_addr = (unsigned long) (start + nr);
188
189	for (address = start_addr; address < end_addr; address += PAGE_SIZE) {
 
 
 
190		pg_dir = pgd_offset_k(address);
191		if (pgd_none(*pg_dir)) {
192			pu_dir = vmem_pud_alloc();
 
 
 
 
 
 
 
 
193			if (!pu_dir)
194				goto out;
195			pgd_populate(&init_mm, pg_dir, pu_dir);
196		}
197
198		pu_dir = pud_offset(pg_dir, address);
199		if (pud_none(*pu_dir)) {
200			pm_dir = vmem_pmd_alloc();
201			if (!pm_dir)
202				goto out;
203			pud_populate(&init_mm, pu_dir, pm_dir);
204		}
205
206		pm_dir = pmd_offset(pu_dir, address);
207		if (pmd_none(*pm_dir)) {
208			pt_dir = vmem_pte_alloc(address);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
209			if (!pt_dir)
210				goto out;
211			pmd_populate(&init_mm, pm_dir, pt_dir);
 
 
 
212		}
213
214		pt_dir = pte_offset_kernel(pm_dir, address);
215		if (pte_none(*pt_dir)) {
216			unsigned long new_page;
217
218			new_page =__pa(vmem_alloc_pages(0));
219			if (!new_page)
220				goto out;
221			pte = pfn_pte(new_page >> PAGE_SHIFT, PAGE_KERNEL);
222			*pt_dir = pte;
223		}
 
224	}
225	memset(start, 0, nr * sizeof(struct page));
226	ret = 0;
227out:
228	flush_tlb_kernel_range(start_addr, end_addr);
229	return ret;
230}
231
 
 
 
 
 
232/*
233 * Add memory segment to the segment list if it doesn't overlap with
234 * an already present segment.
235 */
236static int insert_memory_segment(struct memory_segment *seg)
237{
238	struct memory_segment *tmp;
239
240	if (seg->start + seg->size > VMEM_MAX_PHYS ||
241	    seg->start + seg->size < seg->start)
242		return -ERANGE;
243
244	list_for_each_entry(tmp, &mem_segs, list) {
245		if (seg->start >= tmp->start + tmp->size)
246			continue;
247		if (seg->start + seg->size <= tmp->start)
248			continue;
249		return -ENOSPC;
250	}
251	list_add(&seg->list, &mem_segs);
252	return 0;
253}
254
255/*
256 * Remove memory segment from the segment list.
257 */
258static void remove_memory_segment(struct memory_segment *seg)
259{
260	list_del(&seg->list);
261}
262
263static void __remove_shared_memory(struct memory_segment *seg)
264{
265	remove_memory_segment(seg);
266	vmem_remove_range(seg->start, seg->size);
267}
268
269int vmem_remove_mapping(unsigned long start, unsigned long size)
270{
271	struct memory_segment *seg;
272	int ret;
273
274	mutex_lock(&vmem_mutex);
275
276	ret = -ENOENT;
277	list_for_each_entry(seg, &mem_segs, list) {
278		if (seg->start == start && seg->size == size)
279			break;
280	}
281
282	if (seg->start != start || seg->size != size)
283		goto out;
284
285	ret = 0;
286	__remove_shared_memory(seg);
287	kfree(seg);
288out:
289	mutex_unlock(&vmem_mutex);
290	return ret;
291}
292
293int vmem_add_mapping(unsigned long start, unsigned long size)
294{
295	struct memory_segment *seg;
296	int ret;
297
298	mutex_lock(&vmem_mutex);
299	ret = -ENOMEM;
300	seg = kzalloc(sizeof(*seg), GFP_KERNEL);
301	if (!seg)
302		goto out;
303	seg->start = start;
304	seg->size = size;
305
306	ret = insert_memory_segment(seg);
307	if (ret)
308		goto out_free;
309
310	ret = vmem_add_mem(start, size, 0);
311	if (ret)
312		goto out_remove;
313	goto out;
314
315out_remove:
316	__remove_shared_memory(seg);
317out_free:
318	kfree(seg);
319out:
320	mutex_unlock(&vmem_mutex);
321	return ret;
322}
323
324/*
325 * map whole physical memory to virtual memory (identity mapping)
326 * we reserve enough space in the vmalloc area for vmemmap to hotplug
327 * additional memory segments.
328 */
329void __init vmem_map_init(void)
330{
331	unsigned long ro_start, ro_end;
332	unsigned long start, end;
333	int i;
334
335	ro_start = ((unsigned long)&_stext) & PAGE_MASK;
336	ro_end = PFN_ALIGN((unsigned long)&_eshared);
337	for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
338		start = memory_chunk[i].addr;
339		end = memory_chunk[i].addr + memory_chunk[i].size;
340		if (start >= ro_end || end <= ro_start)
341			vmem_add_mem(start, end - start, 0);
342		else if (start >= ro_start && end <= ro_end)
343			vmem_add_mem(start, end - start, 1);
344		else if (start >= ro_start) {
345			vmem_add_mem(start, ro_end - start, 1);
346			vmem_add_mem(ro_end, end - ro_end, 0);
347		} else if (end < ro_end) {
348			vmem_add_mem(start, ro_start - start, 0);
349			vmem_add_mem(ro_start, end - ro_start, 1);
350		} else {
351			vmem_add_mem(start, ro_start - start, 0);
352			vmem_add_mem(ro_start, ro_end - ro_start, 1);
353			vmem_add_mem(ro_end, end - ro_end, 0);
354		}
355	}
356}
357
358/*
359 * Convert memory chunk array to a memory segment list so there is a single
360 * list that contains both r/w memory and shared memory segments.
361 */
362static int __init vmem_convert_memory_chunk(void)
363{
 
364	struct memory_segment *seg;
365	int i;
366
367	mutex_lock(&vmem_mutex);
368	for (i = 0; i < MEMORY_CHUNKS; i++) {
369		if (!memory_chunk[i].size)
370			continue;
371		seg = kzalloc(sizeof(*seg), GFP_KERNEL);
372		if (!seg)
373			panic("Out of memory...\n");
374		seg->start = memory_chunk[i].addr;
375		seg->size = memory_chunk[i].size;
376		insert_memory_segment(seg);
377	}
378	mutex_unlock(&vmem_mutex);
379	return 0;
380}
381
382core_initcall(vmem_convert_memory_chunk);
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
 
 
  3 *    Copyright IBM Corp. 2006
  4 *    Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
  5 */
  6
  7#include <linux/bootmem.h>
  8#include <linux/pfn.h>
  9#include <linux/mm.h>
 10#include <linux/init.h>
 11#include <linux/list.h>
 12#include <linux/hugetlb.h>
 13#include <linux/slab.h>
 14#include <linux/memblock.h>
 15#include <asm/cacheflush.h>
 16#include <asm/pgalloc.h>
 17#include <asm/pgtable.h>
 18#include <asm/setup.h>
 19#include <asm/tlbflush.h>
 20#include <asm/sections.h>
 21#include <asm/set_memory.h>
 22
 23static DEFINE_MUTEX(vmem_mutex);
 24
 25struct memory_segment {
 26	struct list_head list;
 27	unsigned long start;
 28	unsigned long size;
 29};
 30
 31static LIST_HEAD(mem_segs);
 32
 33static void __ref *vmem_alloc_pages(unsigned int order)
 34{
 35	unsigned long size = PAGE_SIZE << order;
 36
 37	if (slab_is_available())
 38		return (void *)__get_free_pages(GFP_KERNEL, order);
 39	return (void *) memblock_alloc(size, size);
 40}
 41
 42void *vmem_crst_alloc(unsigned long val)
 43{
 44	unsigned long *table;
 45
 46	table = vmem_alloc_pages(CRST_ALLOC_ORDER);
 47	if (table)
 48		crst_table_init(table, val);
 49	return table;
 
 
 
 50}
 51
 52pte_t __ref *vmem_pte_alloc(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 53{
 54	unsigned long size = PTRS_PER_PTE * sizeof(pte_t);
 55	pte_t *pte;
 56
 57	if (slab_is_available())
 58		pte = (pte_t *) page_table_alloc(&init_mm);
 59	else
 60		pte = (pte_t *) memblock_alloc(size, size);
 61	if (!pte)
 62		return NULL;
 63	memset64((u64 *)pte, _PAGE_INVALID, PTRS_PER_PTE);
 
 64	return pte;
 65}
 66
 67/*
 68 * Add a physical memory range to the 1:1 mapping.
 69 */
 70static int vmem_add_mem(unsigned long start, unsigned long size)
 71{
 72	unsigned long pgt_prot, sgt_prot, r3_prot;
 73	unsigned long pages4k, pages1m, pages2g;
 74	unsigned long end = start + size;
 75	unsigned long address = start;
 76	pgd_t *pg_dir;
 77	p4d_t *p4_dir;
 78	pud_t *pu_dir;
 79	pmd_t *pm_dir;
 80	pte_t *pt_dir;
 
 81	int ret = -ENOMEM;
 82
 83	pgt_prot = pgprot_val(PAGE_KERNEL);
 84	sgt_prot = pgprot_val(SEGMENT_KERNEL);
 85	r3_prot = pgprot_val(REGION3_KERNEL);
 86	if (!MACHINE_HAS_NX) {
 87		pgt_prot &= ~_PAGE_NOEXEC;
 88		sgt_prot &= ~_SEGMENT_ENTRY_NOEXEC;
 89		r3_prot &= ~_REGION_ENTRY_NOEXEC;
 90	}
 91	pages4k = pages1m = pages2g = 0;
 92	while (address < end) {
 93		pg_dir = pgd_offset_k(address);
 94		if (pgd_none(*pg_dir)) {
 95			p4_dir = vmem_crst_alloc(_REGION2_ENTRY_EMPTY);
 96			if (!p4_dir)
 97				goto out;
 98			pgd_populate(&init_mm, pg_dir, p4_dir);
 99		}
100		p4_dir = p4d_offset(pg_dir, address);
101		if (p4d_none(*p4_dir)) {
102			pu_dir = vmem_crst_alloc(_REGION3_ENTRY_EMPTY);
103			if (!pu_dir)
104				goto out;
105			p4d_populate(&init_mm, p4_dir, pu_dir);
106		}
107		pu_dir = pud_offset(p4_dir, address);
108		if (MACHINE_HAS_EDAT2 && pud_none(*pu_dir) && address &&
109		    !(address & ~PUD_MASK) && (address + PUD_SIZE <= end) &&
110		     !debug_pagealloc_enabled()) {
111			pud_val(*pu_dir) = address | r3_prot;
112			address += PUD_SIZE;
113			pages2g++;
114			continue;
115		}
 
 
116		if (pud_none(*pu_dir)) {
117			pm_dir = vmem_crst_alloc(_SEGMENT_ENTRY_EMPTY);
118			if (!pm_dir)
119				goto out;
120			pud_populate(&init_mm, pu_dir, pm_dir);
121		}
 
 
122		pm_dir = pmd_offset(pu_dir, address);
123		if (MACHINE_HAS_EDAT1 && pmd_none(*pm_dir) && address &&
124		    !(address & ~PMD_MASK) && (address + PMD_SIZE <= end) &&
125		    !debug_pagealloc_enabled()) {
126			pmd_val(*pm_dir) = address | sgt_prot;
127			address += PMD_SIZE;
128			pages1m++;
 
 
129			continue;
130		}
 
131		if (pmd_none(*pm_dir)) {
132			pt_dir = vmem_pte_alloc();
133			if (!pt_dir)
134				goto out;
135			pmd_populate(&init_mm, pm_dir, pt_dir);
136		}
137
138		pt_dir = pte_offset_kernel(pm_dir, address);
139		pte_val(*pt_dir) = address | pgt_prot;
140		address += PAGE_SIZE;
141		pages4k++;
142	}
143	ret = 0;
144out:
145	update_page_count(PG_DIRECT_MAP_4K, pages4k);
146	update_page_count(PG_DIRECT_MAP_1M, pages1m);
147	update_page_count(PG_DIRECT_MAP_2G, pages2g);
148	return ret;
149}
150
151/*
152 * Remove a physical memory range from the 1:1 mapping.
153 * Currently only invalidates page table entries.
154 */
155static void vmem_remove_range(unsigned long start, unsigned long size)
156{
157	unsigned long pages4k, pages1m, pages2g;
158	unsigned long end = start + size;
159	unsigned long address = start;
160	pgd_t *pg_dir;
161	p4d_t *p4_dir;
162	pud_t *pu_dir;
163	pmd_t *pm_dir;
164	pte_t *pt_dir;
 
165
166	pages4k = pages1m = pages2g = 0;
167	while (address < end) {
168		pg_dir = pgd_offset_k(address);
169		if (pgd_none(*pg_dir)) {
170			address += PGDIR_SIZE;
171			continue;
172		}
173		p4_dir = p4d_offset(pg_dir, address);
174		if (p4d_none(*p4_dir)) {
175			address += P4D_SIZE;
176			continue;
177		}
178		pu_dir = pud_offset(p4_dir, address);
179		if (pud_none(*pu_dir)) {
180			address += PUD_SIZE;
181			continue;
182		}
183		if (pud_large(*pu_dir)) {
184			pud_clear(pu_dir);
185			address += PUD_SIZE;
186			pages2g++;
187			continue;
188		}
189		pm_dir = pmd_offset(pu_dir, address);
190		if (pmd_none(*pm_dir)) {
191			address += PMD_SIZE;
192			continue;
193		}
194		if (pmd_large(*pm_dir)) {
195			pmd_clear(pm_dir);
196			address += PMD_SIZE;
197			pages1m++;
198			continue;
199		}
 
200		pt_dir = pte_offset_kernel(pm_dir, address);
201		pte_clear(&init_mm, address, pt_dir);
202		address += PAGE_SIZE;
203		pages4k++;
204	}
205	flush_tlb_kernel_range(start, end);
206	update_page_count(PG_DIRECT_MAP_4K, -pages4k);
207	update_page_count(PG_DIRECT_MAP_1M, -pages1m);
208	update_page_count(PG_DIRECT_MAP_2G, -pages2g);
209}
210
211/*
212 * Add a backed mem_map array to the virtual mem_map array.
213 */
214int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
215		struct vmem_altmap *altmap)
216{
217	unsigned long pgt_prot, sgt_prot;
218	unsigned long address = start;
219	pgd_t *pg_dir;
220	p4d_t *p4_dir;
221	pud_t *pu_dir;
222	pmd_t *pm_dir;
223	pte_t *pt_dir;
 
224	int ret = -ENOMEM;
225
226	pgt_prot = pgprot_val(PAGE_KERNEL);
227	sgt_prot = pgprot_val(SEGMENT_KERNEL);
228	if (!MACHINE_HAS_NX) {
229		pgt_prot &= ~_PAGE_NOEXEC;
230		sgt_prot &= ~_SEGMENT_ENTRY_NOEXEC;
231	}
232	for (address = start; address < end;) {
233		pg_dir = pgd_offset_k(address);
234		if (pgd_none(*pg_dir)) {
235			p4_dir = vmem_crst_alloc(_REGION2_ENTRY_EMPTY);
236			if (!p4_dir)
237				goto out;
238			pgd_populate(&init_mm, pg_dir, p4_dir);
239		}
240
241		p4_dir = p4d_offset(pg_dir, address);
242		if (p4d_none(*p4_dir)) {
243			pu_dir = vmem_crst_alloc(_REGION3_ENTRY_EMPTY);
244			if (!pu_dir)
245				goto out;
246			p4d_populate(&init_mm, p4_dir, pu_dir);
247		}
248
249		pu_dir = pud_offset(p4_dir, address);
250		if (pud_none(*pu_dir)) {
251			pm_dir = vmem_crst_alloc(_SEGMENT_ENTRY_EMPTY);
252			if (!pm_dir)
253				goto out;
254			pud_populate(&init_mm, pu_dir, pm_dir);
255		}
256
257		pm_dir = pmd_offset(pu_dir, address);
258		if (pmd_none(*pm_dir)) {
259			/* Use 1MB frames for vmemmap if available. We always
260			 * use large frames even if they are only partially
261			 * used.
262			 * Otherwise we would have also page tables since
263			 * vmemmap_populate gets called for each section
264			 * separately. */
265			if (MACHINE_HAS_EDAT1) {
266				void *new_page;
267
268				new_page = vmemmap_alloc_block(PMD_SIZE, node);
269				if (!new_page)
270					goto out;
271				pmd_val(*pm_dir) = __pa(new_page) | sgt_prot;
272				address = (address + PMD_SIZE) & PMD_MASK;
273				continue;
274			}
275			pt_dir = vmem_pte_alloc();
276			if (!pt_dir)
277				goto out;
278			pmd_populate(&init_mm, pm_dir, pt_dir);
279		} else if (pmd_large(*pm_dir)) {
280			address = (address + PMD_SIZE) & PMD_MASK;
281			continue;
282		}
283
284		pt_dir = pte_offset_kernel(pm_dir, address);
285		if (pte_none(*pt_dir)) {
286			void *new_page;
287
288			new_page = vmemmap_alloc_block(PAGE_SIZE, node);
289			if (!new_page)
290				goto out;
291			pte_val(*pt_dir) = __pa(new_page) | pgt_prot;
 
292		}
293		address += PAGE_SIZE;
294	}
 
295	ret = 0;
296out:
 
297	return ret;
298}
299
300void vmemmap_free(unsigned long start, unsigned long end,
301		struct vmem_altmap *altmap)
302{
303}
304
305/*
306 * Add memory segment to the segment list if it doesn't overlap with
307 * an already present segment.
308 */
309static int insert_memory_segment(struct memory_segment *seg)
310{
311	struct memory_segment *tmp;
312
313	if (seg->start + seg->size > VMEM_MAX_PHYS ||
314	    seg->start + seg->size < seg->start)
315		return -ERANGE;
316
317	list_for_each_entry(tmp, &mem_segs, list) {
318		if (seg->start >= tmp->start + tmp->size)
319			continue;
320		if (seg->start + seg->size <= tmp->start)
321			continue;
322		return -ENOSPC;
323	}
324	list_add(&seg->list, &mem_segs);
325	return 0;
326}
327
328/*
329 * Remove memory segment from the segment list.
330 */
331static void remove_memory_segment(struct memory_segment *seg)
332{
333	list_del(&seg->list);
334}
335
336static void __remove_shared_memory(struct memory_segment *seg)
337{
338	remove_memory_segment(seg);
339	vmem_remove_range(seg->start, seg->size);
340}
341
342int vmem_remove_mapping(unsigned long start, unsigned long size)
343{
344	struct memory_segment *seg;
345	int ret;
346
347	mutex_lock(&vmem_mutex);
348
349	ret = -ENOENT;
350	list_for_each_entry(seg, &mem_segs, list) {
351		if (seg->start == start && seg->size == size)
352			break;
353	}
354
355	if (seg->start != start || seg->size != size)
356		goto out;
357
358	ret = 0;
359	__remove_shared_memory(seg);
360	kfree(seg);
361out:
362	mutex_unlock(&vmem_mutex);
363	return ret;
364}
365
366int vmem_add_mapping(unsigned long start, unsigned long size)
367{
368	struct memory_segment *seg;
369	int ret;
370
371	mutex_lock(&vmem_mutex);
372	ret = -ENOMEM;
373	seg = kzalloc(sizeof(*seg), GFP_KERNEL);
374	if (!seg)
375		goto out;
376	seg->start = start;
377	seg->size = size;
378
379	ret = insert_memory_segment(seg);
380	if (ret)
381		goto out_free;
382
383	ret = vmem_add_mem(start, size);
384	if (ret)
385		goto out_remove;
386	goto out;
387
388out_remove:
389	__remove_shared_memory(seg);
390out_free:
391	kfree(seg);
392out:
393	mutex_unlock(&vmem_mutex);
394	return ret;
395}
396
397/*
398 * map whole physical memory to virtual memory (identity mapping)
399 * we reserve enough space in the vmalloc area for vmemmap to hotplug
400 * additional memory segments.
401 */
402void __init vmem_map_init(void)
403{
404	struct memblock_region *reg;
405
406	for_each_memblock(memory, reg)
407		vmem_add_mem(reg->base, reg->size);
408	__set_memory((unsigned long)_stext,
409		     (unsigned long)(_etext - _stext) >> PAGE_SHIFT,
410		     SET_MEMORY_RO | SET_MEMORY_X);
411	__set_memory((unsigned long)_etext,
412		     (unsigned long)(__end_rodata - _etext) >> PAGE_SHIFT,
413		     SET_MEMORY_RO);
414	__set_memory((unsigned long)_sinittext,
415		     (unsigned long)(_einittext - _sinittext) >> PAGE_SHIFT,
416		     SET_MEMORY_RO | SET_MEMORY_X);
417	pr_info("Write protected kernel read-only data: %luk\n",
418		(unsigned long)(__end_rodata - _stext) >> 10);
 
 
 
 
 
 
 
 
 
 
419}
420
421/*
422 * Convert memblock.memory  to a memory segment list so there is a single
423 * list that contains all memory segments.
424 */
425static int __init vmem_convert_memory_chunk(void)
426{
427	struct memblock_region *reg;
428	struct memory_segment *seg;
 
429
430	mutex_lock(&vmem_mutex);
431	for_each_memblock(memory, reg) {
 
 
432		seg = kzalloc(sizeof(*seg), GFP_KERNEL);
433		if (!seg)
434			panic("Out of memory...\n");
435		seg->start = reg->base;
436		seg->size = reg->size;
437		insert_memory_segment(seg);
438	}
439	mutex_unlock(&vmem_mutex);
440	return 0;
441}
442
443core_initcall(vmem_convert_memory_chunk);