Linux Audio

Check our new training course

Linux BSP development engineering services

Need help to port Linux and bootloaders to your hardware?
Loading...
v3.1
 
  1#ifndef __ALPHA_UACCESS_H
  2#define __ALPHA_UACCESS_H
  3
  4#include <linux/errno.h>
  5#include <linux/sched.h>
  6
  7
  8/*
  9 * The fs value determines whether argument validity checking should be
 10 * performed or not.  If get_fs() == USER_DS, checking is performed, with
 11 * get_fs() == KERNEL_DS, checking is bypassed.
 12 *
 13 * Or at least it did once upon a time.  Nowadays it is a mask that
 14 * defines which bits of the address space are off limits.  This is a
 15 * wee bit faster than the above.
 16 *
 17 * For historical reasons, these macros are grossly misnamed.
 18 */
 19
 20#define KERNEL_DS	((mm_segment_t) { 0UL })
 21#define USER_DS		((mm_segment_t) { -0x40000000000UL })
 22
 23#define VERIFY_READ	0
 24#define VERIFY_WRITE	1
 25
 26#define get_fs()  (current_thread_info()->addr_limit)
 27#define get_ds()  (KERNEL_DS)
 28#define set_fs(x) (current_thread_info()->addr_limit = (x))
 29
 30#define segment_eq(a,b)	((a).seg == (b).seg)
 31
 32/*
 33 * Is a address valid? This does a straightforward calculation rather
 34 * than tests.
 35 *
 36 * Address valid if:
 37 *  - "addr" doesn't have any high-bits set
 38 *  - AND "size" doesn't have any high-bits set
 39 *  - AND "addr+size" doesn't have any high-bits set
 40 *  - OR we are in kernel mode.
 41 */
 42#define __access_ok(addr,size,segment) \
 43	(((segment).seg & (addr | size | (addr+size))) == 0)
 44
 45#define access_ok(type,addr,size)				\
 46({								\
 47	__chk_user_ptr(addr);					\
 48	__access_ok(((unsigned long)(addr)),(size),get_fs());	\
 49})
 50
 51/*
 52 * These are the main single-value transfer routines.  They automatically
 53 * use the right size if we just have the right pointer type.
 54 *
 55 * As the alpha uses the same address space for kernel and user
 56 * data, we can just do these as direct assignments.  (Of course, the
 57 * exception handling means that it's no longer "just"...)
 58 *
 59 * Careful to not
 60 * (a) re-use the arguments for side effects (sizeof/typeof is ok)
 61 * (b) require any knowledge of processes at this stage
 62 */
 63#define put_user(x,ptr) \
 64  __put_user_check((__typeof__(*(ptr)))(x),(ptr),sizeof(*(ptr)),get_fs())
 65#define get_user(x,ptr) \
 66  __get_user_check((x),(ptr),sizeof(*(ptr)),get_fs())
 67
 68/*
 69 * The "__xxx" versions do not do address space checking, useful when
 70 * doing multiple accesses to the same area (the programmer has to do the
 71 * checks by hand with "access_ok()")
 72 */
 73#define __put_user(x,ptr) \
 74  __put_user_nocheck((__typeof__(*(ptr)))(x),(ptr),sizeof(*(ptr)))
 75#define __get_user(x,ptr) \
 76  __get_user_nocheck((x),(ptr),sizeof(*(ptr)))
 77  
 78/*
 79 * The "lda %1, 2b-1b(%0)" bits are magic to get the assembler to
 80 * encode the bits we need for resolving the exception.  See the
 81 * more extensive comments with fixup_inline_exception below for
 82 * more information.
 83 */
 
 
 
 
 
 84
 85extern void __get_user_unknown(void);
 86
 87#define __get_user_nocheck(x,ptr,size)				\
 88({								\
 89	long __gu_err = 0;					\
 90	unsigned long __gu_val;					\
 91	__chk_user_ptr(ptr);					\
 92	switch (size) {						\
 93	  case 1: __get_user_8(ptr); break;			\
 94	  case 2: __get_user_16(ptr); break;			\
 95	  case 4: __get_user_32(ptr); break;			\
 96	  case 8: __get_user_64(ptr); break;			\
 97	  default: __get_user_unknown(); break;			\
 98	}							\
 99	(x) = (__typeof__(*(ptr))) __gu_val;			\
100	__gu_err;						\
101})
102
103#define __get_user_check(x,ptr,size,segment)				\
104({									\
105	long __gu_err = -EFAULT;					\
106	unsigned long __gu_val = 0;					\
107	const __typeof__(*(ptr)) __user *__gu_addr = (ptr);		\
108	if (__access_ok((unsigned long)__gu_addr,size,segment)) {	\
109		__gu_err = 0;						\
110		switch (size) {						\
111		  case 1: __get_user_8(__gu_addr); break;		\
112		  case 2: __get_user_16(__gu_addr); break;		\
113		  case 4: __get_user_32(__gu_addr); break;		\
114		  case 8: __get_user_64(__gu_addr); break;		\
115		  default: __get_user_unknown(); break;			\
116		}							\
117	}								\
118	(x) = (__typeof__(*(ptr))) __gu_val;				\
119	__gu_err;							\
120})
121
122struct __large_struct { unsigned long buf[100]; };
123#define __m(x) (*(struct __large_struct __user *)(x))
124
125#define __get_user_64(addr)				\
126	__asm__("1: ldq %0,%2\n"			\
127	"2:\n"						\
128	".section __ex_table,\"a\"\n"			\
129	"	.long 1b - .\n"				\
130	"	lda %0, 2b-1b(%1)\n"			\
131	".previous"					\
132		: "=r"(__gu_val), "=r"(__gu_err)	\
133		: "m"(__m(addr)), "1"(__gu_err))
134
135#define __get_user_32(addr)				\
136	__asm__("1: ldl %0,%2\n"			\
137	"2:\n"						\
138	".section __ex_table,\"a\"\n"			\
139	"	.long 1b - .\n"				\
140	"	lda %0, 2b-1b(%1)\n"			\
141	".previous"					\
142		: "=r"(__gu_val), "=r"(__gu_err)	\
143		: "m"(__m(addr)), "1"(__gu_err))
144
145#ifdef __alpha_bwx__
146/* Those lucky bastards with ev56 and later CPUs can do byte/word moves.  */
147
148#define __get_user_16(addr)				\
149	__asm__("1: ldwu %0,%2\n"			\
150	"2:\n"						\
151	".section __ex_table,\"a\"\n"			\
152	"	.long 1b - .\n"				\
153	"	lda %0, 2b-1b(%1)\n"			\
154	".previous"					\
155		: "=r"(__gu_val), "=r"(__gu_err)	\
156		: "m"(__m(addr)), "1"(__gu_err))
157
158#define __get_user_8(addr)				\
159	__asm__("1: ldbu %0,%2\n"			\
160	"2:\n"						\
161	".section __ex_table,\"a\"\n"			\
162	"	.long 1b - .\n"				\
163	"	lda %0, 2b-1b(%1)\n"			\
164	".previous"					\
165		: "=r"(__gu_val), "=r"(__gu_err)	\
166		: "m"(__m(addr)), "1"(__gu_err))
167#else
168/* Unfortunately, we can't get an unaligned access trap for the sub-word
169   load, so we have to do a general unaligned operation.  */
170
171#define __get_user_16(addr)						\
172{									\
173	long __gu_tmp;							\
174	__asm__("1: ldq_u %0,0(%3)\n"					\
175	"2:	ldq_u %1,1(%3)\n"					\
176	"	extwl %0,%3,%0\n"					\
177	"	extwh %1,%3,%1\n"					\
178	"	or %0,%1,%0\n"						\
179	"3:\n"								\
180	".section __ex_table,\"a\"\n"					\
181	"	.long 1b - .\n"						\
182	"	lda %0, 3b-1b(%2)\n"					\
183	"	.long 2b - .\n"						\
184	"	lda %0, 3b-2b(%2)\n"					\
185	".previous"							\
186		: "=&r"(__gu_val), "=&r"(__gu_tmp), "=r"(__gu_err)	\
187		: "r"(addr), "2"(__gu_err));				\
188}
189
190#define __get_user_8(addr)						\
191	__asm__("1: ldq_u %0,0(%2)\n"					\
192	"	extbl %0,%2,%0\n"					\
193	"2:\n"								\
194	".section __ex_table,\"a\"\n"					\
195	"	.long 1b - .\n"						\
196	"	lda %0, 2b-1b(%1)\n"					\
197	".previous"							\
198		: "=&r"(__gu_val), "=r"(__gu_err)			\
199		: "r"(addr), "1"(__gu_err))
200#endif
201
202extern void __put_user_unknown(void);
203
204#define __put_user_nocheck(x,ptr,size)				\
205({								\
206	long __pu_err = 0;					\
207	__chk_user_ptr(ptr);					\
208	switch (size) {						\
209	  case 1: __put_user_8(x,ptr); break;			\
210	  case 2: __put_user_16(x,ptr); break;			\
211	  case 4: __put_user_32(x,ptr); break;			\
212	  case 8: __put_user_64(x,ptr); break;			\
213	  default: __put_user_unknown(); break;			\
214	}							\
215	__pu_err;						\
216})
217
218#define __put_user_check(x,ptr,size,segment)				\
219({									\
220	long __pu_err = -EFAULT;					\
221	__typeof__(*(ptr)) __user *__pu_addr = (ptr);			\
222	if (__access_ok((unsigned long)__pu_addr,size,segment)) {	\
223		__pu_err = 0;						\
224		switch (size) {						\
225		  case 1: __put_user_8(x,__pu_addr); break;		\
226		  case 2: __put_user_16(x,__pu_addr); break;		\
227		  case 4: __put_user_32(x,__pu_addr); break;		\
228		  case 8: __put_user_64(x,__pu_addr); break;		\
229		  default: __put_user_unknown(); break;			\
230		}							\
231	}								\
232	__pu_err;							\
233})
234
235/*
236 * The "__put_user_xx()" macros tell gcc they read from memory
237 * instead of writing: this is because they do not write to
238 * any memory gcc knows about, so there are no aliasing issues
239 */
240#define __put_user_64(x,addr)					\
241__asm__ __volatile__("1: stq %r2,%1\n"				\
242	"2:\n"							\
243	".section __ex_table,\"a\"\n"				\
244	"	.long 1b - .\n"					\
245	"	lda $31,2b-1b(%0)\n"				\
246	".previous"						\
247		: "=r"(__pu_err)				\
248		: "m" (__m(addr)), "rJ" (x), "0"(__pu_err))
249
250#define __put_user_32(x,addr)					\
251__asm__ __volatile__("1: stl %r2,%1\n"				\
252	"2:\n"							\
253	".section __ex_table,\"a\"\n"				\
254	"	.long 1b - .\n"					\
255	"	lda $31,2b-1b(%0)\n"				\
256	".previous"						\
257		: "=r"(__pu_err)				\
258		: "m"(__m(addr)), "rJ"(x), "0"(__pu_err))
259
260#ifdef __alpha_bwx__
261/* Those lucky bastards with ev56 and later CPUs can do byte/word moves.  */
262
263#define __put_user_16(x,addr)					\
264__asm__ __volatile__("1: stw %r2,%1\n"				\
265	"2:\n"							\
266	".section __ex_table,\"a\"\n"				\
267	"	.long 1b - .\n"					\
268	"	lda $31,2b-1b(%0)\n"				\
269	".previous"						\
270		: "=r"(__pu_err)				\
271		: "m"(__m(addr)), "rJ"(x), "0"(__pu_err))
272
273#define __put_user_8(x,addr)					\
274__asm__ __volatile__("1: stb %r2,%1\n"				\
275	"2:\n"							\
276	".section __ex_table,\"a\"\n"				\
277	"	.long 1b - .\n"					\
278	"	lda $31,2b-1b(%0)\n"				\
279	".previous"						\
280		: "=r"(__pu_err)				\
281		: "m"(__m(addr)), "rJ"(x), "0"(__pu_err))
282#else
283/* Unfortunately, we can't get an unaligned access trap for the sub-word
284   write, so we have to do a general unaligned operation.  */
285
286#define __put_user_16(x,addr)					\
287{								\
288	long __pu_tmp1, __pu_tmp2, __pu_tmp3, __pu_tmp4;	\
289	__asm__ __volatile__(					\
290	"1:	ldq_u %2,1(%5)\n"				\
291	"2:	ldq_u %1,0(%5)\n"				\
292	"	inswh %6,%5,%4\n"				\
293	"	inswl %6,%5,%3\n"				\
294	"	mskwh %2,%5,%2\n"				\
295	"	mskwl %1,%5,%1\n"				\
296	"	or %2,%4,%2\n"					\
297	"	or %1,%3,%1\n"					\
298	"3:	stq_u %2,1(%5)\n"				\
299	"4:	stq_u %1,0(%5)\n"				\
300	"5:\n"							\
301	".section __ex_table,\"a\"\n"				\
302	"	.long 1b - .\n"					\
303	"	lda $31, 5b-1b(%0)\n"				\
304	"	.long 2b - .\n"					\
305	"	lda $31, 5b-2b(%0)\n"				\
306	"	.long 3b - .\n"					\
307	"	lda $31, 5b-3b(%0)\n"				\
308	"	.long 4b - .\n"					\
309	"	lda $31, 5b-4b(%0)\n"				\
310	".previous"						\
311		: "=r"(__pu_err), "=&r"(__pu_tmp1),		\
312		  "=&r"(__pu_tmp2), "=&r"(__pu_tmp3),		\
313		  "=&r"(__pu_tmp4)				\
314		: "r"(addr), "r"((unsigned long)(x)), "0"(__pu_err)); \
315}
316
317#define __put_user_8(x,addr)					\
318{								\
319	long __pu_tmp1, __pu_tmp2;				\
320	__asm__ __volatile__(					\
321	"1:	ldq_u %1,0(%4)\n"				\
322	"	insbl %3,%4,%2\n"				\
323	"	mskbl %1,%4,%1\n"				\
324	"	or %1,%2,%1\n"					\
325	"2:	stq_u %1,0(%4)\n"				\
326	"3:\n"							\
327	".section __ex_table,\"a\"\n"				\
328	"	.long 1b - .\n"					\
329	"	lda $31, 3b-1b(%0)\n"				\
330	"	.long 2b - .\n"					\
331	"	lda $31, 3b-2b(%0)\n"				\
332	".previous"						\
333		: "=r"(__pu_err),				\
334	  	  "=&r"(__pu_tmp1), "=&r"(__pu_tmp2)		\
335		: "r"((unsigned long)(x)), "r"(addr), "0"(__pu_err)); \
336}
337#endif
338
339
340/*
341 * Complex access routines
342 */
343
344/* This little bit of silliness is to get the GP loaded for a function
345   that ordinarily wouldn't.  Otherwise we could have it done by the macro
346   directly, which can be optimized the linker.  */
347#ifdef MODULE
348#define __module_address(sym)		"r"(sym),
349#define __module_call(ra, arg, sym)	"jsr $" #ra ",(%" #arg ")," #sym
350#else
351#define __module_address(sym)
352#define __module_call(ra, arg, sym)	"bsr $" #ra "," #sym " !samegp"
353#endif
354
355extern void __copy_user(void);
356
357extern inline long
358__copy_tofrom_user_nocheck(void *to, const void *from, long len)
359{
360	register void * __cu_to __asm__("$6") = to;
361	register const void * __cu_from __asm__("$7") = from;
362	register long __cu_len __asm__("$0") = len;
363
364	__asm__ __volatile__(
365		__module_call(28, 3, __copy_user)
366		: "=r" (__cu_len), "=r" (__cu_from), "=r" (__cu_to)
367		: __module_address(__copy_user)
368		  "0" (__cu_len), "1" (__cu_from), "2" (__cu_to)
369		: "$1","$2","$3","$4","$5","$28","memory");
370
371	return __cu_len;
372}
373
374extern inline long
375__copy_tofrom_user(void *to, const void *from, long len, const void __user *validate)
376{
377	if (__access_ok((unsigned long)validate, len, get_fs()))
378		len = __copy_tofrom_user_nocheck(to, from, len);
379	return len;
380}
381
382#define __copy_to_user(to,from,n)					\
383({									\
384	__chk_user_ptr(to);						\
385	__copy_tofrom_user_nocheck((__force void *)(to),(from),(n));	\
386})
387#define __copy_from_user(to,from,n)					\
388({									\
389	__chk_user_ptr(from);						\
390	__copy_tofrom_user_nocheck((to),(__force void *)(from),(n));	\
391})
392
393#define __copy_to_user_inatomic __copy_to_user
394#define __copy_from_user_inatomic __copy_from_user
395
396
397extern inline long
398copy_to_user(void __user *to, const void *from, long n)
399{
400	return __copy_tofrom_user((__force void *)to, from, n, to);
401}
402
403extern inline long
404copy_from_user(void *to, const void __user *from, long n)
405{
406	return __copy_tofrom_user(to, (__force void *)from, n, from);
407}
408
409extern void __do_clear_user(void);
410
411extern inline long
412__clear_user(void __user *to, long len)
413{
414	register void __user * __cl_to __asm__("$6") = to;
415	register long __cl_len __asm__("$0") = len;
416	__asm__ __volatile__(
417		__module_call(28, 2, __do_clear_user)
418		: "=r"(__cl_len), "=r"(__cl_to)
419		: __module_address(__do_clear_user)
420		  "0"(__cl_len), "1"(__cl_to)
421		: "$1","$2","$3","$4","$5","$28","memory");
422	return __cl_len;
423}
424
425extern inline long
426clear_user(void __user *to, long len)
427{
428	if (__access_ok((unsigned long)to, len, get_fs()))
429		len = __clear_user(to, len);
430	return len;
431}
432
433#undef __module_address
434#undef __module_call
435
436/* Returns: -EFAULT if exception before terminator, N if the entire
437   buffer filled, else strlen.  */
438
439extern long __strncpy_from_user(char *__to, const char __user *__from, long __to_len);
440
441extern inline long
442strncpy_from_user(char *to, const char __user *from, long n)
443{
444	long ret = -EFAULT;
445	if (__access_ok((unsigned long)from, 0, get_fs()))
446		ret = __strncpy_from_user(to, from, n);
447	return ret;
448}
449
450/* Returns: 0 if bad, string length+1 (memory size) of string if ok */
451extern long __strlen_user(const char __user *);
452
453extern inline long strlen_user(const char __user *str)
454{
455	return access_ok(VERIFY_READ,str,0) ? __strlen_user(str) : 0;
456}
457
458/* Returns: 0 if exception before NUL or reaching the supplied limit (N),
459 * a value greater than N if the limit would be exceeded, else strlen.  */
460extern long __strnlen_user(const char __user *, long);
461
462extern inline long strnlen_user(const char __user *str, long n)
463{
464	return access_ok(VERIFY_READ,str,0) ? __strnlen_user(str, n) : 0;
465}
466
467/*
468 * About the exception table:
469 *
470 * - insn is a 32-bit pc-relative offset from the faulting insn.
471 * - nextinsn is a 16-bit offset off of the faulting instruction
472 *   (not off of the *next* instruction as branches are).
473 * - errreg is the register in which to place -EFAULT.
474 * - valreg is the final target register for the load sequence
475 *   and will be zeroed.
476 *
477 * Either errreg or valreg may be $31, in which case nothing happens.
478 *
479 * The exception fixup information "just so happens" to be arranged
480 * as in a MEM format instruction.  This lets us emit our three
481 * values like so:
482 *
483 *      lda valreg, nextinsn(errreg)
484 *
485 */
486
487struct exception_table_entry
488{
489	signed int insn;
490	union exception_fixup {
491		unsigned unit;
492		struct {
493			signed int nextinsn : 16;
494			unsigned int errreg : 5;
495			unsigned int valreg : 5;
496		} bits;
497	} fixup;
498};
499
500/* Returns the new pc */
501#define fixup_exception(map_reg, _fixup, pc)			\
502({								\
503	if ((_fixup)->fixup.bits.valreg != 31)			\
504		map_reg((_fixup)->fixup.bits.valreg) = 0;	\
505	if ((_fixup)->fixup.bits.errreg != 31)			\
506		map_reg((_fixup)->fixup.bits.errreg) = -EFAULT;	\
507	(pc) + (_fixup)->fixup.bits.nextinsn;			\
508})
509
510#define ARCH_HAS_SORT_EXTABLE
511#define ARCH_HAS_SEARCH_EXTABLE
512
513#endif /* __ALPHA_UACCESS_H */
v4.17
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef __ALPHA_UACCESS_H
  3#define __ALPHA_UACCESS_H
  4
 
 
 
 
  5/*
  6 * The fs value determines whether argument validity checking should be
  7 * performed or not.  If get_fs() == USER_DS, checking is performed, with
  8 * get_fs() == KERNEL_DS, checking is bypassed.
  9 *
 10 * Or at least it did once upon a time.  Nowadays it is a mask that
 11 * defines which bits of the address space are off limits.  This is a
 12 * wee bit faster than the above.
 13 *
 14 * For historical reasons, these macros are grossly misnamed.
 15 */
 16
 17#define KERNEL_DS	((mm_segment_t) { 0UL })
 18#define USER_DS		((mm_segment_t) { -0x40000000000UL })
 19
 
 
 
 20#define get_fs()  (current_thread_info()->addr_limit)
 21#define get_ds()  (KERNEL_DS)
 22#define set_fs(x) (current_thread_info()->addr_limit = (x))
 23
 24#define segment_eq(a, b)	((a).seg == (b).seg)
 25
 26/*
 27 * Is a address valid? This does a straightforward calculation rather
 28 * than tests.
 29 *
 30 * Address valid if:
 31 *  - "addr" doesn't have any high-bits set
 32 *  - AND "size" doesn't have any high-bits set
 33 *  - AND "addr+size" doesn't have any high-bits set
 34 *  - OR we are in kernel mode.
 35 */
 36#define __access_ok(addr, size) \
 37	((get_fs().seg & (addr | size | (addr+size))) == 0)
 38
 39#define access_ok(type, addr, size)			\
 40({							\
 41	__chk_user_ptr(addr);				\
 42	__access_ok(((unsigned long)(addr)), (size));	\
 43})
 44
 45/*
 46 * These are the main single-value transfer routines.  They automatically
 47 * use the right size if we just have the right pointer type.
 48 *
 49 * As the alpha uses the same address space for kernel and user
 50 * data, we can just do these as direct assignments.  (Of course, the
 51 * exception handling means that it's no longer "just"...)
 52 *
 53 * Careful to not
 54 * (a) re-use the arguments for side effects (sizeof/typeof is ok)
 55 * (b) require any knowledge of processes at this stage
 56 */
 57#define put_user(x, ptr) \
 58  __put_user_check((__typeof__(*(ptr)))(x), (ptr), sizeof(*(ptr)))
 59#define get_user(x, ptr) \
 60  __get_user_check((x), (ptr), sizeof(*(ptr)))
 61
 62/*
 63 * The "__xxx" versions do not do address space checking, useful when
 64 * doing multiple accesses to the same area (the programmer has to do the
 65 * checks by hand with "access_ok()")
 66 */
 67#define __put_user(x, ptr) \
 68  __put_user_nocheck((__typeof__(*(ptr)))(x), (ptr), sizeof(*(ptr)))
 69#define __get_user(x, ptr) \
 70  __get_user_nocheck((x), (ptr), sizeof(*(ptr)))
 71  
 72/*
 73 * The "lda %1, 2b-1b(%0)" bits are magic to get the assembler to
 74 * encode the bits we need for resolving the exception.  See the
 75 * more extensive comments with fixup_inline_exception below for
 76 * more information.
 77 */
 78#define EXC(label,cont,res,err)				\
 79	".section __ex_table,\"a\"\n"			\
 80	"	.long "#label"-.\n"			\
 81	"	lda "#res","#cont"-"#label"("#err")\n"	\
 82	".previous\n"
 83
 84extern void __get_user_unknown(void);
 85
 86#define __get_user_nocheck(x, ptr, size)			\
 87({								\
 88	long __gu_err = 0;					\
 89	unsigned long __gu_val;					\
 90	__chk_user_ptr(ptr);					\
 91	switch (size) {						\
 92	  case 1: __get_user_8(ptr); break;			\
 93	  case 2: __get_user_16(ptr); break;			\
 94	  case 4: __get_user_32(ptr); break;			\
 95	  case 8: __get_user_64(ptr); break;			\
 96	  default: __get_user_unknown(); break;			\
 97	}							\
 98	(x) = (__force __typeof__(*(ptr))) __gu_val;		\
 99	__gu_err;						\
100})
101
102#define __get_user_check(x, ptr, size)				\
103({								\
104	long __gu_err = -EFAULT;				\
105	unsigned long __gu_val = 0;				\
106	const __typeof__(*(ptr)) __user *__gu_addr = (ptr);	\
107	if (__access_ok((unsigned long)__gu_addr, size)) {	\
108		__gu_err = 0;					\
109		switch (size) {					\
110		  case 1: __get_user_8(__gu_addr); break;	\
111		  case 2: __get_user_16(__gu_addr); break;	\
112		  case 4: __get_user_32(__gu_addr); break;	\
113		  case 8: __get_user_64(__gu_addr); break;	\
114		  default: __get_user_unknown(); break;		\
115		}						\
116	}							\
117	(x) = (__force __typeof__(*(ptr))) __gu_val;		\
118	__gu_err;						\
119})
120
121struct __large_struct { unsigned long buf[100]; };
122#define __m(x) (*(struct __large_struct __user *)(x))
123
124#define __get_user_64(addr)				\
125	__asm__("1: ldq %0,%2\n"			\
126	"2:\n"						\
127	EXC(1b,2b,%0,%1)				\
 
 
 
128		: "=r"(__gu_val), "=r"(__gu_err)	\
129		: "m"(__m(addr)), "1"(__gu_err))
130
131#define __get_user_32(addr)				\
132	__asm__("1: ldl %0,%2\n"			\
133	"2:\n"						\
134	EXC(1b,2b,%0,%1)				\
 
 
 
135		: "=r"(__gu_val), "=r"(__gu_err)	\
136		: "m"(__m(addr)), "1"(__gu_err))
137
138#ifdef __alpha_bwx__
139/* Those lucky bastards with ev56 and later CPUs can do byte/word moves.  */
140
141#define __get_user_16(addr)				\
142	__asm__("1: ldwu %0,%2\n"			\
143	"2:\n"						\
144	EXC(1b,2b,%0,%1)				\
 
 
 
145		: "=r"(__gu_val), "=r"(__gu_err)	\
146		: "m"(__m(addr)), "1"(__gu_err))
147
148#define __get_user_8(addr)				\
149	__asm__("1: ldbu %0,%2\n"			\
150	"2:\n"						\
151	EXC(1b,2b,%0,%1)				\
 
 
 
152		: "=r"(__gu_val), "=r"(__gu_err)	\
153		: "m"(__m(addr)), "1"(__gu_err))
154#else
155/* Unfortunately, we can't get an unaligned access trap for the sub-word
156   load, so we have to do a general unaligned operation.  */
157
158#define __get_user_16(addr)						\
159{									\
160	long __gu_tmp;							\
161	__asm__("1: ldq_u %0,0(%3)\n"					\
162	"2:	ldq_u %1,1(%3)\n"					\
163	"	extwl %0,%3,%0\n"					\
164	"	extwh %1,%3,%1\n"					\
165	"	or %0,%1,%0\n"						\
166	"3:\n"								\
167	EXC(1b,3b,%0,%2)						\
168	EXC(2b,3b,%0,%2)						\
 
 
 
 
169		: "=&r"(__gu_val), "=&r"(__gu_tmp), "=r"(__gu_err)	\
170		: "r"(addr), "2"(__gu_err));				\
171}
172
173#define __get_user_8(addr)						\
174	__asm__("1: ldq_u %0,0(%2)\n"					\
175	"	extbl %0,%2,%0\n"					\
176	"2:\n"								\
177	EXC(1b,2b,%0,%1)						\
 
 
 
178		: "=&r"(__gu_val), "=r"(__gu_err)			\
179		: "r"(addr), "1"(__gu_err))
180#endif
181
182extern void __put_user_unknown(void);
183
184#define __put_user_nocheck(x, ptr, size)			\
185({								\
186	long __pu_err = 0;					\
187	__chk_user_ptr(ptr);					\
188	switch (size) {						\
189	  case 1: __put_user_8(x, ptr); break;			\
190	  case 2: __put_user_16(x, ptr); break;			\
191	  case 4: __put_user_32(x, ptr); break;			\
192	  case 8: __put_user_64(x, ptr); break;			\
193	  default: __put_user_unknown(); break;			\
194	}							\
195	__pu_err;						\
196})
197
198#define __put_user_check(x, ptr, size)				\
199({								\
200	long __pu_err = -EFAULT;				\
201	__typeof__(*(ptr)) __user *__pu_addr = (ptr);		\
202	if (__access_ok((unsigned long)__pu_addr, size)) {	\
203		__pu_err = 0;					\
204		switch (size) {					\
205		  case 1: __put_user_8(x, __pu_addr); break;	\
206		  case 2: __put_user_16(x, __pu_addr); break;	\
207		  case 4: __put_user_32(x, __pu_addr); break;	\
208		  case 8: __put_user_64(x, __pu_addr); break;	\
209		  default: __put_user_unknown(); break;		\
210		}						\
211	}							\
212	__pu_err;						\
213})
214
215/*
216 * The "__put_user_xx()" macros tell gcc they read from memory
217 * instead of writing: this is because they do not write to
218 * any memory gcc knows about, so there are no aliasing issues
219 */
220#define __put_user_64(x, addr)					\
221__asm__ __volatile__("1: stq %r2,%1\n"				\
222	"2:\n"							\
223	EXC(1b,2b,$31,%0)					\
 
 
 
224		: "=r"(__pu_err)				\
225		: "m" (__m(addr)), "rJ" (x), "0"(__pu_err))
226
227#define __put_user_32(x, addr)					\
228__asm__ __volatile__("1: stl %r2,%1\n"				\
229	"2:\n"							\
230	EXC(1b,2b,$31,%0)					\
 
 
 
231		: "=r"(__pu_err)				\
232		: "m"(__m(addr)), "rJ"(x), "0"(__pu_err))
233
234#ifdef __alpha_bwx__
235/* Those lucky bastards with ev56 and later CPUs can do byte/word moves.  */
236
237#define __put_user_16(x, addr)					\
238__asm__ __volatile__("1: stw %r2,%1\n"				\
239	"2:\n"							\
240	EXC(1b,2b,$31,%0)					\
 
 
 
241		: "=r"(__pu_err)				\
242		: "m"(__m(addr)), "rJ"(x), "0"(__pu_err))
243
244#define __put_user_8(x, addr)					\
245__asm__ __volatile__("1: stb %r2,%1\n"				\
246	"2:\n"							\
247	EXC(1b,2b,$31,%0)					\
 
 
 
248		: "=r"(__pu_err)				\
249		: "m"(__m(addr)), "rJ"(x), "0"(__pu_err))
250#else
251/* Unfortunately, we can't get an unaligned access trap for the sub-word
252   write, so we have to do a general unaligned operation.  */
253
254#define __put_user_16(x, addr)					\
255{								\
256	long __pu_tmp1, __pu_tmp2, __pu_tmp3, __pu_tmp4;	\
257	__asm__ __volatile__(					\
258	"1:	ldq_u %2,1(%5)\n"				\
259	"2:	ldq_u %1,0(%5)\n"				\
260	"	inswh %6,%5,%4\n"				\
261	"	inswl %6,%5,%3\n"				\
262	"	mskwh %2,%5,%2\n"				\
263	"	mskwl %1,%5,%1\n"				\
264	"	or %2,%4,%2\n"					\
265	"	or %1,%3,%1\n"					\
266	"3:	stq_u %2,1(%5)\n"				\
267	"4:	stq_u %1,0(%5)\n"				\
268	"5:\n"							\
269	EXC(1b,5b,$31,%0)					\
270	EXC(2b,5b,$31,%0)					\
271	EXC(3b,5b,$31,%0)					\
272	EXC(4b,5b,$31,%0)					\
273		: "=r"(__pu_err), "=&r"(__pu_tmp1), 		\
274		  "=&r"(__pu_tmp2), "=&r"(__pu_tmp3), 		\
 
 
 
 
 
 
275		  "=&r"(__pu_tmp4)				\
276		: "r"(addr), "r"((unsigned long)(x)), "0"(__pu_err)); \
277}
278
279#define __put_user_8(x, addr)					\
280{								\
281	long __pu_tmp1, __pu_tmp2;				\
282	__asm__ __volatile__(					\
283	"1:	ldq_u %1,0(%4)\n"				\
284	"	insbl %3,%4,%2\n"				\
285	"	mskbl %1,%4,%1\n"				\
286	"	or %1,%2,%1\n"					\
287	"2:	stq_u %1,0(%4)\n"				\
288	"3:\n"							\
289	EXC(1b,3b,$31,%0)					\
290	EXC(2b,3b,$31,%0)					\
291		: "=r"(__pu_err), 				\
 
 
 
 
292	  	  "=&r"(__pu_tmp1), "=&r"(__pu_tmp2)		\
293		: "r"((unsigned long)(x)), "r"(addr), "0"(__pu_err)); \
294}
295#endif
296
297
298/*
299 * Complex access routines
300 */
301
302extern long __copy_user(void *to, const void *from, long len);
 
 
 
 
 
 
 
 
 
303
304static inline unsigned long
305raw_copy_from_user(void *to, const void __user *from, unsigned long len)
 
 
306{
307	return __copy_user(to, (__force const void *)from, len);
 
 
 
 
 
 
 
 
 
 
 
308}
309
310static inline unsigned long
311raw_copy_to_user(void __user *to, const void *from, unsigned long len)
312{
313	return __copy_user((__force void *)to, from, len);
 
 
314}
315
316extern long __clear_user(void __user *to, long len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
317
318extern inline long
319clear_user(void __user *to, long len)
320{
321	if (__access_ok((unsigned long)to, len))
322		len = __clear_user(to, len);
323	return len;
324}
325
326#define user_addr_max() \
327        (uaccess_kernel() ? ~0UL : TASK_SIZE)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
328
329extern long strncpy_from_user(char *dest, const char __user *src, long count);
330extern __must_check long strnlen_user(const char __user *str, long n);
 
 
 
 
 
 
 
331
332#include <asm/extable.h>
 
333
334#endif /* __ALPHA_UACCESS_H */