Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Copyright (c) 2006 Oracle.  All rights reserved.
   3 *
   4 * This software is available to you under a choice of one of two
   5 * licenses.  You may choose to be licensed under the terms of the GNU
   6 * General Public License (GPL) Version 2, available from the file
   7 * COPYING in the main directory of this source tree, or the
   8 * OpenIB.org BSD license below:
   9 *
  10 *     Redistribution and use in source and binary forms, with or
  11 *     without modification, are permitted provided that the following
  12 *     conditions are met:
  13 *
  14 *      - Redistributions of source code must retain the above
  15 *        copyright notice, this list of conditions and the following
  16 *        disclaimer.
  17 *
  18 *      - Redistributions in binary form must reproduce the above
  19 *        copyright notice, this list of conditions and the following
  20 *        disclaimer in the documentation and/or other materials
  21 *        provided with the distribution.
  22 *
  23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30 * SOFTWARE.
  31 *
  32 */
  33#include <linux/kernel.h>
 
  34#include <linux/gfp.h>
  35#include <net/sock.h>
  36#include <linux/in.h>
  37#include <linux/list.h>
  38#include <linux/ratelimit.h>
 
 
  39
  40#include "rds.h"
  41
  42/* When transmitting messages in rds_send_xmit, we need to emerge from
  43 * time to time and briefly release the CPU. Otherwise the softlock watchdog
  44 * will kick our shin.
  45 * Also, it seems fairer to not let one busy connection stall all the
  46 * others.
  47 *
  48 * send_batch_count is the number of times we'll loop in send_xmit. Setting
  49 * it to 0 will restore the old behavior (where we looped until we had
  50 * drained the queue).
  51 */
  52static int send_batch_count = 64;
  53module_param(send_batch_count, int, 0444);
  54MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue");
  55
  56static void rds_send_remove_from_sock(struct list_head *messages, int status);
  57
  58/*
  59 * Reset the send state.  Callers must ensure that this doesn't race with
  60 * rds_send_xmit().
  61 */
  62void rds_send_reset(struct rds_connection *conn)
  63{
  64	struct rds_message *rm, *tmp;
  65	unsigned long flags;
  66
  67	if (conn->c_xmit_rm) {
  68		rm = conn->c_xmit_rm;
  69		conn->c_xmit_rm = NULL;
  70		/* Tell the user the RDMA op is no longer mapped by the
  71		 * transport. This isn't entirely true (it's flushed out
  72		 * independently) but as the connection is down, there's
  73		 * no ongoing RDMA to/from that memory */
  74		rds_message_unmapped(rm);
  75		rds_message_put(rm);
  76	}
  77
  78	conn->c_xmit_sg = 0;
  79	conn->c_xmit_hdr_off = 0;
  80	conn->c_xmit_data_off = 0;
  81	conn->c_xmit_atomic_sent = 0;
  82	conn->c_xmit_rdma_sent = 0;
  83	conn->c_xmit_data_sent = 0;
  84
  85	conn->c_map_queued = 0;
  86
  87	conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
  88	conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
  89
  90	/* Mark messages as retransmissions, and move them to the send q */
  91	spin_lock_irqsave(&conn->c_lock, flags);
  92	list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
  93		set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
  94		set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags);
  95	}
  96	list_splice_init(&conn->c_retrans, &conn->c_send_queue);
  97	spin_unlock_irqrestore(&conn->c_lock, flags);
  98}
 
  99
 100static int acquire_in_xmit(struct rds_connection *conn)
 101{
 102	return test_and_set_bit(RDS_IN_XMIT, &conn->c_flags) == 0;
 103}
 104
 105static void release_in_xmit(struct rds_connection *conn)
 106{
 107	clear_bit(RDS_IN_XMIT, &conn->c_flags);
 108	smp_mb__after_clear_bit();
 109	/*
 110	 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a
 111	 * hot path and finding waiters is very rare.  We don't want to walk
 112	 * the system-wide hashed waitqueue buckets in the fast path only to
 113	 * almost never find waiters.
 114	 */
 115	if (waitqueue_active(&conn->c_waitq))
 116		wake_up_all(&conn->c_waitq);
 117}
 118
 119/*
 120 * We're making the conscious trade-off here to only send one message
 121 * down the connection at a time.
 122 *   Pro:
 123 *      - tx queueing is a simple fifo list
 124 *   	- reassembly is optional and easily done by transports per conn
 125 *      - no per flow rx lookup at all, straight to the socket
 126 *   	- less per-frag memory and wire overhead
 127 *   Con:
 128 *      - queued acks can be delayed behind large messages
 129 *   Depends:
 130 *      - small message latency is higher behind queued large messages
 131 *      - large message latency isn't starved by intervening small sends
 132 */
 133int rds_send_xmit(struct rds_connection *conn)
 134{
 
 135	struct rds_message *rm;
 136	unsigned long flags;
 137	unsigned int tmp;
 138	struct scatterlist *sg;
 139	int ret = 0;
 140	LIST_HEAD(to_be_dropped);
 
 
 141
 142restart:
 
 143
 144	/*
 145	 * sendmsg calls here after having queued its message on the send
 146	 * queue.  We only have one task feeding the connection at a time.  If
 147	 * another thread is already feeding the queue then we back off.  This
 148	 * avoids blocking the caller and trading per-connection data between
 149	 * caches per message.
 150	 */
 151	if (!acquire_in_xmit(conn)) {
 152		rds_stats_inc(s_send_lock_contention);
 153		ret = -ENOMEM;
 154		goto out;
 155	}
 156
 157	/*
 
 
 
 
 
 
 
 
 
 
 
 158	 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT,
 159	 * we do the opposite to avoid races.
 160	 */
 161	if (!rds_conn_up(conn)) {
 162		release_in_xmit(conn);
 163		ret = 0;
 164		goto out;
 165	}
 166
 167	if (conn->c_trans->xmit_prepare)
 168		conn->c_trans->xmit_prepare(conn);
 169
 170	/*
 171	 * spin trying to push headers and data down the connection until
 172	 * the connection doesn't make forward progress.
 173	 */
 174	while (1) {
 175
 176		rm = conn->c_xmit_rm;
 177
 178		/*
 179		 * If between sending messages, we can send a pending congestion
 180		 * map update.
 181		 */
 182		if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) {
 183			rm = rds_cong_update_alloc(conn);
 184			if (IS_ERR(rm)) {
 185				ret = PTR_ERR(rm);
 186				break;
 187			}
 188			rm->data.op_active = 1;
 
 
 189
 190			conn->c_xmit_rm = rm;
 191		}
 192
 193		/*
 194		 * If not already working on one, grab the next message.
 195		 *
 196		 * c_xmit_rm holds a ref while we're sending this message down
 197		 * the connction.  We can use this ref while holding the
 198		 * send_sem.. rds_send_reset() is serialized with it.
 199		 */
 200		if (!rm) {
 201			unsigned int len;
 202
 203			spin_lock_irqsave(&conn->c_lock, flags);
 
 
 
 
 
 
 
 
 
 
 204
 205			if (!list_empty(&conn->c_send_queue)) {
 206				rm = list_entry(conn->c_send_queue.next,
 207						struct rds_message,
 208						m_conn_item);
 209				rds_message_addref(rm);
 210
 211				/*
 212				 * Move the message from the send queue to the retransmit
 213				 * list right away.
 214				 */
 215				list_move_tail(&rm->m_conn_item, &conn->c_retrans);
 
 216			}
 217
 218			spin_unlock_irqrestore(&conn->c_lock, flags);
 219
 220			if (!rm)
 221				break;
 222
 223			/* Unfortunately, the way Infiniband deals with
 224			 * RDMA to a bad MR key is by moving the entire
 225			 * queue pair to error state. We cold possibly
 226			 * recover from that, but right now we drop the
 227			 * connection.
 228			 * Therefore, we never retransmit messages with RDMA ops.
 229			 */
 230			if (rm->rdma.op_active &&
 231			    test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags)) {
 232				spin_lock_irqsave(&conn->c_lock, flags);
 
 233				if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags))
 234					list_move(&rm->m_conn_item, &to_be_dropped);
 235				spin_unlock_irqrestore(&conn->c_lock, flags);
 236				continue;
 237			}
 238
 239			/* Require an ACK every once in a while */
 240			len = ntohl(rm->m_inc.i_hdr.h_len);
 241			if (conn->c_unacked_packets == 0 ||
 242			    conn->c_unacked_bytes < len) {
 243				__set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
 244
 245				conn->c_unacked_packets = rds_sysctl_max_unacked_packets;
 246				conn->c_unacked_bytes = rds_sysctl_max_unacked_bytes;
 
 
 247				rds_stats_inc(s_send_ack_required);
 248			} else {
 249				conn->c_unacked_bytes -= len;
 250				conn->c_unacked_packets--;
 251			}
 252
 253			conn->c_xmit_rm = rm;
 254		}
 255
 256		/* The transport either sends the whole rdma or none of it */
 257		if (rm->rdma.op_active && !conn->c_xmit_rdma_sent) {
 258			rm->m_final_op = &rm->rdma;
 
 
 
 
 259			ret = conn->c_trans->xmit_rdma(conn, &rm->rdma);
 260			if (ret)
 
 
 261				break;
 262			conn->c_xmit_rdma_sent = 1;
 
 263
 264			/* The transport owns the mapped memory for now.
 265			 * You can't unmap it while it's on the send queue */
 266			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
 267		}
 268
 269		if (rm->atomic.op_active && !conn->c_xmit_atomic_sent) {
 270			rm->m_final_op = &rm->atomic;
 
 
 
 
 271			ret = conn->c_trans->xmit_atomic(conn, &rm->atomic);
 272			if (ret)
 
 
 273				break;
 274			conn->c_xmit_atomic_sent = 1;
 
 275
 276			/* The transport owns the mapped memory for now.
 277			 * You can't unmap it while it's on the send queue */
 278			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
 279		}
 280
 281		/*
 282		 * A number of cases require an RDS header to be sent
 283		 * even if there is no data.
 284		 * We permit 0-byte sends; rds-ping depends on this.
 285		 * However, if there are exclusively attached silent ops,
 286		 * we skip the hdr/data send, to enable silent operation.
 287		 */
 288		if (rm->data.op_nents == 0) {
 289			int ops_present;
 290			int all_ops_are_silent = 1;
 291
 292			ops_present = (rm->atomic.op_active || rm->rdma.op_active);
 293			if (rm->atomic.op_active && !rm->atomic.op_silent)
 294				all_ops_are_silent = 0;
 295			if (rm->rdma.op_active && !rm->rdma.op_silent)
 296				all_ops_are_silent = 0;
 297
 298			if (ops_present && all_ops_are_silent
 299			    && !rm->m_rdma_cookie)
 300				rm->data.op_active = 0;
 301		}
 302
 303		if (rm->data.op_active && !conn->c_xmit_data_sent) {
 304			rm->m_final_op = &rm->data;
 
 305			ret = conn->c_trans->xmit(conn, rm,
 306						  conn->c_xmit_hdr_off,
 307						  conn->c_xmit_sg,
 308						  conn->c_xmit_data_off);
 309			if (ret <= 0)
 310				break;
 311
 312			if (conn->c_xmit_hdr_off < sizeof(struct rds_header)) {
 313				tmp = min_t(int, ret,
 314					    sizeof(struct rds_header) -
 315					    conn->c_xmit_hdr_off);
 316				conn->c_xmit_hdr_off += tmp;
 317				ret -= tmp;
 318			}
 319
 320			sg = &rm->data.op_sg[conn->c_xmit_sg];
 321			while (ret) {
 322				tmp = min_t(int, ret, sg->length -
 323						      conn->c_xmit_data_off);
 324				conn->c_xmit_data_off += tmp;
 325				ret -= tmp;
 326				if (conn->c_xmit_data_off == sg->length) {
 327					conn->c_xmit_data_off = 0;
 328					sg++;
 329					conn->c_xmit_sg++;
 330					BUG_ON(ret != 0 &&
 331					       conn->c_xmit_sg == rm->data.op_nents);
 332				}
 333			}
 334
 335			if (conn->c_xmit_hdr_off == sizeof(struct rds_header) &&
 336			    (conn->c_xmit_sg == rm->data.op_nents))
 337				conn->c_xmit_data_sent = 1;
 338		}
 339
 340		/*
 341		 * A rm will only take multiple times through this loop
 342		 * if there is a data op. Thus, if the data is sent (or there was
 343		 * none), then we're done with the rm.
 344		 */
 345		if (!rm->data.op_active || conn->c_xmit_data_sent) {
 346			conn->c_xmit_rm = NULL;
 347			conn->c_xmit_sg = 0;
 348			conn->c_xmit_hdr_off = 0;
 349			conn->c_xmit_data_off = 0;
 350			conn->c_xmit_rdma_sent = 0;
 351			conn->c_xmit_atomic_sent = 0;
 352			conn->c_xmit_data_sent = 0;
 353
 354			rds_message_put(rm);
 355		}
 356	}
 357
 358	if (conn->c_trans->xmit_complete)
 359		conn->c_trans->xmit_complete(conn);
 360
 361	release_in_xmit(conn);
 362
 363	/* Nuke any messages we decided not to retransmit. */
 364	if (!list_empty(&to_be_dropped)) {
 365		/* irqs on here, so we can put(), unlike above */
 366		list_for_each_entry(rm, &to_be_dropped, m_conn_item)
 367			rds_message_put(rm);
 368		rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED);
 369	}
 370
 371	/*
 372	 * Other senders can queue a message after we last test the send queue
 373	 * but before we clear RDS_IN_XMIT.  In that case they'd back off and
 374	 * not try and send their newly queued message.  We need to check the
 375	 * send queue after having cleared RDS_IN_XMIT so that their message
 376	 * doesn't get stuck on the send queue.
 377	 *
 378	 * If the transport cannot continue (i.e ret != 0), then it must
 379	 * call us when more room is available, such as from the tx
 380	 * completion handler.
 
 
 
 
 381	 */
 382	if (ret == 0) {
 383		smp_mb();
 384		if (!list_empty(&conn->c_send_queue)) {
 
 
 385			rds_stats_inc(s_send_lock_queue_raced);
 386			goto restart;
 
 
 387		}
 388	}
 389out:
 390	return ret;
 391}
 
 392
 393static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm)
 394{
 395	u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
 396
 397	assert_spin_locked(&rs->rs_lock);
 398
 399	BUG_ON(rs->rs_snd_bytes < len);
 400	rs->rs_snd_bytes -= len;
 401
 402	if (rs->rs_snd_bytes == 0)
 403		rds_stats_inc(s_send_queue_empty);
 404}
 405
 406static inline int rds_send_is_acked(struct rds_message *rm, u64 ack,
 407				    is_acked_func is_acked)
 408{
 409	if (is_acked)
 410		return is_acked(rm, ack);
 411	return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack;
 412}
 413
 414/*
 415 * This is pretty similar to what happens below in the ACK
 416 * handling code - except that we call here as soon as we get
 417 * the IB send completion on the RDMA op and the accompanying
 418 * message.
 419 */
 420void rds_rdma_send_complete(struct rds_message *rm, int status)
 421{
 422	struct rds_sock *rs = NULL;
 423	struct rm_rdma_op *ro;
 424	struct rds_notifier *notifier;
 425	unsigned long flags;
 426
 427	spin_lock_irqsave(&rm->m_rs_lock, flags);
 428
 429	ro = &rm->rdma;
 430	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) &&
 431	    ro->op_active && ro->op_notify && ro->op_notifier) {
 432		notifier = ro->op_notifier;
 433		rs = rm->m_rs;
 434		sock_hold(rds_rs_to_sk(rs));
 435
 436		notifier->n_status = status;
 437		spin_lock(&rs->rs_lock);
 438		list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
 439		spin_unlock(&rs->rs_lock);
 440
 441		ro->op_notifier = NULL;
 442	}
 443
 444	spin_unlock_irqrestore(&rm->m_rs_lock, flags);
 445
 446	if (rs) {
 447		rds_wake_sk_sleep(rs);
 448		sock_put(rds_rs_to_sk(rs));
 449	}
 450}
 451EXPORT_SYMBOL_GPL(rds_rdma_send_complete);
 452
 453/*
 454 * Just like above, except looks at atomic op
 455 */
 456void rds_atomic_send_complete(struct rds_message *rm, int status)
 457{
 458	struct rds_sock *rs = NULL;
 459	struct rm_atomic_op *ao;
 460	struct rds_notifier *notifier;
 461	unsigned long flags;
 462
 463	spin_lock_irqsave(&rm->m_rs_lock, flags);
 464
 465	ao = &rm->atomic;
 466	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)
 467	    && ao->op_active && ao->op_notify && ao->op_notifier) {
 468		notifier = ao->op_notifier;
 469		rs = rm->m_rs;
 470		sock_hold(rds_rs_to_sk(rs));
 471
 472		notifier->n_status = status;
 473		spin_lock(&rs->rs_lock);
 474		list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
 475		spin_unlock(&rs->rs_lock);
 476
 477		ao->op_notifier = NULL;
 478	}
 479
 480	spin_unlock_irqrestore(&rm->m_rs_lock, flags);
 481
 482	if (rs) {
 483		rds_wake_sk_sleep(rs);
 484		sock_put(rds_rs_to_sk(rs));
 485	}
 486}
 487EXPORT_SYMBOL_GPL(rds_atomic_send_complete);
 488
 489/*
 490 * This is the same as rds_rdma_send_complete except we
 491 * don't do any locking - we have all the ingredients (message,
 492 * socket, socket lock) and can just move the notifier.
 493 */
 494static inline void
 495__rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status)
 496{
 497	struct rm_rdma_op *ro;
 498	struct rm_atomic_op *ao;
 499
 500	ro = &rm->rdma;
 501	if (ro->op_active && ro->op_notify && ro->op_notifier) {
 502		ro->op_notifier->n_status = status;
 503		list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue);
 504		ro->op_notifier = NULL;
 505	}
 506
 507	ao = &rm->atomic;
 508	if (ao->op_active && ao->op_notify && ao->op_notifier) {
 509		ao->op_notifier->n_status = status;
 510		list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue);
 511		ao->op_notifier = NULL;
 512	}
 513
 514	/* No need to wake the app - caller does this */
 515}
 516
 517/*
 518 * This is called from the IB send completion when we detect
 519 * a RDMA operation that failed with remote access error.
 520 * So speed is not an issue here.
 521 */
 522struct rds_message *rds_send_get_message(struct rds_connection *conn,
 523					 struct rm_rdma_op *op)
 524{
 525	struct rds_message *rm, *tmp, *found = NULL;
 526	unsigned long flags;
 527
 528	spin_lock_irqsave(&conn->c_lock, flags);
 529
 530	list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
 531		if (&rm->rdma == op) {
 532			atomic_inc(&rm->m_refcount);
 533			found = rm;
 534			goto out;
 535		}
 536	}
 537
 538	list_for_each_entry_safe(rm, tmp, &conn->c_send_queue, m_conn_item) {
 539		if (&rm->rdma == op) {
 540			atomic_inc(&rm->m_refcount);
 541			found = rm;
 542			break;
 543		}
 544	}
 545
 546out:
 547	spin_unlock_irqrestore(&conn->c_lock, flags);
 548
 549	return found;
 550}
 551EXPORT_SYMBOL_GPL(rds_send_get_message);
 552
 553/*
 554 * This removes messages from the socket's list if they're on it.  The list
 555 * argument must be private to the caller, we must be able to modify it
 556 * without locks.  The messages must have a reference held for their
 557 * position on the list.  This function will drop that reference after
 558 * removing the messages from the 'messages' list regardless of if it found
 559 * the messages on the socket list or not.
 560 */
 561static void rds_send_remove_from_sock(struct list_head *messages, int status)
 562{
 563	unsigned long flags;
 564	struct rds_sock *rs = NULL;
 565	struct rds_message *rm;
 566
 567	while (!list_empty(messages)) {
 568		int was_on_sock = 0;
 569
 570		rm = list_entry(messages->next, struct rds_message,
 571				m_conn_item);
 572		list_del_init(&rm->m_conn_item);
 573
 574		/*
 575		 * If we see this flag cleared then we're *sure* that someone
 576		 * else beat us to removing it from the sock.  If we race
 577		 * with their flag update we'll get the lock and then really
 578		 * see that the flag has been cleared.
 579		 *
 580		 * The message spinlock makes sure nobody clears rm->m_rs
 581		 * while we're messing with it. It does not prevent the
 582		 * message from being removed from the socket, though.
 583		 */
 584		spin_lock_irqsave(&rm->m_rs_lock, flags);
 585		if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags))
 586			goto unlock_and_drop;
 587
 588		if (rs != rm->m_rs) {
 589			if (rs) {
 590				rds_wake_sk_sleep(rs);
 591				sock_put(rds_rs_to_sk(rs));
 592			}
 593			rs = rm->m_rs;
 594			sock_hold(rds_rs_to_sk(rs));
 
 595		}
 
 
 596		spin_lock(&rs->rs_lock);
 597
 598		if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) {
 599			struct rm_rdma_op *ro = &rm->rdma;
 600			struct rds_notifier *notifier;
 601
 602			list_del_init(&rm->m_sock_item);
 603			rds_send_sndbuf_remove(rs, rm);
 604
 605			if (ro->op_active && ro->op_notifier &&
 606			       (ro->op_notify || (ro->op_recverr && status))) {
 607				notifier = ro->op_notifier;
 608				list_add_tail(&notifier->n_list,
 609						&rs->rs_notify_queue);
 610				if (!notifier->n_status)
 611					notifier->n_status = status;
 612				rm->rdma.op_notifier = NULL;
 613			}
 614			was_on_sock = 1;
 615			rm->m_rs = NULL;
 616		}
 617		spin_unlock(&rs->rs_lock);
 618
 619unlock_and_drop:
 620		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
 621		rds_message_put(rm);
 622		if (was_on_sock)
 623			rds_message_put(rm);
 624	}
 625
 626	if (rs) {
 627		rds_wake_sk_sleep(rs);
 628		sock_put(rds_rs_to_sk(rs));
 629	}
 630}
 631
 632/*
 633 * Transports call here when they've determined that the receiver queued
 634 * messages up to, and including, the given sequence number.  Messages are
 635 * moved to the retrans queue when rds_send_xmit picks them off the send
 636 * queue. This means that in the TCP case, the message may not have been
 637 * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
 638 * checks the RDS_MSG_HAS_ACK_SEQ bit.
 639 *
 640 * XXX It's not clear to me how this is safely serialized with socket
 641 * destruction.  Maybe it should bail if it sees SOCK_DEAD.
 642 */
 643void rds_send_drop_acked(struct rds_connection *conn, u64 ack,
 644			 is_acked_func is_acked)
 645{
 646	struct rds_message *rm, *tmp;
 647	unsigned long flags;
 648	LIST_HEAD(list);
 649
 650	spin_lock_irqsave(&conn->c_lock, flags);
 651
 652	list_for_each_entry_safe(rm, tmp, &conn->c_retrans, m_conn_item) {
 653		if (!rds_send_is_acked(rm, ack, is_acked))
 654			break;
 655
 656		list_move(&rm->m_conn_item, &list);
 657		clear_bit(RDS_MSG_ON_CONN, &rm->m_flags);
 658	}
 659
 660	/* order flag updates with spin locks */
 661	if (!list_empty(&list))
 662		smp_mb__after_clear_bit();
 663
 664	spin_unlock_irqrestore(&conn->c_lock, flags);
 665
 666	/* now remove the messages from the sock list as needed */
 667	rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS);
 668}
 
 
 
 
 
 
 
 
 669EXPORT_SYMBOL_GPL(rds_send_drop_acked);
 670
 671void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in *dest)
 672{
 673	struct rds_message *rm, *tmp;
 674	struct rds_connection *conn;
 
 675	unsigned long flags;
 676	LIST_HEAD(list);
 677
 678	/* get all the messages we're dropping under the rs lock */
 679	spin_lock_irqsave(&rs->rs_lock, flags);
 680
 681	list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) {
 682		if (dest && (dest->sin_addr.s_addr != rm->m_daddr ||
 683			     dest->sin_port != rm->m_inc.i_hdr.h_dport))
 684			continue;
 685
 686		list_move(&rm->m_sock_item, &list);
 687		rds_send_sndbuf_remove(rs, rm);
 688		clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
 689	}
 690
 691	/* order flag updates with the rs lock */
 692	smp_mb__after_clear_bit();
 693
 694	spin_unlock_irqrestore(&rs->rs_lock, flags);
 695
 696	if (list_empty(&list))
 697		return;
 698
 699	/* Remove the messages from the conn */
 700	list_for_each_entry(rm, &list, m_sock_item) {
 701
 702		conn = rm->m_inc.i_conn;
 
 
 
 
 703
 704		spin_lock_irqsave(&conn->c_lock, flags);
 705		/*
 706		 * Maybe someone else beat us to removing rm from the conn.
 707		 * If we race with their flag update we'll get the lock and
 708		 * then really see that the flag has been cleared.
 709		 */
 710		if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) {
 711			spin_unlock_irqrestore(&conn->c_lock, flags);
 
 
 
 712			continue;
 713		}
 714		list_del_init(&rm->m_conn_item);
 715		spin_unlock_irqrestore(&conn->c_lock, flags);
 716
 717		/*
 718		 * Couldn't grab m_rs_lock in top loop (lock ordering),
 719		 * but we can now.
 720		 */
 721		spin_lock_irqsave(&rm->m_rs_lock, flags);
 722
 723		spin_lock(&rs->rs_lock);
 724		__rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
 725		spin_unlock(&rs->rs_lock);
 726
 727		rm->m_rs = NULL;
 728		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
 729
 730		rds_message_put(rm);
 731	}
 732
 733	rds_wake_sk_sleep(rs);
 734
 735	while (!list_empty(&list)) {
 736		rm = list_entry(list.next, struct rds_message, m_sock_item);
 737		list_del_init(&rm->m_sock_item);
 738
 739		rds_message_wait(rm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 740		rds_message_put(rm);
 741	}
 742}
 743
 744/*
 745 * we only want this to fire once so we use the callers 'queued'.  It's
 746 * possible that another thread can race with us and remove the
 747 * message from the flow with RDS_CANCEL_SENT_TO.
 748 */
 749static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn,
 
 750			     struct rds_message *rm, __be16 sport,
 751			     __be16 dport, int *queued)
 752{
 753	unsigned long flags;
 754	u32 len;
 755
 756	if (*queued)
 757		goto out;
 758
 759	len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
 760
 761	/* this is the only place which holds both the socket's rs_lock
 762	 * and the connection's c_lock */
 763	spin_lock_irqsave(&rs->rs_lock, flags);
 764
 765	/*
 766	 * If there is a little space in sndbuf, we don't queue anything,
 767	 * and userspace gets -EAGAIN. But poll() indicates there's send
 768	 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
 769	 * freed up by incoming acks. So we check the *old* value of
 770	 * rs_snd_bytes here to allow the last msg to exceed the buffer,
 771	 * and poll() now knows no more data can be sent.
 772	 */
 773	if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) {
 774		rs->rs_snd_bytes += len;
 775
 776		/* let recv side know we are close to send space exhaustion.
 777		 * This is probably not the optimal way to do it, as this
 778		 * means we set the flag on *all* messages as soon as our
 779		 * throughput hits a certain threshold.
 780		 */
 781		if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2)
 782			__set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
 783
 784		list_add_tail(&rm->m_sock_item, &rs->rs_send_queue);
 785		set_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
 786		rds_message_addref(rm);
 787		rm->m_rs = rs;
 788
 789		/* The code ordering is a little weird, but we're
 790		   trying to minimize the time we hold c_lock */
 791		rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0);
 792		rm->m_inc.i_conn = conn;
 
 793		rds_message_addref(rm);
 794
 795		spin_lock(&conn->c_lock);
 796		rm->m_inc.i_hdr.h_sequence = cpu_to_be64(conn->c_next_tx_seq++);
 797		list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
 798		set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
 799		spin_unlock(&conn->c_lock);
 800
 801		rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
 802			 rm, len, rs, rs->rs_snd_bytes,
 803			 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence));
 804
 805		*queued = 1;
 806	}
 807
 808	spin_unlock_irqrestore(&rs->rs_lock, flags);
 809out:
 810	return *queued;
 811}
 812
 813/*
 814 * rds_message is getting to be quite complicated, and we'd like to allocate
 815 * it all in one go. This figures out how big it needs to be up front.
 816 */
 817static int rds_rm_size(struct msghdr *msg, int data_len)
 818{
 819	struct cmsghdr *cmsg;
 820	int size = 0;
 821	int cmsg_groups = 0;
 822	int retval;
 823
 824	for (cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
 825		if (!CMSG_OK(msg, cmsg))
 826			return -EINVAL;
 827
 828		if (cmsg->cmsg_level != SOL_RDS)
 829			continue;
 830
 831		switch (cmsg->cmsg_type) {
 832		case RDS_CMSG_RDMA_ARGS:
 833			cmsg_groups |= 1;
 834			retval = rds_rdma_extra_size(CMSG_DATA(cmsg));
 835			if (retval < 0)
 836				return retval;
 837			size += retval;
 838
 839			break;
 840
 841		case RDS_CMSG_RDMA_DEST:
 842		case RDS_CMSG_RDMA_MAP:
 843			cmsg_groups |= 2;
 844			/* these are valid but do no add any size */
 845			break;
 846
 847		case RDS_CMSG_ATOMIC_CSWP:
 848		case RDS_CMSG_ATOMIC_FADD:
 849		case RDS_CMSG_MASKED_ATOMIC_CSWP:
 850		case RDS_CMSG_MASKED_ATOMIC_FADD:
 851			cmsg_groups |= 1;
 852			size += sizeof(struct scatterlist);
 853			break;
 854
 855		default:
 856			return -EINVAL;
 857		}
 858
 859	}
 860
 861	size += ceil(data_len, PAGE_SIZE) * sizeof(struct scatterlist);
 862
 863	/* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
 864	if (cmsg_groups == 3)
 865		return -EINVAL;
 866
 867	return size;
 868}
 869
 870static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm,
 871			 struct msghdr *msg, int *allocated_mr)
 872{
 873	struct cmsghdr *cmsg;
 874	int ret = 0;
 875
 876	for (cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
 877		if (!CMSG_OK(msg, cmsg))
 878			return -EINVAL;
 879
 880		if (cmsg->cmsg_level != SOL_RDS)
 881			continue;
 882
 883		/* As a side effect, RDMA_DEST and RDMA_MAP will set
 884		 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
 885		 */
 886		switch (cmsg->cmsg_type) {
 887		case RDS_CMSG_RDMA_ARGS:
 888			ret = rds_cmsg_rdma_args(rs, rm, cmsg);
 889			break;
 890
 891		case RDS_CMSG_RDMA_DEST:
 892			ret = rds_cmsg_rdma_dest(rs, rm, cmsg);
 893			break;
 894
 895		case RDS_CMSG_RDMA_MAP:
 896			ret = rds_cmsg_rdma_map(rs, rm, cmsg);
 897			if (!ret)
 898				*allocated_mr = 1;
 899			break;
 900		case RDS_CMSG_ATOMIC_CSWP:
 901		case RDS_CMSG_ATOMIC_FADD:
 902		case RDS_CMSG_MASKED_ATOMIC_CSWP:
 903		case RDS_CMSG_MASKED_ATOMIC_FADD:
 904			ret = rds_cmsg_atomic(rs, rm, cmsg);
 905			break;
 906
 907		default:
 908			return -EINVAL;
 909		}
 910
 911		if (ret)
 912			break;
 913	}
 914
 915	return ret;
 916}
 917
 918int rds_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg,
 919		size_t payload_len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 920{
 921	struct sock *sk = sock->sk;
 922	struct rds_sock *rs = rds_sk_to_rs(sk);
 923	struct sockaddr_in *usin = (struct sockaddr_in *)msg->msg_name;
 924	__be32 daddr;
 925	__be16 dport;
 926	struct rds_message *rm = NULL;
 927	struct rds_connection *conn;
 928	int ret = 0;
 929	int queued = 0, allocated_mr = 0;
 930	int nonblock = msg->msg_flags & MSG_DONTWAIT;
 931	long timeo = sock_sndtimeo(sk, nonblock);
 
 932
 933	/* Mirror Linux UDP mirror of BSD error message compatibility */
 934	/* XXX: Perhaps MSG_MORE someday */
 935	if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT)) {
 936		printk(KERN_INFO "msg_flags 0x%08X\n", msg->msg_flags);
 937		ret = -EOPNOTSUPP;
 938		goto out;
 939	}
 940
 941	if (msg->msg_namelen) {
 942		/* XXX fail non-unicast destination IPs? */
 943		if (msg->msg_namelen < sizeof(*usin) || usin->sin_family != AF_INET) {
 944			ret = -EINVAL;
 945			goto out;
 946		}
 947		daddr = usin->sin_addr.s_addr;
 948		dport = usin->sin_port;
 949	} else {
 950		/* We only care about consistency with ->connect() */
 951		lock_sock(sk);
 952		daddr = rs->rs_conn_addr;
 953		dport = rs->rs_conn_port;
 954		release_sock(sk);
 955	}
 956
 957	/* racing with another thread binding seems ok here */
 958	if (daddr == 0 || rs->rs_bound_addr == 0) {
 
 959		ret = -ENOTCONN; /* XXX not a great errno */
 960		goto out;
 961	}
 
 
 
 
 
 
 962
 963	/* size of rm including all sgs */
 964	ret = rds_rm_size(msg, payload_len);
 965	if (ret < 0)
 966		goto out;
 967
 968	rm = rds_message_alloc(ret, GFP_KERNEL);
 969	if (!rm) {
 970		ret = -ENOMEM;
 971		goto out;
 972	}
 973
 974	/* Attach data to the rm */
 975	if (payload_len) {
 976		rm->data.op_sg = rds_message_alloc_sgs(rm, ceil(payload_len, PAGE_SIZE));
 977		if (!rm->data.op_sg) {
 978			ret = -ENOMEM;
 979			goto out;
 980		}
 981		ret = rds_message_copy_from_user(rm, msg->msg_iov, payload_len);
 982		if (ret)
 983			goto out;
 984	}
 985	rm->data.op_active = 1;
 986
 987	rm->m_daddr = daddr;
 988
 989	/* rds_conn_create has a spinlock that runs with IRQ off.
 990	 * Caching the conn in the socket helps a lot. */
 991	if (rs->rs_conn && rs->rs_conn->c_faddr == daddr)
 992		conn = rs->rs_conn;
 993	else {
 994		conn = rds_conn_create_outgoing(rs->rs_bound_addr, daddr,
 
 995					rs->rs_transport,
 996					sock->sk->sk_allocation);
 997		if (IS_ERR(conn)) {
 998			ret = PTR_ERR(conn);
 999			goto out;
1000		}
1001		rs->rs_conn = conn;
1002	}
1003
1004	/* Parse any control messages the user may have included. */
1005	ret = rds_cmsg_send(rs, rm, msg, &allocated_mr);
1006	if (ret)
1007		goto out;
1008
1009	if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) {
1010		printk_ratelimited(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n",
1011			       &rm->rdma, conn->c_trans->xmit_rdma);
1012		ret = -EOPNOTSUPP;
1013		goto out;
1014	}
1015
1016	if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) {
1017		printk_ratelimited(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n",
1018			       &rm->atomic, conn->c_trans->xmit_atomic);
1019		ret = -EOPNOTSUPP;
1020		goto out;
1021	}
1022
1023	rds_conn_connect_if_down(conn);
 
 
 
 
 
1024
1025	ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs);
1026	if (ret) {
1027		rs->rs_seen_congestion = 1;
1028		goto out;
1029	}
1030
1031	while (!rds_send_queue_rm(rs, conn, rm, rs->rs_bound_port,
1032				  dport, &queued)) {
1033		rds_stats_inc(s_send_queue_full);
1034		/* XXX make sure this is reasonable */
1035		if (payload_len > rds_sk_sndbuf(rs)) {
1036			ret = -EMSGSIZE;
1037			goto out;
1038		}
1039		if (nonblock) {
1040			ret = -EAGAIN;
1041			goto out;
1042		}
1043
1044		timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
1045					rds_send_queue_rm(rs, conn, rm,
1046							  rs->rs_bound_port,
1047							  dport,
1048							  &queued),
1049					timeo);
1050		rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo);
1051		if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
1052			continue;
1053
1054		ret = timeo;
1055		if (ret == 0)
1056			ret = -ETIMEDOUT;
1057		goto out;
1058	}
1059
1060	/*
1061	 * By now we've committed to the send.  We reuse rds_send_worker()
1062	 * to retry sends in the rds thread if the transport asks us to.
1063	 */
1064	rds_stats_inc(s_send_queued);
1065
1066	if (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags))
1067		rds_send_xmit(conn);
 
1068
1069	rds_message_put(rm);
1070	return payload_len;
1071
1072out:
1073	/* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
1074	 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
1075	 * or in any other way, we need to destroy the MR again */
1076	if (allocated_mr)
1077		rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1);
1078
1079	if (rm)
1080		rds_message_put(rm);
1081	return ret;
1082}
1083
1084/*
1085 * Reply to a ping packet.
 
 
 
 
 
1086 */
1087int
1088rds_send_pong(struct rds_connection *conn, __be16 dport)
 
1089{
1090	struct rds_message *rm;
1091	unsigned long flags;
1092	int ret = 0;
1093
1094	rm = rds_message_alloc(0, GFP_ATOMIC);
1095	if (!rm) {
1096		ret = -ENOMEM;
1097		goto out;
1098	}
1099
1100	rm->m_daddr = conn->c_faddr;
1101	rm->data.op_active = 1;
1102
1103	rds_conn_connect_if_down(conn);
1104
1105	ret = rds_cong_wait(conn->c_fcong, dport, 1, NULL);
1106	if (ret)
1107		goto out;
1108
1109	spin_lock_irqsave(&conn->c_lock, flags);
1110	list_add_tail(&rm->m_conn_item, &conn->c_send_queue);
1111	set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
1112	rds_message_addref(rm);
1113	rm->m_inc.i_conn = conn;
 
1114
1115	rds_message_populate_header(&rm->m_inc.i_hdr, 0, dport,
1116				    conn->c_next_tx_seq);
1117	conn->c_next_tx_seq++;
1118	spin_unlock_irqrestore(&conn->c_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
1119
1120	rds_stats_inc(s_send_queued);
1121	rds_stats_inc(s_send_pong);
1122
1123	if (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags))
1124		rds_send_xmit(conn);
1125
1126	rds_message_put(rm);
1127	return 0;
1128
1129out:
1130	if (rm)
1131		rds_message_put(rm);
1132	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1133}
v4.10.11
   1/*
   2 * Copyright (c) 2006 Oracle.  All rights reserved.
   3 *
   4 * This software is available to you under a choice of one of two
   5 * licenses.  You may choose to be licensed under the terms of the GNU
   6 * General Public License (GPL) Version 2, available from the file
   7 * COPYING in the main directory of this source tree, or the
   8 * OpenIB.org BSD license below:
   9 *
  10 *     Redistribution and use in source and binary forms, with or
  11 *     without modification, are permitted provided that the following
  12 *     conditions are met:
  13 *
  14 *      - Redistributions of source code must retain the above
  15 *        copyright notice, this list of conditions and the following
  16 *        disclaimer.
  17 *
  18 *      - Redistributions in binary form must reproduce the above
  19 *        copyright notice, this list of conditions and the following
  20 *        disclaimer in the documentation and/or other materials
  21 *        provided with the distribution.
  22 *
  23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30 * SOFTWARE.
  31 *
  32 */
  33#include <linux/kernel.h>
  34#include <linux/moduleparam.h>
  35#include <linux/gfp.h>
  36#include <net/sock.h>
  37#include <linux/in.h>
  38#include <linux/list.h>
  39#include <linux/ratelimit.h>
  40#include <linux/export.h>
  41#include <linux/sizes.h>
  42
  43#include "rds.h"
  44
  45/* When transmitting messages in rds_send_xmit, we need to emerge from
  46 * time to time and briefly release the CPU. Otherwise the softlock watchdog
  47 * will kick our shin.
  48 * Also, it seems fairer to not let one busy connection stall all the
  49 * others.
  50 *
  51 * send_batch_count is the number of times we'll loop in send_xmit. Setting
  52 * it to 0 will restore the old behavior (where we looped until we had
  53 * drained the queue).
  54 */
  55static int send_batch_count = SZ_1K;
  56module_param(send_batch_count, int, 0444);
  57MODULE_PARM_DESC(send_batch_count, " batch factor when working the send queue");
  58
  59static void rds_send_remove_from_sock(struct list_head *messages, int status);
  60
  61/*
  62 * Reset the send state.  Callers must ensure that this doesn't race with
  63 * rds_send_xmit().
  64 */
  65void rds_send_path_reset(struct rds_conn_path *cp)
  66{
  67	struct rds_message *rm, *tmp;
  68	unsigned long flags;
  69
  70	if (cp->cp_xmit_rm) {
  71		rm = cp->cp_xmit_rm;
  72		cp->cp_xmit_rm = NULL;
  73		/* Tell the user the RDMA op is no longer mapped by the
  74		 * transport. This isn't entirely true (it's flushed out
  75		 * independently) but as the connection is down, there's
  76		 * no ongoing RDMA to/from that memory */
  77		rds_message_unmapped(rm);
  78		rds_message_put(rm);
  79	}
  80
  81	cp->cp_xmit_sg = 0;
  82	cp->cp_xmit_hdr_off = 0;
  83	cp->cp_xmit_data_off = 0;
  84	cp->cp_xmit_atomic_sent = 0;
  85	cp->cp_xmit_rdma_sent = 0;
  86	cp->cp_xmit_data_sent = 0;
  87
  88	cp->cp_conn->c_map_queued = 0;
  89
  90	cp->cp_unacked_packets = rds_sysctl_max_unacked_packets;
  91	cp->cp_unacked_bytes = rds_sysctl_max_unacked_bytes;
  92
  93	/* Mark messages as retransmissions, and move them to the send q */
  94	spin_lock_irqsave(&cp->cp_lock, flags);
  95	list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) {
  96		set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
  97		set_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags);
  98	}
  99	list_splice_init(&cp->cp_retrans, &cp->cp_send_queue);
 100	spin_unlock_irqrestore(&cp->cp_lock, flags);
 101}
 102EXPORT_SYMBOL_GPL(rds_send_path_reset);
 103
 104static int acquire_in_xmit(struct rds_conn_path *cp)
 105{
 106	return test_and_set_bit(RDS_IN_XMIT, &cp->cp_flags) == 0;
 107}
 108
 109static void release_in_xmit(struct rds_conn_path *cp)
 110{
 111	clear_bit(RDS_IN_XMIT, &cp->cp_flags);
 112	smp_mb__after_atomic();
 113	/*
 114	 * We don't use wait_on_bit()/wake_up_bit() because our waking is in a
 115	 * hot path and finding waiters is very rare.  We don't want to walk
 116	 * the system-wide hashed waitqueue buckets in the fast path only to
 117	 * almost never find waiters.
 118	 */
 119	if (waitqueue_active(&cp->cp_waitq))
 120		wake_up_all(&cp->cp_waitq);
 121}
 122
 123/*
 124 * We're making the conscious trade-off here to only send one message
 125 * down the connection at a time.
 126 *   Pro:
 127 *      - tx queueing is a simple fifo list
 128 *   	- reassembly is optional and easily done by transports per conn
 129 *      - no per flow rx lookup at all, straight to the socket
 130 *   	- less per-frag memory and wire overhead
 131 *   Con:
 132 *      - queued acks can be delayed behind large messages
 133 *   Depends:
 134 *      - small message latency is higher behind queued large messages
 135 *      - large message latency isn't starved by intervening small sends
 136 */
 137int rds_send_xmit(struct rds_conn_path *cp)
 138{
 139	struct rds_connection *conn = cp->cp_conn;
 140	struct rds_message *rm;
 141	unsigned long flags;
 142	unsigned int tmp;
 143	struct scatterlist *sg;
 144	int ret = 0;
 145	LIST_HEAD(to_be_dropped);
 146	int batch_count;
 147	unsigned long send_gen = 0;
 148
 149restart:
 150	batch_count = 0;
 151
 152	/*
 153	 * sendmsg calls here after having queued its message on the send
 154	 * queue.  We only have one task feeding the connection at a time.  If
 155	 * another thread is already feeding the queue then we back off.  This
 156	 * avoids blocking the caller and trading per-connection data between
 157	 * caches per message.
 158	 */
 159	if (!acquire_in_xmit(cp)) {
 160		rds_stats_inc(s_send_lock_contention);
 161		ret = -ENOMEM;
 162		goto out;
 163	}
 164
 165	/*
 166	 * we record the send generation after doing the xmit acquire.
 167	 * if someone else manages to jump in and do some work, we'll use
 168	 * this to avoid a goto restart farther down.
 169	 *
 170	 * The acquire_in_xmit() check above ensures that only one
 171	 * caller can increment c_send_gen at any time.
 172	 */
 173	cp->cp_send_gen++;
 174	send_gen = cp->cp_send_gen;
 175
 176	/*
 177	 * rds_conn_shutdown() sets the conn state and then tests RDS_IN_XMIT,
 178	 * we do the opposite to avoid races.
 179	 */
 180	if (!rds_conn_path_up(cp)) {
 181		release_in_xmit(cp);
 182		ret = 0;
 183		goto out;
 184	}
 185
 186	if (conn->c_trans->xmit_path_prepare)
 187		conn->c_trans->xmit_path_prepare(cp);
 188
 189	/*
 190	 * spin trying to push headers and data down the connection until
 191	 * the connection doesn't make forward progress.
 192	 */
 193	while (1) {
 194
 195		rm = cp->cp_xmit_rm;
 196
 197		/*
 198		 * If between sending messages, we can send a pending congestion
 199		 * map update.
 200		 */
 201		if (!rm && test_and_clear_bit(0, &conn->c_map_queued)) {
 202			rm = rds_cong_update_alloc(conn);
 203			if (IS_ERR(rm)) {
 204				ret = PTR_ERR(rm);
 205				break;
 206			}
 207			rm->data.op_active = 1;
 208			rm->m_inc.i_conn_path = cp;
 209			rm->m_inc.i_conn = cp->cp_conn;
 210
 211			cp->cp_xmit_rm = rm;
 212		}
 213
 214		/*
 215		 * If not already working on one, grab the next message.
 216		 *
 217		 * cp_xmit_rm holds a ref while we're sending this message down
 218		 * the connction.  We can use this ref while holding the
 219		 * send_sem.. rds_send_reset() is serialized with it.
 220		 */
 221		if (!rm) {
 222			unsigned int len;
 223
 224			batch_count++;
 225
 226			/* we want to process as big a batch as we can, but
 227			 * we also want to avoid softlockups.  If we've been
 228			 * through a lot of messages, lets back off and see
 229			 * if anyone else jumps in
 230			 */
 231			if (batch_count >= send_batch_count)
 232				goto over_batch;
 233
 234			spin_lock_irqsave(&cp->cp_lock, flags);
 235
 236			if (!list_empty(&cp->cp_send_queue)) {
 237				rm = list_entry(cp->cp_send_queue.next,
 238						struct rds_message,
 239						m_conn_item);
 240				rds_message_addref(rm);
 241
 242				/*
 243				 * Move the message from the send queue to the retransmit
 244				 * list right away.
 245				 */
 246				list_move_tail(&rm->m_conn_item,
 247					       &cp->cp_retrans);
 248			}
 249
 250			spin_unlock_irqrestore(&cp->cp_lock, flags);
 251
 252			if (!rm)
 253				break;
 254
 255			/* Unfortunately, the way Infiniband deals with
 256			 * RDMA to a bad MR key is by moving the entire
 257			 * queue pair to error state. We cold possibly
 258			 * recover from that, but right now we drop the
 259			 * connection.
 260			 * Therefore, we never retransmit messages with RDMA ops.
 261			 */
 262			if (test_bit(RDS_MSG_FLUSH, &rm->m_flags) ||
 263			    (rm->rdma.op_active &&
 264			    test_bit(RDS_MSG_RETRANSMITTED, &rm->m_flags))) {
 265				spin_lock_irqsave(&cp->cp_lock, flags);
 266				if (test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags))
 267					list_move(&rm->m_conn_item, &to_be_dropped);
 268				spin_unlock_irqrestore(&cp->cp_lock, flags);
 269				continue;
 270			}
 271
 272			/* Require an ACK every once in a while */
 273			len = ntohl(rm->m_inc.i_hdr.h_len);
 274			if (cp->cp_unacked_packets == 0 ||
 275			    cp->cp_unacked_bytes < len) {
 276				__set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
 277
 278				cp->cp_unacked_packets =
 279					rds_sysctl_max_unacked_packets;
 280				cp->cp_unacked_bytes =
 281					rds_sysctl_max_unacked_bytes;
 282				rds_stats_inc(s_send_ack_required);
 283			} else {
 284				cp->cp_unacked_bytes -= len;
 285				cp->cp_unacked_packets--;
 286			}
 287
 288			cp->cp_xmit_rm = rm;
 289		}
 290
 291		/* The transport either sends the whole rdma or none of it */
 292		if (rm->rdma.op_active && !cp->cp_xmit_rdma_sent) {
 293			rm->m_final_op = &rm->rdma;
 294			/* The transport owns the mapped memory for now.
 295			 * You can't unmap it while it's on the send queue
 296			 */
 297			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
 298			ret = conn->c_trans->xmit_rdma(conn, &rm->rdma);
 299			if (ret) {
 300				clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
 301				wake_up_interruptible(&rm->m_flush_wait);
 302				break;
 303			}
 304			cp->cp_xmit_rdma_sent = 1;
 305
 
 
 
 306		}
 307
 308		if (rm->atomic.op_active && !cp->cp_xmit_atomic_sent) {
 309			rm->m_final_op = &rm->atomic;
 310			/* The transport owns the mapped memory for now.
 311			 * You can't unmap it while it's on the send queue
 312			 */
 313			set_bit(RDS_MSG_MAPPED, &rm->m_flags);
 314			ret = conn->c_trans->xmit_atomic(conn, &rm->atomic);
 315			if (ret) {
 316				clear_bit(RDS_MSG_MAPPED, &rm->m_flags);
 317				wake_up_interruptible(&rm->m_flush_wait);
 318				break;
 319			}
 320			cp->cp_xmit_atomic_sent = 1;
 321
 
 
 
 322		}
 323
 324		/*
 325		 * A number of cases require an RDS header to be sent
 326		 * even if there is no data.
 327		 * We permit 0-byte sends; rds-ping depends on this.
 328		 * However, if there are exclusively attached silent ops,
 329		 * we skip the hdr/data send, to enable silent operation.
 330		 */
 331		if (rm->data.op_nents == 0) {
 332			int ops_present;
 333			int all_ops_are_silent = 1;
 334
 335			ops_present = (rm->atomic.op_active || rm->rdma.op_active);
 336			if (rm->atomic.op_active && !rm->atomic.op_silent)
 337				all_ops_are_silent = 0;
 338			if (rm->rdma.op_active && !rm->rdma.op_silent)
 339				all_ops_are_silent = 0;
 340
 341			if (ops_present && all_ops_are_silent
 342			    && !rm->m_rdma_cookie)
 343				rm->data.op_active = 0;
 344		}
 345
 346		if (rm->data.op_active && !cp->cp_xmit_data_sent) {
 347			rm->m_final_op = &rm->data;
 348
 349			ret = conn->c_trans->xmit(conn, rm,
 350						  cp->cp_xmit_hdr_off,
 351						  cp->cp_xmit_sg,
 352						  cp->cp_xmit_data_off);
 353			if (ret <= 0)
 354				break;
 355
 356			if (cp->cp_xmit_hdr_off < sizeof(struct rds_header)) {
 357				tmp = min_t(int, ret,
 358					    sizeof(struct rds_header) -
 359					    cp->cp_xmit_hdr_off);
 360				cp->cp_xmit_hdr_off += tmp;
 361				ret -= tmp;
 362			}
 363
 364			sg = &rm->data.op_sg[cp->cp_xmit_sg];
 365			while (ret) {
 366				tmp = min_t(int, ret, sg->length -
 367						      cp->cp_xmit_data_off);
 368				cp->cp_xmit_data_off += tmp;
 369				ret -= tmp;
 370				if (cp->cp_xmit_data_off == sg->length) {
 371					cp->cp_xmit_data_off = 0;
 372					sg++;
 373					cp->cp_xmit_sg++;
 374					BUG_ON(ret != 0 && cp->cp_xmit_sg ==
 375					       rm->data.op_nents);
 376				}
 377			}
 378
 379			if (cp->cp_xmit_hdr_off == sizeof(struct rds_header) &&
 380			    (cp->cp_xmit_sg == rm->data.op_nents))
 381				cp->cp_xmit_data_sent = 1;
 382		}
 383
 384		/*
 385		 * A rm will only take multiple times through this loop
 386		 * if there is a data op. Thus, if the data is sent (or there was
 387		 * none), then we're done with the rm.
 388		 */
 389		if (!rm->data.op_active || cp->cp_xmit_data_sent) {
 390			cp->cp_xmit_rm = NULL;
 391			cp->cp_xmit_sg = 0;
 392			cp->cp_xmit_hdr_off = 0;
 393			cp->cp_xmit_data_off = 0;
 394			cp->cp_xmit_rdma_sent = 0;
 395			cp->cp_xmit_atomic_sent = 0;
 396			cp->cp_xmit_data_sent = 0;
 397
 398			rds_message_put(rm);
 399		}
 400	}
 401
 402over_batch:
 403	if (conn->c_trans->xmit_path_complete)
 404		conn->c_trans->xmit_path_complete(cp);
 405	release_in_xmit(cp);
 406
 407	/* Nuke any messages we decided not to retransmit. */
 408	if (!list_empty(&to_be_dropped)) {
 409		/* irqs on here, so we can put(), unlike above */
 410		list_for_each_entry(rm, &to_be_dropped, m_conn_item)
 411			rds_message_put(rm);
 412		rds_send_remove_from_sock(&to_be_dropped, RDS_RDMA_DROPPED);
 413	}
 414
 415	/*
 416	 * Other senders can queue a message after we last test the send queue
 417	 * but before we clear RDS_IN_XMIT.  In that case they'd back off and
 418	 * not try and send their newly queued message.  We need to check the
 419	 * send queue after having cleared RDS_IN_XMIT so that their message
 420	 * doesn't get stuck on the send queue.
 421	 *
 422	 * If the transport cannot continue (i.e ret != 0), then it must
 423	 * call us when more room is available, such as from the tx
 424	 * completion handler.
 425	 *
 426	 * We have an extra generation check here so that if someone manages
 427	 * to jump in after our release_in_xmit, we'll see that they have done
 428	 * some work and we will skip our goto
 429	 */
 430	if (ret == 0) {
 431		smp_mb();
 432		if ((test_bit(0, &conn->c_map_queued) ||
 433		     !list_empty(&cp->cp_send_queue)) &&
 434		    send_gen == cp->cp_send_gen) {
 435			rds_stats_inc(s_send_lock_queue_raced);
 436			if (batch_count < send_batch_count)
 437				goto restart;
 438			queue_delayed_work(rds_wq, &cp->cp_send_w, 1);
 439		}
 440	}
 441out:
 442	return ret;
 443}
 444EXPORT_SYMBOL_GPL(rds_send_xmit);
 445
 446static void rds_send_sndbuf_remove(struct rds_sock *rs, struct rds_message *rm)
 447{
 448	u32 len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
 449
 450	assert_spin_locked(&rs->rs_lock);
 451
 452	BUG_ON(rs->rs_snd_bytes < len);
 453	rs->rs_snd_bytes -= len;
 454
 455	if (rs->rs_snd_bytes == 0)
 456		rds_stats_inc(s_send_queue_empty);
 457}
 458
 459static inline int rds_send_is_acked(struct rds_message *rm, u64 ack,
 460				    is_acked_func is_acked)
 461{
 462	if (is_acked)
 463		return is_acked(rm, ack);
 464	return be64_to_cpu(rm->m_inc.i_hdr.h_sequence) <= ack;
 465}
 466
 467/*
 468 * This is pretty similar to what happens below in the ACK
 469 * handling code - except that we call here as soon as we get
 470 * the IB send completion on the RDMA op and the accompanying
 471 * message.
 472 */
 473void rds_rdma_send_complete(struct rds_message *rm, int status)
 474{
 475	struct rds_sock *rs = NULL;
 476	struct rm_rdma_op *ro;
 477	struct rds_notifier *notifier;
 478	unsigned long flags;
 479
 480	spin_lock_irqsave(&rm->m_rs_lock, flags);
 481
 482	ro = &rm->rdma;
 483	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags) &&
 484	    ro->op_active && ro->op_notify && ro->op_notifier) {
 485		notifier = ro->op_notifier;
 486		rs = rm->m_rs;
 487		sock_hold(rds_rs_to_sk(rs));
 488
 489		notifier->n_status = status;
 490		spin_lock(&rs->rs_lock);
 491		list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
 492		spin_unlock(&rs->rs_lock);
 493
 494		ro->op_notifier = NULL;
 495	}
 496
 497	spin_unlock_irqrestore(&rm->m_rs_lock, flags);
 498
 499	if (rs) {
 500		rds_wake_sk_sleep(rs);
 501		sock_put(rds_rs_to_sk(rs));
 502	}
 503}
 504EXPORT_SYMBOL_GPL(rds_rdma_send_complete);
 505
 506/*
 507 * Just like above, except looks at atomic op
 508 */
 509void rds_atomic_send_complete(struct rds_message *rm, int status)
 510{
 511	struct rds_sock *rs = NULL;
 512	struct rm_atomic_op *ao;
 513	struct rds_notifier *notifier;
 514	unsigned long flags;
 515
 516	spin_lock_irqsave(&rm->m_rs_lock, flags);
 517
 518	ao = &rm->atomic;
 519	if (test_bit(RDS_MSG_ON_SOCK, &rm->m_flags)
 520	    && ao->op_active && ao->op_notify && ao->op_notifier) {
 521		notifier = ao->op_notifier;
 522		rs = rm->m_rs;
 523		sock_hold(rds_rs_to_sk(rs));
 524
 525		notifier->n_status = status;
 526		spin_lock(&rs->rs_lock);
 527		list_add_tail(&notifier->n_list, &rs->rs_notify_queue);
 528		spin_unlock(&rs->rs_lock);
 529
 530		ao->op_notifier = NULL;
 531	}
 532
 533	spin_unlock_irqrestore(&rm->m_rs_lock, flags);
 534
 535	if (rs) {
 536		rds_wake_sk_sleep(rs);
 537		sock_put(rds_rs_to_sk(rs));
 538	}
 539}
 540EXPORT_SYMBOL_GPL(rds_atomic_send_complete);
 541
 542/*
 543 * This is the same as rds_rdma_send_complete except we
 544 * don't do any locking - we have all the ingredients (message,
 545 * socket, socket lock) and can just move the notifier.
 546 */
 547static inline void
 548__rds_send_complete(struct rds_sock *rs, struct rds_message *rm, int status)
 549{
 550	struct rm_rdma_op *ro;
 551	struct rm_atomic_op *ao;
 552
 553	ro = &rm->rdma;
 554	if (ro->op_active && ro->op_notify && ro->op_notifier) {
 555		ro->op_notifier->n_status = status;
 556		list_add_tail(&ro->op_notifier->n_list, &rs->rs_notify_queue);
 557		ro->op_notifier = NULL;
 558	}
 559
 560	ao = &rm->atomic;
 561	if (ao->op_active && ao->op_notify && ao->op_notifier) {
 562		ao->op_notifier->n_status = status;
 563		list_add_tail(&ao->op_notifier->n_list, &rs->rs_notify_queue);
 564		ao->op_notifier = NULL;
 565	}
 566
 567	/* No need to wake the app - caller does this */
 568}
 569
 570/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 571 * This removes messages from the socket's list if they're on it.  The list
 572 * argument must be private to the caller, we must be able to modify it
 573 * without locks.  The messages must have a reference held for their
 574 * position on the list.  This function will drop that reference after
 575 * removing the messages from the 'messages' list regardless of if it found
 576 * the messages on the socket list or not.
 577 */
 578static void rds_send_remove_from_sock(struct list_head *messages, int status)
 579{
 580	unsigned long flags;
 581	struct rds_sock *rs = NULL;
 582	struct rds_message *rm;
 583
 584	while (!list_empty(messages)) {
 585		int was_on_sock = 0;
 586
 587		rm = list_entry(messages->next, struct rds_message,
 588				m_conn_item);
 589		list_del_init(&rm->m_conn_item);
 590
 591		/*
 592		 * If we see this flag cleared then we're *sure* that someone
 593		 * else beat us to removing it from the sock.  If we race
 594		 * with their flag update we'll get the lock and then really
 595		 * see that the flag has been cleared.
 596		 *
 597		 * The message spinlock makes sure nobody clears rm->m_rs
 598		 * while we're messing with it. It does not prevent the
 599		 * message from being removed from the socket, though.
 600		 */
 601		spin_lock_irqsave(&rm->m_rs_lock, flags);
 602		if (!test_bit(RDS_MSG_ON_SOCK, &rm->m_flags))
 603			goto unlock_and_drop;
 604
 605		if (rs != rm->m_rs) {
 606			if (rs) {
 607				rds_wake_sk_sleep(rs);
 608				sock_put(rds_rs_to_sk(rs));
 609			}
 610			rs = rm->m_rs;
 611			if (rs)
 612				sock_hold(rds_rs_to_sk(rs));
 613		}
 614		if (!rs)
 615			goto unlock_and_drop;
 616		spin_lock(&rs->rs_lock);
 617
 618		if (test_and_clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags)) {
 619			struct rm_rdma_op *ro = &rm->rdma;
 620			struct rds_notifier *notifier;
 621
 622			list_del_init(&rm->m_sock_item);
 623			rds_send_sndbuf_remove(rs, rm);
 624
 625			if (ro->op_active && ro->op_notifier &&
 626			       (ro->op_notify || (ro->op_recverr && status))) {
 627				notifier = ro->op_notifier;
 628				list_add_tail(&notifier->n_list,
 629						&rs->rs_notify_queue);
 630				if (!notifier->n_status)
 631					notifier->n_status = status;
 632				rm->rdma.op_notifier = NULL;
 633			}
 634			was_on_sock = 1;
 635			rm->m_rs = NULL;
 636		}
 637		spin_unlock(&rs->rs_lock);
 638
 639unlock_and_drop:
 640		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
 641		rds_message_put(rm);
 642		if (was_on_sock)
 643			rds_message_put(rm);
 644	}
 645
 646	if (rs) {
 647		rds_wake_sk_sleep(rs);
 648		sock_put(rds_rs_to_sk(rs));
 649	}
 650}
 651
 652/*
 653 * Transports call here when they've determined that the receiver queued
 654 * messages up to, and including, the given sequence number.  Messages are
 655 * moved to the retrans queue when rds_send_xmit picks them off the send
 656 * queue. This means that in the TCP case, the message may not have been
 657 * assigned the m_ack_seq yet - but that's fine as long as tcp_is_acked
 658 * checks the RDS_MSG_HAS_ACK_SEQ bit.
 
 
 
 659 */
 660void rds_send_path_drop_acked(struct rds_conn_path *cp, u64 ack,
 661			      is_acked_func is_acked)
 662{
 663	struct rds_message *rm, *tmp;
 664	unsigned long flags;
 665	LIST_HEAD(list);
 666
 667	spin_lock_irqsave(&cp->cp_lock, flags);
 668
 669	list_for_each_entry_safe(rm, tmp, &cp->cp_retrans, m_conn_item) {
 670		if (!rds_send_is_acked(rm, ack, is_acked))
 671			break;
 672
 673		list_move(&rm->m_conn_item, &list);
 674		clear_bit(RDS_MSG_ON_CONN, &rm->m_flags);
 675	}
 676
 677	/* order flag updates with spin locks */
 678	if (!list_empty(&list))
 679		smp_mb__after_atomic();
 680
 681	spin_unlock_irqrestore(&cp->cp_lock, flags);
 682
 683	/* now remove the messages from the sock list as needed */
 684	rds_send_remove_from_sock(&list, RDS_RDMA_SUCCESS);
 685}
 686EXPORT_SYMBOL_GPL(rds_send_path_drop_acked);
 687
 688void rds_send_drop_acked(struct rds_connection *conn, u64 ack,
 689			 is_acked_func is_acked)
 690{
 691	WARN_ON(conn->c_trans->t_mp_capable);
 692	rds_send_path_drop_acked(&conn->c_path[0], ack, is_acked);
 693}
 694EXPORT_SYMBOL_GPL(rds_send_drop_acked);
 695
 696void rds_send_drop_to(struct rds_sock *rs, struct sockaddr_in *dest)
 697{
 698	struct rds_message *rm, *tmp;
 699	struct rds_connection *conn;
 700	struct rds_conn_path *cp;
 701	unsigned long flags;
 702	LIST_HEAD(list);
 703
 704	/* get all the messages we're dropping under the rs lock */
 705	spin_lock_irqsave(&rs->rs_lock, flags);
 706
 707	list_for_each_entry_safe(rm, tmp, &rs->rs_send_queue, m_sock_item) {
 708		if (dest && (dest->sin_addr.s_addr != rm->m_daddr ||
 709			     dest->sin_port != rm->m_inc.i_hdr.h_dport))
 710			continue;
 711
 712		list_move(&rm->m_sock_item, &list);
 713		rds_send_sndbuf_remove(rs, rm);
 714		clear_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
 715	}
 716
 717	/* order flag updates with the rs lock */
 718	smp_mb__after_atomic();
 719
 720	spin_unlock_irqrestore(&rs->rs_lock, flags);
 721
 722	if (list_empty(&list))
 723		return;
 724
 725	/* Remove the messages from the conn */
 726	list_for_each_entry(rm, &list, m_sock_item) {
 727
 728		conn = rm->m_inc.i_conn;
 729		if (conn->c_trans->t_mp_capable)
 730			cp = rm->m_inc.i_conn_path;
 731		else
 732			cp = &conn->c_path[0];
 733
 734		spin_lock_irqsave(&cp->cp_lock, flags);
 735		/*
 736		 * Maybe someone else beat us to removing rm from the conn.
 737		 * If we race with their flag update we'll get the lock and
 738		 * then really see that the flag has been cleared.
 739		 */
 740		if (!test_and_clear_bit(RDS_MSG_ON_CONN, &rm->m_flags)) {
 741			spin_unlock_irqrestore(&cp->cp_lock, flags);
 742			spin_lock_irqsave(&rm->m_rs_lock, flags);
 743			rm->m_rs = NULL;
 744			spin_unlock_irqrestore(&rm->m_rs_lock, flags);
 745			continue;
 746		}
 747		list_del_init(&rm->m_conn_item);
 748		spin_unlock_irqrestore(&cp->cp_lock, flags);
 749
 750		/*
 751		 * Couldn't grab m_rs_lock in top loop (lock ordering),
 752		 * but we can now.
 753		 */
 754		spin_lock_irqsave(&rm->m_rs_lock, flags);
 755
 756		spin_lock(&rs->rs_lock);
 757		__rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
 758		spin_unlock(&rs->rs_lock);
 759
 760		rm->m_rs = NULL;
 761		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
 762
 763		rds_message_put(rm);
 764	}
 765
 766	rds_wake_sk_sleep(rs);
 767
 768	while (!list_empty(&list)) {
 769		rm = list_entry(list.next, struct rds_message, m_sock_item);
 770		list_del_init(&rm->m_sock_item);
 
 771		rds_message_wait(rm);
 772
 773		/* just in case the code above skipped this message
 774		 * because RDS_MSG_ON_CONN wasn't set, run it again here
 775		 * taking m_rs_lock is the only thing that keeps us
 776		 * from racing with ack processing.
 777		 */
 778		spin_lock_irqsave(&rm->m_rs_lock, flags);
 779
 780		spin_lock(&rs->rs_lock);
 781		__rds_send_complete(rs, rm, RDS_RDMA_CANCELED);
 782		spin_unlock(&rs->rs_lock);
 783
 784		rm->m_rs = NULL;
 785		spin_unlock_irqrestore(&rm->m_rs_lock, flags);
 786
 787		rds_message_put(rm);
 788	}
 789}
 790
 791/*
 792 * we only want this to fire once so we use the callers 'queued'.  It's
 793 * possible that another thread can race with us and remove the
 794 * message from the flow with RDS_CANCEL_SENT_TO.
 795 */
 796static int rds_send_queue_rm(struct rds_sock *rs, struct rds_connection *conn,
 797			     struct rds_conn_path *cp,
 798			     struct rds_message *rm, __be16 sport,
 799			     __be16 dport, int *queued)
 800{
 801	unsigned long flags;
 802	u32 len;
 803
 804	if (*queued)
 805		goto out;
 806
 807	len = be32_to_cpu(rm->m_inc.i_hdr.h_len);
 808
 809	/* this is the only place which holds both the socket's rs_lock
 810	 * and the connection's c_lock */
 811	spin_lock_irqsave(&rs->rs_lock, flags);
 812
 813	/*
 814	 * If there is a little space in sndbuf, we don't queue anything,
 815	 * and userspace gets -EAGAIN. But poll() indicates there's send
 816	 * room. This can lead to bad behavior (spinning) if snd_bytes isn't
 817	 * freed up by incoming acks. So we check the *old* value of
 818	 * rs_snd_bytes here to allow the last msg to exceed the buffer,
 819	 * and poll() now knows no more data can be sent.
 820	 */
 821	if (rs->rs_snd_bytes < rds_sk_sndbuf(rs)) {
 822		rs->rs_snd_bytes += len;
 823
 824		/* let recv side know we are close to send space exhaustion.
 825		 * This is probably not the optimal way to do it, as this
 826		 * means we set the flag on *all* messages as soon as our
 827		 * throughput hits a certain threshold.
 828		 */
 829		if (rs->rs_snd_bytes >= rds_sk_sndbuf(rs) / 2)
 830			__set_bit(RDS_MSG_ACK_REQUIRED, &rm->m_flags);
 831
 832		list_add_tail(&rm->m_sock_item, &rs->rs_send_queue);
 833		set_bit(RDS_MSG_ON_SOCK, &rm->m_flags);
 834		rds_message_addref(rm);
 835		rm->m_rs = rs;
 836
 837		/* The code ordering is a little weird, but we're
 838		   trying to minimize the time we hold c_lock */
 839		rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport, 0);
 840		rm->m_inc.i_conn = conn;
 841		rm->m_inc.i_conn_path = cp;
 842		rds_message_addref(rm);
 843
 844		spin_lock(&cp->cp_lock);
 845		rm->m_inc.i_hdr.h_sequence = cpu_to_be64(cp->cp_next_tx_seq++);
 846		list_add_tail(&rm->m_conn_item, &cp->cp_send_queue);
 847		set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
 848		spin_unlock(&cp->cp_lock);
 849
 850		rdsdebug("queued msg %p len %d, rs %p bytes %d seq %llu\n",
 851			 rm, len, rs, rs->rs_snd_bytes,
 852			 (unsigned long long)be64_to_cpu(rm->m_inc.i_hdr.h_sequence));
 853
 854		*queued = 1;
 855	}
 856
 857	spin_unlock_irqrestore(&rs->rs_lock, flags);
 858out:
 859	return *queued;
 860}
 861
 862/*
 863 * rds_message is getting to be quite complicated, and we'd like to allocate
 864 * it all in one go. This figures out how big it needs to be up front.
 865 */
 866static int rds_rm_size(struct msghdr *msg, int data_len)
 867{
 868	struct cmsghdr *cmsg;
 869	int size = 0;
 870	int cmsg_groups = 0;
 871	int retval;
 872
 873	for_each_cmsghdr(cmsg, msg) {
 874		if (!CMSG_OK(msg, cmsg))
 875			return -EINVAL;
 876
 877		if (cmsg->cmsg_level != SOL_RDS)
 878			continue;
 879
 880		switch (cmsg->cmsg_type) {
 881		case RDS_CMSG_RDMA_ARGS:
 882			cmsg_groups |= 1;
 883			retval = rds_rdma_extra_size(CMSG_DATA(cmsg));
 884			if (retval < 0)
 885				return retval;
 886			size += retval;
 887
 888			break;
 889
 890		case RDS_CMSG_RDMA_DEST:
 891		case RDS_CMSG_RDMA_MAP:
 892			cmsg_groups |= 2;
 893			/* these are valid but do no add any size */
 894			break;
 895
 896		case RDS_CMSG_ATOMIC_CSWP:
 897		case RDS_CMSG_ATOMIC_FADD:
 898		case RDS_CMSG_MASKED_ATOMIC_CSWP:
 899		case RDS_CMSG_MASKED_ATOMIC_FADD:
 900			cmsg_groups |= 1;
 901			size += sizeof(struct scatterlist);
 902			break;
 903
 904		default:
 905			return -EINVAL;
 906		}
 907
 908	}
 909
 910	size += ceil(data_len, PAGE_SIZE) * sizeof(struct scatterlist);
 911
 912	/* Ensure (DEST, MAP) are never used with (ARGS, ATOMIC) */
 913	if (cmsg_groups == 3)
 914		return -EINVAL;
 915
 916	return size;
 917}
 918
 919static int rds_cmsg_send(struct rds_sock *rs, struct rds_message *rm,
 920			 struct msghdr *msg, int *allocated_mr)
 921{
 922	struct cmsghdr *cmsg;
 923	int ret = 0;
 924
 925	for_each_cmsghdr(cmsg, msg) {
 926		if (!CMSG_OK(msg, cmsg))
 927			return -EINVAL;
 928
 929		if (cmsg->cmsg_level != SOL_RDS)
 930			continue;
 931
 932		/* As a side effect, RDMA_DEST and RDMA_MAP will set
 933		 * rm->rdma.m_rdma_cookie and rm->rdma.m_rdma_mr.
 934		 */
 935		switch (cmsg->cmsg_type) {
 936		case RDS_CMSG_RDMA_ARGS:
 937			ret = rds_cmsg_rdma_args(rs, rm, cmsg);
 938			break;
 939
 940		case RDS_CMSG_RDMA_DEST:
 941			ret = rds_cmsg_rdma_dest(rs, rm, cmsg);
 942			break;
 943
 944		case RDS_CMSG_RDMA_MAP:
 945			ret = rds_cmsg_rdma_map(rs, rm, cmsg);
 946			if (!ret)
 947				*allocated_mr = 1;
 948			break;
 949		case RDS_CMSG_ATOMIC_CSWP:
 950		case RDS_CMSG_ATOMIC_FADD:
 951		case RDS_CMSG_MASKED_ATOMIC_CSWP:
 952		case RDS_CMSG_MASKED_ATOMIC_FADD:
 953			ret = rds_cmsg_atomic(rs, rm, cmsg);
 954			break;
 955
 956		default:
 957			return -EINVAL;
 958		}
 959
 960		if (ret)
 961			break;
 962	}
 963
 964	return ret;
 965}
 966
 967static void rds_send_ping(struct rds_connection *conn);
 968
 969static int rds_send_mprds_hash(struct rds_sock *rs, struct rds_connection *conn)
 970{
 971	int hash;
 972
 973	if (conn->c_npaths == 0)
 974		hash = RDS_MPATH_HASH(rs, RDS_MPATH_WORKERS);
 975	else
 976		hash = RDS_MPATH_HASH(rs, conn->c_npaths);
 977	if (conn->c_npaths == 0 && hash != 0) {
 978		rds_send_ping(conn);
 979
 980		if (conn->c_npaths == 0) {
 981			wait_event_interruptible(conn->c_hs_waitq,
 982						 (conn->c_npaths != 0));
 983		}
 984		if (conn->c_npaths == 1)
 985			hash = 0;
 986	}
 987	return hash;
 988}
 989
 990int rds_sendmsg(struct socket *sock, struct msghdr *msg, size_t payload_len)
 991{
 992	struct sock *sk = sock->sk;
 993	struct rds_sock *rs = rds_sk_to_rs(sk);
 994	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
 995	__be32 daddr;
 996	__be16 dport;
 997	struct rds_message *rm = NULL;
 998	struct rds_connection *conn;
 999	int ret = 0;
1000	int queued = 0, allocated_mr = 0;
1001	int nonblock = msg->msg_flags & MSG_DONTWAIT;
1002	long timeo = sock_sndtimeo(sk, nonblock);
1003	struct rds_conn_path *cpath;
1004
1005	/* Mirror Linux UDP mirror of BSD error message compatibility */
1006	/* XXX: Perhaps MSG_MORE someday */
1007	if (msg->msg_flags & ~(MSG_DONTWAIT | MSG_CMSG_COMPAT)) {
 
1008		ret = -EOPNOTSUPP;
1009		goto out;
1010	}
1011
1012	if (msg->msg_namelen) {
1013		/* XXX fail non-unicast destination IPs? */
1014		if (msg->msg_namelen < sizeof(*usin) || usin->sin_family != AF_INET) {
1015			ret = -EINVAL;
1016			goto out;
1017		}
1018		daddr = usin->sin_addr.s_addr;
1019		dport = usin->sin_port;
1020	} else {
1021		/* We only care about consistency with ->connect() */
1022		lock_sock(sk);
1023		daddr = rs->rs_conn_addr;
1024		dport = rs->rs_conn_port;
1025		release_sock(sk);
1026	}
1027
1028	lock_sock(sk);
1029	if (daddr == 0 || rs->rs_bound_addr == 0) {
1030		release_sock(sk);
1031		ret = -ENOTCONN; /* XXX not a great errno */
1032		goto out;
1033	}
1034	release_sock(sk);
1035
1036	if (payload_len > rds_sk_sndbuf(rs)) {
1037		ret = -EMSGSIZE;
1038		goto out;
1039	}
1040
1041	/* size of rm including all sgs */
1042	ret = rds_rm_size(msg, payload_len);
1043	if (ret < 0)
1044		goto out;
1045
1046	rm = rds_message_alloc(ret, GFP_KERNEL);
1047	if (!rm) {
1048		ret = -ENOMEM;
1049		goto out;
1050	}
1051
1052	/* Attach data to the rm */
1053	if (payload_len) {
1054		rm->data.op_sg = rds_message_alloc_sgs(rm, ceil(payload_len, PAGE_SIZE));
1055		if (!rm->data.op_sg) {
1056			ret = -ENOMEM;
1057			goto out;
1058		}
1059		ret = rds_message_copy_from_user(rm, &msg->msg_iter);
1060		if (ret)
1061			goto out;
1062	}
1063	rm->data.op_active = 1;
1064
1065	rm->m_daddr = daddr;
1066
1067	/* rds_conn_create has a spinlock that runs with IRQ off.
1068	 * Caching the conn in the socket helps a lot. */
1069	if (rs->rs_conn && rs->rs_conn->c_faddr == daddr)
1070		conn = rs->rs_conn;
1071	else {
1072		conn = rds_conn_create_outgoing(sock_net(sock->sk),
1073						rs->rs_bound_addr, daddr,
1074					rs->rs_transport,
1075					sock->sk->sk_allocation);
1076		if (IS_ERR(conn)) {
1077			ret = PTR_ERR(conn);
1078			goto out;
1079		}
1080		rs->rs_conn = conn;
1081	}
1082
1083	/* Parse any control messages the user may have included. */
1084	ret = rds_cmsg_send(rs, rm, msg, &allocated_mr);
1085	if (ret)
1086		goto out;
1087
1088	if (rm->rdma.op_active && !conn->c_trans->xmit_rdma) {
1089		printk_ratelimited(KERN_NOTICE "rdma_op %p conn xmit_rdma %p\n",
1090			       &rm->rdma, conn->c_trans->xmit_rdma);
1091		ret = -EOPNOTSUPP;
1092		goto out;
1093	}
1094
1095	if (rm->atomic.op_active && !conn->c_trans->xmit_atomic) {
1096		printk_ratelimited(KERN_NOTICE "atomic_op %p conn xmit_atomic %p\n",
1097			       &rm->atomic, conn->c_trans->xmit_atomic);
1098		ret = -EOPNOTSUPP;
1099		goto out;
1100	}
1101
1102	if (conn->c_trans->t_mp_capable)
1103		cpath = &conn->c_path[rds_send_mprds_hash(rs, conn)];
1104	else
1105		cpath = &conn->c_path[0];
1106
1107	rds_conn_path_connect_if_down(cpath);
1108
1109	ret = rds_cong_wait(conn->c_fcong, dport, nonblock, rs);
1110	if (ret) {
1111		rs->rs_seen_congestion = 1;
1112		goto out;
1113	}
1114	while (!rds_send_queue_rm(rs, conn, cpath, rm, rs->rs_bound_port,
 
1115				  dport, &queued)) {
1116		rds_stats_inc(s_send_queue_full);
1117
 
 
 
 
1118		if (nonblock) {
1119			ret = -EAGAIN;
1120			goto out;
1121		}
1122
1123		timeo = wait_event_interruptible_timeout(*sk_sleep(sk),
1124					rds_send_queue_rm(rs, conn, cpath, rm,
1125							  rs->rs_bound_port,
1126							  dport,
1127							  &queued),
1128					timeo);
1129		rdsdebug("sendmsg woke queued %d timeo %ld\n", queued, timeo);
1130		if (timeo > 0 || timeo == MAX_SCHEDULE_TIMEOUT)
1131			continue;
1132
1133		ret = timeo;
1134		if (ret == 0)
1135			ret = -ETIMEDOUT;
1136		goto out;
1137	}
1138
1139	/*
1140	 * By now we've committed to the send.  We reuse rds_send_worker()
1141	 * to retry sends in the rds thread if the transport asks us to.
1142	 */
1143	rds_stats_inc(s_send_queued);
1144
1145	ret = rds_send_xmit(cpath);
1146	if (ret == -ENOMEM || ret == -EAGAIN)
1147		queue_delayed_work(rds_wq, &cpath->cp_send_w, 1);
1148
1149	rds_message_put(rm);
1150	return payload_len;
1151
1152out:
1153	/* If the user included a RDMA_MAP cmsg, we allocated a MR on the fly.
1154	 * If the sendmsg goes through, we keep the MR. If it fails with EAGAIN
1155	 * or in any other way, we need to destroy the MR again */
1156	if (allocated_mr)
1157		rds_rdma_unuse(rs, rds_rdma_cookie_key(rm->m_rdma_cookie), 1);
1158
1159	if (rm)
1160		rds_message_put(rm);
1161	return ret;
1162}
1163
1164/*
1165 * send out a probe. Can be shared by rds_send_ping,
1166 * rds_send_pong, rds_send_hb.
1167 * rds_send_hb should use h_flags
1168 *   RDS_FLAG_HB_PING|RDS_FLAG_ACK_REQUIRED
1169 * or
1170 *   RDS_FLAG_HB_PONG|RDS_FLAG_ACK_REQUIRED
1171 */
1172int
1173rds_send_probe(struct rds_conn_path *cp, __be16 sport,
1174	       __be16 dport, u8 h_flags)
1175{
1176	struct rds_message *rm;
1177	unsigned long flags;
1178	int ret = 0;
1179
1180	rm = rds_message_alloc(0, GFP_ATOMIC);
1181	if (!rm) {
1182		ret = -ENOMEM;
1183		goto out;
1184	}
1185
1186	rm->m_daddr = cp->cp_conn->c_faddr;
1187	rm->data.op_active = 1;
1188
1189	rds_conn_path_connect_if_down(cp);
1190
1191	ret = rds_cong_wait(cp->cp_conn->c_fcong, dport, 1, NULL);
1192	if (ret)
1193		goto out;
1194
1195	spin_lock_irqsave(&cp->cp_lock, flags);
1196	list_add_tail(&rm->m_conn_item, &cp->cp_send_queue);
1197	set_bit(RDS_MSG_ON_CONN, &rm->m_flags);
1198	rds_message_addref(rm);
1199	rm->m_inc.i_conn = cp->cp_conn;
1200	rm->m_inc.i_conn_path = cp;
1201
1202	rds_message_populate_header(&rm->m_inc.i_hdr, sport, dport,
1203				    cp->cp_next_tx_seq);
1204	rm->m_inc.i_hdr.h_flags |= h_flags;
1205	cp->cp_next_tx_seq++;
1206
1207	if (RDS_HS_PROBE(sport, dport) && cp->cp_conn->c_trans->t_mp_capable) {
1208		u16 npaths = RDS_MPATH_WORKERS;
1209
1210		rds_message_add_extension(&rm->m_inc.i_hdr,
1211					  RDS_EXTHDR_NPATHS, &npaths,
1212					  sizeof(npaths));
1213		rds_message_add_extension(&rm->m_inc.i_hdr,
1214					  RDS_EXTHDR_GEN_NUM,
1215					  &cp->cp_conn->c_my_gen_num,
1216					  sizeof(u32));
1217	}
1218	spin_unlock_irqrestore(&cp->cp_lock, flags);
1219
1220	rds_stats_inc(s_send_queued);
1221	rds_stats_inc(s_send_pong);
1222
1223	/* schedule the send work on rds_wq */
1224	queue_delayed_work(rds_wq, &cp->cp_send_w, 1);
1225
1226	rds_message_put(rm);
1227	return 0;
1228
1229out:
1230	if (rm)
1231		rds_message_put(rm);
1232	return ret;
1233}
1234
1235int
1236rds_send_pong(struct rds_conn_path *cp, __be16 dport)
1237{
1238	return rds_send_probe(cp, 0, dport, 0);
1239}
1240
1241void
1242rds_send_ping(struct rds_connection *conn)
1243{
1244	unsigned long flags;
1245	struct rds_conn_path *cp = &conn->c_path[0];
1246
1247	spin_lock_irqsave(&cp->cp_lock, flags);
1248	if (conn->c_ping_triggered) {
1249		spin_unlock_irqrestore(&cp->cp_lock, flags);
1250		return;
1251	}
1252	conn->c_ping_triggered = 1;
1253	spin_unlock_irqrestore(&cp->cp_lock, flags);
1254	rds_send_probe(&conn->c_path[0], RDS_FLAG_PROBE_PORT, 0, 0);
1255}