Linux Audio

Check our new training course

Loading...
v3.1
  1/*
  2 *  linux/fs/ext4/file.c
  3 *
  4 * Copyright (C) 1992, 1993, 1994, 1995
  5 * Remy Card (card@masi.ibp.fr)
  6 * Laboratoire MASI - Institut Blaise Pascal
  7 * Universite Pierre et Marie Curie (Paris VI)
  8 *
  9 *  from
 10 *
 11 *  linux/fs/minix/file.c
 12 *
 13 *  Copyright (C) 1991, 1992  Linus Torvalds
 14 *
 15 *  ext4 fs regular file handling primitives
 16 *
 17 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 18 *	(jj@sunsite.ms.mff.cuni.cz)
 19 */
 20
 21#include <linux/time.h>
 22#include <linux/fs.h>
 23#include <linux/jbd2.h>
 24#include <linux/mount.h>
 25#include <linux/path.h>
 
 26#include <linux/quotaops.h>
 
 
 27#include "ext4.h"
 28#include "ext4_jbd2.h"
 29#include "xattr.h"
 30#include "acl.h"
 31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 32/*
 33 * Called when an inode is released. Note that this is different
 34 * from ext4_file_open: open gets called at every open, but release
 35 * gets called only when /all/ the files are closed.
 36 */
 37static int ext4_release_file(struct inode *inode, struct file *filp)
 38{
 39	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
 40		ext4_alloc_da_blocks(inode);
 41		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
 42	}
 43	/* if we are the last writer on the inode, drop the block reservation */
 44	if ((filp->f_mode & FMODE_WRITE) &&
 45			(atomic_read(&inode->i_writecount) == 1) &&
 46		        !EXT4_I(inode)->i_reserved_data_blocks)
 47	{
 48		down_write(&EXT4_I(inode)->i_data_sem);
 49		ext4_discard_preallocations(inode);
 50		up_write(&EXT4_I(inode)->i_data_sem);
 51	}
 52	if (is_dx(inode) && filp->private_data)
 53		ext4_htree_free_dir_info(filp->private_data);
 54
 55	return 0;
 56}
 57
 58static void ext4_aiodio_wait(struct inode *inode)
 59{
 60	wait_queue_head_t *wq = ext4_ioend_wq(inode);
 61
 62	wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_aiodio_unwritten) == 0));
 63}
 64
 65/*
 66 * This tests whether the IO in question is block-aligned or not.
 67 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
 68 * are converted to written only after the IO is complete.  Until they are
 69 * mapped, these blocks appear as holes, so dio_zero_block() will assume that
 70 * it needs to zero out portions of the start and/or end block.  If 2 AIO
 71 * threads are at work on the same unwritten block, they must be synchronized
 72 * or one thread will zero the other's data, causing corruption.
 73 */
 74static int
 75ext4_unaligned_aio(struct inode *inode, const struct iovec *iov,
 76		   unsigned long nr_segs, loff_t pos)
 77{
 78	struct super_block *sb = inode->i_sb;
 79	int blockmask = sb->s_blocksize - 1;
 80	size_t count = iov_length(iov, nr_segs);
 81	loff_t final_size = pos + count;
 82
 83	if (pos >= inode->i_size)
 84		return 0;
 85
 86	if ((pos & blockmask) || (final_size & blockmask))
 87		return 1;
 88
 89	return 0;
 90}
 91
 92static ssize_t
 93ext4_file_write(struct kiocb *iocb, const struct iovec *iov,
 94		unsigned long nr_segs, loff_t pos)
 95{
 96	struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
 97	int unaligned_aio = 0;
 98	int ret;
 
 
 
 
 
 
 
 99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100	/*
101	 * If we have encountered a bitmap-format file, the size limit
102	 * is smaller than s_maxbytes, which is for extent-mapped files.
103	 */
104
105	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
106		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
107		size_t length = iov_length(iov, nr_segs);
108
109		if ((pos > sbi->s_bitmap_maxbytes ||
110		    (pos == sbi->s_bitmap_maxbytes && length > 0)))
111			return -EFBIG;
 
 
 
 
112
113		if (pos + length > sbi->s_bitmap_maxbytes) {
114			nr_segs = iov_shorten((struct iovec *)iov, nr_segs,
115					      sbi->s_bitmap_maxbytes - pos);
116		}
117	} else if (unlikely((iocb->ki_filp->f_flags & O_DIRECT) &&
118		   !is_sync_kiocb(iocb))) {
119		unaligned_aio = ext4_unaligned_aio(inode, iov, nr_segs, pos);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121
122	/* Unaligned direct AIO must be serialized; see comment above */
123	if (unaligned_aio) {
124		static unsigned long unaligned_warn_time;
 
125
126		/* Warn about this once per day */
127		if (printk_timed_ratelimit(&unaligned_warn_time, 60*60*24*HZ))
128			ext4_msg(inode->i_sb, KERN_WARNING,
129				 "Unaligned AIO/DIO on inode %ld by %s; "
130				 "performance will be poor.",
131				 inode->i_ino, current->comm);
132		mutex_lock(ext4_aio_mutex(inode));
133		ext4_aiodio_wait(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134	}
 
 
 
 
 
 
 
 
 
135
136	ret = generic_file_aio_write(iocb, iov, nr_segs, pos);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
137
138	if (unaligned_aio)
139		mutex_unlock(ext4_aio_mutex(inode));
 
 
 
 
 
 
 
 
140
141	return ret;
142}
143
 
 
 
 
 
 
 
 
 
 
144static const struct vm_operations_struct ext4_file_vm_ops = {
145	.fault		= filemap_fault,
 
146	.page_mkwrite   = ext4_page_mkwrite,
147};
148
149static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
150{
151	struct address_space *mapping = file->f_mapping;
152
153	if (!mapping->a_ops->readpage)
154		return -ENOEXEC;
 
 
 
 
 
155	file_accessed(file);
156	vma->vm_ops = &ext4_file_vm_ops;
157	vma->vm_flags |= VM_CAN_NONLINEAR;
 
 
 
 
158	return 0;
159}
160
161static int ext4_file_open(struct inode * inode, struct file * filp)
162{
163	struct super_block *sb = inode->i_sb;
164	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
165	struct ext4_inode_info *ei = EXT4_I(inode);
166	struct vfsmount *mnt = filp->f_path.mnt;
 
167	struct path path;
168	char buf[64], *cp;
 
169
170	if (unlikely(!(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED) &&
171		     !(sb->s_flags & MS_RDONLY))) {
172		sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
173		/*
174		 * Sample where the filesystem has been mounted and
175		 * store it in the superblock for sysadmin convenience
176		 * when trying to sort through large numbers of block
177		 * devices or filesystem images.
178		 */
179		memset(buf, 0, sizeof(buf));
180		path.mnt = mnt;
181		path.dentry = mnt->mnt_root;
182		cp = d_path(&path, buf, sizeof(buf));
183		if (!IS_ERR(cp)) {
184			memcpy(sbi->s_es->s_last_mounted, cp,
185			       sizeof(sbi->s_es->s_last_mounted));
186			ext4_mark_super_dirty(sb);
 
 
 
 
 
 
 
 
 
 
 
 
 
187		}
188	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
189	/*
190	 * Set up the jbd2_inode if we are opening the inode for
191	 * writing and the journal is present
192	 */
193	if (sbi->s_journal && !ei->jinode && (filp->f_mode & FMODE_WRITE)) {
194		struct jbd2_inode *jinode = jbd2_alloc_inode(GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
195
196		spin_lock(&inode->i_lock);
197		if (!ei->jinode) {
198			if (!jinode) {
199				spin_unlock(&inode->i_lock);
200				return -ENOMEM;
201			}
202			ei->jinode = jinode;
203			jbd2_journal_init_jbd_inode(ei->jinode, inode);
204			jinode = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
205		}
206		spin_unlock(&inode->i_lock);
207		if (unlikely(jinode != NULL))
208			jbd2_free_inode(jinode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
209	}
210	return dquot_file_open(inode, filp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
211}
212
213/*
214 * ext4_llseek() copied from generic_file_llseek() to handle both
215 * block-mapped and extent-mapped maxbytes values. This should
216 * otherwise be identical with generic_file_llseek().
217 */
218loff_t ext4_llseek(struct file *file, loff_t offset, int origin)
219{
220	struct inode *inode = file->f_mapping->host;
221	loff_t maxbytes;
222
223	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
224		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
225	else
226		maxbytes = inode->i_sb->s_maxbytes;
227	mutex_lock(&inode->i_mutex);
228	switch (origin) {
229	case SEEK_END:
230		offset += inode->i_size;
231		break;
232	case SEEK_CUR:
233		if (offset == 0) {
234			mutex_unlock(&inode->i_mutex);
235			return file->f_pos;
236		}
237		offset += file->f_pos;
238		break;
239	case SEEK_DATA:
240		/*
241		 * In the generic case the entire file is data, so as long as
242		 * offset isn't at the end of the file then the offset is data.
243		 */
244		if (offset >= inode->i_size) {
245			mutex_unlock(&inode->i_mutex);
246			return -ENXIO;
247		}
248		break;
249	case SEEK_HOLE:
250		/*
251		 * There is a virtual hole at the end of the file, so as long as
252		 * offset isn't i_size or larger, return i_size.
253		 */
254		if (offset >= inode->i_size) {
255			mutex_unlock(&inode->i_mutex);
256			return -ENXIO;
257		}
258		offset = inode->i_size;
259		break;
260	}
261
262	if (offset < 0 || offset > maxbytes) {
263		mutex_unlock(&inode->i_mutex);
264		return -EINVAL;
265	}
266
267	if (offset != file->f_pos) {
268		file->f_pos = offset;
269		file->f_version = 0;
270	}
271	mutex_unlock(&inode->i_mutex);
272
273	return offset;
274}
275
276const struct file_operations ext4_file_operations = {
277	.llseek		= ext4_llseek,
278	.read		= do_sync_read,
279	.write		= do_sync_write,
280	.aio_read	= generic_file_aio_read,
281	.aio_write	= ext4_file_write,
282	.unlocked_ioctl = ext4_ioctl,
283#ifdef CONFIG_COMPAT
284	.compat_ioctl	= ext4_compat_ioctl,
285#endif
286	.mmap		= ext4_file_mmap,
287	.open		= ext4_file_open,
288	.release	= ext4_release_file,
289	.fsync		= ext4_sync_file,
 
290	.splice_read	= generic_file_splice_read,
291	.splice_write	= generic_file_splice_write,
292	.fallocate	= ext4_fallocate,
293};
294
295const struct inode_operations ext4_file_inode_operations = {
296	.setattr	= ext4_setattr,
297	.getattr	= ext4_getattr,
298#ifdef CONFIG_EXT4_FS_XATTR
299	.setxattr	= generic_setxattr,
300	.getxattr	= generic_getxattr,
301	.listxattr	= ext4_listxattr,
302	.removexattr	= generic_removexattr,
303#endif
304	.get_acl	= ext4_get_acl,
 
305	.fiemap		= ext4_fiemap,
306};
307
v4.10.11
  1/*
  2 *  linux/fs/ext4/file.c
  3 *
  4 * Copyright (C) 1992, 1993, 1994, 1995
  5 * Remy Card (card@masi.ibp.fr)
  6 * Laboratoire MASI - Institut Blaise Pascal
  7 * Universite Pierre et Marie Curie (Paris VI)
  8 *
  9 *  from
 10 *
 11 *  linux/fs/minix/file.c
 12 *
 13 *  Copyright (C) 1991, 1992  Linus Torvalds
 14 *
 15 *  ext4 fs regular file handling primitives
 16 *
 17 *  64-bit file support on 64-bit platforms by Jakub Jelinek
 18 *	(jj@sunsite.ms.mff.cuni.cz)
 19 */
 20
 21#include <linux/time.h>
 22#include <linux/fs.h>
 
 23#include <linux/mount.h>
 24#include <linux/path.h>
 25#include <linux/dax.h>
 26#include <linux/quotaops.h>
 27#include <linux/pagevec.h>
 28#include <linux/uio.h>
 29#include "ext4.h"
 30#include "ext4_jbd2.h"
 31#include "xattr.h"
 32#include "acl.h"
 33
 34#ifdef CONFIG_FS_DAX
 35static ssize_t ext4_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
 36{
 37	struct inode *inode = file_inode(iocb->ki_filp);
 38	ssize_t ret;
 39
 40	inode_lock_shared(inode);
 41	/*
 42	 * Recheck under inode lock - at this point we are sure it cannot
 43	 * change anymore
 44	 */
 45	if (!IS_DAX(inode)) {
 46		inode_unlock_shared(inode);
 47		/* Fallback to buffered IO in case we cannot support DAX */
 48		return generic_file_read_iter(iocb, to);
 49	}
 50	ret = dax_iomap_rw(iocb, to, &ext4_iomap_ops);
 51	inode_unlock_shared(inode);
 52
 53	file_accessed(iocb->ki_filp);
 54	return ret;
 55}
 56#endif
 57
 58static ssize_t ext4_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
 59{
 60	if (!iov_iter_count(to))
 61		return 0; /* skip atime */
 62
 63#ifdef CONFIG_FS_DAX
 64	if (IS_DAX(file_inode(iocb->ki_filp)))
 65		return ext4_dax_read_iter(iocb, to);
 66#endif
 67	return generic_file_read_iter(iocb, to);
 68}
 69
 70/*
 71 * Called when an inode is released. Note that this is different
 72 * from ext4_file_open: open gets called at every open, but release
 73 * gets called only when /all/ the files are closed.
 74 */
 75static int ext4_release_file(struct inode *inode, struct file *filp)
 76{
 77	if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
 78		ext4_alloc_da_blocks(inode);
 79		ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
 80	}
 81	/* if we are the last writer on the inode, drop the block reservation */
 82	if ((filp->f_mode & FMODE_WRITE) &&
 83			(atomic_read(&inode->i_writecount) == 1) &&
 84		        !EXT4_I(inode)->i_reserved_data_blocks)
 85	{
 86		down_write(&EXT4_I(inode)->i_data_sem);
 87		ext4_discard_preallocations(inode);
 88		up_write(&EXT4_I(inode)->i_data_sem);
 89	}
 90	if (is_dx(inode) && filp->private_data)
 91		ext4_htree_free_dir_info(filp->private_data);
 92
 93	return 0;
 94}
 95
 96static void ext4_unwritten_wait(struct inode *inode)
 97{
 98	wait_queue_head_t *wq = ext4_ioend_wq(inode);
 99
100	wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0));
101}
102
103/*
104 * This tests whether the IO in question is block-aligned or not.
105 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
106 * are converted to written only after the IO is complete.  Until they are
107 * mapped, these blocks appear as holes, so dio_zero_block() will assume that
108 * it needs to zero out portions of the start and/or end block.  If 2 AIO
109 * threads are at work on the same unwritten block, they must be synchronized
110 * or one thread will zero the other's data, causing corruption.
111 */
112static int
113ext4_unaligned_aio(struct inode *inode, struct iov_iter *from, loff_t pos)
 
114{
115	struct super_block *sb = inode->i_sb;
116	int blockmask = sb->s_blocksize - 1;
 
 
117
118	if (pos >= i_size_read(inode))
119		return 0;
120
121	if ((pos | iov_iter_alignment(from)) & blockmask)
122		return 1;
123
124	return 0;
125}
126
127/* Is IO overwriting allocated and initialized blocks? */
128static bool ext4_overwrite_io(struct inode *inode, loff_t pos, loff_t len)
 
129{
130	struct ext4_map_blocks map;
131	unsigned int blkbits = inode->i_blkbits;
132	int err, blklen;
133
134	if (pos + len > i_size_read(inode))
135		return false;
136
137	map.m_lblk = pos >> blkbits;
138	map.m_len = EXT4_MAX_BLOCKS(len, pos, blkbits);
139	blklen = map.m_len;
140
141	err = ext4_map_blocks(NULL, inode, &map, 0);
142	/*
143	 * 'err==len' means that all of the blocks have been preallocated,
144	 * regardless of whether they have been initialized or not. To exclude
145	 * unwritten extents, we need to check m_flags.
146	 */
147	return err == blklen && (map.m_flags & EXT4_MAP_MAPPED);
148}
149
150static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
151{
152	struct inode *inode = file_inode(iocb->ki_filp);
153	ssize_t ret;
154
155	ret = generic_write_checks(iocb, from);
156	if (ret <= 0)
157		return ret;
158	/*
159	 * If we have encountered a bitmap-format file, the size limit
160	 * is smaller than s_maxbytes, which is for extent-mapped files.
161	 */
 
162	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
163		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 
164
165		if (iocb->ki_pos >= sbi->s_bitmap_maxbytes)
 
166			return -EFBIG;
167		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
168	}
169	return iov_iter_count(from);
170}
171
172#ifdef CONFIG_FS_DAX
173static ssize_t
174ext4_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
175{
176	struct inode *inode = file_inode(iocb->ki_filp);
177	ssize_t ret;
178	bool overwrite = false;
179
180	inode_lock(inode);
181	ret = ext4_write_checks(iocb, from);
182	if (ret <= 0)
183		goto out;
184	ret = file_remove_privs(iocb->ki_filp);
185	if (ret)
186		goto out;
187	ret = file_update_time(iocb->ki_filp);
188	if (ret)
189		goto out;
190
191	if (ext4_overwrite_io(inode, iocb->ki_pos, iov_iter_count(from))) {
192		overwrite = true;
193		downgrade_write(&inode->i_rwsem);
194	}
195	ret = dax_iomap_rw(iocb, from, &ext4_iomap_ops);
196out:
197	if (!overwrite)
198		inode_unlock(inode);
199	else
200		inode_unlock_shared(inode);
201	if (ret > 0)
202		ret = generic_write_sync(iocb, ret);
203	return ret;
204}
205#endif
206
207static ssize_t
208ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
209{
210	struct inode *inode = file_inode(iocb->ki_filp);
211	int o_direct = iocb->ki_flags & IOCB_DIRECT;
212	int unaligned_aio = 0;
213	int overwrite = 0;
214	ssize_t ret;
215
216#ifdef CONFIG_FS_DAX
217	if (IS_DAX(inode))
218		return ext4_dax_write_iter(iocb, from);
219#endif
220
221	inode_lock(inode);
222	ret = ext4_write_checks(iocb, from);
223	if (ret <= 0)
224		goto out;
225
226	/*
227	 * Unaligned direct AIO must be serialized among each other as zeroing
228	 * of partial blocks of two competing unaligned AIOs can result in data
229	 * corruption.
230	 */
231	if (o_direct && ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) &&
232	    !is_sync_kiocb(iocb) &&
233	    ext4_unaligned_aio(inode, from, iocb->ki_pos)) {
234		unaligned_aio = 1;
235		ext4_unwritten_wait(inode);
236	}
237
238	iocb->private = &overwrite;
239	/* Check whether we do a DIO overwrite or not */
240	if (o_direct && ext4_should_dioread_nolock(inode) && !unaligned_aio &&
241	    ext4_overwrite_io(inode, iocb->ki_pos, iov_iter_count(from)))
242		overwrite = 1;
243
244	ret = __generic_file_write_iter(iocb, from);
245	inode_unlock(inode);
246
247	if (ret > 0)
248		ret = generic_write_sync(iocb, ret);
249
250	return ret;
251
252out:
253	inode_unlock(inode);
254	return ret;
255}
256
257#ifdef CONFIG_FS_DAX
258static int ext4_dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
259{
260	int result;
261	struct inode *inode = file_inode(vma->vm_file);
262	struct super_block *sb = inode->i_sb;
263	bool write = vmf->flags & FAULT_FLAG_WRITE;
264
265	if (write) {
266		sb_start_pagefault(sb);
267		file_update_time(vma->vm_file);
268	}
269	down_read(&EXT4_I(inode)->i_mmap_sem);
270	result = dax_iomap_fault(vma, vmf, &ext4_iomap_ops);
271	up_read(&EXT4_I(inode)->i_mmap_sem);
272	if (write)
273		sb_end_pagefault(sb);
274
275	return result;
276}
277
278static int ext4_dax_pmd_fault(struct vm_area_struct *vma, unsigned long addr,
279						pmd_t *pmd, unsigned int flags)
280{
281	int result;
282	struct inode *inode = file_inode(vma->vm_file);
283	struct super_block *sb = inode->i_sb;
284	bool write = flags & FAULT_FLAG_WRITE;
285
286	if (write) {
287		sb_start_pagefault(sb);
288		file_update_time(vma->vm_file);
289	}
290	down_read(&EXT4_I(inode)->i_mmap_sem);
291	result = dax_iomap_pmd_fault(vma, addr, pmd, flags,
292				     &ext4_iomap_ops);
293	up_read(&EXT4_I(inode)->i_mmap_sem);
294	if (write)
295		sb_end_pagefault(sb);
296
297	return result;
298}
299
300/*
301 * Handle write fault for VM_MIXEDMAP mappings. Similarly to ext4_dax_fault()
302 * handler we check for races agaist truncate. Note that since we cycle through
303 * i_mmap_sem, we are sure that also any hole punching that began before we
304 * were called is finished by now and so if it included part of the file we
305 * are working on, our pte will get unmapped and the check for pte_same() in
306 * wp_pfn_shared() fails. Thus fault gets retried and things work out as
307 * desired.
308 */
309static int ext4_dax_pfn_mkwrite(struct vm_area_struct *vma,
310				struct vm_fault *vmf)
311{
312	struct inode *inode = file_inode(vma->vm_file);
313	struct super_block *sb = inode->i_sb;
314	loff_t size;
315	int ret;
316
317	sb_start_pagefault(sb);
318	file_update_time(vma->vm_file);
319	down_read(&EXT4_I(inode)->i_mmap_sem);
320	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
321	if (vmf->pgoff >= size)
322		ret = VM_FAULT_SIGBUS;
323	else
324		ret = dax_pfn_mkwrite(vma, vmf);
325	up_read(&EXT4_I(inode)->i_mmap_sem);
326	sb_end_pagefault(sb);
327
328	return ret;
329}
330
331static const struct vm_operations_struct ext4_dax_vm_ops = {
332	.fault		= ext4_dax_fault,
333	.pmd_fault	= ext4_dax_pmd_fault,
334	.page_mkwrite	= ext4_dax_fault,
335	.pfn_mkwrite	= ext4_dax_pfn_mkwrite,
336};
337#else
338#define ext4_dax_vm_ops	ext4_file_vm_ops
339#endif
340
341static const struct vm_operations_struct ext4_file_vm_ops = {
342	.fault		= ext4_filemap_fault,
343	.map_pages	= filemap_map_pages,
344	.page_mkwrite   = ext4_page_mkwrite,
345};
346
347static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
348{
349	struct inode *inode = file->f_mapping->host;
350
351	if (ext4_encrypted_inode(inode)) {
352		int err = fscrypt_get_encryption_info(inode);
353		if (err)
354			return 0;
355		if (!fscrypt_has_encryption_key(inode))
356			return -ENOKEY;
357	}
358	file_accessed(file);
359	if (IS_DAX(file_inode(file))) {
360		vma->vm_ops = &ext4_dax_vm_ops;
361		vma->vm_flags |= VM_MIXEDMAP | VM_HUGEPAGE;
362	} else {
363		vma->vm_ops = &ext4_file_vm_ops;
364	}
365	return 0;
366}
367
368static int ext4_file_open(struct inode * inode, struct file * filp)
369{
370	struct super_block *sb = inode->i_sb;
371	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 
372	struct vfsmount *mnt = filp->f_path.mnt;
373	struct dentry *dir;
374	struct path path;
375	char buf[64], *cp;
376	int ret;
377
378	if (unlikely(!(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED) &&
379		     !(sb->s_flags & MS_RDONLY))) {
380		sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
381		/*
382		 * Sample where the filesystem has been mounted and
383		 * store it in the superblock for sysadmin convenience
384		 * when trying to sort through large numbers of block
385		 * devices or filesystem images.
386		 */
387		memset(buf, 0, sizeof(buf));
388		path.mnt = mnt;
389		path.dentry = mnt->mnt_root;
390		cp = d_path(&path, buf, sizeof(buf));
391		if (!IS_ERR(cp)) {
392			handle_t *handle;
393			int err;
394
395			handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
396			if (IS_ERR(handle))
397				return PTR_ERR(handle);
398			BUFFER_TRACE(sbi->s_sbh, "get_write_access");
399			err = ext4_journal_get_write_access(handle, sbi->s_sbh);
400			if (err) {
401				ext4_journal_stop(handle);
402				return err;
403			}
404			strlcpy(sbi->s_es->s_last_mounted, cp,
405				sizeof(sbi->s_es->s_last_mounted));
406			ext4_handle_dirty_super(handle, sb);
407			ext4_journal_stop(handle);
408		}
409	}
410	if (ext4_encrypted_inode(inode)) {
411		ret = fscrypt_get_encryption_info(inode);
412		if (ret)
413			return -EACCES;
414		if (!fscrypt_has_encryption_key(inode))
415			return -ENOKEY;
416	}
417
418	dir = dget_parent(file_dentry(filp));
419	if (ext4_encrypted_inode(d_inode(dir)) &&
420			!fscrypt_has_permitted_context(d_inode(dir), inode)) {
421		ext4_warning(inode->i_sb,
422			     "Inconsistent encryption contexts: %lu/%lu",
423			     (unsigned long) d_inode(dir)->i_ino,
424			     (unsigned long) inode->i_ino);
425		dput(dir);
426		return -EPERM;
427	}
428	dput(dir);
429	/*
430	 * Set up the jbd2_inode if we are opening the inode for
431	 * writing and the journal is present
432	 */
433	if (filp->f_mode & FMODE_WRITE) {
434		ret = ext4_inode_attach_jinode(inode);
435		if (ret < 0)
436			return ret;
437	}
438	return dquot_file_open(inode, filp);
439}
440
441/*
442 * Here we use ext4_map_blocks() to get a block mapping for a extent-based
443 * file rather than ext4_ext_walk_space() because we can introduce
444 * SEEK_DATA/SEEK_HOLE for block-mapped and extent-mapped file at the same
445 * function.  When extent status tree has been fully implemented, it will
446 * track all extent status for a file and we can directly use it to
447 * retrieve the offset for SEEK_DATA/SEEK_HOLE.
448 */
449
450/*
451 * When we retrieve the offset for SEEK_DATA/SEEK_HOLE, we would need to
452 * lookup page cache to check whether or not there has some data between
453 * [startoff, endoff] because, if this range contains an unwritten extent,
454 * we determine this extent as a data or a hole according to whether the
455 * page cache has data or not.
456 */
457static int ext4_find_unwritten_pgoff(struct inode *inode,
458				     int whence,
459				     ext4_lblk_t end_blk,
460				     loff_t *offset)
461{
462	struct pagevec pvec;
463	unsigned int blkbits;
464	pgoff_t index;
465	pgoff_t end;
466	loff_t endoff;
467	loff_t startoff;
468	loff_t lastoff;
469	int found = 0;
470
471	blkbits = inode->i_sb->s_blocksize_bits;
472	startoff = *offset;
473	lastoff = startoff;
474	endoff = (loff_t)end_blk << blkbits;
475
476	index = startoff >> PAGE_SHIFT;
477	end = endoff >> PAGE_SHIFT;
478
479	pagevec_init(&pvec, 0);
480	do {
481		int i, num;
482		unsigned long nr_pages;
483
484		num = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
485		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
486					  (pgoff_t)num);
487		if (nr_pages == 0) {
488			if (whence == SEEK_DATA)
489				break;
490
491			BUG_ON(whence != SEEK_HOLE);
492			/*
493			 * If this is the first time to go into the loop and
494			 * offset is not beyond the end offset, it will be a
495			 * hole at this offset
496			 */
497			if (lastoff == startoff || lastoff < endoff)
498				found = 1;
499			break;
500		}
501
502		/*
503		 * If this is the first time to go into the loop and
504		 * offset is smaller than the first page offset, it will be a
505		 * hole at this offset.
506		 */
507		if (lastoff == startoff && whence == SEEK_HOLE &&
508		    lastoff < page_offset(pvec.pages[0])) {
509			found = 1;
510			break;
511		}
512
513		for (i = 0; i < nr_pages; i++) {
514			struct page *page = pvec.pages[i];
515			struct buffer_head *bh, *head;
516
517			/*
518			 * If the current offset is not beyond the end of given
519			 * range, it will be a hole.
520			 */
521			if (lastoff < endoff && whence == SEEK_HOLE &&
522			    page->index > end) {
523				found = 1;
524				*offset = lastoff;
525				goto out;
526			}
527
528			lock_page(page);
529
530			if (unlikely(page->mapping != inode->i_mapping)) {
531				unlock_page(page);
532				continue;
533			}
534
535			if (!page_has_buffers(page)) {
536				unlock_page(page);
537				continue;
 
 
538			}
539
540			if (page_has_buffers(page)) {
541				lastoff = page_offset(page);
542				bh = head = page_buffers(page);
543				do {
544					if (buffer_uptodate(bh) ||
545					    buffer_unwritten(bh)) {
546						if (whence == SEEK_DATA)
547							found = 1;
548					} else {
549						if (whence == SEEK_HOLE)
550							found = 1;
551					}
552					if (found) {
553						*offset = max_t(loff_t,
554							startoff, lastoff);
555						unlock_page(page);
556						goto out;
557					}
558					lastoff += bh->b_size;
559					bh = bh->b_this_page;
560				} while (bh != head);
561			}
562
563			lastoff = page_offset(page) + PAGE_SIZE;
564			unlock_page(page);
565		}
566
567		/*
568		 * The no. of pages is less than our desired, that would be a
569		 * hole in there.
570		 */
571		if (nr_pages < num && whence == SEEK_HOLE) {
572			found = 1;
573			*offset = lastoff;
574			break;
575		}
576
577		index = pvec.pages[i - 1]->index + 1;
578		pagevec_release(&pvec);
579	} while (index <= end);
580
581out:
582	pagevec_release(&pvec);
583	return found;
584}
585
586/*
587 * ext4_seek_data() retrieves the offset for SEEK_DATA.
588 */
589static loff_t ext4_seek_data(struct file *file, loff_t offset, loff_t maxsize)
590{
591	struct inode *inode = file->f_mapping->host;
592	struct extent_status es;
593	ext4_lblk_t start, last, end;
594	loff_t dataoff, isize;
595	int blkbits;
596	int ret;
597
598	inode_lock(inode);
599
600	isize = i_size_read(inode);
601	if (offset >= isize) {
602		inode_unlock(inode);
603		return -ENXIO;
604	}
605
606	blkbits = inode->i_sb->s_blocksize_bits;
607	start = offset >> blkbits;
608	last = start;
609	end = isize >> blkbits;
610	dataoff = offset;
611
612	do {
613		ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
614		if (ret <= 0) {
615			/* No extent found -> no data */
616			if (ret == 0)
617				ret = -ENXIO;
618			inode_unlock(inode);
619			return ret;
620		}
621
622		last = es.es_lblk;
623		if (last != start)
624			dataoff = (loff_t)last << blkbits;
625		if (!ext4_es_is_unwritten(&es))
626			break;
627
628		/*
629		 * If there is a unwritten extent at this offset,
630		 * it will be as a data or a hole according to page
631		 * cache that has data or not.
632		 */
633		if (ext4_find_unwritten_pgoff(inode, SEEK_DATA,
634					      es.es_lblk + es.es_len, &dataoff))
635			break;
636		last += es.es_len;
637		dataoff = (loff_t)last << blkbits;
638		cond_resched();
639	} while (last <= end);
640
641	inode_unlock(inode);
642
643	if (dataoff > isize)
644		return -ENXIO;
645
646	return vfs_setpos(file, dataoff, maxsize);
647}
648
649/*
650 * ext4_seek_hole() retrieves the offset for SEEK_HOLE.
651 */
652static loff_t ext4_seek_hole(struct file *file, loff_t offset, loff_t maxsize)
653{
654	struct inode *inode = file->f_mapping->host;
655	struct extent_status es;
656	ext4_lblk_t start, last, end;
657	loff_t holeoff, isize;
658	int blkbits;
659	int ret;
660
661	inode_lock(inode);
662
663	isize = i_size_read(inode);
664	if (offset >= isize) {
665		inode_unlock(inode);
666		return -ENXIO;
667	}
668
669	blkbits = inode->i_sb->s_blocksize_bits;
670	start = offset >> blkbits;
671	last = start;
672	end = isize >> blkbits;
673	holeoff = offset;
674
675	do {
676		ret = ext4_get_next_extent(inode, last, end - last + 1, &es);
677		if (ret < 0) {
678			inode_unlock(inode);
679			return ret;
680		}
681		/* Found a hole? */
682		if (ret == 0 || es.es_lblk > last) {
683			if (last != start)
684				holeoff = (loff_t)last << blkbits;
685			break;
686		}
687		/*
688		 * If there is a unwritten extent at this offset,
689		 * it will be as a data or a hole according to page
690		 * cache that has data or not.
691		 */
692		if (ext4_es_is_unwritten(&es) &&
693		    ext4_find_unwritten_pgoff(inode, SEEK_HOLE,
694					      last + es.es_len, &holeoff))
695			break;
696
697		last += es.es_len;
698		holeoff = (loff_t)last << blkbits;
699		cond_resched();
700	} while (last <= end);
701
702	inode_unlock(inode);
703
704	if (holeoff > isize)
705		holeoff = isize;
706
707	return vfs_setpos(file, holeoff, maxsize);
708}
709
710/*
711 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
712 * by calling generic_file_llseek_size() with the appropriate maxbytes
713 * value for each.
714 */
715loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
716{
717	struct inode *inode = file->f_mapping->host;
718	loff_t maxbytes;
719
720	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
721		maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
722	else
723		maxbytes = inode->i_sb->s_maxbytes;
724
725	switch (whence) {
726	case SEEK_SET:
 
 
727	case SEEK_CUR:
728	case SEEK_END:
729		return generic_file_llseek_size(file, offset, whence,
730						maxbytes, i_size_read(inode));
 
 
 
731	case SEEK_DATA:
732		return ext4_seek_data(file, offset, maxbytes);
 
 
 
 
 
 
 
 
733	case SEEK_HOLE:
734		return ext4_seek_hole(file, offset, maxbytes);
 
 
 
 
 
 
 
 
 
735	}
736
737	return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
738}
739
740const struct file_operations ext4_file_operations = {
741	.llseek		= ext4_llseek,
742	.read_iter	= ext4_file_read_iter,
743	.write_iter	= ext4_file_write_iter,
 
 
744	.unlocked_ioctl = ext4_ioctl,
745#ifdef CONFIG_COMPAT
746	.compat_ioctl	= ext4_compat_ioctl,
747#endif
748	.mmap		= ext4_file_mmap,
749	.open		= ext4_file_open,
750	.release	= ext4_release_file,
751	.fsync		= ext4_sync_file,
752	.get_unmapped_area = thp_get_unmapped_area,
753	.splice_read	= generic_file_splice_read,
754	.splice_write	= iter_file_splice_write,
755	.fallocate	= ext4_fallocate,
756};
757
758const struct inode_operations ext4_file_inode_operations = {
759	.setattr	= ext4_setattr,
760	.getattr	= ext4_getattr,
 
 
 
761	.listxattr	= ext4_listxattr,
 
 
762	.get_acl	= ext4_get_acl,
763	.set_acl	= ext4_set_acl,
764	.fiemap		= ext4_fiemap,
765};
766