Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * Analog Devices SPI3 controller driver
  3 *
  4 * Copyright (c) 2014 Analog Devices Inc.
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License version 2 as
  8 * published by the Free Software Foundation.
  9 *
 10 * This program is distributed in the hope that it will be useful,
 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 13 * GNU General Public License for more details.
 14 */
 15
 16#include <linux/clk.h>
 17#include <linux/delay.h>
 18#include <linux/device.h>
 19#include <linux/dma-mapping.h>
 20#include <linux/errno.h>
 21#include <linux/gpio.h>
 22#include <linux/init.h>
 23#include <linux/interrupt.h>
 24#include <linux/io.h>
 25#include <linux/ioport.h>
 26#include <linux/module.h>
 27#include <linux/platform_device.h>
 28#include <linux/slab.h>
 29#include <linux/spi/spi.h>
 30#include <linux/spi/adi_spi3.h>
 31#include <linux/types.h>
 32
 33#include <asm/dma.h>
 34#include <asm/portmux.h>
 35
 36enum adi_spi_state {
 37	START_STATE,
 38	RUNNING_STATE,
 39	DONE_STATE,
 40	ERROR_STATE
 41};
 42
 43struct adi_spi_master;
 44
 45struct adi_spi_transfer_ops {
 46	void (*write) (struct adi_spi_master *);
 47	void (*read) (struct adi_spi_master *);
 48	void (*duplex) (struct adi_spi_master *);
 49};
 50
 51/* runtime info for spi master */
 52struct adi_spi_master {
 53	/* SPI framework hookup */
 54	struct spi_master *master;
 55
 56	/* Regs base of SPI controller */
 57	struct adi_spi_regs __iomem *regs;
 58
 59	/* Pin request list */
 60	u16 *pin_req;
 61
 62	/* Message Transfer pump */
 63	struct tasklet_struct pump_transfers;
 64
 65	/* Current message transfer state info */
 66	struct spi_message *cur_msg;
 67	struct spi_transfer *cur_transfer;
 68	struct adi_spi_device *cur_chip;
 69	unsigned transfer_len;
 70
 71	/* transfer buffer */
 72	void *tx;
 73	void *tx_end;
 74	void *rx;
 75	void *rx_end;
 76
 77	/* dma info */
 78	unsigned int tx_dma;
 79	unsigned int rx_dma;
 80	dma_addr_t tx_dma_addr;
 81	dma_addr_t rx_dma_addr;
 82	unsigned long dummy_buffer; /* used in unidirectional transfer */
 83	unsigned long tx_dma_size;
 84	unsigned long rx_dma_size;
 85	int tx_num;
 86	int rx_num;
 87
 88	/* store register value for suspend/resume */
 89	u32 control;
 90	u32 ssel;
 91
 92	unsigned long sclk;
 93	enum adi_spi_state state;
 94
 95	const struct adi_spi_transfer_ops *ops;
 96};
 97
 98struct adi_spi_device {
 99	u32 control;
100	u32 clock;
101	u32 ssel;
102
103	u8 cs;
104	u16 cs_chg_udelay; /* Some devices require > 255usec delay */
105	u32 cs_gpio;
106	u32 tx_dummy_val; /* tx value for rx only transfer */
107	bool enable_dma;
108	const struct adi_spi_transfer_ops *ops;
109};
110
111static void adi_spi_enable(struct adi_spi_master *drv_data)
112{
113	u32 ctl;
114
115	ctl = ioread32(&drv_data->regs->control);
116	ctl |= SPI_CTL_EN;
117	iowrite32(ctl, &drv_data->regs->control);
118}
119
120static void adi_spi_disable(struct adi_spi_master *drv_data)
121{
122	u32 ctl;
123
124	ctl = ioread32(&drv_data->regs->control);
125	ctl &= ~SPI_CTL_EN;
126	iowrite32(ctl, &drv_data->regs->control);
127}
128
129/* Caculate the SPI_CLOCK register value based on input HZ */
130static u32 hz_to_spi_clock(u32 sclk, u32 speed_hz)
131{
132	u32 spi_clock = sclk / speed_hz;
133
134	if (spi_clock)
135		spi_clock--;
136	return spi_clock;
137}
138
139static int adi_spi_flush(struct adi_spi_master *drv_data)
140{
141	unsigned long limit = loops_per_jiffy << 1;
142
143	/* wait for stop and clear stat */
144	while (!(ioread32(&drv_data->regs->status) & SPI_STAT_SPIF) && --limit)
145		cpu_relax();
146
147	iowrite32(0xFFFFFFFF, &drv_data->regs->status);
148
149	return limit;
150}
151
152/* Chip select operation functions for cs_change flag */
153static void adi_spi_cs_active(struct adi_spi_master *drv_data, struct adi_spi_device *chip)
154{
155	if (likely(chip->cs < MAX_CTRL_CS)) {
156		u32 reg;
157		reg = ioread32(&drv_data->regs->ssel);
158		reg &= ~chip->ssel;
159		iowrite32(reg, &drv_data->regs->ssel);
160	} else {
161		gpio_set_value(chip->cs_gpio, 0);
162	}
163}
164
165static void adi_spi_cs_deactive(struct adi_spi_master *drv_data,
166				struct adi_spi_device *chip)
167{
168	if (likely(chip->cs < MAX_CTRL_CS)) {
169		u32 reg;
170		reg = ioread32(&drv_data->regs->ssel);
171		reg |= chip->ssel;
172		iowrite32(reg, &drv_data->regs->ssel);
173	} else {
174		gpio_set_value(chip->cs_gpio, 1);
175	}
176
177	/* Move delay here for consistency */
178	if (chip->cs_chg_udelay)
179		udelay(chip->cs_chg_udelay);
180}
181
182/* enable or disable the pin muxed by GPIO and SPI CS to work as SPI CS */
183static inline void adi_spi_cs_enable(struct adi_spi_master *drv_data,
184					struct adi_spi_device *chip)
185{
186	if (chip->cs < MAX_CTRL_CS) {
187		u32 reg;
188		reg = ioread32(&drv_data->regs->ssel);
189		reg |= chip->ssel >> 8;
190		iowrite32(reg, &drv_data->regs->ssel);
191	}
192}
193
194static inline void adi_spi_cs_disable(struct adi_spi_master *drv_data,
195					struct adi_spi_device *chip)
196{
197	if (chip->cs < MAX_CTRL_CS) {
198		u32 reg;
199		reg = ioread32(&drv_data->regs->ssel);
200		reg &= ~(chip->ssel >> 8);
201		iowrite32(reg, &drv_data->regs->ssel);
202	}
203}
204
205/* stop controller and re-config current chip*/
206static void adi_spi_restore_state(struct adi_spi_master *drv_data)
207{
208	struct adi_spi_device *chip = drv_data->cur_chip;
209
210	/* Clear status and disable clock */
211	iowrite32(0xFFFFFFFF, &drv_data->regs->status);
212	iowrite32(0x0, &drv_data->regs->rx_control);
213	iowrite32(0x0, &drv_data->regs->tx_control);
214	adi_spi_disable(drv_data);
215
216	/* Load the registers */
217	iowrite32(chip->control, &drv_data->regs->control);
218	iowrite32(chip->clock, &drv_data->regs->clock);
219
220	adi_spi_enable(drv_data);
221	drv_data->tx_num = drv_data->rx_num = 0;
222	/* we always choose tx transfer initiate */
223	iowrite32(SPI_RXCTL_REN, &drv_data->regs->rx_control);
224	iowrite32(SPI_TXCTL_TEN | SPI_TXCTL_TTI, &drv_data->regs->tx_control);
225	adi_spi_cs_active(drv_data, chip);
226}
227
228/* discard invalid rx data and empty rfifo */
229static inline void dummy_read(struct adi_spi_master *drv_data)
230{
231	while (!(ioread32(&drv_data->regs->status) & SPI_STAT_RFE))
232		ioread32(&drv_data->regs->rfifo);
233}
234
235static void adi_spi_u8_write(struct adi_spi_master *drv_data)
236{
237	dummy_read(drv_data);
238	while (drv_data->tx < drv_data->tx_end) {
239		iowrite32(*(u8 *)(drv_data->tx++), &drv_data->regs->tfifo);
240		while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
241			cpu_relax();
242		ioread32(&drv_data->regs->rfifo);
243	}
244}
245
246static void adi_spi_u8_read(struct adi_spi_master *drv_data)
247{
248	u32 tx_val = drv_data->cur_chip->tx_dummy_val;
249
250	dummy_read(drv_data);
251	while (drv_data->rx < drv_data->rx_end) {
252		iowrite32(tx_val, &drv_data->regs->tfifo);
253		while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
254			cpu_relax();
255		*(u8 *)(drv_data->rx++) = ioread32(&drv_data->regs->rfifo);
256	}
257}
258
259static void adi_spi_u8_duplex(struct adi_spi_master *drv_data)
260{
261	dummy_read(drv_data);
262	while (drv_data->rx < drv_data->rx_end) {
263		iowrite32(*(u8 *)(drv_data->tx++), &drv_data->regs->tfifo);
264		while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
265			cpu_relax();
266		*(u8 *)(drv_data->rx++) = ioread32(&drv_data->regs->rfifo);
267	}
268}
269
270static const struct adi_spi_transfer_ops adi_spi_transfer_ops_u8 = {
271	.write  = adi_spi_u8_write,
272	.read   = adi_spi_u8_read,
273	.duplex = adi_spi_u8_duplex,
274};
275
276static void adi_spi_u16_write(struct adi_spi_master *drv_data)
277{
278	dummy_read(drv_data);
279	while (drv_data->tx < drv_data->tx_end) {
280		iowrite32(*(u16 *)drv_data->tx, &drv_data->regs->tfifo);
281		drv_data->tx += 2;
282		while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
283			cpu_relax();
284		ioread32(&drv_data->regs->rfifo);
285	}
286}
287
288static void adi_spi_u16_read(struct adi_spi_master *drv_data)
289{
290	u32 tx_val = drv_data->cur_chip->tx_dummy_val;
291
292	dummy_read(drv_data);
293	while (drv_data->rx < drv_data->rx_end) {
294		iowrite32(tx_val, &drv_data->regs->tfifo);
295		while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
296			cpu_relax();
297		*(u16 *)drv_data->rx = ioread32(&drv_data->regs->rfifo);
298		drv_data->rx += 2;
299	}
300}
301
302static void adi_spi_u16_duplex(struct adi_spi_master *drv_data)
303{
304	dummy_read(drv_data);
305	while (drv_data->rx < drv_data->rx_end) {
306		iowrite32(*(u16 *)drv_data->tx, &drv_data->regs->tfifo);
307		drv_data->tx += 2;
308		while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
309			cpu_relax();
310		*(u16 *)drv_data->rx = ioread32(&drv_data->regs->rfifo);
311		drv_data->rx += 2;
312	}
313}
314
315static const struct adi_spi_transfer_ops adi_spi_transfer_ops_u16 = {
316	.write  = adi_spi_u16_write,
317	.read   = adi_spi_u16_read,
318	.duplex = adi_spi_u16_duplex,
319};
320
321static void adi_spi_u32_write(struct adi_spi_master *drv_data)
322{
323	dummy_read(drv_data);
324	while (drv_data->tx < drv_data->tx_end) {
325		iowrite32(*(u32 *)drv_data->tx, &drv_data->regs->tfifo);
326		drv_data->tx += 4;
327		while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
328			cpu_relax();
329		ioread32(&drv_data->regs->rfifo);
330	}
331}
332
333static void adi_spi_u32_read(struct adi_spi_master *drv_data)
334{
335	u32 tx_val = drv_data->cur_chip->tx_dummy_val;
336
337	dummy_read(drv_data);
338	while (drv_data->rx < drv_data->rx_end) {
339		iowrite32(tx_val, &drv_data->regs->tfifo);
340		while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
341			cpu_relax();
342		*(u32 *)drv_data->rx = ioread32(&drv_data->regs->rfifo);
343		drv_data->rx += 4;
344	}
345}
346
347static void adi_spi_u32_duplex(struct adi_spi_master *drv_data)
348{
349	dummy_read(drv_data);
350	while (drv_data->rx < drv_data->rx_end) {
351		iowrite32(*(u32 *)drv_data->tx, &drv_data->regs->tfifo);
352		drv_data->tx += 4;
353		while (ioread32(&drv_data->regs->status) & SPI_STAT_RFE)
354			cpu_relax();
355		*(u32 *)drv_data->rx = ioread32(&drv_data->regs->rfifo);
356		drv_data->rx += 4;
357	}
358}
359
360static const struct adi_spi_transfer_ops adi_spi_transfer_ops_u32 = {
361	.write  = adi_spi_u32_write,
362	.read   = adi_spi_u32_read,
363	.duplex = adi_spi_u32_duplex,
364};
365
366
367/* test if there is more transfer to be done */
368static void adi_spi_next_transfer(struct adi_spi_master *drv)
369{
370	struct spi_message *msg = drv->cur_msg;
371	struct spi_transfer *t = drv->cur_transfer;
372
373	/* Move to next transfer */
374	if (t->transfer_list.next != &msg->transfers) {
375		drv->cur_transfer = list_entry(t->transfer_list.next,
376			       struct spi_transfer, transfer_list);
377		drv->state = RUNNING_STATE;
378	} else {
379		drv->state = DONE_STATE;
380		drv->cur_transfer = NULL;
381	}
382}
383
384static void adi_spi_giveback(struct adi_spi_master *drv_data)
385{
386	struct adi_spi_device *chip = drv_data->cur_chip;
387
388	adi_spi_cs_deactive(drv_data, chip);
389	spi_finalize_current_message(drv_data->master);
390}
391
392static int adi_spi_setup_transfer(struct adi_spi_master *drv)
393{
394	struct spi_transfer *t = drv->cur_transfer;
395	u32 cr, cr_width;
396
397	if (t->tx_buf) {
398		drv->tx = (void *)t->tx_buf;
399		drv->tx_end = drv->tx + t->len;
400	} else {
401		drv->tx = NULL;
402	}
403
404	if (t->rx_buf) {
405		drv->rx = t->rx_buf;
406		drv->rx_end = drv->rx + t->len;
407	} else {
408		drv->rx = NULL;
409	}
410
411	drv->transfer_len = t->len;
412
413	/* bits per word setup */
414	switch (t->bits_per_word) {
415	case 8:
416		cr_width = SPI_CTL_SIZE08;
417		drv->ops = &adi_spi_transfer_ops_u8;
418		break;
419	case 16:
420		cr_width = SPI_CTL_SIZE16;
421		drv->ops = &adi_spi_transfer_ops_u16;
422		break;
423	case 32:
424		cr_width = SPI_CTL_SIZE32;
425		drv->ops = &adi_spi_transfer_ops_u32;
426		break;
427	default:
428		return -EINVAL;
429	}
430	cr = ioread32(&drv->regs->control) & ~SPI_CTL_SIZE;
431	cr |= cr_width;
432	iowrite32(cr, &drv->regs->control);
433
434	/* speed setup */
435	iowrite32(hz_to_spi_clock(drv->sclk, t->speed_hz), &drv->regs->clock);
436	return 0;
437}
438
439static int adi_spi_dma_xfer(struct adi_spi_master *drv_data)
440{
441	struct spi_transfer *t = drv_data->cur_transfer;
442	struct spi_message *msg = drv_data->cur_msg;
443	struct adi_spi_device *chip = drv_data->cur_chip;
444	u32 dma_config;
445	unsigned long word_count, word_size;
446	void *tx_buf, *rx_buf;
447
448	switch (t->bits_per_word) {
449	case 8:
450		dma_config = WDSIZE_8 | PSIZE_8;
451		word_count = drv_data->transfer_len;
452		word_size = 1;
453		break;
454	case 16:
455		dma_config = WDSIZE_16 | PSIZE_16;
456		word_count = drv_data->transfer_len / 2;
457		word_size = 2;
458		break;
459	default:
460		dma_config = WDSIZE_32 | PSIZE_32;
461		word_count = drv_data->transfer_len / 4;
462		word_size = 4;
463		break;
464	}
465
466	if (!drv_data->rx) {
467		tx_buf = drv_data->tx;
468		rx_buf = &drv_data->dummy_buffer;
469		drv_data->tx_dma_size = drv_data->transfer_len;
470		drv_data->rx_dma_size = sizeof(drv_data->dummy_buffer);
471		set_dma_x_modify(drv_data->tx_dma, word_size);
472		set_dma_x_modify(drv_data->rx_dma, 0);
473	} else if (!drv_data->tx) {
474		drv_data->dummy_buffer = chip->tx_dummy_val;
475		tx_buf = &drv_data->dummy_buffer;
476		rx_buf = drv_data->rx;
477		drv_data->tx_dma_size = sizeof(drv_data->dummy_buffer);
478		drv_data->rx_dma_size = drv_data->transfer_len;
479		set_dma_x_modify(drv_data->tx_dma, 0);
480		set_dma_x_modify(drv_data->rx_dma, word_size);
481	} else {
482		tx_buf = drv_data->tx;
483		rx_buf = drv_data->rx;
484		drv_data->tx_dma_size = drv_data->rx_dma_size
485					= drv_data->transfer_len;
486		set_dma_x_modify(drv_data->tx_dma, word_size);
487		set_dma_x_modify(drv_data->rx_dma, word_size);
488	}
489
490	drv_data->tx_dma_addr = dma_map_single(&msg->spi->dev,
491				(void *)tx_buf,
492				drv_data->tx_dma_size,
493				DMA_TO_DEVICE);
494	if (dma_mapping_error(&msg->spi->dev,
495				drv_data->tx_dma_addr))
496		return -ENOMEM;
497
498	drv_data->rx_dma_addr = dma_map_single(&msg->spi->dev,
499				(void *)rx_buf,
500				drv_data->rx_dma_size,
501				DMA_FROM_DEVICE);
502	if (dma_mapping_error(&msg->spi->dev,
503				drv_data->rx_dma_addr)) {
504		dma_unmap_single(&msg->spi->dev,
505				drv_data->tx_dma_addr,
506				drv_data->tx_dma_size,
507				DMA_TO_DEVICE);
508		return -ENOMEM;
509	}
510
511	dummy_read(drv_data);
512	set_dma_x_count(drv_data->tx_dma, word_count);
513	set_dma_x_count(drv_data->rx_dma, word_count);
514	set_dma_start_addr(drv_data->tx_dma, drv_data->tx_dma_addr);
515	set_dma_start_addr(drv_data->rx_dma, drv_data->rx_dma_addr);
516	dma_config |= DMAFLOW_STOP | RESTART | DI_EN;
517	set_dma_config(drv_data->tx_dma, dma_config);
518	set_dma_config(drv_data->rx_dma, dma_config | WNR);
519	enable_dma(drv_data->tx_dma);
520	enable_dma(drv_data->rx_dma);
521
522	iowrite32(SPI_RXCTL_REN | SPI_RXCTL_RDR_NE,
523			&drv_data->regs->rx_control);
524	iowrite32(SPI_TXCTL_TEN | SPI_TXCTL_TTI | SPI_TXCTL_TDR_NF,
525			&drv_data->regs->tx_control);
526
527	return 0;
528}
529
530static int adi_spi_pio_xfer(struct adi_spi_master *drv_data)
531{
532	struct spi_message *msg = drv_data->cur_msg;
533
534	if (!drv_data->rx) {
535		/* write only half duplex */
536		drv_data->ops->write(drv_data);
537		if (drv_data->tx != drv_data->tx_end)
538			return -EIO;
539	} else if (!drv_data->tx) {
540		/* read only half duplex */
541		drv_data->ops->read(drv_data);
542		if (drv_data->rx != drv_data->rx_end)
543			return -EIO;
544	} else {
545		/* full duplex mode */
546		drv_data->ops->duplex(drv_data);
547		if (drv_data->tx != drv_data->tx_end)
548			return -EIO;
549	}
550
551	if (!adi_spi_flush(drv_data))
552		return -EIO;
553	msg->actual_length += drv_data->transfer_len;
554	tasklet_schedule(&drv_data->pump_transfers);
555	return 0;
556}
557
558static void adi_spi_pump_transfers(unsigned long data)
559{
560	struct adi_spi_master *drv_data = (struct adi_spi_master *)data;
561	struct spi_message *msg = NULL;
562	struct spi_transfer *t = NULL;
563	struct adi_spi_device *chip = NULL;
564	int ret;
565
566	/* Get current state information */
567	msg = drv_data->cur_msg;
568	t = drv_data->cur_transfer;
569	chip = drv_data->cur_chip;
570
571	/* Handle for abort */
572	if (drv_data->state == ERROR_STATE) {
573		msg->status = -EIO;
574		adi_spi_giveback(drv_data);
575		return;
576	}
577
578	if (drv_data->state == RUNNING_STATE) {
579		if (t->delay_usecs)
580			udelay(t->delay_usecs);
581		if (t->cs_change)
582			adi_spi_cs_deactive(drv_data, chip);
583		adi_spi_next_transfer(drv_data);
584		t = drv_data->cur_transfer;
585	}
586	/* Handle end of message */
587	if (drv_data->state == DONE_STATE) {
588		msg->status = 0;
589		adi_spi_giveback(drv_data);
590		return;
591	}
592
593	if ((t->len == 0) || (t->tx_buf == NULL && t->rx_buf == NULL)) {
594		/* Schedule next transfer tasklet */
595		tasklet_schedule(&drv_data->pump_transfers);
596		return;
597	}
598
599	ret = adi_spi_setup_transfer(drv_data);
600	if (ret) {
601		msg->status = ret;
602		adi_spi_giveback(drv_data);
603	}
604
605	iowrite32(0xFFFFFFFF, &drv_data->regs->status);
606	adi_spi_cs_active(drv_data, chip);
607	drv_data->state = RUNNING_STATE;
608
609	if (chip->enable_dma)
610		ret = adi_spi_dma_xfer(drv_data);
611	else
612		ret = adi_spi_pio_xfer(drv_data);
613	if (ret) {
614		msg->status = ret;
615		adi_spi_giveback(drv_data);
616	}
617}
618
619static int adi_spi_transfer_one_message(struct spi_master *master,
620					struct spi_message *m)
621{
622	struct adi_spi_master *drv_data = spi_master_get_devdata(master);
623
624	drv_data->cur_msg = m;
625	drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
626	adi_spi_restore_state(drv_data);
627
628	drv_data->state = START_STATE;
629	drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
630					    struct spi_transfer, transfer_list);
631
632	tasklet_schedule(&drv_data->pump_transfers);
633	return 0;
634}
635
636#define MAX_SPI_SSEL	7
637
638static const u16 ssel[][MAX_SPI_SSEL] = {
639	{P_SPI0_SSEL1, P_SPI0_SSEL2, P_SPI0_SSEL3,
640	P_SPI0_SSEL4, P_SPI0_SSEL5,
641	P_SPI0_SSEL6, P_SPI0_SSEL7},
642
643	{P_SPI1_SSEL1, P_SPI1_SSEL2, P_SPI1_SSEL3,
644	P_SPI1_SSEL4, P_SPI1_SSEL5,
645	P_SPI1_SSEL6, P_SPI1_SSEL7},
646
647	{P_SPI2_SSEL1, P_SPI2_SSEL2, P_SPI2_SSEL3,
648	P_SPI2_SSEL4, P_SPI2_SSEL5,
649	P_SPI2_SSEL6, P_SPI2_SSEL7},
650};
651
652static int adi_spi_setup(struct spi_device *spi)
653{
654	struct adi_spi_master *drv_data = spi_master_get_devdata(spi->master);
655	struct adi_spi_device *chip = spi_get_ctldata(spi);
656	u32 ctl_reg = SPI_CTL_ODM | SPI_CTL_PSSE;
657	int ret = -EINVAL;
658
659	if (!chip) {
660		struct adi_spi3_chip *chip_info = spi->controller_data;
661
662		chip = kzalloc(sizeof(*chip), GFP_KERNEL);
663		if (!chip)
664			return -ENOMEM;
665
666		if (chip_info) {
667			if (chip_info->control & ~ctl_reg) {
668				dev_err(&spi->dev,
669					"do not set bits that the SPI framework manages\n");
670				goto error;
671			}
672			chip->control = chip_info->control;
673			chip->cs_chg_udelay = chip_info->cs_chg_udelay;
674			chip->tx_dummy_val = chip_info->tx_dummy_val;
675			chip->enable_dma = chip_info->enable_dma;
676		}
677		chip->cs = spi->chip_select;
678
679		if (chip->cs < MAX_CTRL_CS) {
680			chip->ssel = (1 << chip->cs) << 8;
681			ret = peripheral_request(ssel[spi->master->bus_num]
682					[chip->cs-1], dev_name(&spi->dev));
683			if (ret) {
684				dev_err(&spi->dev, "peripheral_request() error\n");
685				goto error;
686			}
687		} else {
688			chip->cs_gpio = chip->cs - MAX_CTRL_CS;
689			ret = gpio_request_one(chip->cs_gpio, GPIOF_OUT_INIT_HIGH,
690						dev_name(&spi->dev));
691			if (ret) {
692				dev_err(&spi->dev, "gpio_request_one() error\n");
693				goto error;
694			}
695		}
696		spi_set_ctldata(spi, chip);
697	}
698
699	/* force a default base state */
700	chip->control &= ctl_reg;
701
702	if (spi->mode & SPI_CPOL)
703		chip->control |= SPI_CTL_CPOL;
704	if (spi->mode & SPI_CPHA)
705		chip->control |= SPI_CTL_CPHA;
706	if (spi->mode & SPI_LSB_FIRST)
707		chip->control |= SPI_CTL_LSBF;
708	chip->control |= SPI_CTL_MSTR;
709	/* we choose software to controll cs */
710	chip->control &= ~SPI_CTL_ASSEL;
711
712	chip->clock = hz_to_spi_clock(drv_data->sclk, spi->max_speed_hz);
713
714	adi_spi_cs_enable(drv_data, chip);
715	adi_spi_cs_deactive(drv_data, chip);
716
717	return 0;
718error:
719	if (chip) {
720		kfree(chip);
721		spi_set_ctldata(spi, NULL);
722	}
723
724	return ret;
725}
726
727static void adi_spi_cleanup(struct spi_device *spi)
728{
729	struct adi_spi_device *chip = spi_get_ctldata(spi);
730	struct adi_spi_master *drv_data = spi_master_get_devdata(spi->master);
731
732	if (!chip)
733		return;
734
735	if (chip->cs < MAX_CTRL_CS) {
736		peripheral_free(ssel[spi->master->bus_num]
737					[chip->cs-1]);
738		adi_spi_cs_disable(drv_data, chip);
739	} else {
740		gpio_free(chip->cs_gpio);
741	}
742
743	kfree(chip);
744	spi_set_ctldata(spi, NULL);
745}
746
747static irqreturn_t adi_spi_tx_dma_isr(int irq, void *dev_id)
748{
749	struct adi_spi_master *drv_data = dev_id;
750	u32 dma_stat = get_dma_curr_irqstat(drv_data->tx_dma);
751	u32 tx_ctl;
752
753	clear_dma_irqstat(drv_data->tx_dma);
754	if (dma_stat & DMA_DONE) {
755		drv_data->tx_num++;
756	} else {
757		dev_err(&drv_data->master->dev,
758				"spi tx dma error: %d\n", dma_stat);
759		if (drv_data->tx)
760			drv_data->state = ERROR_STATE;
761	}
762	tx_ctl = ioread32(&drv_data->regs->tx_control);
763	tx_ctl &= ~SPI_TXCTL_TDR_NF;
764	iowrite32(tx_ctl, &drv_data->regs->tx_control);
765	return IRQ_HANDLED;
766}
767
768static irqreturn_t adi_spi_rx_dma_isr(int irq, void *dev_id)
769{
770	struct adi_spi_master *drv_data = dev_id;
771	struct spi_message *msg = drv_data->cur_msg;
772	u32 dma_stat = get_dma_curr_irqstat(drv_data->rx_dma);
773
774	clear_dma_irqstat(drv_data->rx_dma);
775	if (dma_stat & DMA_DONE) {
776		drv_data->rx_num++;
777		/* we may fail on tx dma */
778		if (drv_data->state != ERROR_STATE)
779			msg->actual_length += drv_data->transfer_len;
780	} else {
781		drv_data->state = ERROR_STATE;
782		dev_err(&drv_data->master->dev,
783				"spi rx dma error: %d\n", dma_stat);
784	}
785	iowrite32(0, &drv_data->regs->tx_control);
786	iowrite32(0, &drv_data->regs->rx_control);
787	if (drv_data->rx_num != drv_data->tx_num)
788		dev_dbg(&drv_data->master->dev,
789				"dma interrupt missing: tx=%d,rx=%d\n",
790				drv_data->tx_num, drv_data->rx_num);
791	tasklet_schedule(&drv_data->pump_transfers);
792	return IRQ_HANDLED;
793}
794
795static int adi_spi_probe(struct platform_device *pdev)
796{
797	struct device *dev = &pdev->dev;
798	struct adi_spi3_master *info = dev_get_platdata(dev);
799	struct spi_master *master;
800	struct adi_spi_master *drv_data;
801	struct resource *mem, *res;
802	unsigned int tx_dma, rx_dma;
803	struct clk *sclk;
804	int ret;
805
806	if (!info) {
807		dev_err(dev, "platform data missing!\n");
808		return -ENODEV;
809	}
810
811	sclk = devm_clk_get(dev, "spi");
812	if (IS_ERR(sclk)) {
813		dev_err(dev, "can not get spi clock\n");
814		return PTR_ERR(sclk);
815	}
816
817	res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
818	if (!res) {
819		dev_err(dev, "can not get tx dma resource\n");
820		return -ENXIO;
821	}
822	tx_dma = res->start;
823
824	res = platform_get_resource(pdev, IORESOURCE_DMA, 1);
825	if (!res) {
826		dev_err(dev, "can not get rx dma resource\n");
827		return -ENXIO;
828	}
829	rx_dma = res->start;
830
831	/* allocate master with space for drv_data */
832	master = spi_alloc_master(dev, sizeof(*drv_data));
833	if (!master) {
834		dev_err(dev, "can not alloc spi_master\n");
835		return -ENOMEM;
836	}
837	platform_set_drvdata(pdev, master);
838
839	/* the mode bits supported by this driver */
840	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
841
842	master->bus_num = pdev->id;
843	master->num_chipselect = info->num_chipselect;
844	master->cleanup = adi_spi_cleanup;
845	master->setup = adi_spi_setup;
846	master->transfer_one_message = adi_spi_transfer_one_message;
847	master->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(16) |
848				     SPI_BPW_MASK(8);
849
850	drv_data = spi_master_get_devdata(master);
851	drv_data->master = master;
852	drv_data->tx_dma = tx_dma;
853	drv_data->rx_dma = rx_dma;
854	drv_data->pin_req = info->pin_req;
855	drv_data->sclk = clk_get_rate(sclk);
856
857	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
858	drv_data->regs = devm_ioremap_resource(dev, mem);
859	if (IS_ERR(drv_data->regs)) {
860		ret = PTR_ERR(drv_data->regs);
861		goto err_put_master;
862	}
863
864	/* request tx and rx dma */
865	ret = request_dma(tx_dma, "SPI_TX_DMA");
866	if (ret) {
867		dev_err(dev, "can not request SPI TX DMA channel\n");
868		goto err_put_master;
869	}
870	set_dma_callback(tx_dma, adi_spi_tx_dma_isr, drv_data);
871
872	ret = request_dma(rx_dma, "SPI_RX_DMA");
873	if (ret) {
874		dev_err(dev, "can not request SPI RX DMA channel\n");
875		goto err_free_tx_dma;
876	}
877	set_dma_callback(drv_data->rx_dma, adi_spi_rx_dma_isr, drv_data);
878
879	/* request CLK, MOSI and MISO */
880	ret = peripheral_request_list(drv_data->pin_req, "adi-spi3");
881	if (ret < 0) {
882		dev_err(dev, "can not request spi pins\n");
883		goto err_free_rx_dma;
884	}
885
886	iowrite32(SPI_CTL_MSTR | SPI_CTL_CPHA, &drv_data->regs->control);
887	iowrite32(0x0000FE00, &drv_data->regs->ssel);
888	iowrite32(0x0, &drv_data->regs->delay);
889
890	tasklet_init(&drv_data->pump_transfers,
891			adi_spi_pump_transfers, (unsigned long)drv_data);
892	/* register with the SPI framework */
893	ret = devm_spi_register_master(dev, master);
894	if (ret) {
895		dev_err(dev, "can not  register spi master\n");
896		goto err_free_peripheral;
897	}
898
899	return ret;
900
901err_free_peripheral:
902	peripheral_free_list(drv_data->pin_req);
903err_free_rx_dma:
904	free_dma(rx_dma);
905err_free_tx_dma:
906	free_dma(tx_dma);
907err_put_master:
908	spi_master_put(master);
909
910	return ret;
911}
912
913static int adi_spi_remove(struct platform_device *pdev)
914{
915	struct spi_master *master = platform_get_drvdata(pdev);
916	struct adi_spi_master *drv_data = spi_master_get_devdata(master);
917
918	adi_spi_disable(drv_data);
919	peripheral_free_list(drv_data->pin_req);
920	free_dma(drv_data->rx_dma);
921	free_dma(drv_data->tx_dma);
922	return 0;
923}
924
925#ifdef CONFIG_PM
926static int adi_spi_suspend(struct device *dev)
927{
928	struct spi_master *master = dev_get_drvdata(dev);
929	struct adi_spi_master *drv_data = spi_master_get_devdata(master);
930
931	spi_master_suspend(master);
932
933	drv_data->control = ioread32(&drv_data->regs->control);
934	drv_data->ssel = ioread32(&drv_data->regs->ssel);
935
936	iowrite32(SPI_CTL_MSTR | SPI_CTL_CPHA, &drv_data->regs->control);
937	iowrite32(0x0000FE00, &drv_data->regs->ssel);
938	dma_disable_irq(drv_data->rx_dma);
939	dma_disable_irq(drv_data->tx_dma);
940
941	return 0;
942}
943
944static int adi_spi_resume(struct device *dev)
945{
946	struct spi_master *master = dev_get_drvdata(dev);
947	struct adi_spi_master *drv_data = spi_master_get_devdata(master);
948	int ret = 0;
949
950	/* bootrom may modify spi and dma status when resume in spi boot mode */
951	disable_dma(drv_data->rx_dma);
952
953	dma_enable_irq(drv_data->rx_dma);
954	dma_enable_irq(drv_data->tx_dma);
955	iowrite32(drv_data->control, &drv_data->regs->control);
956	iowrite32(drv_data->ssel, &drv_data->regs->ssel);
957
958	ret = spi_master_resume(master);
959	if (ret) {
960		free_dma(drv_data->rx_dma);
961		free_dma(drv_data->tx_dma);
962	}
963
964	return ret;
965}
966#endif
967static const struct dev_pm_ops adi_spi_pm_ops = {
968	SET_SYSTEM_SLEEP_PM_OPS(adi_spi_suspend, adi_spi_resume)
969};
970
971MODULE_ALIAS("platform:adi-spi3");
972static struct platform_driver adi_spi_driver = {
973	.driver	= {
974		.name	= "adi-spi3",
975		.pm     = &adi_spi_pm_ops,
976	},
977	.remove		= adi_spi_remove,
978};
979
980module_platform_driver_probe(adi_spi_driver, adi_spi_probe);
981
982MODULE_DESCRIPTION("Analog Devices SPI3 controller driver");
983MODULE_AUTHOR("Scott Jiang <Scott.Jiang.Linux@gmail.com>");
984MODULE_LICENSE("GPL v2");