Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2 * Copyright (c) 2008-2011 Atheros Communications Inc.
   3 *
   4 * Permission to use, copy, modify, and/or distribute this software for any
   5 * purpose with or without fee is hereby granted, provided that the above
   6 * copyright notice and this permission notice appear in all copies.
   7 *
   8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15 */
  16
  17#include <linux/io.h>
  18#include <linux/slab.h>
 
 
 
 
 
  19#include <asm/unaligned.h>
  20
  21#include "hw.h"
  22#include "hw-ops.h"
  23#include "rc.h"
  24#include "ar9003_mac.h"
 
 
 
  25
  26static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  27
  28MODULE_AUTHOR("Atheros Communications");
  29MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  30MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  31MODULE_LICENSE("Dual BSD/GPL");
  32
  33static int __init ath9k_init(void)
  34{
  35	return 0;
  36}
  37module_init(ath9k_init);
  38
  39static void __exit ath9k_exit(void)
  40{
  41	return;
  42}
  43module_exit(ath9k_exit);
  44
  45/* Private hardware callbacks */
  46
  47static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
  48{
  49	ath9k_hw_private_ops(ah)->init_cal_settings(ah);
  50}
  51
  52static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
  53{
  54	ath9k_hw_private_ops(ah)->init_mode_regs(ah);
  55}
  56
  57static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
  58					struct ath9k_channel *chan)
  59{
  60	return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
  61}
  62
  63static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
  64{
  65	if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
  66		return;
  67
  68	ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
  69}
  70
  71static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
  72{
  73	/* You will not have this callback if using the old ANI */
  74	if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
  75		return;
  76
  77	ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
  78}
  79
  80/********************/
  81/* Helper Functions */
  82/********************/
  83
  84static void ath9k_hw_set_clockrate(struct ath_hw *ah)
  85{
  86	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  87	struct ath_common *common = ath9k_hw_common(ah);
 
  88	unsigned int clockrate;
  89
  90	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
  91	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
  92		clockrate = 117;
  93	else if (!ah->curchan) /* should really check for CCK instead */
  94		clockrate = ATH9K_CLOCK_RATE_CCK;
  95	else if (conf->channel->band == IEEE80211_BAND_2GHZ)
  96		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
  97	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  98		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  99	else
 100		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
 101
 102	if (conf_is_ht40(conf))
 103		clockrate *= 2;
 104
 105	if (ah->curchan) {
 106		if (IS_CHAN_HALF_RATE(ah->curchan))
 107			clockrate /= 2;
 108		if (IS_CHAN_QUARTER_RATE(ah->curchan))
 109			clockrate /= 4;
 110	}
 111
 112	common->clockrate = clockrate;
 113}
 114
 115static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
 116{
 117	struct ath_common *common = ath9k_hw_common(ah);
 118
 119	return usecs * common->clockrate;
 120}
 121
 122bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
 123{
 124	int i;
 125
 126	BUG_ON(timeout < AH_TIME_QUANTUM);
 127
 128	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
 129		if ((REG_READ(ah, reg) & mask) == val)
 130			return true;
 131
 132		udelay(AH_TIME_QUANTUM);
 133	}
 134
 135	ath_dbg(ath9k_hw_common(ah), ATH_DBG_ANY,
 136		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
 137		timeout, reg, REG_READ(ah, reg), mask, val);
 138
 139	return false;
 140}
 141EXPORT_SYMBOL(ath9k_hw_wait);
 142
 143void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
 
 
 
 
 
 
 
 
 
 
 
 
 
 144			  int column, unsigned int *writecnt)
 145{
 146	int r;
 147
 148	ENABLE_REGWRITE_BUFFER(ah);
 149	for (r = 0; r < array->ia_rows; r++) {
 150		REG_WRITE(ah, INI_RA(array, r, 0),
 151			  INI_RA(array, r, column));
 152		DO_DELAY(*writecnt);
 153	}
 154	REGWRITE_BUFFER_FLUSH(ah);
 155}
 156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 157u32 ath9k_hw_reverse_bits(u32 val, u32 n)
 158{
 159	u32 retval;
 160	int i;
 161
 162	for (i = 0, retval = 0; i < n; i++) {
 163		retval = (retval << 1) | (val & 1);
 164		val >>= 1;
 165	}
 166	return retval;
 167}
 168
 169u16 ath9k_hw_computetxtime(struct ath_hw *ah,
 170			   u8 phy, int kbps,
 171			   u32 frameLen, u16 rateix,
 172			   bool shortPreamble)
 173{
 174	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
 175
 176	if (kbps == 0)
 177		return 0;
 178
 179	switch (phy) {
 180	case WLAN_RC_PHY_CCK:
 181		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
 182		if (shortPreamble)
 183			phyTime >>= 1;
 184		numBits = frameLen << 3;
 185		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
 186		break;
 187	case WLAN_RC_PHY_OFDM:
 188		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
 189			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
 190			numBits = OFDM_PLCP_BITS + (frameLen << 3);
 191			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 192			txTime = OFDM_SIFS_TIME_QUARTER
 193				+ OFDM_PREAMBLE_TIME_QUARTER
 194				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
 195		} else if (ah->curchan &&
 196			   IS_CHAN_HALF_RATE(ah->curchan)) {
 197			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
 198			numBits = OFDM_PLCP_BITS + (frameLen << 3);
 199			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 200			txTime = OFDM_SIFS_TIME_HALF +
 201				OFDM_PREAMBLE_TIME_HALF
 202				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
 203		} else {
 204			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
 205			numBits = OFDM_PLCP_BITS + (frameLen << 3);
 206			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 207			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
 208				+ (numSymbols * OFDM_SYMBOL_TIME);
 209		}
 210		break;
 211	default:
 212		ath_err(ath9k_hw_common(ah),
 213			"Unknown phy %u (rate ix %u)\n", phy, rateix);
 214		txTime = 0;
 215		break;
 216	}
 217
 218	return txTime;
 219}
 220EXPORT_SYMBOL(ath9k_hw_computetxtime);
 221
 222void ath9k_hw_get_channel_centers(struct ath_hw *ah,
 223				  struct ath9k_channel *chan,
 224				  struct chan_centers *centers)
 225{
 226	int8_t extoff;
 227
 228	if (!IS_CHAN_HT40(chan)) {
 229		centers->ctl_center = centers->ext_center =
 230			centers->synth_center = chan->channel;
 231		return;
 232	}
 233
 234	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
 235	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
 236		centers->synth_center =
 237			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
 238		extoff = 1;
 239	} else {
 240		centers->synth_center =
 241			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
 242		extoff = -1;
 243	}
 244
 245	centers->ctl_center =
 246		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
 247	/* 25 MHz spacing is supported by hw but not on upper layers */
 248	centers->ext_center =
 249		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
 250}
 251
 252/******************/
 253/* Chip Revisions */
 254/******************/
 255
 256static void ath9k_hw_read_revisions(struct ath_hw *ah)
 257{
 258	u32 val;
 259
 
 
 
 260	switch (ah->hw_version.devid) {
 261	case AR5416_AR9100_DEVID:
 262		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
 263		break;
 264	case AR9300_DEVID_AR9330:
 265		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
 266		if (ah->get_mac_revision) {
 267			ah->hw_version.macRev = ah->get_mac_revision();
 268		} else {
 269			val = REG_READ(ah, AR_SREV);
 270			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
 271		}
 272		return;
 273	case AR9300_DEVID_AR9340:
 274		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
 275		val = REG_READ(ah, AR_SREV);
 276		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
 
 
 
 
 
 
 
 277		return;
 278	}
 279
 280	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
 281
 282	if (val == 0xFF) {
 283		val = REG_READ(ah, AR_SREV);
 284		ah->hw_version.macVersion =
 285			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
 286		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
 287		ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
 
 
 
 
 
 288	} else {
 289		if (!AR_SREV_9100(ah))
 290			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
 291
 292		ah->hw_version.macRev = val & AR_SREV_REVISION;
 293
 294		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
 295			ah->is_pciexpress = true;
 296	}
 297}
 298
 299/************************************/
 300/* HW Attach, Detach, Init Routines */
 301/************************************/
 302
 303static void ath9k_hw_disablepcie(struct ath_hw *ah)
 304{
 305	if (!AR_SREV_5416(ah))
 306		return;
 307
 308	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
 309	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
 310	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
 311	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
 312	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
 313	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
 314	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
 315	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
 316	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
 317
 318	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
 319}
 320
 321static void ath9k_hw_aspm_init(struct ath_hw *ah)
 322{
 323	struct ath_common *common = ath9k_hw_common(ah);
 324
 325	if (common->bus_ops->aspm_init)
 326		common->bus_ops->aspm_init(common);
 327}
 328
 329/* This should work for all families including legacy */
 330static bool ath9k_hw_chip_test(struct ath_hw *ah)
 331{
 332	struct ath_common *common = ath9k_hw_common(ah);
 333	u32 regAddr[2] = { AR_STA_ID0 };
 334	u32 regHold[2];
 335	static const u32 patternData[4] = {
 336		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
 337	};
 338	int i, j, loop_max;
 339
 340	if (!AR_SREV_9300_20_OR_LATER(ah)) {
 341		loop_max = 2;
 342		regAddr[1] = AR_PHY_BASE + (8 << 2);
 343	} else
 344		loop_max = 1;
 345
 346	for (i = 0; i < loop_max; i++) {
 347		u32 addr = regAddr[i];
 348		u32 wrData, rdData;
 349
 350		regHold[i] = REG_READ(ah, addr);
 351		for (j = 0; j < 0x100; j++) {
 352			wrData = (j << 16) | j;
 353			REG_WRITE(ah, addr, wrData);
 354			rdData = REG_READ(ah, addr);
 355			if (rdData != wrData) {
 356				ath_err(common,
 357					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
 358					addr, wrData, rdData);
 359				return false;
 360			}
 361		}
 362		for (j = 0; j < 4; j++) {
 363			wrData = patternData[j];
 364			REG_WRITE(ah, addr, wrData);
 365			rdData = REG_READ(ah, addr);
 366			if (wrData != rdData) {
 367				ath_err(common,
 368					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
 369					addr, wrData, rdData);
 370				return false;
 371			}
 372		}
 373		REG_WRITE(ah, regAddr[i], regHold[i]);
 374	}
 375	udelay(100);
 376
 377	return true;
 378}
 379
 380static void ath9k_hw_init_config(struct ath_hw *ah)
 381{
 382	int i;
 383
 384	ah->config.dma_beacon_response_time = 2;
 385	ah->config.sw_beacon_response_time = 10;
 386	ah->config.additional_swba_backoff = 0;
 387	ah->config.ack_6mb = 0x0;
 388	ah->config.cwm_ignore_extcca = 0;
 389	ah->config.pcie_clock_req = 0;
 390	ah->config.pcie_waen = 0;
 391	ah->config.analog_shiftreg = 1;
 392	ah->config.enable_ani = true;
 393
 394	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
 395		ah->config.spurchans[i][0] = AR_NO_SPUR;
 396		ah->config.spurchans[i][1] = AR_NO_SPUR;
 397	}
 398
 399	/* PAPRD needs some more work to be enabled */
 400	ah->config.paprd_disable = 1;
 
 
 
 
 
 401
 402	ah->config.rx_intr_mitigation = true;
 403	ah->config.pcieSerDesWrite = true;
 404
 405	/*
 406	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
 407	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
 408	 * This means we use it for all AR5416 devices, and the few
 409	 * minor PCI AR9280 devices out there.
 410	 *
 411	 * Serialization is required because these devices do not handle
 412	 * well the case of two concurrent reads/writes due to the latency
 413	 * involved. During one read/write another read/write can be issued
 414	 * on another CPU while the previous read/write may still be working
 415	 * on our hardware, if we hit this case the hardware poops in a loop.
 416	 * We prevent this by serializing reads and writes.
 417	 *
 418	 * This issue is not present on PCI-Express devices or pre-AR5416
 419	 * devices (legacy, 802.11abg).
 420	 */
 421	if (num_possible_cpus() > 1)
 422		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 423}
 424
 425static void ath9k_hw_init_defaults(struct ath_hw *ah)
 426{
 427	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
 428
 429	regulatory->country_code = CTRY_DEFAULT;
 430	regulatory->power_limit = MAX_RATE_POWER;
 431	regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
 432
 433	ah->hw_version.magic = AR5416_MAGIC;
 434	ah->hw_version.subvendorid = 0;
 435
 436	ah->atim_window = 0;
 437	ah->sta_id1_defaults =
 438		AR_STA_ID1_CRPT_MIC_ENABLE |
 439		AR_STA_ID1_MCAST_KSRCH;
 440	if (AR_SREV_9100(ah))
 441		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
 442	ah->enable_32kHz_clock = DONT_USE_32KHZ;
 443	ah->slottime = 20;
 444	ah->globaltxtimeout = (u32) -1;
 445	ah->power_mode = ATH9K_PM_UNDEFINED;
 
 
 
 
 
 
 
 
 
 
 
 
 446}
 447
 448static int ath9k_hw_init_macaddr(struct ath_hw *ah)
 449{
 450	struct ath_common *common = ath9k_hw_common(ah);
 451	u32 sum;
 452	int i;
 453	u16 eeval;
 454	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
 455
 456	sum = 0;
 
 
 
 457	for (i = 0; i < 3; i++) {
 458		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
 459		sum += eeval;
 460		common->macaddr[2 * i] = eeval >> 8;
 461		common->macaddr[2 * i + 1] = eeval & 0xff;
 462	}
 463	if (sum == 0 || sum == 0xffff * 3)
 464		return -EADDRNOTAVAIL;
 465
 466	return 0;
 
 
 
 
 
 
 
 
 
 
 467}
 468
 469static int ath9k_hw_post_init(struct ath_hw *ah)
 470{
 471	struct ath_common *common = ath9k_hw_common(ah);
 472	int ecode;
 473
 474	if (common->bus_ops->ath_bus_type != ATH_USB) {
 475		if (!ath9k_hw_chip_test(ah))
 476			return -ENODEV;
 477	}
 478
 479	if (!AR_SREV_9300_20_OR_LATER(ah)) {
 480		ecode = ar9002_hw_rf_claim(ah);
 481		if (ecode != 0)
 482			return ecode;
 483	}
 484
 485	ecode = ath9k_hw_eeprom_init(ah);
 486	if (ecode != 0)
 487		return ecode;
 488
 489	ath_dbg(ath9k_hw_common(ah), ATH_DBG_CONFIG,
 490		"Eeprom VER: %d, REV: %d\n",
 491		ah->eep_ops->get_eeprom_ver(ah),
 492		ah->eep_ops->get_eeprom_rev(ah));
 493
 494	ecode = ath9k_hw_rf_alloc_ext_banks(ah);
 495	if (ecode) {
 496		ath_err(ath9k_hw_common(ah),
 497			"Failed allocating banks for external radio\n");
 498		ath9k_hw_rf_free_ext_banks(ah);
 499		return ecode;
 500	}
 501
 502	if (!AR_SREV_9100(ah) && !AR_SREV_9340(ah)) {
 503		ath9k_hw_ani_setup(ah);
 504		ath9k_hw_ani_init(ah);
 
 
 
 
 
 
 
 505	}
 506
 507	return 0;
 508}
 509
 510static void ath9k_hw_attach_ops(struct ath_hw *ah)
 511{
 512	if (AR_SREV_9300_20_OR_LATER(ah))
 513		ar9003_hw_attach_ops(ah);
 514	else
 515		ar9002_hw_attach_ops(ah);
 
 516}
 517
 518/* Called for all hardware families */
 519static int __ath9k_hw_init(struct ath_hw *ah)
 520{
 521	struct ath_common *common = ath9k_hw_common(ah);
 522	int r = 0;
 523
 524	ath9k_hw_read_revisions(ah);
 525
 526	/*
 527	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
 528	 * We need to do this to avoid RMW of this register. We cannot
 529	 * read the reg when chip is asleep.
 530	 */
 531	ah->WARegVal = REG_READ(ah, AR_WA);
 532	ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
 533			 AR_WA_ASPM_TIMER_BASED_DISABLE);
 534
 535	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
 536		ath_err(common, "Couldn't reset chip\n");
 537		return -EIO;
 538	}
 539
 540	ath9k_hw_init_defaults(ah);
 541	ath9k_hw_init_config(ah);
 542
 543	ath9k_hw_attach_ops(ah);
 544
 545	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
 546		ath_err(common, "Couldn't wakeup chip\n");
 547		return -EIO;
 548	}
 549
 550	if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
 551		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
 552		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
 553		     !ah->is_pciexpress)) {
 554			ah->config.serialize_regmode =
 555				SER_REG_MODE_ON;
 556		} else {
 557			ah->config.serialize_regmode =
 558				SER_REG_MODE_OFF;
 559		}
 560	}
 561
 562	ath_dbg(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
 563		ah->config.serialize_regmode);
 564
 565	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
 566		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
 567	else
 568		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
 569
 570	switch (ah->hw_version.macVersion) {
 571	case AR_SREV_VERSION_5416_PCI:
 572	case AR_SREV_VERSION_5416_PCIE:
 573	case AR_SREV_VERSION_9160:
 574	case AR_SREV_VERSION_9100:
 575	case AR_SREV_VERSION_9280:
 576	case AR_SREV_VERSION_9285:
 577	case AR_SREV_VERSION_9287:
 578	case AR_SREV_VERSION_9271:
 579	case AR_SREV_VERSION_9300:
 580	case AR_SREV_VERSION_9330:
 581	case AR_SREV_VERSION_9485:
 582	case AR_SREV_VERSION_9340:
 
 
 
 
 
 583		break;
 584	default:
 585		ath_err(common,
 586			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
 587			ah->hw_version.macVersion, ah->hw_version.macRev);
 588		return -EOPNOTSUPP;
 589	}
 590
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 591	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
 592	    AR_SREV_9330(ah))
 593		ah->is_pciexpress = false;
 594
 595	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
 596	ath9k_hw_init_cal_settings(ah);
 597
 598	ah->ani_function = ATH9K_ANI_ALL;
 599	if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
 600		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
 601	if (!AR_SREV_9300_20_OR_LATER(ah))
 602		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
 603
 604	ath9k_hw_init_mode_regs(ah);
 605
 606
 607	if (ah->is_pciexpress)
 608		ath9k_hw_aspm_init(ah);
 609	else
 610		ath9k_hw_disablepcie(ah);
 611
 612	if (!AR_SREV_9300_20_OR_LATER(ah))
 613		ar9002_hw_cck_chan14_spread(ah);
 614
 615	r = ath9k_hw_post_init(ah);
 616	if (r)
 617		return r;
 618
 619	ath9k_hw_init_mode_gain_regs(ah);
 620	r = ath9k_hw_fill_cap_info(ah);
 621	if (r)
 622		return r;
 623
 624	r = ath9k_hw_init_macaddr(ah);
 625	if (r) {
 626		ath_err(common, "Failed to initialize MAC address\n");
 627		return r;
 628	}
 629
 630	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
 631		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
 632	else
 633		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
 634
 635	if (AR_SREV_9330(ah))
 636		ah->bb_watchdog_timeout_ms = 85;
 637	else
 638		ah->bb_watchdog_timeout_ms = 25;
 639
 640	common->state = ATH_HW_INITIALIZED;
 641
 642	return 0;
 643}
 644
 645int ath9k_hw_init(struct ath_hw *ah)
 646{
 647	int ret;
 648	struct ath_common *common = ath9k_hw_common(ah);
 649
 650	/* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
 651	switch (ah->hw_version.devid) {
 652	case AR5416_DEVID_PCI:
 653	case AR5416_DEVID_PCIE:
 654	case AR5416_AR9100_DEVID:
 655	case AR9160_DEVID_PCI:
 656	case AR9280_DEVID_PCI:
 657	case AR9280_DEVID_PCIE:
 658	case AR9285_DEVID_PCIE:
 659	case AR9287_DEVID_PCI:
 660	case AR9287_DEVID_PCIE:
 661	case AR2427_DEVID_PCIE:
 662	case AR9300_DEVID_PCIE:
 663	case AR9300_DEVID_AR9485_PCIE:
 664	case AR9300_DEVID_AR9330:
 665	case AR9300_DEVID_AR9340:
 
 
 
 
 
 
 
 666		break;
 667	default:
 668		if (common->bus_ops->ath_bus_type == ATH_USB)
 669			break;
 670		ath_err(common, "Hardware device ID 0x%04x not supported\n",
 671			ah->hw_version.devid);
 672		return -EOPNOTSUPP;
 673	}
 674
 675	ret = __ath9k_hw_init(ah);
 676	if (ret) {
 677		ath_err(common,
 678			"Unable to initialize hardware; initialization status: %d\n",
 679			ret);
 680		return ret;
 681	}
 682
 
 
 683	return 0;
 684}
 685EXPORT_SYMBOL(ath9k_hw_init);
 686
 687static void ath9k_hw_init_qos(struct ath_hw *ah)
 688{
 689	ENABLE_REGWRITE_BUFFER(ah);
 690
 691	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
 692	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
 693
 694	REG_WRITE(ah, AR_QOS_NO_ACK,
 695		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
 696		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
 697		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
 698
 699	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
 700	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
 701	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
 702	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
 703	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
 704
 705	REGWRITE_BUFFER_FLUSH(ah);
 706}
 707
 708u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
 709{
 
 
 
 710	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
 711	udelay(100);
 712	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
 713
 714	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0)
 
 715		udelay(100);
 716
 
 
 
 
 
 
 
 
 717	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
 718}
 719EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
 720
 721static void ath9k_hw_init_pll(struct ath_hw *ah,
 722			      struct ath9k_channel *chan)
 723{
 724	u32 pll;
 725
 726	if (AR_SREV_9485(ah)) {
 727
 
 728		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
 729		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 730			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
 731		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 732			      AR_CH0_DPLL2_KD, 0x40);
 733		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 734			      AR_CH0_DPLL2_KI, 0x4);
 735
 736		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
 737			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
 738		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
 739			      AR_CH0_BB_DPLL1_NINI, 0x58);
 740		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
 741			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
 742
 743		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 744			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
 745		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 746			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
 747		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 748			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
 749
 750		/* program BB PLL phase_shift to 0x6 */
 751		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
 752			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
 753
 754		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 755			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
 756		udelay(1000);
 757	} else if (AR_SREV_9330(ah)) {
 758		u32 ddr_dpll2, pll_control2, kd;
 759
 760		if (ah->is_clk_25mhz) {
 761			ddr_dpll2 = 0x18e82f01;
 762			pll_control2 = 0xe04a3d;
 763			kd = 0x1d;
 764		} else {
 765			ddr_dpll2 = 0x19e82f01;
 766			pll_control2 = 0x886666;
 767			kd = 0x3d;
 768		}
 769
 770		/* program DDR PLL ki and kd value */
 771		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
 772
 773		/* program DDR PLL phase_shift */
 774		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
 775			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
 776
 777		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
 
 778		udelay(1000);
 779
 780		/* program refdiv, nint, frac to RTC register */
 781		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
 782
 783		/* program BB PLL kd and ki value */
 784		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
 785		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
 786
 787		/* program BB PLL phase_shift */
 788		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
 789			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
 790	} else if (AR_SREV_9340(ah)) {
 
 791		u32 regval, pll2_divint, pll2_divfrac, refdiv;
 792
 793		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
 
 794		udelay(1000);
 795
 796		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
 797		udelay(100);
 798
 799		if (ah->is_clk_25mhz) {
 800			pll2_divint = 0x54;
 801			pll2_divfrac = 0x1eb85;
 802			refdiv = 3;
 
 
 
 
 
 
 803		} else {
 804			pll2_divint = 88;
 805			pll2_divfrac = 0;
 806			refdiv = 5;
 
 
 
 
 
 
 
 
 807		}
 808
 809		regval = REG_READ(ah, AR_PHY_PLL_MODE);
 810		regval |= (0x1 << 16);
 
 
 
 811		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
 812		udelay(100);
 813
 814		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
 815			  (pll2_divint << 18) | pll2_divfrac);
 816		udelay(100);
 817
 818		regval = REG_READ(ah, AR_PHY_PLL_MODE);
 819		regval = (regval & 0x80071fff) | (0x1 << 30) | (0x1 << 13) |
 820			 (0x4 << 26) | (0x18 << 19);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 821		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
 822		REG_WRITE(ah, AR_PHY_PLL_MODE,
 823			  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
 
 
 
 
 
 
 824		udelay(1000);
 825	}
 826
 827	pll = ath9k_hw_compute_pll_control(ah, chan);
 828
 829	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
 830
 831	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah))
 
 832		udelay(1000);
 833
 834	/* Switch the core clock for ar9271 to 117Mhz */
 835	if (AR_SREV_9271(ah)) {
 836		udelay(500);
 837		REG_WRITE(ah, 0x50040, 0x304);
 838	}
 839
 840	udelay(RTC_PLL_SETTLE_DELAY);
 841
 842	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
 843
 844	if (AR_SREV_9340(ah)) {
 845		if (ah->is_clk_25mhz) {
 846			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
 847			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
 848			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e7ae);
 849		} else {
 850			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
 851			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
 852			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e800);
 853		}
 854		udelay(100);
 855	}
 856}
 857
 858static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
 859					  enum nl80211_iftype opmode)
 860{
 861	u32 sync_default = AR_INTR_SYNC_DEFAULT;
 862	u32 imr_reg = AR_IMR_TXERR |
 863		AR_IMR_TXURN |
 864		AR_IMR_RXERR |
 865		AR_IMR_RXORN |
 866		AR_IMR_BCNMISC;
 867
 868	if (AR_SREV_9340(ah))
 
 869		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
 870
 871	if (AR_SREV_9300_20_OR_LATER(ah)) {
 872		imr_reg |= AR_IMR_RXOK_HP;
 873		if (ah->config.rx_intr_mitigation)
 874			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
 875		else
 876			imr_reg |= AR_IMR_RXOK_LP;
 877
 878	} else {
 879		if (ah->config.rx_intr_mitigation)
 880			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
 881		else
 882			imr_reg |= AR_IMR_RXOK;
 883	}
 884
 885	if (ah->config.tx_intr_mitigation)
 886		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
 887	else
 888		imr_reg |= AR_IMR_TXOK;
 889
 890	if (opmode == NL80211_IFTYPE_AP)
 891		imr_reg |= AR_IMR_MIB;
 892
 893	ENABLE_REGWRITE_BUFFER(ah);
 894
 895	REG_WRITE(ah, AR_IMR, imr_reg);
 896	ah->imrs2_reg |= AR_IMR_S2_GTT;
 897	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
 898
 899	if (!AR_SREV_9100(ah)) {
 900		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
 901		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
 902		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
 903	}
 904
 905	REGWRITE_BUFFER_FLUSH(ah);
 906
 907	if (AR_SREV_9300_20_OR_LATER(ah)) {
 908		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
 909		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
 910		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
 911		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
 912	}
 913}
 914
 915static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
 916{
 917	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
 918	val = min(val, (u32) 0xFFFF);
 919	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
 920}
 921
 922static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
 923{
 924	u32 val = ath9k_hw_mac_to_clks(ah, us);
 925	val = min(val, (u32) 0xFFFF);
 926	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
 927}
 928
 929static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
 930{
 931	u32 val = ath9k_hw_mac_to_clks(ah, us);
 932	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
 933	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
 934}
 935
 936static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
 937{
 938	u32 val = ath9k_hw_mac_to_clks(ah, us);
 939	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
 940	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
 941}
 942
 943static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
 944{
 945	if (tu > 0xFFFF) {
 946		ath_dbg(ath9k_hw_common(ah), ATH_DBG_XMIT,
 947			"bad global tx timeout %u\n", tu);
 948		ah->globaltxtimeout = (u32) -1;
 949		return false;
 950	} else {
 951		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
 952		ah->globaltxtimeout = tu;
 953		return true;
 954	}
 955}
 956
 957void ath9k_hw_init_global_settings(struct ath_hw *ah)
 958{
 959	struct ath_common *common = ath9k_hw_common(ah);
 960	struct ieee80211_conf *conf = &common->hw->conf;
 961	const struct ath9k_channel *chan = ah->curchan;
 962	int acktimeout;
 963	int slottime;
 964	int sifstime;
 965	int rx_lat = 0, tx_lat = 0, eifs = 0;
 966	u32 reg;
 967
 968	ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
 969		ah->misc_mode);
 970
 971	if (!chan)
 972		return;
 973
 974	if (ah->misc_mode != 0)
 975		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
 976
 977	rx_lat = 37;
 
 
 
 978	tx_lat = 54;
 979
 
 
 
 
 
 980	if (IS_CHAN_HALF_RATE(chan)) {
 981		eifs = 175;
 982		rx_lat *= 2;
 983		tx_lat *= 2;
 984		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
 985		    tx_lat += 11;
 986
 987		slottime = 13;
 988		sifstime = 32;
 
 
 989	} else if (IS_CHAN_QUARTER_RATE(chan)) {
 990		eifs = 340;
 991		rx_lat *= 4;
 992		tx_lat *= 4;
 993		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
 994		    tx_lat += 22;
 995
 996		slottime = 21;
 997		sifstime = 64;
 
 
 998	} else {
 999		eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS);
1000		reg = REG_READ(ah, AR_USEC);
 
 
 
 
 
 
1001		rx_lat = MS(reg, AR_USEC_RX_LAT);
1002		tx_lat = MS(reg, AR_USEC_TX_LAT);
1003
1004		slottime = ah->slottime;
1005		if (IS_CHAN_5GHZ(chan))
1006			sifstime = 16;
1007		else
1008			sifstime = 10;
1009	}
1010
1011	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1012	acktimeout = slottime + sifstime + 3 * ah->coverage_class;
 
 
1013
1014	/*
1015	 * Workaround for early ACK timeouts, add an offset to match the
1016	 * initval's 64us ack timeout value.
1017	 * This was initially only meant to work around an issue with delayed
1018	 * BA frames in some implementations, but it has been found to fix ACK
1019	 * timeout issues in other cases as well.
1020	 */
1021	if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
 
1022		acktimeout += 64 - sifstime - ah->slottime;
 
 
 
 
 
 
 
 
 
 
1023
1024	ath9k_hw_set_sifs_time(ah, sifstime);
1025	ath9k_hw_setslottime(ah, slottime);
1026	ath9k_hw_set_ack_timeout(ah, acktimeout);
1027	ath9k_hw_set_cts_timeout(ah, acktimeout);
1028	if (ah->globaltxtimeout != (u32) -1)
1029		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1030
1031	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1032	REG_RMW(ah, AR_USEC,
1033		(common->clockrate - 1) |
1034		SM(rx_lat, AR_USEC_RX_LAT) |
1035		SM(tx_lat, AR_USEC_TX_LAT),
1036		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1037
1038}
1039EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1040
1041void ath9k_hw_deinit(struct ath_hw *ah)
1042{
1043	struct ath_common *common = ath9k_hw_common(ah);
1044
1045	if (common->state < ATH_HW_INITIALIZED)
1046		goto free_hw;
1047
1048	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1049
1050free_hw:
1051	ath9k_hw_rf_free_ext_banks(ah);
1052}
1053EXPORT_SYMBOL(ath9k_hw_deinit);
1054
1055/*******/
1056/* INI */
1057/*******/
1058
1059u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1060{
1061	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1062
1063	if (IS_CHAN_B(chan))
1064		ctl |= CTL_11B;
1065	else if (IS_CHAN_G(chan))
1066		ctl |= CTL_11G;
1067	else
1068		ctl |= CTL_11A;
1069
1070	return ctl;
1071}
1072
1073/****************************************/
1074/* Reset and Channel Switching Routines */
1075/****************************************/
1076
1077static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1078{
1079	struct ath_common *common = ath9k_hw_common(ah);
 
1080
1081	ENABLE_REGWRITE_BUFFER(ah);
1082
1083	/*
1084	 * set AHB_MODE not to do cacheline prefetches
1085	*/
1086	if (!AR_SREV_9300_20_OR_LATER(ah))
1087		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1088
1089	/*
1090	 * let mac dma reads be in 128 byte chunks
1091	 */
1092	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1093
1094	REGWRITE_BUFFER_FLUSH(ah);
1095
1096	/*
1097	 * Restore TX Trigger Level to its pre-reset value.
1098	 * The initial value depends on whether aggregation is enabled, and is
1099	 * adjusted whenever underruns are detected.
1100	 */
1101	if (!AR_SREV_9300_20_OR_LATER(ah))
1102		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1103
1104	ENABLE_REGWRITE_BUFFER(ah);
1105
1106	/*
1107	 * let mac dma writes be in 128 byte chunks
1108	 */
1109	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1110
1111	/*
1112	 * Setup receive FIFO threshold to hold off TX activities
1113	 */
1114	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1115
1116	if (AR_SREV_9300_20_OR_LATER(ah)) {
1117		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1118		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1119
1120		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1121			ah->caps.rx_status_len);
1122	}
1123
1124	/*
1125	 * reduce the number of usable entries in PCU TXBUF to avoid
1126	 * wrap around issues.
1127	 */
1128	if (AR_SREV_9285(ah)) {
1129		/* For AR9285 the number of Fifos are reduced to half.
1130		 * So set the usable tx buf size also to half to
1131		 * avoid data/delimiter underruns
1132		 */
1133		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1134			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1135	} else if (!AR_SREV_9271(ah)) {
1136		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1137			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
 
1138	}
1139
 
 
 
1140	REGWRITE_BUFFER_FLUSH(ah);
1141
1142	if (AR_SREV_9300_20_OR_LATER(ah))
1143		ath9k_hw_reset_txstatus_ring(ah);
1144}
1145
1146static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1147{
1148	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1149	u32 set = AR_STA_ID1_KSRCH_MODE;
1150
 
1151	switch (opmode) {
1152	case NL80211_IFTYPE_ADHOC:
 
 
 
 
 
 
 
1153	case NL80211_IFTYPE_MESH_POINT:
1154		set |= AR_STA_ID1_ADHOC;
1155		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1156		break;
1157	case NL80211_IFTYPE_AP:
1158		set |= AR_STA_ID1_STA_AP;
1159		/* fall through */
1160	case NL80211_IFTYPE_STATION:
1161		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1162		break;
1163	default:
1164		if (!ah->is_monitoring)
1165			set = 0;
1166		break;
1167	}
1168	REG_RMW(ah, AR_STA_ID1, set, mask);
 
1169}
1170
1171void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1172				   u32 *coef_mantissa, u32 *coef_exponent)
1173{
1174	u32 coef_exp, coef_man;
1175
1176	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1177		if ((coef_scaled >> coef_exp) & 0x1)
1178			break;
1179
1180	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1181
1182	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1183
1184	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1185	*coef_exponent = coef_exp - 16;
1186}
1187
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1188static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1189{
1190	u32 rst_flags;
1191	u32 tmpReg;
1192
1193	if (AR_SREV_9100(ah)) {
1194		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1195			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1196		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1197	}
1198
1199	ENABLE_REGWRITE_BUFFER(ah);
1200
1201	if (AR_SREV_9300_20_OR_LATER(ah)) {
1202		REG_WRITE(ah, AR_WA, ah->WARegVal);
1203		udelay(10);
1204	}
1205
1206	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1207		  AR_RTC_FORCE_WAKE_ON_INT);
1208
1209	if (AR_SREV_9100(ah)) {
1210		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1211			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1212	} else {
1213		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1214		if (tmpReg &
1215		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1216		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
 
 
 
 
1217			u32 val;
1218			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1219
1220			val = AR_RC_HOSTIF;
1221			if (!AR_SREV_9300_20_OR_LATER(ah))
1222				val |= AR_RC_AHB;
1223			REG_WRITE(ah, AR_RC, val);
1224
1225		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1226			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1227
1228		rst_flags = AR_RTC_RC_MAC_WARM;
1229		if (type == ATH9K_RESET_COLD)
1230			rst_flags |= AR_RTC_RC_MAC_COLD;
1231	}
1232
1233	if (AR_SREV_9330(ah)) {
1234		int npend = 0;
1235		int i;
1236
1237		/* AR9330 WAR:
1238		 * call external reset function to reset WMAC if:
1239		 * - doing a cold reset
1240		 * - we have pending frames in the TX queues
1241		 */
1242
1243		for (i = 0; i < AR_NUM_QCU; i++) {
1244			npend = ath9k_hw_numtxpending(ah, i);
1245			if (npend)
1246				break;
1247		}
1248
1249		if (ah->external_reset &&
1250		    (npend || type == ATH9K_RESET_COLD)) {
1251			int reset_err = 0;
1252
1253			ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1254				"reset MAC via external reset\n");
1255
1256			reset_err = ah->external_reset();
1257			if (reset_err) {
1258				ath_err(ath9k_hw_common(ah),
1259					"External reset failed, err=%d\n",
1260					reset_err);
1261				return false;
1262			}
1263
1264			REG_WRITE(ah, AR_RTC_RESET, 1);
1265		}
 
 
 
 
 
 
1266	}
1267
1268	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1269
1270	REGWRITE_BUFFER_FLUSH(ah);
1271
1272	udelay(50);
 
 
 
 
 
1273
1274	REG_WRITE(ah, AR_RTC_RC, 0);
1275	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1276		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1277			"RTC stuck in MAC reset\n");
1278		return false;
1279	}
1280
1281	if (!AR_SREV_9100(ah))
1282		REG_WRITE(ah, AR_RC, 0);
1283
1284	if (AR_SREV_9100(ah))
1285		udelay(50);
1286
1287	return true;
1288}
1289
1290static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1291{
1292	ENABLE_REGWRITE_BUFFER(ah);
1293
1294	if (AR_SREV_9300_20_OR_LATER(ah)) {
1295		REG_WRITE(ah, AR_WA, ah->WARegVal);
1296		udelay(10);
1297	}
1298
1299	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1300		  AR_RTC_FORCE_WAKE_ON_INT);
1301
1302	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1303		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1304
1305	REG_WRITE(ah, AR_RTC_RESET, 0);
1306
1307	REGWRITE_BUFFER_FLUSH(ah);
1308
1309	if (!AR_SREV_9300_20_OR_LATER(ah))
1310		udelay(2);
1311
1312	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1313		REG_WRITE(ah, AR_RC, 0);
1314
1315	REG_WRITE(ah, AR_RTC_RESET, 1);
1316
1317	if (!ath9k_hw_wait(ah,
1318			   AR_RTC_STATUS,
1319			   AR_RTC_STATUS_M,
1320			   AR_RTC_STATUS_ON,
1321			   AH_WAIT_TIMEOUT)) {
1322		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1323			"RTC not waking up\n");
1324		return false;
1325	}
1326
1327	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1328}
1329
1330static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1331{
 
 
1332	if (AR_SREV_9300_20_OR_LATER(ah)) {
1333		REG_WRITE(ah, AR_WA, ah->WARegVal);
1334		udelay(10);
1335	}
1336
1337	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1338		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1339
 
 
 
1340	switch (type) {
1341	case ATH9K_RESET_POWER_ON:
1342		return ath9k_hw_set_reset_power_on(ah);
 
 
 
1343	case ATH9K_RESET_WARM:
1344	case ATH9K_RESET_COLD:
1345		return ath9k_hw_set_reset(ah, type);
 
1346	default:
1347		return false;
1348	}
 
 
1349}
1350
1351static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1352				struct ath9k_channel *chan)
1353{
1354	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1355		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1356			return false;
1357	} else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
 
 
 
 
 
 
 
 
1358		return false;
1359
1360	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1361		return false;
1362
1363	ah->chip_fullsleep = false;
 
 
 
1364	ath9k_hw_init_pll(ah, chan);
1365	ath9k_hw_set_rfmode(ah, chan);
1366
1367	return true;
1368}
1369
1370static bool ath9k_hw_channel_change(struct ath_hw *ah,
1371				    struct ath9k_channel *chan)
1372{
1373	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1374	struct ath_common *common = ath9k_hw_common(ah);
1375	struct ieee80211_channel *channel = chan->chan;
 
 
1376	u32 qnum;
1377	int r;
1378
 
 
 
 
 
 
1379	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1380		if (ath9k_hw_numtxpending(ah, qnum)) {
1381			ath_dbg(common, ATH_DBG_QUEUE,
1382				"Transmit frames pending on queue %d\n", qnum);
1383			return false;
1384		}
1385	}
1386
1387	if (!ath9k_hw_rfbus_req(ah)) {
1388		ath_err(common, "Could not kill baseband RX\n");
1389		return false;
1390	}
1391
 
 
 
 
 
 
 
 
 
 
 
 
 
1392	ath9k_hw_set_channel_regs(ah, chan);
1393
1394	r = ath9k_hw_rf_set_freq(ah, chan);
1395	if (r) {
1396		ath_err(common, "Failed to set channel\n");
1397		return false;
1398	}
1399	ath9k_hw_set_clockrate(ah);
 
1400
1401	ah->eep_ops->set_txpower(ah, chan,
1402			     ath9k_regd_get_ctl(regulatory, chan),
1403			     channel->max_antenna_gain * 2,
1404			     channel->max_power * 2,
1405			     min((u32) MAX_RATE_POWER,
1406			     (u32) regulatory->power_limit), false);
1407
1408	ath9k_hw_rfbus_done(ah);
 
1409
1410	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1411		ath9k_hw_set_delta_slope(ah, chan);
1412
1413	ath9k_hw_spur_mitigate_freq(ah, chan);
 
 
 
 
1414
1415	return true;
1416}
1417
1418static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1419{
1420	u32 gpio_mask = ah->gpio_mask;
1421	int i;
1422
1423	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1424		if (!(gpio_mask & 1))
1425			continue;
1426
1427		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
 
1428		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
 
 
 
 
 
 
 
 
 
 
 
 
 
1429	}
1430}
 
1431
1432bool ath9k_hw_check_alive(struct ath_hw *ah)
1433{
1434	int count = 50;
1435	u32 reg;
 
 
 
1436
1437	if (AR_SREV_9285_12_OR_LATER(ah))
1438		return true;
1439
 
1440	do {
1441		reg = REG_READ(ah, AR_OBS_BUS_1);
 
 
1442
 
 
1443		if ((reg & 0x7E7FFFEF) == 0x00702400)
1444			continue;
1445
1446		switch (reg & 0x7E000B00) {
1447		case 0x1E000000:
1448		case 0x52000B00:
1449		case 0x18000B00:
1450			continue;
1451		default:
1452			return true;
1453		}
1454	} while (count-- > 0);
1455
1456	return false;
1457}
1458EXPORT_SYMBOL(ath9k_hw_check_alive);
1459
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1460int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1461		   struct ath9k_hw_cal_data *caldata, bool bChannelChange)
1462{
1463	struct ath_common *common = ath9k_hw_common(ah);
1464	u32 saveLedState;
1465	struct ath9k_channel *curchan = ah->curchan;
1466	u32 saveDefAntenna;
1467	u32 macStaId1;
 
 
1468	u64 tsf = 0;
1469	int i, r;
 
 
1470
1471	ah->txchainmask = common->tx_chainmask;
1472	ah->rxchainmask = common->rx_chainmask;
 
 
 
1473
1474	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1475		return -EIO;
1476
1477	if (curchan && !ah->chip_fullsleep)
1478		ath9k_hw_getnf(ah, curchan);
1479
1480	ah->caldata = caldata;
1481	if (caldata &&
1482	    (chan->channel != caldata->channel ||
1483	     (chan->channelFlags & ~CHANNEL_CW_INT) !=
1484	     (caldata->channelFlags & ~CHANNEL_CW_INT))) {
1485		/* Operating channel changed, reset channel calibration data */
1486		memset(caldata, 0, sizeof(*caldata));
1487		ath9k_init_nfcal_hist_buffer(ah, chan);
 
 
1488	}
 
1489
1490	if (bChannelChange &&
1491	    (ah->chip_fullsleep != true) &&
1492	    (ah->curchan != NULL) &&
1493	    (chan->channel != ah->curchan->channel) &&
1494	    ((chan->channelFlags & CHANNEL_ALL) ==
1495	     (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1496	    (!AR_SREV_9280(ah) || AR_DEVID_7010(ah))) {
1497
1498		if (ath9k_hw_channel_change(ah, chan)) {
1499			ath9k_hw_loadnf(ah, ah->curchan);
1500			ath9k_hw_start_nfcal(ah, true);
1501			if (AR_SREV_9271(ah))
1502				ar9002_hw_load_ani_reg(ah, chan);
1503			return 0;
1504		}
1505	}
1506
 
 
 
1507	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1508	if (saveDefAntenna == 0)
1509		saveDefAntenna = 1;
1510
1511	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1512
1513	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1514	if (AR_SREV_9100(ah) ||
1515	    (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1516		tsf = ath9k_hw_gettsf64(ah);
1517
1518	saveLedState = REG_READ(ah, AR_CFG_LED) &
1519		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1520		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1521
1522	ath9k_hw_mark_phy_inactive(ah);
1523
1524	ah->paprd_table_write_done = false;
1525
1526	/* Only required on the first reset */
1527	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1528		REG_WRITE(ah,
1529			  AR9271_RESET_POWER_DOWN_CONTROL,
1530			  AR9271_RADIO_RF_RST);
1531		udelay(50);
1532	}
1533
1534	if (!ath9k_hw_chip_reset(ah, chan)) {
1535		ath_err(common, "Chip reset failed\n");
1536		return -EINVAL;
1537	}
1538
1539	/* Only required on the first reset */
1540	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1541		ah->htc_reset_init = false;
1542		REG_WRITE(ah,
1543			  AR9271_RESET_POWER_DOWN_CONTROL,
1544			  AR9271_GATE_MAC_CTL);
1545		udelay(50);
1546	}
1547
1548	/* Restore TSF */
1549	if (tsf)
1550		ath9k_hw_settsf64(ah, tsf);
1551
1552	if (AR_SREV_9280_20_OR_LATER(ah))
1553		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1554
1555	if (!AR_SREV_9300_20_OR_LATER(ah))
1556		ar9002_hw_enable_async_fifo(ah);
1557
1558	r = ath9k_hw_process_ini(ah, chan);
1559	if (r)
1560		return r;
1561
 
 
 
 
 
1562	/*
1563	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1564	 * right after the chip reset. When that happens, write a new
1565	 * value after the initvals have been applied, with an offset
1566	 * based on measured time difference
1567	 */
1568	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1569		tsf += 1500;
1570		ath9k_hw_settsf64(ah, tsf);
1571	}
1572
1573	/* Setup MFP options for CCMP */
1574	if (AR_SREV_9280_20_OR_LATER(ah)) {
1575		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1576		 * frames when constructing CCMP AAD. */
1577		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1578			      0xc7ff);
1579		ah->sw_mgmt_crypto = false;
1580	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1581		/* Disable hardware crypto for management frames */
1582		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1583			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1584		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1585			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1586		ah->sw_mgmt_crypto = true;
1587	} else
1588		ah->sw_mgmt_crypto = true;
1589
1590	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1591		ath9k_hw_set_delta_slope(ah, chan);
1592
 
1593	ath9k_hw_spur_mitigate_freq(ah, chan);
1594	ah->eep_ops->set_board_values(ah, chan);
1595
1596	ENABLE_REGWRITE_BUFFER(ah);
1597
1598	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1599	REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1600		  | macStaId1
1601		  | AR_STA_ID1_RTS_USE_DEF
1602		  | (ah->config.
1603		     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1604		  | ah->sta_id1_defaults);
1605	ath_hw_setbssidmask(common);
1606	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1607	ath9k_hw_write_associd(ah);
1608	REG_WRITE(ah, AR_ISR, ~0);
1609	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1610
1611	REGWRITE_BUFFER_FLUSH(ah);
1612
1613	ath9k_hw_set_operating_mode(ah, ah->opmode);
1614
1615	r = ath9k_hw_rf_set_freq(ah, chan);
1616	if (r)
1617		return r;
1618
1619	ath9k_hw_set_clockrate(ah);
1620
1621	ENABLE_REGWRITE_BUFFER(ah);
1622
1623	for (i = 0; i < AR_NUM_DCU; i++)
1624		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1625
1626	REGWRITE_BUFFER_FLUSH(ah);
1627
1628	ah->intr_txqs = 0;
1629	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1630		ath9k_hw_resettxqueue(ah, i);
1631
1632	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1633	ath9k_hw_ani_cache_ini_regs(ah);
1634	ath9k_hw_init_qos(ah);
1635
1636	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1637		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1638
1639	ath9k_hw_init_global_settings(ah);
1640
1641	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1642		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1643			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1644		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1645			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1646		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1647			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1648	}
1649
1650	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1651
1652	ath9k_hw_set_dma(ah);
1653
1654	REG_WRITE(ah, AR_OBS, 8);
 
1655
 
1656	if (ah->config.rx_intr_mitigation) {
1657		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1658		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1659	}
1660
1661	if (ah->config.tx_intr_mitigation) {
1662		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1663		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1664	}
 
1665
1666	ath9k_hw_init_bb(ah, chan);
1667
 
 
 
 
1668	if (!ath9k_hw_init_cal(ah, chan))
1669		return -EIO;
1670
 
 
 
1671	ENABLE_REGWRITE_BUFFER(ah);
1672
1673	ath9k_hw_restore_chainmask(ah);
1674	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1675
1676	REGWRITE_BUFFER_FLUSH(ah);
1677
1678	/*
1679	 * For big endian systems turn on swapping for descriptors
1680	 */
1681	if (AR_SREV_9100(ah)) {
1682		u32 mask;
1683		mask = REG_READ(ah, AR_CFG);
1684		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1685			ath_dbg(common, ATH_DBG_RESET,
1686				"CFG Byte Swap Set 0x%x\n", mask);
1687		} else {
1688			mask =
1689				INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1690			REG_WRITE(ah, AR_CFG, mask);
1691			ath_dbg(common, ATH_DBG_RESET,
1692				"Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
1693		}
1694	} else {
1695		if (common->bus_ops->ath_bus_type == ATH_USB) {
1696			/* Configure AR9271 target WLAN */
1697			if (AR_SREV_9271(ah))
1698				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1699			else
1700				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1701		}
1702#ifdef __BIG_ENDIAN
1703		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah))
1704			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1705		else
1706			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1707#endif
1708	}
1709
1710	if (ah->btcoex_hw.enabled)
 
 
1711		ath9k_hw_btcoex_enable(ah);
1712
 
 
 
1713	if (AR_SREV_9300_20_OR_LATER(ah)) {
 
 
 
 
 
1714		ar9003_hw_bb_watchdog_config(ah);
1715
 
1716		ar9003_hw_disable_phy_restart(ah);
1717	}
1718
1719	ath9k_hw_apply_gpio_override(ah);
1720
 
 
 
 
 
 
 
 
 
1721	return 0;
1722}
1723EXPORT_SYMBOL(ath9k_hw_reset);
1724
1725/******************************/
1726/* Power Management (Chipset) */
1727/******************************/
1728
1729/*
1730 * Notify Power Mgt is disabled in self-generated frames.
1731 * If requested, force chip to sleep.
1732 */
1733static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1734{
1735	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1736	if (setChip) {
1737		/*
1738		 * Clear the RTC force wake bit to allow the
1739		 * mac to go to sleep.
1740		 */
1741		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1742			    AR_RTC_FORCE_WAKE_EN);
1743		if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1744			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1745
1746		/* Shutdown chip. Active low */
1747		if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
1748			REG_CLR_BIT(ah, (AR_RTC_RESET),
1749				    AR_RTC_RESET_EN);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1750	}
1751
1752	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1753	if (AR_SREV_9300_20_OR_LATER(ah))
1754		REG_WRITE(ah, AR_WA,
1755			  ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1756}
1757
1758/*
1759 * Notify Power Management is enabled in self-generating
1760 * frames. If request, set power mode of chip to
1761 * auto/normal.  Duration in units of 128us (1/8 TU).
1762 */
1763static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
1764{
 
 
1765	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1766	if (setChip) {
1767		struct ath9k_hw_capabilities *pCap = &ah->caps;
1768
1769		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1770			/* Set WakeOnInterrupt bit; clear ForceWake bit */
1771			REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1772				  AR_RTC_FORCE_WAKE_ON_INT);
1773		} else {
1774			/*
1775			 * Clear the RTC force wake bit to allow the
1776			 * mac to go to sleep.
1777			 */
1778			REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1779				    AR_RTC_FORCE_WAKE_EN);
1780		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1781	}
1782
1783	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
1784	if (AR_SREV_9300_20_OR_LATER(ah))
1785		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1786}
1787
1788static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
1789{
1790	u32 val;
1791	int i;
1792
1793	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
1794	if (AR_SREV_9300_20_OR_LATER(ah)) {
1795		REG_WRITE(ah, AR_WA, ah->WARegVal);
1796		udelay(10);
1797	}
1798
1799	if (setChip) {
1800		if ((REG_READ(ah, AR_RTC_STATUS) &
1801		     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
1802			if (ath9k_hw_set_reset_reg(ah,
1803					   ATH9K_RESET_POWER_ON) != true) {
1804				return false;
1805			}
1806			if (!AR_SREV_9300_20_OR_LATER(ah))
1807				ath9k_hw_init_pll(ah, NULL);
1808		}
1809		if (AR_SREV_9100(ah))
1810			REG_SET_BIT(ah, AR_RTC_RESET,
1811				    AR_RTC_RESET_EN);
 
 
 
1812
1813		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1814			    AR_RTC_FORCE_WAKE_EN);
 
 
 
1815		udelay(50);
1816
1817		for (i = POWER_UP_TIME / 50; i > 0; i--) {
1818			val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
1819			if (val == AR_RTC_STATUS_ON)
1820				break;
1821			udelay(50);
1822			REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1823				    AR_RTC_FORCE_WAKE_EN);
1824		}
1825		if (i == 0) {
1826			ath_err(ath9k_hw_common(ah),
1827				"Failed to wakeup in %uus\n",
1828				POWER_UP_TIME / 20);
1829			return false;
1830		}
1831	}
1832
 
 
 
1833	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1834
1835	return true;
1836}
1837
1838bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
1839{
1840	struct ath_common *common = ath9k_hw_common(ah);
1841	int status = true, setChip = true;
1842	static const char *modes[] = {
1843		"AWAKE",
1844		"FULL-SLEEP",
1845		"NETWORK SLEEP",
1846		"UNDEFINED"
1847	};
1848
1849	if (ah->power_mode == mode)
1850		return status;
1851
1852	ath_dbg(common, ATH_DBG_RESET, "%s -> %s\n",
1853		modes[ah->power_mode], modes[mode]);
1854
1855	switch (mode) {
1856	case ATH9K_PM_AWAKE:
1857		status = ath9k_hw_set_power_awake(ah, setChip);
1858		break;
1859	case ATH9K_PM_FULL_SLEEP:
1860		ath9k_set_power_sleep(ah, setChip);
 
 
 
1861		ah->chip_fullsleep = true;
1862		break;
1863	case ATH9K_PM_NETWORK_SLEEP:
1864		ath9k_set_power_network_sleep(ah, setChip);
1865		break;
1866	default:
1867		ath_err(common, "Unknown power mode %u\n", mode);
1868		return false;
1869	}
1870	ah->power_mode = mode;
1871
1872	/*
1873	 * XXX: If this warning never comes up after a while then
1874	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
1875	 * ath9k_hw_setpower() return type void.
1876	 */
1877
1878	if (!(ah->ah_flags & AH_UNPLUGGED))
1879		ATH_DBG_WARN_ON_ONCE(!status);
1880
1881	return status;
1882}
1883EXPORT_SYMBOL(ath9k_hw_setpower);
1884
1885/*******************/
1886/* Beacon Handling */
1887/*******************/
1888
1889void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
1890{
1891	int flags = 0;
1892
1893	ENABLE_REGWRITE_BUFFER(ah);
1894
1895	switch (ah->opmode) {
1896	case NL80211_IFTYPE_ADHOC:
1897	case NL80211_IFTYPE_MESH_POINT:
1898		REG_SET_BIT(ah, AR_TXCFG,
1899			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
1900		REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
1901			  TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
1902		flags |= AR_NDP_TIMER_EN;
1903	case NL80211_IFTYPE_AP:
1904		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
1905		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
1906			  TU_TO_USEC(ah->config.dma_beacon_response_time));
1907		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
1908			  TU_TO_USEC(ah->config.sw_beacon_response_time));
1909		flags |=
1910			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
1911		break;
1912	default:
1913		ath_dbg(ath9k_hw_common(ah), ATH_DBG_BEACON,
1914			"%s: unsupported opmode: %d\n",
1915			__func__, ah->opmode);
1916		return;
1917		break;
1918	}
1919
1920	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
1921	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
1922	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
1923	REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
1924
1925	REGWRITE_BUFFER_FLUSH(ah);
1926
1927	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
1928}
1929EXPORT_SYMBOL(ath9k_hw_beaconinit);
1930
1931void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
1932				    const struct ath9k_beacon_state *bs)
1933{
1934	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
1935	struct ath9k_hw_capabilities *pCap = &ah->caps;
1936	struct ath_common *common = ath9k_hw_common(ah);
1937
1938	ENABLE_REGWRITE_BUFFER(ah);
1939
1940	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
1941
1942	REG_WRITE(ah, AR_BEACON_PERIOD,
1943		  TU_TO_USEC(bs->bs_intval));
1944	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
1945		  TU_TO_USEC(bs->bs_intval));
1946
1947	REGWRITE_BUFFER_FLUSH(ah);
1948
1949	REG_RMW_FIELD(ah, AR_RSSI_THR,
1950		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
1951
1952	beaconintval = bs->bs_intval;
1953
1954	if (bs->bs_sleepduration > beaconintval)
1955		beaconintval = bs->bs_sleepduration;
1956
1957	dtimperiod = bs->bs_dtimperiod;
1958	if (bs->bs_sleepduration > dtimperiod)
1959		dtimperiod = bs->bs_sleepduration;
1960
1961	if (beaconintval == dtimperiod)
1962		nextTbtt = bs->bs_nextdtim;
1963	else
1964		nextTbtt = bs->bs_nexttbtt;
1965
1966	ath_dbg(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
1967	ath_dbg(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
1968	ath_dbg(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
1969	ath_dbg(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
1970
1971	ENABLE_REGWRITE_BUFFER(ah);
1972
1973	REG_WRITE(ah, AR_NEXT_DTIM,
1974		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
1975	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
1976
1977	REG_WRITE(ah, AR_SLEEP1,
1978		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
1979		  | AR_SLEEP1_ASSUME_DTIM);
1980
1981	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
1982		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
1983	else
1984		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
1985
1986	REG_WRITE(ah, AR_SLEEP2,
1987		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
1988
1989	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
1990	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
1991
1992	REGWRITE_BUFFER_FLUSH(ah);
1993
1994	REG_SET_BIT(ah, AR_TIMER_MODE,
1995		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
1996		    AR_DTIM_TIMER_EN);
1997
1998	/* TSF Out of Range Threshold */
1999	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2000}
2001EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2002
2003/*******************/
2004/* HW Capabilities */
2005/*******************/
2006
2007static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2008{
2009	eeprom_chainmask &= chip_chainmask;
2010	if (eeprom_chainmask)
2011		return eeprom_chainmask;
2012	else
2013		return chip_chainmask;
2014}
2015
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2016int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2017{
2018	struct ath9k_hw_capabilities *pCap = &ah->caps;
2019	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2020	struct ath_common *common = ath9k_hw_common(ah);
2021	struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
2022	unsigned int chip_chainmask;
2023
2024	u16 eeval;
2025	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2026
2027	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2028	regulatory->current_rd = eeval;
2029
2030	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
2031	if (AR_SREV_9285_12_OR_LATER(ah))
2032		eeval |= AR9285_RDEXT_DEFAULT;
2033	regulatory->current_rd_ext = eeval;
2034
2035	if (ah->opmode != NL80211_IFTYPE_AP &&
2036	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2037		if (regulatory->current_rd == 0x64 ||
2038		    regulatory->current_rd == 0x65)
2039			regulatory->current_rd += 5;
2040		else if (regulatory->current_rd == 0x41)
2041			regulatory->current_rd = 0x43;
2042		ath_dbg(common, ATH_DBG_REGULATORY,
2043			"regdomain mapped to 0x%x\n", regulatory->current_rd);
2044	}
2045
2046	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2047	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2048		ath_err(common,
2049			"no band has been marked as supported in EEPROM\n");
2050		return -EINVAL;
 
 
 
 
 
 
 
 
 
2051	}
2052
2053	if (eeval & AR5416_OPFLAGS_11A)
2054		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
 
 
2055
2056	if (eeval & AR5416_OPFLAGS_11G)
2057		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2058
2059	if (AR_SREV_9485(ah) || AR_SREV_9285(ah) || AR_SREV_9330(ah))
2060		chip_chainmask = 1;
 
 
 
2061	else if (!AR_SREV_9280_20_OR_LATER(ah))
2062		chip_chainmask = 7;
2063	else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
2064		chip_chainmask = 3;
 
 
 
2065	else
2066		chip_chainmask = 7;
2067
2068	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2069	/*
2070	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2071	 * the EEPROM.
2072	 */
2073	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2074	    !(eeval & AR5416_OPFLAGS_11A) &&
2075	    !(AR_SREV_9271(ah)))
2076		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2077		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2078	else if (AR_SREV_9100(ah))
2079		pCap->rx_chainmask = 0x7;
2080	else
2081		/* Use rx_chainmask from EEPROM. */
2082		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2083
2084	pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
2085	pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
 
 
2086
2087	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2088
2089	/* enable key search for every frame in an aggregate */
2090	if (AR_SREV_9300_20_OR_LATER(ah))
2091		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2092
2093	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2094
2095	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2096		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2097	else
2098		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2099
2100	if (AR_SREV_9271(ah))
2101		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2102	else if (AR_DEVID_7010(ah))
2103		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2104	else if (AR_SREV_9285_12_OR_LATER(ah))
2105		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2106	else if (AR_SREV_9280_20_OR_LATER(ah))
2107		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2108	else
2109		pCap->num_gpio_pins = AR_NUM_GPIO;
2110
2111	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
2112		pCap->hw_caps |= ATH9K_HW_CAP_CST;
2113		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2114	} else {
2115		pCap->rts_aggr_limit = (8 * 1024);
2116	}
2117
2118#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2119	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2120	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2121		ah->rfkill_gpio =
2122			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2123		ah->rfkill_polarity =
2124			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2125
2126		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2127	}
2128#endif
2129	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2130		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2131	else
2132		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2133
2134	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2135		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2136	else
2137		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2138
2139	if (common->btcoex_enabled) {
2140		if (AR_SREV_9300_20_OR_LATER(ah)) {
2141			btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
2142			btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO_9300;
2143			btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO_9300;
2144			btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO_9300;
2145		} else if (AR_SREV_9280_20_OR_LATER(ah)) {
2146			btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO_9280;
2147			btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO_9280;
2148
2149			if (AR_SREV_9285(ah)) {
2150				btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
2151				btcoex_hw->btpriority_gpio =
2152						ATH_BTPRIORITY_GPIO_9285;
2153			} else {
2154				btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
2155			}
2156		}
2157	} else {
2158		btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
2159	}
2160
2161	if (AR_SREV_9300_20_OR_LATER(ah)) {
2162		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2163		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah))
 
2164			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2165
2166		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2167		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2168		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2169		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2170		pCap->txs_len = sizeof(struct ar9003_txs);
2171		if (!ah->config.paprd_disable &&
2172		    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2173			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2174	} else {
2175		pCap->tx_desc_len = sizeof(struct ath_desc);
2176		if (AR_SREV_9280_20(ah))
2177			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2178	}
2179
2180	if (AR_SREV_9300_20_OR_LATER(ah))
2181		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2182
2183	if (AR_SREV_9300_20_OR_LATER(ah))
 
 
2184		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2185
2186	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2187		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2188
2189	if (AR_SREV_9285(ah))
2190		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2191			ant_div_ctl1 =
2192				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2193			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
2194				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
 
 
2195		}
 
 
2196	if (AR_SREV_9300_20_OR_LATER(ah)) {
2197		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2198			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2199	}
2200
2201
2202	if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
2203		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2204		/*
2205		 * enable the diversity-combining algorithm only when
2206		 * both enable_lna_div and enable_fast_div are set
2207		 *		Table for Diversity
2208		 * ant_div_alt_lnaconf		bit 0-1
2209		 * ant_div_main_lnaconf		bit 2-3
2210		 * ant_div_alt_gaintb		bit 4
2211		 * ant_div_main_gaintb		bit 5
2212		 * enable_ant_div_lnadiv	bit 6
2213		 * enable_ant_fast_div		bit 7
2214		 */
2215		if ((ant_div_ctl1 >> 0x6) == 0x3)
2216			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
 
 
2217	}
2218
2219	if (AR_SREV_9485_10(ah)) {
2220		pCap->pcie_lcr_extsync_en = true;
2221		pCap->pcie_lcr_offset = 0x80;
2222	}
2223
2224	tx_chainmask = pCap->tx_chainmask;
2225	rx_chainmask = pCap->rx_chainmask;
2226	while (tx_chainmask || rx_chainmask) {
2227		if (tx_chainmask & BIT(0))
2228			pCap->max_txchains++;
2229		if (rx_chainmask & BIT(0))
2230			pCap->max_rxchains++;
2231
2232		tx_chainmask >>= 1;
2233		rx_chainmask >>= 1;
2234	}
2235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2236	return 0;
2237}
2238
2239/****************************/
2240/* GPIO / RFKILL / Antennae */
2241/****************************/
2242
2243static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2244					 u32 gpio, u32 type)
2245{
2246	int addr;
2247	u32 gpio_shift, tmp;
2248
2249	if (gpio > 11)
2250		addr = AR_GPIO_OUTPUT_MUX3;
2251	else if (gpio > 5)
2252		addr = AR_GPIO_OUTPUT_MUX2;
2253	else
2254		addr = AR_GPIO_OUTPUT_MUX1;
2255
2256	gpio_shift = (gpio % 6) * 5;
2257
2258	if (AR_SREV_9280_20_OR_LATER(ah)
2259	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2260		REG_RMW(ah, addr, (type << gpio_shift),
2261			(0x1f << gpio_shift));
2262	} else {
2263		tmp = REG_READ(ah, addr);
2264		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2265		tmp &= ~(0x1f << gpio_shift);
2266		tmp |= (type << gpio_shift);
2267		REG_WRITE(ah, addr, tmp);
2268	}
2269}
2270
2271void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
 
 
 
2272{
2273	u32 gpio_shift;
 
2274
2275	BUG_ON(gpio >= ah->caps.num_gpio_pins);
 
2276
2277	if (AR_DEVID_7010(ah)) {
2278		gpio_shift = gpio;
2279		REG_RMW(ah, AR7010_GPIO_OE,
2280			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2281			(AR7010_GPIO_OE_MASK << gpio_shift));
2282		return;
2283	}
2284
2285	gpio_shift = gpio << 1;
2286	REG_RMW(ah,
2287		AR_GPIO_OE_OUT,
2288		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2289		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2290}
2291EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2292
2293u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
 
2294{
2295#define MS_REG_READ(x, y) \
2296	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2297
2298	if (gpio >= ah->caps.num_gpio_pins)
2299		return 0xffffffff;
2300
2301	if (AR_DEVID_7010(ah)) {
2302		u32 val;
2303		val = REG_READ(ah, AR7010_GPIO_IN);
2304		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2305	} else if (AR_SREV_9300_20_OR_LATER(ah))
2306		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2307			AR_GPIO_BIT(gpio)) != 0;
2308	else if (AR_SREV_9271(ah))
2309		return MS_REG_READ(AR9271, gpio) != 0;
2310	else if (AR_SREV_9287_11_OR_LATER(ah))
2311		return MS_REG_READ(AR9287, gpio) != 0;
2312	else if (AR_SREV_9285_12_OR_LATER(ah))
2313		return MS_REG_READ(AR9285, gpio) != 0;
2314	else if (AR_SREV_9280_20_OR_LATER(ah))
2315		return MS_REG_READ(AR928X, gpio) != 0;
2316	else
2317		return MS_REG_READ(AR, gpio) != 0;
 
 
2318}
2319EXPORT_SYMBOL(ath9k_hw_gpio_get);
2320
2321void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2322			 u32 ah_signal_type)
2323{
2324	u32 gpio_shift;
2325
2326	if (AR_DEVID_7010(ah)) {
2327		gpio_shift = gpio;
2328		REG_RMW(ah, AR7010_GPIO_OE,
2329			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2330			(AR7010_GPIO_OE_MASK << gpio_shift));
2331		return;
2332	}
2333
2334	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2335	gpio_shift = 2 * gpio;
2336	REG_RMW(ah,
2337		AR_GPIO_OE_OUT,
2338		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2339		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2340}
2341EXPORT_SYMBOL(ath9k_hw_cfg_output);
2342
2343void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
 
2344{
2345	if (AR_DEVID_7010(ah)) {
2346		val = val ? 0 : 1;
2347		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2348			AR_GPIO_BIT(gpio));
 
 
 
2349		return;
 
 
 
 
 
 
2350	}
 
 
2351
2352	if (AR_SREV_9271(ah))
2353		val = ~val;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2354
2355	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2356		AR_GPIO_BIT(gpio));
2357}
2358EXPORT_SYMBOL(ath9k_hw_set_gpio);
2359
2360u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
2361{
2362	return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2363}
2364EXPORT_SYMBOL(ath9k_hw_getdefantenna);
2365
2366void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2367{
2368	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2369}
2370EXPORT_SYMBOL(ath9k_hw_setantenna);
2371
2372/*********************/
2373/* General Operation */
2374/*********************/
2375
2376u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2377{
2378	u32 bits = REG_READ(ah, AR_RX_FILTER);
2379	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2380
2381	if (phybits & AR_PHY_ERR_RADAR)
2382		bits |= ATH9K_RX_FILTER_PHYRADAR;
2383	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2384		bits |= ATH9K_RX_FILTER_PHYERR;
2385
2386	return bits;
2387}
2388EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2389
2390void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2391{
2392	u32 phybits;
2393
2394	ENABLE_REGWRITE_BUFFER(ah);
2395
2396	REG_WRITE(ah, AR_RX_FILTER, bits);
2397
2398	phybits = 0;
2399	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2400		phybits |= AR_PHY_ERR_RADAR;
2401	if (bits & ATH9K_RX_FILTER_PHYERR)
2402		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2403	REG_WRITE(ah, AR_PHY_ERR, phybits);
2404
2405	if (phybits)
2406		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2407	else
2408		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2409
2410	REGWRITE_BUFFER_FLUSH(ah);
2411}
2412EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2413
2414bool ath9k_hw_phy_disable(struct ath_hw *ah)
2415{
 
 
 
2416	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2417		return false;
2418
2419	ath9k_hw_init_pll(ah, NULL);
 
2420	return true;
2421}
2422EXPORT_SYMBOL(ath9k_hw_phy_disable);
2423
2424bool ath9k_hw_disable(struct ath_hw *ah)
2425{
2426	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2427		return false;
2428
2429	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2430		return false;
2431
2432	ath9k_hw_init_pll(ah, NULL);
2433	return true;
2434}
2435EXPORT_SYMBOL(ath9k_hw_disable);
2436
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2437void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2438{
2439	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2440	struct ath9k_channel *chan = ah->curchan;
2441	struct ieee80211_channel *channel = chan->chan;
2442
2443	regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
 
 
2444
2445	ah->eep_ops->set_txpower(ah, chan,
2446				 ath9k_regd_get_ctl(regulatory, chan),
2447				 channel->max_antenna_gain * 2,
2448				 channel->max_power * 2,
2449				 min((u32) MAX_RATE_POWER,
2450				 (u32) regulatory->power_limit), test);
2451}
2452EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2453
2454void ath9k_hw_setopmode(struct ath_hw *ah)
2455{
2456	ath9k_hw_set_operating_mode(ah, ah->opmode);
2457}
2458EXPORT_SYMBOL(ath9k_hw_setopmode);
2459
2460void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2461{
2462	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2463	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2464}
2465EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2466
2467void ath9k_hw_write_associd(struct ath_hw *ah)
2468{
2469	struct ath_common *common = ath9k_hw_common(ah);
2470
2471	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2472	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2473		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2474}
2475EXPORT_SYMBOL(ath9k_hw_write_associd);
2476
2477#define ATH9K_MAX_TSF_READ 10
2478
2479u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2480{
2481	u32 tsf_lower, tsf_upper1, tsf_upper2;
2482	int i;
2483
2484	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2485	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2486		tsf_lower = REG_READ(ah, AR_TSF_L32);
2487		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2488		if (tsf_upper2 == tsf_upper1)
2489			break;
2490		tsf_upper1 = tsf_upper2;
2491	}
2492
2493	WARN_ON( i == ATH9K_MAX_TSF_READ );
2494
2495	return (((u64)tsf_upper1 << 32) | tsf_lower);
2496}
2497EXPORT_SYMBOL(ath9k_hw_gettsf64);
2498
2499void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2500{
2501	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2502	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2503}
2504EXPORT_SYMBOL(ath9k_hw_settsf64);
2505
2506void ath9k_hw_reset_tsf(struct ath_hw *ah)
2507{
2508	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2509			   AH_TSF_WRITE_TIMEOUT))
2510		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
2511			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2512
2513	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2514}
2515EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2516
2517void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2518{
2519	if (setting)
2520		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2521	else
2522		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2523}
2524EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2525
2526void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2527{
2528	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2529	u32 macmode;
2530
2531	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2532		macmode = AR_2040_JOINED_RX_CLEAR;
2533	else
2534		macmode = 0;
2535
2536	REG_WRITE(ah, AR_2040_MODE, macmode);
2537}
2538
2539/* HW Generic timers configuration */
2540
2541static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2542{
2543	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2544	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2545	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2546	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2547	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2548	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2549	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2550	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2551	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2552	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2553				AR_NDP2_TIMER_MODE, 0x0002},
2554	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2555				AR_NDP2_TIMER_MODE, 0x0004},
2556	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2557				AR_NDP2_TIMER_MODE, 0x0008},
2558	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2559				AR_NDP2_TIMER_MODE, 0x0010},
2560	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2561				AR_NDP2_TIMER_MODE, 0x0020},
2562	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2563				AR_NDP2_TIMER_MODE, 0x0040},
2564	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2565				AR_NDP2_TIMER_MODE, 0x0080}
2566};
2567
2568/* HW generic timer primitives */
2569
2570/* compute and clear index of rightmost 1 */
2571static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2572{
2573	u32 b;
2574
2575	b = *mask;
2576	b &= (0-b);
2577	*mask &= ~b;
2578	b *= debruijn32;
2579	b >>= 27;
2580
2581	return timer_table->gen_timer_index[b];
2582}
2583
2584u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2585{
2586	return REG_READ(ah, AR_TSF_L32);
2587}
2588EXPORT_SYMBOL(ath9k_hw_gettsf32);
2589
 
 
 
 
 
 
 
 
 
 
2590struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2591					  void (*trigger)(void *),
2592					  void (*overflow)(void *),
2593					  void *arg,
2594					  u8 timer_index)
2595{
2596	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2597	struct ath_gen_timer *timer;
2598
2599	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
 
 
2600
2601	if (timer == NULL) {
2602		ath_err(ath9k_hw_common(ah),
2603			"Failed to allocate memory for hw timer[%d]\n",
2604			timer_index);
 
 
2605		return NULL;
2606	}
2607
2608	/* allocate a hardware generic timer slot */
2609	timer_table->timers[timer_index] = timer;
2610	timer->index = timer_index;
2611	timer->trigger = trigger;
2612	timer->overflow = overflow;
2613	timer->arg = arg;
2614
 
 
 
 
 
2615	return timer;
2616}
2617EXPORT_SYMBOL(ath_gen_timer_alloc);
2618
2619void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2620			      struct ath_gen_timer *timer,
2621			      u32 trig_timeout,
2622			      u32 timer_period)
2623{
2624	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2625	u32 tsf, timer_next;
2626
2627	BUG_ON(!timer_period);
2628
2629	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
2630
2631	tsf = ath9k_hw_gettsf32(ah);
2632
2633	timer_next = tsf + trig_timeout;
2634
2635	ath_dbg(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
2636		"current tsf %x period %x timer_next %x\n",
2637		tsf, timer_period, timer_next);
2638
2639	/*
2640	 * Program generic timer registers
2641	 */
2642	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2643		 timer_next);
2644	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2645		  timer_period);
2646	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2647		    gen_tmr_configuration[timer->index].mode_mask);
2648
2649	/* Enable both trigger and thresh interrupt masks */
2650	REG_SET_BIT(ah, AR_IMR_S5,
2651		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2652		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2653}
2654EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2655
2656void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2657{
2658	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2659
2660	if ((timer->index < AR_FIRST_NDP_TIMER) ||
2661		(timer->index >= ATH_MAX_GEN_TIMER)) {
2662		return;
2663	}
2664
2665	/* Clear generic timer enable bits. */
2666	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2667			gen_tmr_configuration[timer->index].mode_mask);
2668
 
 
 
 
 
 
 
 
 
 
2669	/* Disable both trigger and thresh interrupt masks */
2670	REG_CLR_BIT(ah, AR_IMR_S5,
2671		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2672		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2673
2674	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
 
 
 
 
 
2675}
2676EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2677
2678void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2679{
2680	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2681
2682	/* free the hardware generic timer slot */
2683	timer_table->timers[timer->index] = NULL;
2684	kfree(timer);
2685}
2686EXPORT_SYMBOL(ath_gen_timer_free);
2687
2688/*
2689 * Generic Timer Interrupts handling
2690 */
2691void ath_gen_timer_isr(struct ath_hw *ah)
2692{
2693	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2694	struct ath_gen_timer *timer;
2695	struct ath_common *common = ath9k_hw_common(ah);
2696	u32 trigger_mask, thresh_mask, index;
2697
2698	/* get hardware generic timer interrupt status */
2699	trigger_mask = ah->intr_gen_timer_trigger;
2700	thresh_mask = ah->intr_gen_timer_thresh;
2701	trigger_mask &= timer_table->timer_mask.val;
2702	thresh_mask &= timer_table->timer_mask.val;
2703
2704	trigger_mask &= ~thresh_mask;
2705
2706	while (thresh_mask) {
2707		index = rightmost_index(timer_table, &thresh_mask);
2708		timer = timer_table->timers[index];
2709		BUG_ON(!timer);
2710		ath_dbg(common, ATH_DBG_HWTIMER,
2711			"TSF overflow for Gen timer %d\n", index);
 
 
 
2712		timer->overflow(timer->arg);
2713	}
2714
2715	while (trigger_mask) {
2716		index = rightmost_index(timer_table, &trigger_mask);
2717		timer = timer_table->timers[index];
2718		BUG_ON(!timer);
2719		ath_dbg(common, ATH_DBG_HWTIMER,
2720			"Gen timer[%d] trigger\n", index);
 
2721		timer->trigger(timer->arg);
2722	}
2723}
2724EXPORT_SYMBOL(ath_gen_timer_isr);
2725
2726/********/
2727/* HTC  */
2728/********/
2729
2730void ath9k_hw_htc_resetinit(struct ath_hw *ah)
2731{
2732	ah->htc_reset_init = true;
2733}
2734EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
2735
2736static struct {
2737	u32 version;
2738	const char * name;
2739} ath_mac_bb_names[] = {
2740	/* Devices with external radios */
2741	{ AR_SREV_VERSION_5416_PCI,	"5416" },
2742	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
2743	{ AR_SREV_VERSION_9100,		"9100" },
2744	{ AR_SREV_VERSION_9160,		"9160" },
2745	/* Single-chip solutions */
2746	{ AR_SREV_VERSION_9280,		"9280" },
2747	{ AR_SREV_VERSION_9285,		"9285" },
2748	{ AR_SREV_VERSION_9287,         "9287" },
2749	{ AR_SREV_VERSION_9271,         "9271" },
2750	{ AR_SREV_VERSION_9300,         "9300" },
2751	{ AR_SREV_VERSION_9330,         "9330" },
 
2752	{ AR_SREV_VERSION_9485,         "9485" },
 
 
 
 
 
2753};
2754
2755/* For devices with external radios */
2756static struct {
2757	u16 version;
2758	const char * name;
2759} ath_rf_names[] = {
2760	{ 0,				"5133" },
2761	{ AR_RAD5133_SREV_MAJOR,	"5133" },
2762	{ AR_RAD5122_SREV_MAJOR,	"5122" },
2763	{ AR_RAD2133_SREV_MAJOR,	"2133" },
2764	{ AR_RAD2122_SREV_MAJOR,	"2122" }
2765};
2766
2767/*
2768 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2769 */
2770static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
2771{
2772	int i;
2773
2774	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2775		if (ath_mac_bb_names[i].version == mac_bb_version) {
2776			return ath_mac_bb_names[i].name;
2777		}
2778	}
2779
2780	return "????";
2781}
2782
2783/*
2784 * Return the RF name. "????" is returned if the RF is unknown.
2785 * Used for devices with external radios.
2786 */
2787static const char *ath9k_hw_rf_name(u16 rf_version)
2788{
2789	int i;
2790
2791	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2792		if (ath_rf_names[i].version == rf_version) {
2793			return ath_rf_names[i].name;
2794		}
2795	}
2796
2797	return "????";
2798}
2799
2800void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
2801{
2802	int used;
2803
2804	/* chipsets >= AR9280 are single-chip */
2805	if (AR_SREV_9280_20_OR_LATER(ah)) {
2806		used = snprintf(hw_name, len,
2807			       "Atheros AR%s Rev:%x",
2808			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2809			       ah->hw_version.macRev);
2810	}
2811	else {
2812		used = snprintf(hw_name, len,
2813			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
2814			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2815			       ah->hw_version.macRev,
2816			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
2817						AR_RADIO_SREV_MAJOR)),
2818			       ah->hw_version.phyRev);
2819	}
2820
2821	hw_name[used] = '\0';
2822}
2823EXPORT_SYMBOL(ath9k_hw_name);
v4.10.11
   1/*
   2 * Copyright (c) 2008-2011 Atheros Communications Inc.
   3 *
   4 * Permission to use, copy, modify, and/or distribute this software for any
   5 * purpose with or without fee is hereby granted, provided that the above
   6 * copyright notice and this permission notice appear in all copies.
   7 *
   8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
   9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15 */
  16
  17#include <linux/io.h>
  18#include <linux/slab.h>
  19#include <linux/module.h>
  20#include <linux/time.h>
  21#include <linux/bitops.h>
  22#include <linux/etherdevice.h>
  23#include <linux/gpio.h>
  24#include <asm/unaligned.h>
  25
  26#include "hw.h"
  27#include "hw-ops.h"
 
  28#include "ar9003_mac.h"
  29#include "ar9003_mci.h"
  30#include "ar9003_phy.h"
  31#include "ath9k.h"
  32
  33static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  34
  35MODULE_AUTHOR("Atheros Communications");
  36MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  37MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  38MODULE_LICENSE("Dual BSD/GPL");
  39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  40static void ath9k_hw_set_clockrate(struct ath_hw *ah)
  41{
 
  42	struct ath_common *common = ath9k_hw_common(ah);
  43	struct ath9k_channel *chan = ah->curchan;
  44	unsigned int clockrate;
  45
  46	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
  47	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
  48		clockrate = 117;
  49	else if (!chan) /* should really check for CCK instead */
  50		clockrate = ATH9K_CLOCK_RATE_CCK;
  51	else if (IS_CHAN_2GHZ(chan))
  52		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
  53	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  54		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  55	else
  56		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
  57
  58	if (chan) {
  59		if (IS_CHAN_HT40(chan))
  60			clockrate *= 2;
  61		if (IS_CHAN_HALF_RATE(chan))
 
  62			clockrate /= 2;
  63		if (IS_CHAN_QUARTER_RATE(chan))
  64			clockrate /= 4;
  65	}
  66
  67	common->clockrate = clockrate;
  68}
  69
  70static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  71{
  72	struct ath_common *common = ath9k_hw_common(ah);
  73
  74	return usecs * common->clockrate;
  75}
  76
  77bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  78{
  79	int i;
  80
  81	BUG_ON(timeout < AH_TIME_QUANTUM);
  82
  83	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  84		if ((REG_READ(ah, reg) & mask) == val)
  85			return true;
  86
  87		udelay(AH_TIME_QUANTUM);
  88	}
  89
  90	ath_dbg(ath9k_hw_common(ah), ANY,
  91		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  92		timeout, reg, REG_READ(ah, reg), mask, val);
  93
  94	return false;
  95}
  96EXPORT_SYMBOL(ath9k_hw_wait);
  97
  98void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
  99			  int hw_delay)
 100{
 101	hw_delay /= 10;
 102
 103	if (IS_CHAN_HALF_RATE(chan))
 104		hw_delay *= 2;
 105	else if (IS_CHAN_QUARTER_RATE(chan))
 106		hw_delay *= 4;
 107
 108	udelay(hw_delay + BASE_ACTIVATE_DELAY);
 109}
 110
 111void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
 112			  int column, unsigned int *writecnt)
 113{
 114	int r;
 115
 116	ENABLE_REGWRITE_BUFFER(ah);
 117	for (r = 0; r < array->ia_rows; r++) {
 118		REG_WRITE(ah, INI_RA(array, r, 0),
 119			  INI_RA(array, r, column));
 120		DO_DELAY(*writecnt);
 121	}
 122	REGWRITE_BUFFER_FLUSH(ah);
 123}
 124
 125void ath9k_hw_read_array(struct ath_hw *ah, u32 array[][2], int size)
 126{
 127	u32 *tmp_reg_list, *tmp_data;
 128	int i;
 129
 130	tmp_reg_list = kmalloc(size * sizeof(u32), GFP_KERNEL);
 131	if (!tmp_reg_list) {
 132		dev_err(ah->dev, "%s: tmp_reg_list: alloc filed\n", __func__);
 133		return;
 134	}
 135
 136	tmp_data = kmalloc(size * sizeof(u32), GFP_KERNEL);
 137	if (!tmp_data) {
 138		dev_err(ah->dev, "%s tmp_data: alloc filed\n", __func__);
 139		goto error_tmp_data;
 140	}
 141
 142	for (i = 0; i < size; i++)
 143		tmp_reg_list[i] = array[i][0];
 144
 145	REG_READ_MULTI(ah, tmp_reg_list, tmp_data, size);
 146
 147	for (i = 0; i < size; i++)
 148		array[i][1] = tmp_data[i];
 149
 150	kfree(tmp_data);
 151error_tmp_data:
 152	kfree(tmp_reg_list);
 153}
 154
 155u32 ath9k_hw_reverse_bits(u32 val, u32 n)
 156{
 157	u32 retval;
 158	int i;
 159
 160	for (i = 0, retval = 0; i < n; i++) {
 161		retval = (retval << 1) | (val & 1);
 162		val >>= 1;
 163	}
 164	return retval;
 165}
 166
 167u16 ath9k_hw_computetxtime(struct ath_hw *ah,
 168			   u8 phy, int kbps,
 169			   u32 frameLen, u16 rateix,
 170			   bool shortPreamble)
 171{
 172	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
 173
 174	if (kbps == 0)
 175		return 0;
 176
 177	switch (phy) {
 178	case WLAN_RC_PHY_CCK:
 179		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
 180		if (shortPreamble)
 181			phyTime >>= 1;
 182		numBits = frameLen << 3;
 183		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
 184		break;
 185	case WLAN_RC_PHY_OFDM:
 186		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
 187			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
 188			numBits = OFDM_PLCP_BITS + (frameLen << 3);
 189			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 190			txTime = OFDM_SIFS_TIME_QUARTER
 191				+ OFDM_PREAMBLE_TIME_QUARTER
 192				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
 193		} else if (ah->curchan &&
 194			   IS_CHAN_HALF_RATE(ah->curchan)) {
 195			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
 196			numBits = OFDM_PLCP_BITS + (frameLen << 3);
 197			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 198			txTime = OFDM_SIFS_TIME_HALF +
 199				OFDM_PREAMBLE_TIME_HALF
 200				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
 201		} else {
 202			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
 203			numBits = OFDM_PLCP_BITS + (frameLen << 3);
 204			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
 205			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
 206				+ (numSymbols * OFDM_SYMBOL_TIME);
 207		}
 208		break;
 209	default:
 210		ath_err(ath9k_hw_common(ah),
 211			"Unknown phy %u (rate ix %u)\n", phy, rateix);
 212		txTime = 0;
 213		break;
 214	}
 215
 216	return txTime;
 217}
 218EXPORT_SYMBOL(ath9k_hw_computetxtime);
 219
 220void ath9k_hw_get_channel_centers(struct ath_hw *ah,
 221				  struct ath9k_channel *chan,
 222				  struct chan_centers *centers)
 223{
 224	int8_t extoff;
 225
 226	if (!IS_CHAN_HT40(chan)) {
 227		centers->ctl_center = centers->ext_center =
 228			centers->synth_center = chan->channel;
 229		return;
 230	}
 231
 232	if (IS_CHAN_HT40PLUS(chan)) {
 
 233		centers->synth_center =
 234			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
 235		extoff = 1;
 236	} else {
 237		centers->synth_center =
 238			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
 239		extoff = -1;
 240	}
 241
 242	centers->ctl_center =
 243		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
 244	/* 25 MHz spacing is supported by hw but not on upper layers */
 245	centers->ext_center =
 246		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
 247}
 248
 249/******************/
 250/* Chip Revisions */
 251/******************/
 252
 253static void ath9k_hw_read_revisions(struct ath_hw *ah)
 254{
 255	u32 val;
 256
 257	if (ah->get_mac_revision)
 258		ah->hw_version.macRev = ah->get_mac_revision();
 259
 260	switch (ah->hw_version.devid) {
 261	case AR5416_AR9100_DEVID:
 262		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
 263		break;
 264	case AR9300_DEVID_AR9330:
 265		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
 266		if (!ah->get_mac_revision) {
 
 
 267			val = REG_READ(ah, AR_SREV);
 268			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
 269		}
 270		return;
 271	case AR9300_DEVID_AR9340:
 272		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
 273		return;
 274	case AR9300_DEVID_QCA955X:
 275		ah->hw_version.macVersion = AR_SREV_VERSION_9550;
 276		return;
 277	case AR9300_DEVID_AR953X:
 278		ah->hw_version.macVersion = AR_SREV_VERSION_9531;
 279		return;
 280	case AR9300_DEVID_QCA956X:
 281		ah->hw_version.macVersion = AR_SREV_VERSION_9561;
 282		return;
 283	}
 284
 285	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
 286
 287	if (val == 0xFF) {
 288		val = REG_READ(ah, AR_SREV);
 289		ah->hw_version.macVersion =
 290			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
 291		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
 292
 293		if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
 294			ah->is_pciexpress = true;
 295		else
 296			ah->is_pciexpress = (val &
 297					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
 298	} else {
 299		if (!AR_SREV_9100(ah))
 300			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
 301
 302		ah->hw_version.macRev = val & AR_SREV_REVISION;
 303
 304		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
 305			ah->is_pciexpress = true;
 306	}
 307}
 308
 309/************************************/
 310/* HW Attach, Detach, Init Routines */
 311/************************************/
 312
 313static void ath9k_hw_disablepcie(struct ath_hw *ah)
 314{
 315	if (!AR_SREV_5416(ah))
 316		return;
 317
 318	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
 319	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
 320	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
 321	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
 322	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
 323	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
 324	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
 325	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
 326	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
 327
 328	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
 329}
 330
 
 
 
 
 
 
 
 
 331/* This should work for all families including legacy */
 332static bool ath9k_hw_chip_test(struct ath_hw *ah)
 333{
 334	struct ath_common *common = ath9k_hw_common(ah);
 335	u32 regAddr[2] = { AR_STA_ID0 };
 336	u32 regHold[2];
 337	static const u32 patternData[4] = {
 338		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
 339	};
 340	int i, j, loop_max;
 341
 342	if (!AR_SREV_9300_20_OR_LATER(ah)) {
 343		loop_max = 2;
 344		regAddr[1] = AR_PHY_BASE + (8 << 2);
 345	} else
 346		loop_max = 1;
 347
 348	for (i = 0; i < loop_max; i++) {
 349		u32 addr = regAddr[i];
 350		u32 wrData, rdData;
 351
 352		regHold[i] = REG_READ(ah, addr);
 353		for (j = 0; j < 0x100; j++) {
 354			wrData = (j << 16) | j;
 355			REG_WRITE(ah, addr, wrData);
 356			rdData = REG_READ(ah, addr);
 357			if (rdData != wrData) {
 358				ath_err(common,
 359					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
 360					addr, wrData, rdData);
 361				return false;
 362			}
 363		}
 364		for (j = 0; j < 4; j++) {
 365			wrData = patternData[j];
 366			REG_WRITE(ah, addr, wrData);
 367			rdData = REG_READ(ah, addr);
 368			if (wrData != rdData) {
 369				ath_err(common,
 370					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
 371					addr, wrData, rdData);
 372				return false;
 373			}
 374		}
 375		REG_WRITE(ah, regAddr[i], regHold[i]);
 376	}
 377	udelay(100);
 378
 379	return true;
 380}
 381
 382static void ath9k_hw_init_config(struct ath_hw *ah)
 383{
 384	struct ath_common *common = ath9k_hw_common(ah);
 385
 386	ah->config.dma_beacon_response_time = 1;
 387	ah->config.sw_beacon_response_time = 6;
 388	ah->config.cwm_ignore_extcca = false;
 
 
 
 
 389	ah->config.analog_shiftreg = 1;
 
 390
 391	ah->config.rx_intr_mitigation = true;
 
 
 
 392
 393	if (AR_SREV_9300_20_OR_LATER(ah)) {
 394		ah->config.rimt_last = 500;
 395		ah->config.rimt_first = 2000;
 396	} else {
 397		ah->config.rimt_last = 250;
 398		ah->config.rimt_first = 700;
 399	}
 400
 401	if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
 402		ah->config.pll_pwrsave = 7;
 403
 404	/*
 405	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
 406	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
 407	 * This means we use it for all AR5416 devices, and the few
 408	 * minor PCI AR9280 devices out there.
 409	 *
 410	 * Serialization is required because these devices do not handle
 411	 * well the case of two concurrent reads/writes due to the latency
 412	 * involved. During one read/write another read/write can be issued
 413	 * on another CPU while the previous read/write may still be working
 414	 * on our hardware, if we hit this case the hardware poops in a loop.
 415	 * We prevent this by serializing reads and writes.
 416	 *
 417	 * This issue is not present on PCI-Express devices or pre-AR5416
 418	 * devices (legacy, 802.11abg).
 419	 */
 420	if (num_possible_cpus() > 1)
 421		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
 422
 423	if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
 424		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
 425		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
 426		     !ah->is_pciexpress)) {
 427			ah->config.serialize_regmode = SER_REG_MODE_ON;
 428		} else {
 429			ah->config.serialize_regmode = SER_REG_MODE_OFF;
 430		}
 431	}
 432
 433	ath_dbg(common, RESET, "serialize_regmode is %d\n",
 434		ah->config.serialize_regmode);
 435
 436	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
 437		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
 438	else
 439		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
 440}
 441
 442static void ath9k_hw_init_defaults(struct ath_hw *ah)
 443{
 444	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
 445
 446	regulatory->country_code = CTRY_DEFAULT;
 447	regulatory->power_limit = MAX_RATE_POWER;
 
 448
 449	ah->hw_version.magic = AR5416_MAGIC;
 450	ah->hw_version.subvendorid = 0;
 451
 452	ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE |
 453			       AR_STA_ID1_MCAST_KSRCH;
 
 
 454	if (AR_SREV_9100(ah))
 455		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
 456
 457	ah->slottime = 9;
 458	ah->globaltxtimeout = (u32) -1;
 459	ah->power_mode = ATH9K_PM_UNDEFINED;
 460	ah->htc_reset_init = true;
 461
 462	ah->tpc_enabled = false;
 463
 464	ah->ani_function = ATH9K_ANI_ALL;
 465	if (!AR_SREV_9300_20_OR_LATER(ah))
 466		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
 467
 468	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
 469		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
 470	else
 471		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
 472}
 473
 474static void ath9k_hw_init_macaddr(struct ath_hw *ah)
 475{
 476	struct ath_common *common = ath9k_hw_common(ah);
 
 477	int i;
 478	u16 eeval;
 479	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
 480
 481	/* MAC address may already be loaded via ath9k_platform_data */
 482	if (is_valid_ether_addr(common->macaddr))
 483		return;
 484
 485	for (i = 0; i < 3; i++) {
 486		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
 
 487		common->macaddr[2 * i] = eeval >> 8;
 488		common->macaddr[2 * i + 1] = eeval & 0xff;
 489	}
 
 
 490
 491	if (is_valid_ether_addr(common->macaddr))
 492		return;
 493
 494	ath_err(common, "eeprom contains invalid mac address: %pM\n",
 495		common->macaddr);
 496
 497	random_ether_addr(common->macaddr);
 498	ath_err(common, "random mac address will be used: %pM\n",
 499		common->macaddr);
 500
 501	return;
 502}
 503
 504static int ath9k_hw_post_init(struct ath_hw *ah)
 505{
 506	struct ath_common *common = ath9k_hw_common(ah);
 507	int ecode;
 508
 509	if (common->bus_ops->ath_bus_type != ATH_USB) {
 510		if (!ath9k_hw_chip_test(ah))
 511			return -ENODEV;
 512	}
 513
 514	if (!AR_SREV_9300_20_OR_LATER(ah)) {
 515		ecode = ar9002_hw_rf_claim(ah);
 516		if (ecode != 0)
 517			return ecode;
 518	}
 519
 520	ecode = ath9k_hw_eeprom_init(ah);
 521	if (ecode != 0)
 522		return ecode;
 523
 524	ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
 
 525		ah->eep_ops->get_eeprom_ver(ah),
 526		ah->eep_ops->get_eeprom_rev(ah));
 527
 528	ath9k_hw_ani_init(ah);
 
 
 
 
 
 
 529
 530	/*
 531	 * EEPROM needs to be initialized before we do this.
 532	 * This is required for regulatory compliance.
 533	 */
 534	if (AR_SREV_9300_20_OR_LATER(ah)) {
 535		u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
 536		if ((regdmn & 0xF0) == CTL_FCC) {
 537			ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ;
 538			ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ;
 539		}
 540	}
 541
 542	return 0;
 543}
 544
 545static int ath9k_hw_attach_ops(struct ath_hw *ah)
 546{
 547	if (!AR_SREV_9300_20_OR_LATER(ah))
 548		return ar9002_hw_attach_ops(ah);
 549
 550	ar9003_hw_attach_ops(ah);
 551	return 0;
 552}
 553
 554/* Called for all hardware families */
 555static int __ath9k_hw_init(struct ath_hw *ah)
 556{
 557	struct ath_common *common = ath9k_hw_common(ah);
 558	int r = 0;
 559
 560	ath9k_hw_read_revisions(ah);
 561
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 562	switch (ah->hw_version.macVersion) {
 563	case AR_SREV_VERSION_5416_PCI:
 564	case AR_SREV_VERSION_5416_PCIE:
 565	case AR_SREV_VERSION_9160:
 566	case AR_SREV_VERSION_9100:
 567	case AR_SREV_VERSION_9280:
 568	case AR_SREV_VERSION_9285:
 569	case AR_SREV_VERSION_9287:
 570	case AR_SREV_VERSION_9271:
 571	case AR_SREV_VERSION_9300:
 572	case AR_SREV_VERSION_9330:
 573	case AR_SREV_VERSION_9485:
 574	case AR_SREV_VERSION_9340:
 575	case AR_SREV_VERSION_9462:
 576	case AR_SREV_VERSION_9550:
 577	case AR_SREV_VERSION_9565:
 578	case AR_SREV_VERSION_9531:
 579	case AR_SREV_VERSION_9561:
 580		break;
 581	default:
 582		ath_err(common,
 583			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
 584			ah->hw_version.macVersion, ah->hw_version.macRev);
 585		return -EOPNOTSUPP;
 586	}
 587
 588	/*
 589	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
 590	 * We need to do this to avoid RMW of this register. We cannot
 591	 * read the reg when chip is asleep.
 592	 */
 593	if (AR_SREV_9300_20_OR_LATER(ah)) {
 594		ah->WARegVal = REG_READ(ah, AR_WA);
 595		ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
 596				 AR_WA_ASPM_TIMER_BASED_DISABLE);
 597	}
 598
 599	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
 600		ath_err(common, "Couldn't reset chip\n");
 601		return -EIO;
 602	}
 603
 604	if (AR_SREV_9565(ah)) {
 605		ah->WARegVal |= AR_WA_BIT22;
 606		REG_WRITE(ah, AR_WA, ah->WARegVal);
 607	}
 608
 609	ath9k_hw_init_defaults(ah);
 610	ath9k_hw_init_config(ah);
 611
 612	r = ath9k_hw_attach_ops(ah);
 613	if (r)
 614		return r;
 615
 616	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
 617		ath_err(common, "Couldn't wakeup chip\n");
 618		return -EIO;
 619	}
 620
 621	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
 622	    AR_SREV_9330(ah) || AR_SREV_9550(ah))
 623		ah->is_pciexpress = false;
 624
 625	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
 626	ath9k_hw_init_cal_settings(ah);
 627
 628	if (!ah->is_pciexpress)
 
 
 
 
 
 
 
 
 
 
 
 629		ath9k_hw_disablepcie(ah);
 630
 
 
 
 631	r = ath9k_hw_post_init(ah);
 632	if (r)
 633		return r;
 634
 635	ath9k_hw_init_mode_gain_regs(ah);
 636	r = ath9k_hw_fill_cap_info(ah);
 637	if (r)
 638		return r;
 639
 640	ath9k_hw_init_macaddr(ah);
 641	ath9k_hw_init_hang_checks(ah);
 
 
 
 
 
 
 
 
 
 
 
 
 
 642
 643	common->state = ATH_HW_INITIALIZED;
 644
 645	return 0;
 646}
 647
 648int ath9k_hw_init(struct ath_hw *ah)
 649{
 650	int ret;
 651	struct ath_common *common = ath9k_hw_common(ah);
 652
 653	/* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
 654	switch (ah->hw_version.devid) {
 655	case AR5416_DEVID_PCI:
 656	case AR5416_DEVID_PCIE:
 657	case AR5416_AR9100_DEVID:
 658	case AR9160_DEVID_PCI:
 659	case AR9280_DEVID_PCI:
 660	case AR9280_DEVID_PCIE:
 661	case AR9285_DEVID_PCIE:
 662	case AR9287_DEVID_PCI:
 663	case AR9287_DEVID_PCIE:
 664	case AR2427_DEVID_PCIE:
 665	case AR9300_DEVID_PCIE:
 666	case AR9300_DEVID_AR9485_PCIE:
 667	case AR9300_DEVID_AR9330:
 668	case AR9300_DEVID_AR9340:
 669	case AR9300_DEVID_QCA955X:
 670	case AR9300_DEVID_AR9580:
 671	case AR9300_DEVID_AR9462:
 672	case AR9485_DEVID_AR1111:
 673	case AR9300_DEVID_AR9565:
 674	case AR9300_DEVID_AR953X:
 675	case AR9300_DEVID_QCA956X:
 676		break;
 677	default:
 678		if (common->bus_ops->ath_bus_type == ATH_USB)
 679			break;
 680		ath_err(common, "Hardware device ID 0x%04x not supported\n",
 681			ah->hw_version.devid);
 682		return -EOPNOTSUPP;
 683	}
 684
 685	ret = __ath9k_hw_init(ah);
 686	if (ret) {
 687		ath_err(common,
 688			"Unable to initialize hardware; initialization status: %d\n",
 689			ret);
 690		return ret;
 691	}
 692
 693	ath_dynack_init(ah);
 694
 695	return 0;
 696}
 697EXPORT_SYMBOL(ath9k_hw_init);
 698
 699static void ath9k_hw_init_qos(struct ath_hw *ah)
 700{
 701	ENABLE_REGWRITE_BUFFER(ah);
 702
 703	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
 704	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
 705
 706	REG_WRITE(ah, AR_QOS_NO_ACK,
 707		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
 708		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
 709		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
 710
 711	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
 712	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
 713	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
 714	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
 715	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
 716
 717	REGWRITE_BUFFER_FLUSH(ah);
 718}
 719
 720u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
 721{
 722	struct ath_common *common = ath9k_hw_common(ah);
 723	int i = 0;
 724
 725	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
 726	udelay(100);
 727	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
 728
 729	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
 730
 731		udelay(100);
 732
 733		if (WARN_ON_ONCE(i >= 100)) {
 734			ath_err(common, "PLL4 meaurement not done\n");
 735			break;
 736		}
 737
 738		i++;
 739	}
 740
 741	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
 742}
 743EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
 744
 745static void ath9k_hw_init_pll(struct ath_hw *ah,
 746			      struct ath9k_channel *chan)
 747{
 748	u32 pll;
 749
 750	pll = ath9k_hw_compute_pll_control(ah, chan);
 751
 752	if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
 753		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
 754		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 755			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
 756		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 757			      AR_CH0_DPLL2_KD, 0x40);
 758		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 759			      AR_CH0_DPLL2_KI, 0x4);
 760
 761		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
 762			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
 763		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
 764			      AR_CH0_BB_DPLL1_NINI, 0x58);
 765		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
 766			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
 767
 768		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 769			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
 770		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 771			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
 772		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 773			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
 774
 775		/* program BB PLL phase_shift to 0x6 */
 776		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
 777			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
 778
 779		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
 780			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
 781		udelay(1000);
 782	} else if (AR_SREV_9330(ah)) {
 783		u32 ddr_dpll2, pll_control2, kd;
 784
 785		if (ah->is_clk_25mhz) {
 786			ddr_dpll2 = 0x18e82f01;
 787			pll_control2 = 0xe04a3d;
 788			kd = 0x1d;
 789		} else {
 790			ddr_dpll2 = 0x19e82f01;
 791			pll_control2 = 0x886666;
 792			kd = 0x3d;
 793		}
 794
 795		/* program DDR PLL ki and kd value */
 796		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
 797
 798		/* program DDR PLL phase_shift */
 799		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
 800			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
 801
 802		REG_WRITE(ah, AR_RTC_PLL_CONTROL,
 803			  pll | AR_RTC_9300_PLL_BYPASS);
 804		udelay(1000);
 805
 806		/* program refdiv, nint, frac to RTC register */
 807		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
 808
 809		/* program BB PLL kd and ki value */
 810		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
 811		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
 812
 813		/* program BB PLL phase_shift */
 814		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
 815			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
 816	} else if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
 817		   AR_SREV_9561(ah)) {
 818		u32 regval, pll2_divint, pll2_divfrac, refdiv;
 819
 820		REG_WRITE(ah, AR_RTC_PLL_CONTROL,
 821			  pll | AR_RTC_9300_SOC_PLL_BYPASS);
 822		udelay(1000);
 823
 824		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
 825		udelay(100);
 826
 827		if (ah->is_clk_25mhz) {
 828			if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
 829				pll2_divint = 0x1c;
 830				pll2_divfrac = 0xa3d2;
 831				refdiv = 1;
 832			} else {
 833				pll2_divint = 0x54;
 834				pll2_divfrac = 0x1eb85;
 835				refdiv = 3;
 836			}
 837		} else {
 838			if (AR_SREV_9340(ah)) {
 839				pll2_divint = 88;
 840				pll2_divfrac = 0;
 841				refdiv = 5;
 842			} else {
 843				pll2_divint = 0x11;
 844				pll2_divfrac = (AR_SREV_9531(ah) ||
 845						AR_SREV_9561(ah)) ?
 846						0x26665 : 0x26666;
 847				refdiv = 1;
 848			}
 849		}
 850
 851		regval = REG_READ(ah, AR_PHY_PLL_MODE);
 852		if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
 853			regval |= (0x1 << 22);
 854		else
 855			regval |= (0x1 << 16);
 856		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
 857		udelay(100);
 858
 859		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
 860			  (pll2_divint << 18) | pll2_divfrac);
 861		udelay(100);
 862
 863		regval = REG_READ(ah, AR_PHY_PLL_MODE);
 864		if (AR_SREV_9340(ah))
 865			regval = (regval & 0x80071fff) |
 866				(0x1 << 30) |
 867				(0x1 << 13) |
 868				(0x4 << 26) |
 869				(0x18 << 19);
 870		else if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
 871			regval = (regval & 0x01c00fff) |
 872				(0x1 << 31) |
 873				(0x2 << 29) |
 874				(0xa << 25) |
 875				(0x1 << 19);
 876
 877			if (AR_SREV_9531(ah))
 878				regval |= (0x6 << 12);
 879		} else
 880			regval = (regval & 0x80071fff) |
 881				(0x3 << 30) |
 882				(0x1 << 13) |
 883				(0x4 << 26) |
 884				(0x60 << 19);
 885		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
 886
 887		if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
 888			REG_WRITE(ah, AR_PHY_PLL_MODE,
 889				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xffbfffff);
 890		else
 891			REG_WRITE(ah, AR_PHY_PLL_MODE,
 892				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
 893
 894		udelay(1000);
 895	}
 896
 897	if (AR_SREV_9565(ah))
 898		pll |= 0x40000;
 899	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
 900
 901	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
 902	    AR_SREV_9550(ah))
 903		udelay(1000);
 904
 905	/* Switch the core clock for ar9271 to 117Mhz */
 906	if (AR_SREV_9271(ah)) {
 907		udelay(500);
 908		REG_WRITE(ah, 0x50040, 0x304);
 909	}
 910
 911	udelay(RTC_PLL_SETTLE_DELAY);
 912
 913	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 914}
 915
 916static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
 917					  enum nl80211_iftype opmode)
 918{
 919	u32 sync_default = AR_INTR_SYNC_DEFAULT;
 920	u32 imr_reg = AR_IMR_TXERR |
 921		AR_IMR_TXURN |
 922		AR_IMR_RXERR |
 923		AR_IMR_RXORN |
 924		AR_IMR_BCNMISC;
 925
 926	if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
 927	    AR_SREV_9561(ah))
 928		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
 929
 930	if (AR_SREV_9300_20_OR_LATER(ah)) {
 931		imr_reg |= AR_IMR_RXOK_HP;
 932		if (ah->config.rx_intr_mitigation)
 933			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
 934		else
 935			imr_reg |= AR_IMR_RXOK_LP;
 936
 937	} else {
 938		if (ah->config.rx_intr_mitigation)
 939			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
 940		else
 941			imr_reg |= AR_IMR_RXOK;
 942	}
 943
 944	if (ah->config.tx_intr_mitigation)
 945		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
 946	else
 947		imr_reg |= AR_IMR_TXOK;
 948
 
 
 
 949	ENABLE_REGWRITE_BUFFER(ah);
 950
 951	REG_WRITE(ah, AR_IMR, imr_reg);
 952	ah->imrs2_reg |= AR_IMR_S2_GTT;
 953	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
 954
 955	if (!AR_SREV_9100(ah)) {
 956		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
 957		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
 958		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
 959	}
 960
 961	REGWRITE_BUFFER_FLUSH(ah);
 962
 963	if (AR_SREV_9300_20_OR_LATER(ah)) {
 964		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
 965		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
 966		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
 967		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
 968	}
 969}
 970
 971static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
 972{
 973	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
 974	val = min(val, (u32) 0xFFFF);
 975	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
 976}
 977
 978void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
 979{
 980	u32 val = ath9k_hw_mac_to_clks(ah, us);
 981	val = min(val, (u32) 0xFFFF);
 982	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
 983}
 984
 985void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
 986{
 987	u32 val = ath9k_hw_mac_to_clks(ah, us);
 988	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
 989	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
 990}
 991
 992void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
 993{
 994	u32 val = ath9k_hw_mac_to_clks(ah, us);
 995	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
 996	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
 997}
 998
 999static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1000{
1001	if (tu > 0xFFFF) {
1002		ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
1003			tu);
1004		ah->globaltxtimeout = (u32) -1;
1005		return false;
1006	} else {
1007		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1008		ah->globaltxtimeout = tu;
1009		return true;
1010	}
1011}
1012
1013void ath9k_hw_init_global_settings(struct ath_hw *ah)
1014{
1015	struct ath_common *common = ath9k_hw_common(ah);
 
1016	const struct ath9k_channel *chan = ah->curchan;
1017	int acktimeout, ctstimeout, ack_offset = 0;
1018	int slottime;
1019	int sifstime;
1020	int rx_lat = 0, tx_lat = 0, eifs = 0;
1021	u32 reg;
1022
1023	ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
1024		ah->misc_mode);
1025
1026	if (!chan)
1027		return;
1028
1029	if (ah->misc_mode != 0)
1030		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
1031
1032	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1033		rx_lat = 41;
1034	else
1035		rx_lat = 37;
1036	tx_lat = 54;
1037
1038	if (IS_CHAN_5GHZ(chan))
1039		sifstime = 16;
1040	else
1041		sifstime = 10;
1042
1043	if (IS_CHAN_HALF_RATE(chan)) {
1044		eifs = 175;
1045		rx_lat *= 2;
1046		tx_lat *= 2;
1047		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1048		    tx_lat += 11;
1049
 
1050		sifstime = 32;
1051		ack_offset = 16;
1052		slottime = 13;
1053	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1054		eifs = 340;
1055		rx_lat = (rx_lat * 4) - 1;
1056		tx_lat *= 4;
1057		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1058		    tx_lat += 22;
1059
 
1060		sifstime = 64;
1061		ack_offset = 32;
1062		slottime = 21;
1063	} else {
1064		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1065			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1066			reg = AR_USEC_ASYNC_FIFO;
1067		} else {
1068			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1069				common->clockrate;
1070			reg = REG_READ(ah, AR_USEC);
1071		}
1072		rx_lat = MS(reg, AR_USEC_RX_LAT);
1073		tx_lat = MS(reg, AR_USEC_TX_LAT);
1074
1075		slottime = ah->slottime;
 
 
 
 
1076	}
1077
1078	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1079	slottime += 3 * ah->coverage_class;
1080	acktimeout = slottime + sifstime + ack_offset;
1081	ctstimeout = acktimeout;
1082
1083	/*
1084	 * Workaround for early ACK timeouts, add an offset to match the
1085	 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1086	 * This was initially only meant to work around an issue with delayed
1087	 * BA frames in some implementations, but it has been found to fix ACK
1088	 * timeout issues in other cases as well.
1089	 */
1090	if (IS_CHAN_2GHZ(chan) &&
1091	    !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1092		acktimeout += 64 - sifstime - ah->slottime;
1093		ctstimeout += 48 - sifstime - ah->slottime;
1094	}
1095
1096	if (ah->dynack.enabled) {
1097		acktimeout = ah->dynack.ackto;
1098		ctstimeout = acktimeout;
1099		slottime = (acktimeout - 3) / 2;
1100	} else {
1101		ah->dynack.ackto = acktimeout;
1102	}
1103
1104	ath9k_hw_set_sifs_time(ah, sifstime);
1105	ath9k_hw_setslottime(ah, slottime);
1106	ath9k_hw_set_ack_timeout(ah, acktimeout);
1107	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1108	if (ah->globaltxtimeout != (u32) -1)
1109		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1110
1111	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1112	REG_RMW(ah, AR_USEC,
1113		(common->clockrate - 1) |
1114		SM(rx_lat, AR_USEC_RX_LAT) |
1115		SM(tx_lat, AR_USEC_TX_LAT),
1116		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1117
1118}
1119EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1120
1121void ath9k_hw_deinit(struct ath_hw *ah)
1122{
1123	struct ath_common *common = ath9k_hw_common(ah);
1124
1125	if (common->state < ATH_HW_INITIALIZED)
1126		return;
1127
1128	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
 
 
 
1129}
1130EXPORT_SYMBOL(ath9k_hw_deinit);
1131
1132/*******/
1133/* INI */
1134/*******/
1135
1136u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1137{
1138	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1139
1140	if (IS_CHAN_2GHZ(chan))
 
 
1141		ctl |= CTL_11G;
1142	else
1143		ctl |= CTL_11A;
1144
1145	return ctl;
1146}
1147
1148/****************************************/
1149/* Reset and Channel Switching Routines */
1150/****************************************/
1151
1152static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1153{
1154	struct ath_common *common = ath9k_hw_common(ah);
1155	int txbuf_size;
1156
1157	ENABLE_REGWRITE_BUFFER(ah);
1158
1159	/*
1160	 * set AHB_MODE not to do cacheline prefetches
1161	*/
1162	if (!AR_SREV_9300_20_OR_LATER(ah))
1163		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1164
1165	/*
1166	 * let mac dma reads be in 128 byte chunks
1167	 */
1168	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1169
1170	REGWRITE_BUFFER_FLUSH(ah);
1171
1172	/*
1173	 * Restore TX Trigger Level to its pre-reset value.
1174	 * The initial value depends on whether aggregation is enabled, and is
1175	 * adjusted whenever underruns are detected.
1176	 */
1177	if (!AR_SREV_9300_20_OR_LATER(ah))
1178		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1179
1180	ENABLE_REGWRITE_BUFFER(ah);
1181
1182	/*
1183	 * let mac dma writes be in 128 byte chunks
1184	 */
1185	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1186
1187	/*
1188	 * Setup receive FIFO threshold to hold off TX activities
1189	 */
1190	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1191
1192	if (AR_SREV_9300_20_OR_LATER(ah)) {
1193		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1194		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1195
1196		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1197			ah->caps.rx_status_len);
1198	}
1199
1200	/*
1201	 * reduce the number of usable entries in PCU TXBUF to avoid
1202	 * wrap around issues.
1203	 */
1204	if (AR_SREV_9285(ah)) {
1205		/* For AR9285 the number of Fifos are reduced to half.
1206		 * So set the usable tx buf size also to half to
1207		 * avoid data/delimiter underruns
1208		 */
1209		txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
1210	} else if (AR_SREV_9340_13_OR_LATER(ah)) {
1211		/* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1212		txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
1213	} else {
1214		txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
1215	}
1216
1217	if (!AR_SREV_9271(ah))
1218		REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
1219
1220	REGWRITE_BUFFER_FLUSH(ah);
1221
1222	if (AR_SREV_9300_20_OR_LATER(ah))
1223		ath9k_hw_reset_txstatus_ring(ah);
1224}
1225
1226static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1227{
1228	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1229	u32 set = AR_STA_ID1_KSRCH_MODE;
1230
1231	ENABLE_REG_RMW_BUFFER(ah);
1232	switch (opmode) {
1233	case NL80211_IFTYPE_ADHOC:
1234		if (!AR_SREV_9340_13(ah)) {
1235			set |= AR_STA_ID1_ADHOC;
1236			REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1237			break;
1238		}
1239		/* fall through */
1240	case NL80211_IFTYPE_OCB:
1241	case NL80211_IFTYPE_MESH_POINT:
 
 
 
1242	case NL80211_IFTYPE_AP:
1243		set |= AR_STA_ID1_STA_AP;
1244		/* fall through */
1245	case NL80211_IFTYPE_STATION:
1246		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1247		break;
1248	default:
1249		if (!ah->is_monitoring)
1250			set = 0;
1251		break;
1252	}
1253	REG_RMW(ah, AR_STA_ID1, set, mask);
1254	REG_RMW_BUFFER_FLUSH(ah);
1255}
1256
1257void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1258				   u32 *coef_mantissa, u32 *coef_exponent)
1259{
1260	u32 coef_exp, coef_man;
1261
1262	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1263		if ((coef_scaled >> coef_exp) & 0x1)
1264			break;
1265
1266	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1267
1268	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1269
1270	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1271	*coef_exponent = coef_exp - 16;
1272}
1273
1274/* AR9330 WAR:
1275 * call external reset function to reset WMAC if:
1276 * - doing a cold reset
1277 * - we have pending frames in the TX queues.
1278 */
1279static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type)
1280{
1281	int i, npend = 0;
1282
1283	for (i = 0; i < AR_NUM_QCU; i++) {
1284		npend = ath9k_hw_numtxpending(ah, i);
1285		if (npend)
1286			break;
1287	}
1288
1289	if (ah->external_reset &&
1290	    (npend || type == ATH9K_RESET_COLD)) {
1291		int reset_err = 0;
1292
1293		ath_dbg(ath9k_hw_common(ah), RESET,
1294			"reset MAC via external reset\n");
1295
1296		reset_err = ah->external_reset();
1297		if (reset_err) {
1298			ath_err(ath9k_hw_common(ah),
1299				"External reset failed, err=%d\n",
1300				reset_err);
1301			return false;
1302		}
1303
1304		REG_WRITE(ah, AR_RTC_RESET, 1);
1305	}
1306
1307	return true;
1308}
1309
1310static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1311{
1312	u32 rst_flags;
1313	u32 tmpReg;
1314
1315	if (AR_SREV_9100(ah)) {
1316		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1317			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1318		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1319	}
1320
1321	ENABLE_REGWRITE_BUFFER(ah);
1322
1323	if (AR_SREV_9300_20_OR_LATER(ah)) {
1324		REG_WRITE(ah, AR_WA, ah->WARegVal);
1325		udelay(10);
1326	}
1327
1328	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1329		  AR_RTC_FORCE_WAKE_ON_INT);
1330
1331	if (AR_SREV_9100(ah)) {
1332		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1333			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1334	} else {
1335		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1336		if (AR_SREV_9340(ah))
1337			tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
1338		else
1339			tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
1340				  AR_INTR_SYNC_RADM_CPL_TIMEOUT;
1341
1342		if (tmpReg) {
1343			u32 val;
1344			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1345
1346			val = AR_RC_HOSTIF;
1347			if (!AR_SREV_9300_20_OR_LATER(ah))
1348				val |= AR_RC_AHB;
1349			REG_WRITE(ah, AR_RC, val);
1350
1351		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1352			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1353
1354		rst_flags = AR_RTC_RC_MAC_WARM;
1355		if (type == ATH9K_RESET_COLD)
1356			rst_flags |= AR_RTC_RC_MAC_COLD;
1357	}
1358
1359	if (AR_SREV_9330(ah)) {
1360		if (!ath9k_hw_ar9330_reset_war(ah, type))
1361			return false;
1362	}
 
 
 
 
 
1363
1364	if (ath9k_hw_mci_is_enabled(ah))
1365		ar9003_mci_check_gpm_offset(ah);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1366
1367	/* DMA HALT added to resolve ar9300 and ar9580 bus error during
1368	 * RTC_RC reg read
1369	 */
1370	if (AR_SREV_9300(ah) || AR_SREV_9580(ah)) {
1371		REG_SET_BIT(ah, AR_CFG, AR_CFG_HALT_REQ);
1372		ath9k_hw_wait(ah, AR_CFG, AR_CFG_HALT_ACK, AR_CFG_HALT_ACK,
1373			      20 * AH_WAIT_TIMEOUT);
1374		REG_CLR_BIT(ah, AR_CFG, AR_CFG_HALT_REQ);
1375	}
1376
1377	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1378
1379	REGWRITE_BUFFER_FLUSH(ah);
1380
1381	if (AR_SREV_9300_20_OR_LATER(ah))
1382		udelay(50);
1383	else if (AR_SREV_9100(ah))
1384		mdelay(10);
1385	else
1386		udelay(100);
1387
1388	REG_WRITE(ah, AR_RTC_RC, 0);
1389	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1390		ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
 
1391		return false;
1392	}
1393
1394	if (!AR_SREV_9100(ah))
1395		REG_WRITE(ah, AR_RC, 0);
1396
1397	if (AR_SREV_9100(ah))
1398		udelay(50);
1399
1400	return true;
1401}
1402
1403static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1404{
1405	ENABLE_REGWRITE_BUFFER(ah);
1406
1407	if (AR_SREV_9300_20_OR_LATER(ah)) {
1408		REG_WRITE(ah, AR_WA, ah->WARegVal);
1409		udelay(10);
1410	}
1411
1412	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1413		  AR_RTC_FORCE_WAKE_ON_INT);
1414
1415	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1416		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1417
1418	REG_WRITE(ah, AR_RTC_RESET, 0);
1419
1420	REGWRITE_BUFFER_FLUSH(ah);
1421
1422	udelay(2);
 
1423
1424	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1425		REG_WRITE(ah, AR_RC, 0);
1426
1427	REG_WRITE(ah, AR_RTC_RESET, 1);
1428
1429	if (!ath9k_hw_wait(ah,
1430			   AR_RTC_STATUS,
1431			   AR_RTC_STATUS_M,
1432			   AR_RTC_STATUS_ON,
1433			   AH_WAIT_TIMEOUT)) {
1434		ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
 
1435		return false;
1436	}
1437
1438	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1439}
1440
1441static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1442{
1443	bool ret = false;
1444
1445	if (AR_SREV_9300_20_OR_LATER(ah)) {
1446		REG_WRITE(ah, AR_WA, ah->WARegVal);
1447		udelay(10);
1448	}
1449
1450	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1451		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1452
1453	if (!ah->reset_power_on)
1454		type = ATH9K_RESET_POWER_ON;
1455
1456	switch (type) {
1457	case ATH9K_RESET_POWER_ON:
1458		ret = ath9k_hw_set_reset_power_on(ah);
1459		if (ret)
1460			ah->reset_power_on = true;
1461		break;
1462	case ATH9K_RESET_WARM:
1463	case ATH9K_RESET_COLD:
1464		ret = ath9k_hw_set_reset(ah, type);
1465		break;
1466	default:
1467		break;
1468	}
1469
1470	return ret;
1471}
1472
1473static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1474				struct ath9k_channel *chan)
1475{
1476	int reset_type = ATH9K_RESET_WARM;
1477
1478	if (AR_SREV_9280(ah)) {
1479		if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1480			reset_type = ATH9K_RESET_POWER_ON;
1481		else
1482			reset_type = ATH9K_RESET_COLD;
1483	} else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1484		   (REG_READ(ah, AR_CR) & AR_CR_RXE))
1485		reset_type = ATH9K_RESET_COLD;
1486
1487	if (!ath9k_hw_set_reset_reg(ah, reset_type))
1488		return false;
1489
1490	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1491		return false;
1492
1493	ah->chip_fullsleep = false;
1494
1495	if (AR_SREV_9330(ah))
1496		ar9003_hw_internal_regulator_apply(ah);
1497	ath9k_hw_init_pll(ah, chan);
 
1498
1499	return true;
1500}
1501
1502static bool ath9k_hw_channel_change(struct ath_hw *ah,
1503				    struct ath9k_channel *chan)
1504{
 
1505	struct ath_common *common = ath9k_hw_common(ah);
1506	struct ath9k_hw_capabilities *pCap = &ah->caps;
1507	bool band_switch = false, mode_diff = false;
1508	u8 ini_reloaded = 0;
1509	u32 qnum;
1510	int r;
1511
1512	if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
1513		u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags;
1514		band_switch = !!(flags_diff & CHANNEL_5GHZ);
1515		mode_diff = !!(flags_diff & ~CHANNEL_HT);
1516	}
1517
1518	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1519		if (ath9k_hw_numtxpending(ah, qnum)) {
1520			ath_dbg(common, QUEUE,
1521				"Transmit frames pending on queue %d\n", qnum);
1522			return false;
1523		}
1524	}
1525
1526	if (!ath9k_hw_rfbus_req(ah)) {
1527		ath_err(common, "Could not kill baseband RX\n");
1528		return false;
1529	}
1530
1531	if (band_switch || mode_diff) {
1532		ath9k_hw_mark_phy_inactive(ah);
1533		udelay(5);
1534
1535		if (band_switch)
1536			ath9k_hw_init_pll(ah, chan);
1537
1538		if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1539			ath_err(common, "Failed to do fast channel change\n");
1540			return false;
1541		}
1542	}
1543
1544	ath9k_hw_set_channel_regs(ah, chan);
1545
1546	r = ath9k_hw_rf_set_freq(ah, chan);
1547	if (r) {
1548		ath_err(common, "Failed to set channel\n");
1549		return false;
1550	}
1551	ath9k_hw_set_clockrate(ah);
1552	ath9k_hw_apply_txpower(ah, chan, false);
1553
1554	ath9k_hw_set_delta_slope(ah, chan);
1555	ath9k_hw_spur_mitigate_freq(ah, chan);
 
 
 
 
1556
1557	if (band_switch || ini_reloaded)
1558		ah->eep_ops->set_board_values(ah, chan);
1559
1560	ath9k_hw_init_bb(ah, chan);
1561	ath9k_hw_rfbus_done(ah);
1562
1563	if (band_switch || ini_reloaded) {
1564		ah->ah_flags |= AH_FASTCC;
1565		ath9k_hw_init_cal(ah, chan);
1566		ah->ah_flags &= ~AH_FASTCC;
1567	}
1568
1569	return true;
1570}
1571
1572static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1573{
1574	u32 gpio_mask = ah->gpio_mask;
1575	int i;
1576
1577	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1578		if (!(gpio_mask & 1))
1579			continue;
1580
1581		ath9k_hw_gpio_request_out(ah, i, NULL,
1582					  AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1583		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1584		ath9k_hw_gpio_free(ah, i);
1585	}
1586}
1587
1588void ath9k_hw_check_nav(struct ath_hw *ah)
1589{
1590	struct ath_common *common = ath9k_hw_common(ah);
1591	u32 val;
1592
1593	val = REG_READ(ah, AR_NAV);
1594	if (val != 0xdeadbeef && val > 0x7fff) {
1595		ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val);
1596		REG_WRITE(ah, AR_NAV, 0);
1597	}
1598}
1599EXPORT_SYMBOL(ath9k_hw_check_nav);
1600
1601bool ath9k_hw_check_alive(struct ath_hw *ah)
1602{
1603	int count = 50;
1604	u32 reg, last_val;
1605
1606	if (AR_SREV_9300(ah))
1607		return !ath9k_hw_detect_mac_hang(ah);
1608
1609	if (AR_SREV_9285_12_OR_LATER(ah))
1610		return true;
1611
1612	last_val = REG_READ(ah, AR_OBS_BUS_1);
1613	do {
1614		reg = REG_READ(ah, AR_OBS_BUS_1);
1615		if (reg != last_val)
1616			return true;
1617
1618		udelay(1);
1619		last_val = reg;
1620		if ((reg & 0x7E7FFFEF) == 0x00702400)
1621			continue;
1622
1623		switch (reg & 0x7E000B00) {
1624		case 0x1E000000:
1625		case 0x52000B00:
1626		case 0x18000B00:
1627			continue;
1628		default:
1629			return true;
1630		}
1631	} while (count-- > 0);
1632
1633	return false;
1634}
1635EXPORT_SYMBOL(ath9k_hw_check_alive);
1636
1637static void ath9k_hw_init_mfp(struct ath_hw *ah)
1638{
1639	/* Setup MFP options for CCMP */
1640	if (AR_SREV_9280_20_OR_LATER(ah)) {
1641		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1642		 * frames when constructing CCMP AAD. */
1643		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1644			      0xc7ff);
1645		if (AR_SREV_9271(ah) || AR_DEVID_7010(ah))
1646			ah->sw_mgmt_crypto_tx = true;
1647		else
1648			ah->sw_mgmt_crypto_tx = false;
1649		ah->sw_mgmt_crypto_rx = false;
1650	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1651		/* Disable hardware crypto for management frames */
1652		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1653			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1654		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1655			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1656		ah->sw_mgmt_crypto_tx = true;
1657		ah->sw_mgmt_crypto_rx = true;
1658	} else {
1659		ah->sw_mgmt_crypto_tx = true;
1660		ah->sw_mgmt_crypto_rx = true;
1661	}
1662}
1663
1664static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1665				  u32 macStaId1, u32 saveDefAntenna)
1666{
1667	struct ath_common *common = ath9k_hw_common(ah);
1668
1669	ENABLE_REGWRITE_BUFFER(ah);
1670
1671	REG_RMW(ah, AR_STA_ID1, macStaId1
1672		  | AR_STA_ID1_RTS_USE_DEF
1673		  | ah->sta_id1_defaults,
1674		  ~AR_STA_ID1_SADH_MASK);
1675	ath_hw_setbssidmask(common);
1676	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1677	ath9k_hw_write_associd(ah);
1678	REG_WRITE(ah, AR_ISR, ~0);
1679	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1680
1681	REGWRITE_BUFFER_FLUSH(ah);
1682
1683	ath9k_hw_set_operating_mode(ah, ah->opmode);
1684}
1685
1686static void ath9k_hw_init_queues(struct ath_hw *ah)
1687{
1688	int i;
1689
1690	ENABLE_REGWRITE_BUFFER(ah);
1691
1692	for (i = 0; i < AR_NUM_DCU; i++)
1693		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1694
1695	REGWRITE_BUFFER_FLUSH(ah);
1696
1697	ah->intr_txqs = 0;
1698	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1699		ath9k_hw_resettxqueue(ah, i);
1700}
1701
1702/*
1703 * For big endian systems turn on swapping for descriptors
1704 */
1705static void ath9k_hw_init_desc(struct ath_hw *ah)
1706{
1707	struct ath_common *common = ath9k_hw_common(ah);
1708
1709	if (AR_SREV_9100(ah)) {
1710		u32 mask;
1711		mask = REG_READ(ah, AR_CFG);
1712		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1713			ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1714				mask);
1715		} else {
1716			mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1717			REG_WRITE(ah, AR_CFG, mask);
1718			ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1719				REG_READ(ah, AR_CFG));
1720		}
1721	} else {
1722		if (common->bus_ops->ath_bus_type == ATH_USB) {
1723			/* Configure AR9271 target WLAN */
1724			if (AR_SREV_9271(ah))
1725				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1726			else
1727				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1728		}
1729#ifdef __BIG_ENDIAN
1730		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1731			 AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
1732			 AR_SREV_9561(ah))
1733			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1734		else
1735			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1736#endif
1737	}
1738}
1739
1740/*
1741 * Fast channel change:
1742 * (Change synthesizer based on channel freq without resetting chip)
1743 */
1744static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1745{
1746	struct ath_common *common = ath9k_hw_common(ah);
1747	struct ath9k_hw_capabilities *pCap = &ah->caps;
1748	int ret;
1749
1750	if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1751		goto fail;
1752
1753	if (ah->chip_fullsleep)
1754		goto fail;
1755
1756	if (!ah->curchan)
1757		goto fail;
1758
1759	if (chan->channel == ah->curchan->channel)
1760		goto fail;
1761
1762	if ((ah->curchan->channelFlags | chan->channelFlags) &
1763	    (CHANNEL_HALF | CHANNEL_QUARTER))
1764		goto fail;
1765
1766	/*
1767	 * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1768	 */
1769	if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) &&
1770	    ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT))
1771		goto fail;
1772
1773	if (!ath9k_hw_check_alive(ah))
1774		goto fail;
1775
1776	/*
1777	 * For AR9462, make sure that calibration data for
1778	 * re-using are present.
1779	 */
1780	if (AR_SREV_9462(ah) && (ah->caldata &&
1781				 (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) ||
1782				  !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) ||
1783				  !test_bit(RTT_DONE, &ah->caldata->cal_flags))))
1784		goto fail;
1785
1786	ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1787		ah->curchan->channel, chan->channel);
1788
1789	ret = ath9k_hw_channel_change(ah, chan);
1790	if (!ret)
1791		goto fail;
1792
1793	if (ath9k_hw_mci_is_enabled(ah))
1794		ar9003_mci_2g5g_switch(ah, false);
1795
1796	ath9k_hw_loadnf(ah, ah->curchan);
1797	ath9k_hw_start_nfcal(ah, true);
1798
1799	if (AR_SREV_9271(ah))
1800		ar9002_hw_load_ani_reg(ah, chan);
1801
1802	return 0;
1803fail:
1804	return -EINVAL;
1805}
1806
1807u32 ath9k_hw_get_tsf_offset(struct timespec *last, struct timespec *cur)
1808{
1809	struct timespec ts;
1810	s64 usec;
1811
1812	if (!cur) {
1813		getrawmonotonic(&ts);
1814		cur = &ts;
1815	}
1816
1817	usec = cur->tv_sec * 1000000ULL + cur->tv_nsec / 1000;
1818	usec -= last->tv_sec * 1000000ULL + last->tv_nsec / 1000;
1819
1820	return (u32) usec;
1821}
1822EXPORT_SYMBOL(ath9k_hw_get_tsf_offset);
1823
1824int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1825		   struct ath9k_hw_cal_data *caldata, bool fastcc)
1826{
1827	struct ath_common *common = ath9k_hw_common(ah);
1828	u32 saveLedState;
 
1829	u32 saveDefAntenna;
1830	u32 macStaId1;
1831	struct timespec tsf_ts;
1832	u32 tsf_offset;
1833	u64 tsf = 0;
1834	int r;
1835	bool start_mci_reset = false;
1836	bool save_fullsleep = ah->chip_fullsleep;
1837
1838	if (ath9k_hw_mci_is_enabled(ah)) {
1839		start_mci_reset = ar9003_mci_start_reset(ah, chan);
1840		if (start_mci_reset)
1841			return 0;
1842	}
1843
1844	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1845		return -EIO;
1846
1847	if (ah->curchan && !ah->chip_fullsleep)
1848		ath9k_hw_getnf(ah, ah->curchan);
1849
1850	ah->caldata = caldata;
1851	if (caldata && (chan->channel != caldata->channel ||
1852			chan->channelFlags != caldata->channelFlags)) {
 
 
1853		/* Operating channel changed, reset channel calibration data */
1854		memset(caldata, 0, sizeof(*caldata));
1855		ath9k_init_nfcal_hist_buffer(ah, chan);
1856	} else if (caldata) {
1857		clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags);
1858	}
1859	ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor);
1860
1861	if (fastcc) {
1862		r = ath9k_hw_do_fastcc(ah, chan);
1863		if (!r)
1864			return r;
 
 
 
 
 
 
 
 
 
 
 
1865	}
1866
1867	if (ath9k_hw_mci_is_enabled(ah))
1868		ar9003_mci_stop_bt(ah, save_fullsleep);
1869
1870	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1871	if (saveDefAntenna == 0)
1872		saveDefAntenna = 1;
1873
1874	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1875
1876	/* Save TSF before chip reset, a cold reset clears it */
1877	getrawmonotonic(&tsf_ts);
1878	tsf = ath9k_hw_gettsf64(ah);
 
1879
1880	saveLedState = REG_READ(ah, AR_CFG_LED) &
1881		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1882		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1883
1884	ath9k_hw_mark_phy_inactive(ah);
1885
1886	ah->paprd_table_write_done = false;
1887
1888	/* Only required on the first reset */
1889	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1890		REG_WRITE(ah,
1891			  AR9271_RESET_POWER_DOWN_CONTROL,
1892			  AR9271_RADIO_RF_RST);
1893		udelay(50);
1894	}
1895
1896	if (!ath9k_hw_chip_reset(ah, chan)) {
1897		ath_err(common, "Chip reset failed\n");
1898		return -EINVAL;
1899	}
1900
1901	/* Only required on the first reset */
1902	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1903		ah->htc_reset_init = false;
1904		REG_WRITE(ah,
1905			  AR9271_RESET_POWER_DOWN_CONTROL,
1906			  AR9271_GATE_MAC_CTL);
1907		udelay(50);
1908	}
1909
1910	/* Restore TSF */
1911	tsf_offset = ath9k_hw_get_tsf_offset(&tsf_ts, NULL);
1912	ath9k_hw_settsf64(ah, tsf + tsf_offset);
1913
1914	if (AR_SREV_9280_20_OR_LATER(ah))
1915		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1916
1917	if (!AR_SREV_9300_20_OR_LATER(ah))
1918		ar9002_hw_enable_async_fifo(ah);
1919
1920	r = ath9k_hw_process_ini(ah, chan);
1921	if (r)
1922		return r;
1923
1924	ath9k_hw_set_rfmode(ah, chan);
1925
1926	if (ath9k_hw_mci_is_enabled(ah))
1927		ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1928
1929	/*
1930	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1931	 * right after the chip reset. When that happens, write a new
1932	 * value after the initvals have been applied.
 
1933	 */
1934	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1935		tsf_offset = ath9k_hw_get_tsf_offset(&tsf_ts, NULL);
1936		ath9k_hw_settsf64(ah, tsf + tsf_offset);
1937	}
1938
1939	ath9k_hw_init_mfp(ah);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1940
1941	ath9k_hw_set_delta_slope(ah, chan);
1942	ath9k_hw_spur_mitigate_freq(ah, chan);
1943	ah->eep_ops->set_board_values(ah, chan);
1944
1945	ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1946
1947	r = ath9k_hw_rf_set_freq(ah, chan);
1948	if (r)
1949		return r;
1950
1951	ath9k_hw_set_clockrate(ah);
1952
1953	ath9k_hw_init_queues(ah);
 
 
 
 
 
 
 
 
 
 
1954	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1955	ath9k_hw_ani_cache_ini_regs(ah);
1956	ath9k_hw_init_qos(ah);
1957
1958	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1959		ath9k_hw_gpio_request_in(ah, ah->rfkill_gpio, "ath9k-rfkill");
1960
1961	ath9k_hw_init_global_settings(ah);
1962
1963	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1964		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1965			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1966		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1967			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1968		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1969			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1970	}
1971
1972	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1973
1974	ath9k_hw_set_dma(ah);
1975
1976	if (!ath9k_hw_mci_is_enabled(ah))
1977		REG_WRITE(ah, AR_OBS, 8);
1978
1979	ENABLE_REG_RMW_BUFFER(ah);
1980	if (ah->config.rx_intr_mitigation) {
1981		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, ah->config.rimt_last);
1982		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, ah->config.rimt_first);
1983	}
1984
1985	if (ah->config.tx_intr_mitigation) {
1986		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1987		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1988	}
1989	REG_RMW_BUFFER_FLUSH(ah);
1990
1991	ath9k_hw_init_bb(ah, chan);
1992
1993	if (caldata) {
1994		clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
1995		clear_bit(TXCLCAL_DONE, &caldata->cal_flags);
1996	}
1997	if (!ath9k_hw_init_cal(ah, chan))
1998		return -EIO;
1999
2000	if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
2001		return -EIO;
2002
2003	ENABLE_REGWRITE_BUFFER(ah);
2004
2005	ath9k_hw_restore_chainmask(ah);
2006	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2007
2008	REGWRITE_BUFFER_FLUSH(ah);
2009
2010	ath9k_hw_gen_timer_start_tsf2(ah);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2011
2012	ath9k_hw_init_desc(ah);
2013
2014	if (ath9k_hw_btcoex_is_enabled(ah))
2015		ath9k_hw_btcoex_enable(ah);
2016
2017	if (ath9k_hw_mci_is_enabled(ah))
2018		ar9003_mci_check_bt(ah);
2019
2020	if (AR_SREV_9300_20_OR_LATER(ah)) {
2021		ath9k_hw_loadnf(ah, chan);
2022		ath9k_hw_start_nfcal(ah, true);
2023	}
2024
2025	if (AR_SREV_9300_20_OR_LATER(ah))
2026		ar9003_hw_bb_watchdog_config(ah);
2027
2028	if (ah->config.hw_hang_checks & HW_PHYRESTART_CLC_WAR)
2029		ar9003_hw_disable_phy_restart(ah);
 
2030
2031	ath9k_hw_apply_gpio_override(ah);
2032
2033	if (AR_SREV_9565(ah) && common->bt_ant_diversity)
2034		REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
2035
2036	if (ah->hw->conf.radar_enabled) {
2037		/* set HW specific DFS configuration */
2038		ah->radar_conf.ext_channel = IS_CHAN_HT40(chan);
2039		ath9k_hw_set_radar_params(ah);
2040	}
2041
2042	return 0;
2043}
2044EXPORT_SYMBOL(ath9k_hw_reset);
2045
2046/******************************/
2047/* Power Management (Chipset) */
2048/******************************/
2049
2050/*
2051 * Notify Power Mgt is disabled in self-generated frames.
2052 * If requested, force chip to sleep.
2053 */
2054static void ath9k_set_power_sleep(struct ath_hw *ah)
2055{
2056	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
 
 
 
 
 
 
 
 
 
2057
2058	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2059		REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
2060		REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
2061		REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
2062		/* xxx Required for WLAN only case ? */
2063		REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
2064		udelay(100);
2065	}
2066
2067	/*
2068	 * Clear the RTC force wake bit to allow the
2069	 * mac to go to sleep.
2070	 */
2071	REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2072
2073	if (ath9k_hw_mci_is_enabled(ah))
2074		udelay(100);
2075
2076	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2077		REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2078
2079	/* Shutdown chip. Active low */
2080	if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2081		REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
2082		udelay(2);
2083	}
2084
2085	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2086	if (AR_SREV_9300_20_OR_LATER(ah))
2087		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
 
2088}
2089
2090/*
2091 * Notify Power Management is enabled in self-generating
2092 * frames. If request, set power mode of chip to
2093 * auto/normal.  Duration in units of 128us (1/8 TU).
2094 */
2095static void ath9k_set_power_network_sleep(struct ath_hw *ah)
2096{
2097	struct ath9k_hw_capabilities *pCap = &ah->caps;
2098
2099	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
 
 
2100
2101	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2102		/* Set WakeOnInterrupt bit; clear ForceWake bit */
2103		REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2104			  AR_RTC_FORCE_WAKE_ON_INT);
2105	} else {
2106
2107		/* When chip goes into network sleep, it could be waken
2108		 * up by MCI_INT interrupt caused by BT's HW messages
2109		 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2110		 * rate (~100us). This will cause chip to leave and
2111		 * re-enter network sleep mode frequently, which in
2112		 * consequence will have WLAN MCI HW to generate lots of
2113		 * SYS_WAKING and SYS_SLEEPING messages which will make
2114		 * BT CPU to busy to process.
2115		 */
2116		if (ath9k_hw_mci_is_enabled(ah))
2117			REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2118				    AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2119		/*
2120		 * Clear the RTC force wake bit to allow the
2121		 * mac to go to sleep.
2122		 */
2123		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2124
2125		if (ath9k_hw_mci_is_enabled(ah))
2126			udelay(30);
2127	}
2128
2129	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2130	if (AR_SREV_9300_20_OR_LATER(ah))
2131		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2132}
2133
2134static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2135{
2136	u32 val;
2137	int i;
2138
2139	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2140	if (AR_SREV_9300_20_OR_LATER(ah)) {
2141		REG_WRITE(ah, AR_WA, ah->WARegVal);
2142		udelay(10);
2143	}
2144
2145	if ((REG_READ(ah, AR_RTC_STATUS) &
2146	     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2147		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2148			return false;
 
 
 
 
 
2149		}
2150		if (!AR_SREV_9300_20_OR_LATER(ah))
2151			ath9k_hw_init_pll(ah, NULL);
2152	}
2153	if (AR_SREV_9100(ah))
2154		REG_SET_BIT(ah, AR_RTC_RESET,
2155			    AR_RTC_RESET_EN);
2156
2157	REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2158		    AR_RTC_FORCE_WAKE_EN);
2159	if (AR_SREV_9100(ah))
2160		mdelay(10);
2161	else
2162		udelay(50);
2163
2164	for (i = POWER_UP_TIME / 50; i > 0; i--) {
2165		val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2166		if (val == AR_RTC_STATUS_ON)
2167			break;
2168		udelay(50);
2169		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2170			    AR_RTC_FORCE_WAKE_EN);
2171	}
2172	if (i == 0) {
2173		ath_err(ath9k_hw_common(ah),
2174			"Failed to wakeup in %uus\n",
2175			POWER_UP_TIME / 20);
2176		return false;
 
2177	}
2178
2179	if (ath9k_hw_mci_is_enabled(ah))
2180		ar9003_mci_set_power_awake(ah);
2181
2182	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2183
2184	return true;
2185}
2186
2187bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2188{
2189	struct ath_common *common = ath9k_hw_common(ah);
2190	int status = true;
2191	static const char *modes[] = {
2192		"AWAKE",
2193		"FULL-SLEEP",
2194		"NETWORK SLEEP",
2195		"UNDEFINED"
2196	};
2197
2198	if (ah->power_mode == mode)
2199		return status;
2200
2201	ath_dbg(common, RESET, "%s -> %s\n",
2202		modes[ah->power_mode], modes[mode]);
2203
2204	switch (mode) {
2205	case ATH9K_PM_AWAKE:
2206		status = ath9k_hw_set_power_awake(ah);
2207		break;
2208	case ATH9K_PM_FULL_SLEEP:
2209		if (ath9k_hw_mci_is_enabled(ah))
2210			ar9003_mci_set_full_sleep(ah);
2211
2212		ath9k_set_power_sleep(ah);
2213		ah->chip_fullsleep = true;
2214		break;
2215	case ATH9K_PM_NETWORK_SLEEP:
2216		ath9k_set_power_network_sleep(ah);
2217		break;
2218	default:
2219		ath_err(common, "Unknown power mode %u\n", mode);
2220		return false;
2221	}
2222	ah->power_mode = mode;
2223
2224	/*
2225	 * XXX: If this warning never comes up after a while then
2226	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2227	 * ath9k_hw_setpower() return type void.
2228	 */
2229
2230	if (!(ah->ah_flags & AH_UNPLUGGED))
2231		ATH_DBG_WARN_ON_ONCE(!status);
2232
2233	return status;
2234}
2235EXPORT_SYMBOL(ath9k_hw_setpower);
2236
2237/*******************/
2238/* Beacon Handling */
2239/*******************/
2240
2241void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2242{
2243	int flags = 0;
2244
2245	ENABLE_REGWRITE_BUFFER(ah);
2246
2247	switch (ah->opmode) {
2248	case NL80211_IFTYPE_ADHOC:
 
2249		REG_SET_BIT(ah, AR_TXCFG,
2250			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2251	case NL80211_IFTYPE_MESH_POINT:
 
 
2252	case NL80211_IFTYPE_AP:
2253		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2254		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2255			  TU_TO_USEC(ah->config.dma_beacon_response_time));
2256		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2257			  TU_TO_USEC(ah->config.sw_beacon_response_time));
2258		flags |=
2259			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2260		break;
2261	default:
2262		ath_dbg(ath9k_hw_common(ah), BEACON,
2263			"%s: unsupported opmode: %d\n", __func__, ah->opmode);
 
2264		return;
2265		break;
2266	}
2267
2268	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2269	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2270	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
 
2271
2272	REGWRITE_BUFFER_FLUSH(ah);
2273
2274	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2275}
2276EXPORT_SYMBOL(ath9k_hw_beaconinit);
2277
2278void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2279				    const struct ath9k_beacon_state *bs)
2280{
2281	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2282	struct ath9k_hw_capabilities *pCap = &ah->caps;
2283	struct ath_common *common = ath9k_hw_common(ah);
2284
2285	ENABLE_REGWRITE_BUFFER(ah);
2286
2287	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt);
2288	REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval);
2289	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval);
 
 
 
2290
2291	REGWRITE_BUFFER_FLUSH(ah);
2292
2293	REG_RMW_FIELD(ah, AR_RSSI_THR,
2294		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2295
2296	beaconintval = bs->bs_intval;
2297
2298	if (bs->bs_sleepduration > beaconintval)
2299		beaconintval = bs->bs_sleepduration;
2300
2301	dtimperiod = bs->bs_dtimperiod;
2302	if (bs->bs_sleepduration > dtimperiod)
2303		dtimperiod = bs->bs_sleepduration;
2304
2305	if (beaconintval == dtimperiod)
2306		nextTbtt = bs->bs_nextdtim;
2307	else
2308		nextTbtt = bs->bs_nexttbtt;
2309
2310	ath_dbg(common, BEACON, "next DTIM %u\n", bs->bs_nextdtim);
2311	ath_dbg(common, BEACON, "next beacon %u\n", nextTbtt);
2312	ath_dbg(common, BEACON, "beacon period %u\n", beaconintval);
2313	ath_dbg(common, BEACON, "DTIM period %u\n", dtimperiod);
2314
2315	ENABLE_REGWRITE_BUFFER(ah);
2316
2317	REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP);
2318	REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP);
 
2319
2320	REG_WRITE(ah, AR_SLEEP1,
2321		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2322		  | AR_SLEEP1_ASSUME_DTIM);
2323
2324	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2325		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2326	else
2327		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2328
2329	REG_WRITE(ah, AR_SLEEP2,
2330		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2331
2332	REG_WRITE(ah, AR_TIM_PERIOD, beaconintval);
2333	REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod);
2334
2335	REGWRITE_BUFFER_FLUSH(ah);
2336
2337	REG_SET_BIT(ah, AR_TIMER_MODE,
2338		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2339		    AR_DTIM_TIMER_EN);
2340
2341	/* TSF Out of Range Threshold */
2342	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2343}
2344EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2345
2346/*******************/
2347/* HW Capabilities */
2348/*******************/
2349
2350static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2351{
2352	eeprom_chainmask &= chip_chainmask;
2353	if (eeprom_chainmask)
2354		return eeprom_chainmask;
2355	else
2356		return chip_chainmask;
2357}
2358
2359/**
2360 * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2361 * @ah: the atheros hardware data structure
2362 *
2363 * We enable DFS support upstream on chipsets which have passed a series
2364 * of tests. The testing requirements are going to be documented. Desired
2365 * test requirements are documented at:
2366 *
2367 * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2368 *
2369 * Once a new chipset gets properly tested an individual commit can be used
2370 * to document the testing for DFS for that chipset.
2371 */
2372static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2373{
2374
2375	switch (ah->hw_version.macVersion) {
2376	/* for temporary testing DFS with 9280 */
2377	case AR_SREV_VERSION_9280:
2378	/* AR9580 will likely be our first target to get testing on */
2379	case AR_SREV_VERSION_9580:
2380		return true;
2381	default:
2382		return false;
2383	}
2384}
2385
2386static void ath9k_gpio_cap_init(struct ath_hw *ah)
2387{
2388	struct ath9k_hw_capabilities *pCap = &ah->caps;
2389
2390	if (AR_SREV_9271(ah)) {
2391		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2392		pCap->gpio_mask = AR9271_GPIO_MASK;
2393	} else if (AR_DEVID_7010(ah)) {
2394		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2395		pCap->gpio_mask = AR7010_GPIO_MASK;
2396	} else if (AR_SREV_9287(ah)) {
2397		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2398		pCap->gpio_mask = AR9287_GPIO_MASK;
2399	} else if (AR_SREV_9285(ah)) {
2400		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2401		pCap->gpio_mask = AR9285_GPIO_MASK;
2402	} else if (AR_SREV_9280(ah)) {
2403		pCap->num_gpio_pins = AR9280_NUM_GPIO;
2404		pCap->gpio_mask = AR9280_GPIO_MASK;
2405	} else if (AR_SREV_9300(ah)) {
2406		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2407		pCap->gpio_mask = AR9300_GPIO_MASK;
2408	} else if (AR_SREV_9330(ah)) {
2409		pCap->num_gpio_pins = AR9330_NUM_GPIO;
2410		pCap->gpio_mask = AR9330_GPIO_MASK;
2411	} else if (AR_SREV_9340(ah)) {
2412		pCap->num_gpio_pins = AR9340_NUM_GPIO;
2413		pCap->gpio_mask = AR9340_GPIO_MASK;
2414	} else if (AR_SREV_9462(ah)) {
2415		pCap->num_gpio_pins = AR9462_NUM_GPIO;
2416		pCap->gpio_mask = AR9462_GPIO_MASK;
2417	} else if (AR_SREV_9485(ah)) {
2418		pCap->num_gpio_pins = AR9485_NUM_GPIO;
2419		pCap->gpio_mask = AR9485_GPIO_MASK;
2420	} else if (AR_SREV_9531(ah)) {
2421		pCap->num_gpio_pins = AR9531_NUM_GPIO;
2422		pCap->gpio_mask = AR9531_GPIO_MASK;
2423	} else if (AR_SREV_9550(ah)) {
2424		pCap->num_gpio_pins = AR9550_NUM_GPIO;
2425		pCap->gpio_mask = AR9550_GPIO_MASK;
2426	} else if (AR_SREV_9561(ah)) {
2427		pCap->num_gpio_pins = AR9561_NUM_GPIO;
2428		pCap->gpio_mask = AR9561_GPIO_MASK;
2429	} else if (AR_SREV_9565(ah)) {
2430		pCap->num_gpio_pins = AR9565_NUM_GPIO;
2431		pCap->gpio_mask = AR9565_GPIO_MASK;
2432	} else if (AR_SREV_9580(ah)) {
2433		pCap->num_gpio_pins = AR9580_NUM_GPIO;
2434		pCap->gpio_mask = AR9580_GPIO_MASK;
2435	} else {
2436		pCap->num_gpio_pins = AR_NUM_GPIO;
2437		pCap->gpio_mask = AR_GPIO_MASK;
2438	}
2439}
2440
2441int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2442{
2443	struct ath9k_hw_capabilities *pCap = &ah->caps;
2444	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2445	struct ath_common *common = ath9k_hw_common(ah);
 
 
2446
2447	u16 eeval;
2448	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2449
2450	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2451	regulatory->current_rd = eeval;
2452
 
 
 
 
 
2453	if (ah->opmode != NL80211_IFTYPE_AP &&
2454	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2455		if (regulatory->current_rd == 0x64 ||
2456		    regulatory->current_rd == 0x65)
2457			regulatory->current_rd += 5;
2458		else if (regulatory->current_rd == 0x41)
2459			regulatory->current_rd = 0x43;
2460		ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2461			regulatory->current_rd);
2462	}
2463
2464	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2465
2466	if (eeval & AR5416_OPFLAGS_11A) {
2467		if (ah->disable_5ghz)
2468			ath_warn(common, "disabling 5GHz band\n");
2469		else
2470			pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2471	}
2472
2473	if (eeval & AR5416_OPFLAGS_11G) {
2474		if (ah->disable_2ghz)
2475			ath_warn(common, "disabling 2GHz band\n");
2476		else
2477			pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2478	}
2479
2480	if ((pCap->hw_caps & (ATH9K_HW_CAP_2GHZ | ATH9K_HW_CAP_5GHZ)) == 0) {
2481		ath_err(common, "both bands are disabled\n");
2482		return -EINVAL;
2483	}
2484
2485	ath9k_gpio_cap_init(ah);
 
2486
2487	if (AR_SREV_9485(ah) ||
2488	    AR_SREV_9285(ah) ||
2489	    AR_SREV_9330(ah) ||
2490	    AR_SREV_9565(ah))
2491		pCap->chip_chainmask = 1;
2492	else if (!AR_SREV_9280_20_OR_LATER(ah))
2493		pCap->chip_chainmask = 7;
2494	else if (!AR_SREV_9300_20_OR_LATER(ah) ||
2495		 AR_SREV_9340(ah) ||
2496		 AR_SREV_9462(ah) ||
2497		 AR_SREV_9531(ah))
2498		pCap->chip_chainmask = 3;
2499	else
2500		pCap->chip_chainmask = 7;
2501
2502	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2503	/*
2504	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2505	 * the EEPROM.
2506	 */
2507	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2508	    !(eeval & AR5416_OPFLAGS_11A) &&
2509	    !(AR_SREV_9271(ah)))
2510		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2511		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2512	else if (AR_SREV_9100(ah))
2513		pCap->rx_chainmask = 0x7;
2514	else
2515		/* Use rx_chainmask from EEPROM. */
2516		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2517
2518	pCap->tx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->tx_chainmask);
2519	pCap->rx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->rx_chainmask);
2520	ah->txchainmask = pCap->tx_chainmask;
2521	ah->rxchainmask = pCap->rx_chainmask;
2522
2523	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2524
2525	/* enable key search for every frame in an aggregate */
2526	if (AR_SREV_9300_20_OR_LATER(ah))
2527		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2528
2529	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2530
2531	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2532		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2533	else
2534		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2535
2536	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
 
 
 
 
 
 
 
 
 
 
 
 
2537		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2538	else
2539		pCap->rts_aggr_limit = (8 * 1024);
 
2540
2541#ifdef CONFIG_ATH9K_RFKILL
2542	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2543	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2544		ah->rfkill_gpio =
2545			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2546		ah->rfkill_polarity =
2547			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2548
2549		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2550	}
2551#endif
2552	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2553		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2554	else
2555		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2556
2557	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2558		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2559	else
2560		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2561
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2562	if (AR_SREV_9300_20_OR_LATER(ah)) {
2563		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2564		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) &&
2565		    !AR_SREV_9561(ah) && !AR_SREV_9565(ah))
2566			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2567
2568		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2569		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2570		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2571		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2572		pCap->txs_len = sizeof(struct ar9003_txs);
 
 
 
2573	} else {
2574		pCap->tx_desc_len = sizeof(struct ath_desc);
2575		if (AR_SREV_9280_20(ah))
2576			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2577	}
2578
2579	if (AR_SREV_9300_20_OR_LATER(ah))
2580		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2581
2582	if (AR_SREV_9561(ah))
2583		ah->ent_mode = 0x3BDA000;
2584	else if (AR_SREV_9300_20_OR_LATER(ah))
2585		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2586
2587	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2588		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2589
2590	if (AR_SREV_9285(ah)) {
2591		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2592			ant_div_ctl1 =
2593				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2594			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
2595				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2596				ath_info(common, "Enable LNA combining\n");
2597			}
2598		}
2599	}
2600
2601	if (AR_SREV_9300_20_OR_LATER(ah)) {
2602		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2603			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2604	}
2605
2606	if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
 
2607		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2608		if ((ant_div_ctl1 >> 0x6) == 0x3) {
 
 
 
 
 
 
 
 
 
 
 
2609			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2610			ath_info(common, "Enable LNA combining\n");
2611		}
2612	}
2613
2614	if (ath9k_hw_dfs_tested(ah))
2615		pCap->hw_caps |= ATH9K_HW_CAP_DFS;
 
 
2616
2617	tx_chainmask = pCap->tx_chainmask;
2618	rx_chainmask = pCap->rx_chainmask;
2619	while (tx_chainmask || rx_chainmask) {
2620		if (tx_chainmask & BIT(0))
2621			pCap->max_txchains++;
2622		if (rx_chainmask & BIT(0))
2623			pCap->max_rxchains++;
2624
2625		tx_chainmask >>= 1;
2626		rx_chainmask >>= 1;
2627	}
2628
2629	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2630		if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2631			pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2632
2633		if (AR_SREV_9462_20_OR_LATER(ah))
2634			pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2635	}
2636
2637	if (AR_SREV_9300_20_OR_LATER(ah) &&
2638	    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2639			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2640
2641#ifdef CONFIG_ATH9K_WOW
2642	if (AR_SREV_9462_20_OR_LATER(ah) || AR_SREV_9565_11_OR_LATER(ah))
2643		ah->wow.max_patterns = MAX_NUM_PATTERN;
2644	else
2645		ah->wow.max_patterns = MAX_NUM_PATTERN_LEGACY;
2646#endif
2647
2648	return 0;
2649}
2650
2651/****************************/
2652/* GPIO / RFKILL / Antennae */
2653/****************************/
2654
2655static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah, u32 gpio, u32 type)
 
2656{
2657	int addr;
2658	u32 gpio_shift, tmp;
2659
2660	if (gpio > 11)
2661		addr = AR_GPIO_OUTPUT_MUX3;
2662	else if (gpio > 5)
2663		addr = AR_GPIO_OUTPUT_MUX2;
2664	else
2665		addr = AR_GPIO_OUTPUT_MUX1;
2666
2667	gpio_shift = (gpio % 6) * 5;
2668
2669	if (AR_SREV_9280_20_OR_LATER(ah) ||
2670	    (addr != AR_GPIO_OUTPUT_MUX1)) {
2671		REG_RMW(ah, addr, (type << gpio_shift),
2672			(0x1f << gpio_shift));
2673	} else {
2674		tmp = REG_READ(ah, addr);
2675		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2676		tmp &= ~(0x1f << gpio_shift);
2677		tmp |= (type << gpio_shift);
2678		REG_WRITE(ah, addr, tmp);
2679	}
2680}
2681
2682/* BSP should set the corresponding MUX register correctly.
2683 */
2684static void ath9k_hw_gpio_cfg_soc(struct ath_hw *ah, u32 gpio, bool out,
2685				  const char *label)
2686{
2687	if (ah->caps.gpio_requested & BIT(gpio))
2688		return;
2689
2690	/* may be requested by BSP, free anyway */
2691	gpio_free(gpio);
2692
2693	if (gpio_request_one(gpio, out ? GPIOF_OUT_INIT_LOW : GPIOF_IN, label))
 
 
 
 
2694		return;
 
2695
2696	ah->caps.gpio_requested |= BIT(gpio);
 
 
 
 
2697}
 
2698
2699static void ath9k_hw_gpio_cfg_wmac(struct ath_hw *ah, u32 gpio, bool out,
2700				   u32 ah_signal_type)
2701{
2702	u32 gpio_set, gpio_shift = gpio;
 
 
 
 
2703
2704	if (AR_DEVID_7010(ah)) {
2705		gpio_set = out ?
2706			AR7010_GPIO_OE_AS_OUTPUT : AR7010_GPIO_OE_AS_INPUT;
2707		REG_RMW(ah, AR7010_GPIO_OE, gpio_set << gpio_shift,
2708			AR7010_GPIO_OE_MASK << gpio_shift);
2709	} else if (AR_SREV_SOC(ah)) {
2710		gpio_set = out ? 1 : 0;
2711		REG_RMW(ah, AR_GPIO_OE_OUT, gpio_set << gpio_shift,
2712			gpio_set << gpio_shift);
2713	} else {
2714		gpio_shift = gpio << 1;
2715		gpio_set = out ?
2716			AR_GPIO_OE_OUT_DRV_ALL : AR_GPIO_OE_OUT_DRV_NO;
2717		REG_RMW(ah, AR_GPIO_OE_OUT, gpio_set << gpio_shift,
2718			AR_GPIO_OE_OUT_DRV << gpio_shift);
2719
2720		if (out)
2721			ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2722	}
2723}
 
2724
2725static void ath9k_hw_gpio_request(struct ath_hw *ah, u32 gpio, bool out,
2726				  const char *label, u32 ah_signal_type)
2727{
2728	WARN_ON(gpio >= ah->caps.num_gpio_pins);
2729
2730	if (BIT(gpio) & ah->caps.gpio_mask)
2731		ath9k_hw_gpio_cfg_wmac(ah, gpio, out, ah_signal_type);
2732	else if (AR_SREV_SOC(ah))
2733		ath9k_hw_gpio_cfg_soc(ah, gpio, out, label);
2734	else
2735		WARN_ON(1);
2736}
2737
2738void ath9k_hw_gpio_request_in(struct ath_hw *ah, u32 gpio, const char *label)
2739{
2740	ath9k_hw_gpio_request(ah, gpio, false, label, 0);
 
 
 
2741}
2742EXPORT_SYMBOL(ath9k_hw_gpio_request_in);
2743
2744void ath9k_hw_gpio_request_out(struct ath_hw *ah, u32 gpio, const char *label,
2745			       u32 ah_signal_type)
2746{
2747	ath9k_hw_gpio_request(ah, gpio, true, label, ah_signal_type);
2748}
2749EXPORT_SYMBOL(ath9k_hw_gpio_request_out);
2750
2751void ath9k_hw_gpio_free(struct ath_hw *ah, u32 gpio)
2752{
2753	if (!AR_SREV_SOC(ah))
2754		return;
2755
2756	WARN_ON(gpio >= ah->caps.num_gpio_pins);
2757
2758	if (ah->caps.gpio_requested & BIT(gpio)) {
2759		gpio_free(gpio);
2760		ah->caps.gpio_requested &= ~BIT(gpio);
2761	}
2762}
2763EXPORT_SYMBOL(ath9k_hw_gpio_free);
2764
2765u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2766{
2767	u32 val = 0xffffffff;
2768
2769#define MS_REG_READ(x, y) \
2770	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & BIT(y))
2771
2772	WARN_ON(gpio >= ah->caps.num_gpio_pins);
2773
2774	if (BIT(gpio) & ah->caps.gpio_mask) {
2775		if (AR_SREV_9271(ah))
2776			val = MS_REG_READ(AR9271, gpio);
2777		else if (AR_SREV_9287(ah))
2778			val = MS_REG_READ(AR9287, gpio);
2779		else if (AR_SREV_9285(ah))
2780			val = MS_REG_READ(AR9285, gpio);
2781		else if (AR_SREV_9280(ah))
2782			val = MS_REG_READ(AR928X, gpio);
2783		else if (AR_DEVID_7010(ah))
2784			val = REG_READ(ah, AR7010_GPIO_IN) & BIT(gpio);
2785		else if (AR_SREV_9300_20_OR_LATER(ah))
2786			val = REG_READ(ah, AR_GPIO_IN) & BIT(gpio);
2787		else
2788			val = MS_REG_READ(AR, gpio);
2789	} else if (BIT(gpio) & ah->caps.gpio_requested) {
2790		val = gpio_get_value(gpio) & BIT(gpio);
2791	} else {
2792		WARN_ON(1);
2793	}
2794
2795	return !!val;
 
2796}
2797EXPORT_SYMBOL(ath9k_hw_gpio_get);
2798
2799void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2800{
2801	WARN_ON(gpio >= ah->caps.num_gpio_pins);
2802
2803	if (AR_DEVID_7010(ah) || AR_SREV_9271(ah))
2804		val = !val;
2805	else
2806		val = !!val;
2807
2808	if (BIT(gpio) & ah->caps.gpio_mask) {
2809		u32 out_addr = AR_DEVID_7010(ah) ?
2810			AR7010_GPIO_OUT : AR_GPIO_IN_OUT;
2811
2812		REG_RMW(ah, out_addr, val << gpio, BIT(gpio));
2813	} else if (BIT(gpio) & ah->caps.gpio_requested) {
2814		gpio_set_value(gpio, val);
2815	} else {
2816		WARN_ON(1);
2817	}
2818}
2819EXPORT_SYMBOL(ath9k_hw_set_gpio);
2820
2821void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2822{
2823	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2824}
2825EXPORT_SYMBOL(ath9k_hw_setantenna);
2826
2827/*********************/
2828/* General Operation */
2829/*********************/
2830
2831u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2832{
2833	u32 bits = REG_READ(ah, AR_RX_FILTER);
2834	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2835
2836	if (phybits & AR_PHY_ERR_RADAR)
2837		bits |= ATH9K_RX_FILTER_PHYRADAR;
2838	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2839		bits |= ATH9K_RX_FILTER_PHYERR;
2840
2841	return bits;
2842}
2843EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2844
2845void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2846{
2847	u32 phybits;
2848
2849	ENABLE_REGWRITE_BUFFER(ah);
2850
2851	REG_WRITE(ah, AR_RX_FILTER, bits);
2852
2853	phybits = 0;
2854	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2855		phybits |= AR_PHY_ERR_RADAR;
2856	if (bits & ATH9K_RX_FILTER_PHYERR)
2857		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2858	REG_WRITE(ah, AR_PHY_ERR, phybits);
2859
2860	if (phybits)
2861		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2862	else
2863		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2864
2865	REGWRITE_BUFFER_FLUSH(ah);
2866}
2867EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2868
2869bool ath9k_hw_phy_disable(struct ath_hw *ah)
2870{
2871	if (ath9k_hw_mci_is_enabled(ah))
2872		ar9003_mci_bt_gain_ctrl(ah);
2873
2874	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2875		return false;
2876
2877	ath9k_hw_init_pll(ah, NULL);
2878	ah->htc_reset_init = true;
2879	return true;
2880}
2881EXPORT_SYMBOL(ath9k_hw_phy_disable);
2882
2883bool ath9k_hw_disable(struct ath_hw *ah)
2884{
2885	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2886		return false;
2887
2888	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2889		return false;
2890
2891	ath9k_hw_init_pll(ah, NULL);
2892	return true;
2893}
2894EXPORT_SYMBOL(ath9k_hw_disable);
2895
2896static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2897{
2898	enum eeprom_param gain_param;
2899
2900	if (IS_CHAN_2GHZ(chan))
2901		gain_param = EEP_ANTENNA_GAIN_2G;
2902	else
2903		gain_param = EEP_ANTENNA_GAIN_5G;
2904
2905	return ah->eep_ops->get_eeprom(ah, gain_param);
2906}
2907
2908void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2909			    bool test)
2910{
2911	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2912	struct ieee80211_channel *channel;
2913	int chan_pwr, new_pwr;
2914
2915	if (!chan)
2916		return;
2917
2918	channel = chan->chan;
2919	chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2920	new_pwr = min_t(int, chan_pwr, reg->power_limit);
2921
2922	ah->eep_ops->set_txpower(ah, chan,
2923				 ath9k_regd_get_ctl(reg, chan),
2924				 get_antenna_gain(ah, chan), new_pwr, test);
2925}
2926
2927void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2928{
2929	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2930	struct ath9k_channel *chan = ah->curchan;
2931	struct ieee80211_channel *channel = chan->chan;
2932
2933	reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2934	if (test)
2935		channel->max_power = MAX_RATE_POWER / 2;
2936
2937	ath9k_hw_apply_txpower(ah, chan, test);
2938
2939	if (test)
2940		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
 
 
2941}
2942EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2943
2944void ath9k_hw_setopmode(struct ath_hw *ah)
2945{
2946	ath9k_hw_set_operating_mode(ah, ah->opmode);
2947}
2948EXPORT_SYMBOL(ath9k_hw_setopmode);
2949
2950void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2951{
2952	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2953	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2954}
2955EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2956
2957void ath9k_hw_write_associd(struct ath_hw *ah)
2958{
2959	struct ath_common *common = ath9k_hw_common(ah);
2960
2961	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2962	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2963		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2964}
2965EXPORT_SYMBOL(ath9k_hw_write_associd);
2966
2967#define ATH9K_MAX_TSF_READ 10
2968
2969u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2970{
2971	u32 tsf_lower, tsf_upper1, tsf_upper2;
2972	int i;
2973
2974	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2975	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2976		tsf_lower = REG_READ(ah, AR_TSF_L32);
2977		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2978		if (tsf_upper2 == tsf_upper1)
2979			break;
2980		tsf_upper1 = tsf_upper2;
2981	}
2982
2983	WARN_ON( i == ATH9K_MAX_TSF_READ );
2984
2985	return (((u64)tsf_upper1 << 32) | tsf_lower);
2986}
2987EXPORT_SYMBOL(ath9k_hw_gettsf64);
2988
2989void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2990{
2991	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2992	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2993}
2994EXPORT_SYMBOL(ath9k_hw_settsf64);
2995
2996void ath9k_hw_reset_tsf(struct ath_hw *ah)
2997{
2998	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2999			   AH_TSF_WRITE_TIMEOUT))
3000		ath_dbg(ath9k_hw_common(ah), RESET,
3001			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3002
3003	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3004}
3005EXPORT_SYMBOL(ath9k_hw_reset_tsf);
3006
3007void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
3008{
3009	if (set)
3010		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3011	else
3012		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3013}
3014EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
3015
3016void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan)
3017{
 
3018	u32 macmode;
3019
3020	if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca)
3021		macmode = AR_2040_JOINED_RX_CLEAR;
3022	else
3023		macmode = 0;
3024
3025	REG_WRITE(ah, AR_2040_MODE, macmode);
3026}
3027
3028/* HW Generic timers configuration */
3029
3030static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
3031{
3032	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3033	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3034	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3035	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3036	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3037	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3038	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3039	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3040	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
3041	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
3042				AR_NDP2_TIMER_MODE, 0x0002},
3043	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
3044				AR_NDP2_TIMER_MODE, 0x0004},
3045	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
3046				AR_NDP2_TIMER_MODE, 0x0008},
3047	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
3048				AR_NDP2_TIMER_MODE, 0x0010},
3049	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
3050				AR_NDP2_TIMER_MODE, 0x0020},
3051	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
3052				AR_NDP2_TIMER_MODE, 0x0040},
3053	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
3054				AR_NDP2_TIMER_MODE, 0x0080}
3055};
3056
3057/* HW generic timer primitives */
3058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3059u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3060{
3061	return REG_READ(ah, AR_TSF_L32);
3062}
3063EXPORT_SYMBOL(ath9k_hw_gettsf32);
3064
3065void ath9k_hw_gen_timer_start_tsf2(struct ath_hw *ah)
3066{
3067	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3068
3069	if (timer_table->tsf2_enabled) {
3070		REG_SET_BIT(ah, AR_DIRECT_CONNECT, AR_DC_AP_STA_EN);
3071		REG_SET_BIT(ah, AR_RESET_TSF, AR_RESET_TSF2_ONCE);
3072	}
3073}
3074
3075struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3076					  void (*trigger)(void *),
3077					  void (*overflow)(void *),
3078					  void *arg,
3079					  u8 timer_index)
3080{
3081	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3082	struct ath_gen_timer *timer;
3083
3084	if ((timer_index < AR_FIRST_NDP_TIMER) ||
3085	    (timer_index >= ATH_MAX_GEN_TIMER))
3086		return NULL;
3087
3088	if ((timer_index > AR_FIRST_NDP_TIMER) &&
3089	    !AR_SREV_9300_20_OR_LATER(ah))
3090		return NULL;
3091
3092	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3093	if (timer == NULL)
3094		return NULL;
 
3095
3096	/* allocate a hardware generic timer slot */
3097	timer_table->timers[timer_index] = timer;
3098	timer->index = timer_index;
3099	timer->trigger = trigger;
3100	timer->overflow = overflow;
3101	timer->arg = arg;
3102
3103	if ((timer_index > AR_FIRST_NDP_TIMER) && !timer_table->tsf2_enabled) {
3104		timer_table->tsf2_enabled = true;
3105		ath9k_hw_gen_timer_start_tsf2(ah);
3106	}
3107
3108	return timer;
3109}
3110EXPORT_SYMBOL(ath_gen_timer_alloc);
3111
3112void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3113			      struct ath_gen_timer *timer,
3114			      u32 timer_next,
3115			      u32 timer_period)
3116{
3117	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3118	u32 mask = 0;
3119
3120	timer_table->timer_mask |= BIT(timer->index);
 
 
 
 
 
 
 
 
 
 
3121
3122	/*
3123	 * Program generic timer registers
3124	 */
3125	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3126		 timer_next);
3127	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3128		  timer_period);
3129	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3130		    gen_tmr_configuration[timer->index].mode_mask);
3131
3132	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3133		/*
3134		 * Starting from AR9462, each generic timer can select which tsf
3135		 * to use. But we still follow the old rule, 0 - 7 use tsf and
3136		 * 8 - 15  use tsf2.
3137		 */
3138		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
3139			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3140				       (1 << timer->index));
3141		else
3142			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3143				       (1 << timer->index));
3144	}
3145
3146	if (timer->trigger)
3147		mask |= SM(AR_GENTMR_BIT(timer->index),
3148			   AR_IMR_S5_GENTIMER_TRIG);
3149	if (timer->overflow)
3150		mask |= SM(AR_GENTMR_BIT(timer->index),
3151			   AR_IMR_S5_GENTIMER_THRESH);
3152
3153	REG_SET_BIT(ah, AR_IMR_S5, mask);
3154
3155	if ((ah->imask & ATH9K_INT_GENTIMER) == 0) {
3156		ah->imask |= ATH9K_INT_GENTIMER;
3157		ath9k_hw_set_interrupts(ah);
3158	}
3159}
3160EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3161
3162void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3163{
3164	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3165
 
 
 
 
 
3166	/* Clear generic timer enable bits. */
3167	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3168			gen_tmr_configuration[timer->index].mode_mask);
3169
3170	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3171		/*
3172		 * Need to switch back to TSF if it was using TSF2.
3173		 */
3174		if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
3175			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3176				    (1 << timer->index));
3177		}
3178	}
3179
3180	/* Disable both trigger and thresh interrupt masks */
3181	REG_CLR_BIT(ah, AR_IMR_S5,
3182		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3183		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3184
3185	timer_table->timer_mask &= ~BIT(timer->index);
3186
3187	if (timer_table->timer_mask == 0) {
3188		ah->imask &= ~ATH9K_INT_GENTIMER;
3189		ath9k_hw_set_interrupts(ah);
3190	}
3191}
3192EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3193
3194void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3195{
3196	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3197
3198	/* free the hardware generic timer slot */
3199	timer_table->timers[timer->index] = NULL;
3200	kfree(timer);
3201}
3202EXPORT_SYMBOL(ath_gen_timer_free);
3203
3204/*
3205 * Generic Timer Interrupts handling
3206 */
3207void ath_gen_timer_isr(struct ath_hw *ah)
3208{
3209	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3210	struct ath_gen_timer *timer;
3211	unsigned long trigger_mask, thresh_mask;
3212	unsigned int index;
3213
3214	/* get hardware generic timer interrupt status */
3215	trigger_mask = ah->intr_gen_timer_trigger;
3216	thresh_mask = ah->intr_gen_timer_thresh;
3217	trigger_mask &= timer_table->timer_mask;
3218	thresh_mask &= timer_table->timer_mask;
 
 
3219
3220	for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) {
 
3221		timer = timer_table->timers[index];
3222		if (!timer)
3223		    continue;
3224		if (!timer->overflow)
3225		    continue;
3226
3227		trigger_mask &= ~BIT(index);
3228		timer->overflow(timer->arg);
3229	}
3230
3231	for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) {
 
3232		timer = timer_table->timers[index];
3233		if (!timer)
3234		    continue;
3235		if (!timer->trigger)
3236		    continue;
3237		timer->trigger(timer->arg);
3238	}
3239}
3240EXPORT_SYMBOL(ath_gen_timer_isr);
3241
3242/********/
3243/* HTC  */
3244/********/
3245
 
 
 
 
 
 
3246static struct {
3247	u32 version;
3248	const char * name;
3249} ath_mac_bb_names[] = {
3250	/* Devices with external radios */
3251	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3252	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3253	{ AR_SREV_VERSION_9100,		"9100" },
3254	{ AR_SREV_VERSION_9160,		"9160" },
3255	/* Single-chip solutions */
3256	{ AR_SREV_VERSION_9280,		"9280" },
3257	{ AR_SREV_VERSION_9285,		"9285" },
3258	{ AR_SREV_VERSION_9287,         "9287" },
3259	{ AR_SREV_VERSION_9271,         "9271" },
3260	{ AR_SREV_VERSION_9300,         "9300" },
3261	{ AR_SREV_VERSION_9330,         "9330" },
3262	{ AR_SREV_VERSION_9340,		"9340" },
3263	{ AR_SREV_VERSION_9485,         "9485" },
3264	{ AR_SREV_VERSION_9462,         "9462" },
3265	{ AR_SREV_VERSION_9550,         "9550" },
3266	{ AR_SREV_VERSION_9565,         "9565" },
3267	{ AR_SREV_VERSION_9531,         "9531" },
3268	{ AR_SREV_VERSION_9561,         "9561" },
3269};
3270
3271/* For devices with external radios */
3272static struct {
3273	u16 version;
3274	const char * name;
3275} ath_rf_names[] = {
3276	{ 0,				"5133" },
3277	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3278	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3279	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3280	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3281};
3282
3283/*
3284 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3285 */
3286static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3287{
3288	int i;
3289
3290	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3291		if (ath_mac_bb_names[i].version == mac_bb_version) {
3292			return ath_mac_bb_names[i].name;
3293		}
3294	}
3295
3296	return "????";
3297}
3298
3299/*
3300 * Return the RF name. "????" is returned if the RF is unknown.
3301 * Used for devices with external radios.
3302 */
3303static const char *ath9k_hw_rf_name(u16 rf_version)
3304{
3305	int i;
3306
3307	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3308		if (ath_rf_names[i].version == rf_version) {
3309			return ath_rf_names[i].name;
3310		}
3311	}
3312
3313	return "????";
3314}
3315
3316void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3317{
3318	int used;
3319
3320	/* chipsets >= AR9280 are single-chip */
3321	if (AR_SREV_9280_20_OR_LATER(ah)) {
3322		used = scnprintf(hw_name, len,
3323				 "Atheros AR%s Rev:%x",
3324				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3325				 ah->hw_version.macRev);
3326	}
3327	else {
3328		used = scnprintf(hw_name, len,
3329				 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3330				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3331				 ah->hw_version.macRev,
3332				 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev
3333						  & AR_RADIO_SREV_MAJOR)),
3334				 ah->hw_version.phyRev);
3335	}
3336
3337	hw_name[used] = '\0';
3338}
3339EXPORT_SYMBOL(ath9k_hw_name);