Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.10.11.
   1/*******************************************************************************
   2
   3  Intel(R) Gigabit Ethernet Linux driver
   4  Copyright(c) 2007-2011 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  25
  26*******************************************************************************/
  27
  28/* e1000_82575
  29 * e1000_82576
  30 */
  31
  32#include <linux/types.h>
  33#include <linux/if_ether.h>
  34
  35#include "e1000_mac.h"
  36#include "e1000_82575.h"
  37
  38static s32  igb_get_invariants_82575(struct e1000_hw *);
  39static s32  igb_acquire_phy_82575(struct e1000_hw *);
  40static void igb_release_phy_82575(struct e1000_hw *);
  41static s32  igb_acquire_nvm_82575(struct e1000_hw *);
  42static void igb_release_nvm_82575(struct e1000_hw *);
  43static s32  igb_check_for_link_82575(struct e1000_hw *);
  44static s32  igb_get_cfg_done_82575(struct e1000_hw *);
  45static s32  igb_init_hw_82575(struct e1000_hw *);
  46static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
  47static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
  48static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
  49static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
  50static s32  igb_reset_hw_82575(struct e1000_hw *);
  51static s32  igb_reset_hw_82580(struct e1000_hw *);
  52static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
  53static s32  igb_setup_copper_link_82575(struct e1000_hw *);
  54static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
  55static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
  56static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
  57static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
  58static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
  59						 u16 *);
  60static s32  igb_get_phy_id_82575(struct e1000_hw *);
  61static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
  62static bool igb_sgmii_active_82575(struct e1000_hw *);
  63static s32  igb_reset_init_script_82575(struct e1000_hw *);
  64static s32  igb_read_mac_addr_82575(struct e1000_hw *);
  65static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
  66static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
  67static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
  68static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
  69static s32  igb_update_nvm_checksum_with_offset(struct e1000_hw *hw,
  70						u16 offset);
  71static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
  72						u16 offset);
  73static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
  74static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
  75static const u16 e1000_82580_rxpbs_table[] =
  76	{ 36, 72, 144, 1, 2, 4, 8, 16,
  77	  35, 70, 140 };
  78#define E1000_82580_RXPBS_TABLE_SIZE \
  79	(sizeof(e1000_82580_rxpbs_table)/sizeof(u16))
  80
  81/**
  82 *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
  83 *  @hw: pointer to the HW structure
  84 *
  85 *  Called to determine if the I2C pins are being used for I2C or as an
  86 *  external MDIO interface since the two options are mutually exclusive.
  87 **/
  88static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
  89{
  90	u32 reg = 0;
  91	bool ext_mdio = false;
  92
  93	switch (hw->mac.type) {
  94	case e1000_82575:
  95	case e1000_82576:
  96		reg = rd32(E1000_MDIC);
  97		ext_mdio = !!(reg & E1000_MDIC_DEST);
  98		break;
  99	case e1000_82580:
 100	case e1000_i350:
 101		reg = rd32(E1000_MDICNFG);
 102		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
 103		break;
 104	default:
 105		break;
 106	}
 107	return ext_mdio;
 108}
 109
 110static s32 igb_get_invariants_82575(struct e1000_hw *hw)
 111{
 112	struct e1000_phy_info *phy = &hw->phy;
 113	struct e1000_nvm_info *nvm = &hw->nvm;
 114	struct e1000_mac_info *mac = &hw->mac;
 115	struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575;
 116	u32 eecd;
 117	s32 ret_val;
 118	u16 size;
 119	u32 ctrl_ext = 0;
 120
 121	switch (hw->device_id) {
 122	case E1000_DEV_ID_82575EB_COPPER:
 123	case E1000_DEV_ID_82575EB_FIBER_SERDES:
 124	case E1000_DEV_ID_82575GB_QUAD_COPPER:
 125		mac->type = e1000_82575;
 126		break;
 127	case E1000_DEV_ID_82576:
 128	case E1000_DEV_ID_82576_NS:
 129	case E1000_DEV_ID_82576_NS_SERDES:
 130	case E1000_DEV_ID_82576_FIBER:
 131	case E1000_DEV_ID_82576_SERDES:
 132	case E1000_DEV_ID_82576_QUAD_COPPER:
 133	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
 134	case E1000_DEV_ID_82576_SERDES_QUAD:
 135		mac->type = e1000_82576;
 136		break;
 137	case E1000_DEV_ID_82580_COPPER:
 138	case E1000_DEV_ID_82580_FIBER:
 139	case E1000_DEV_ID_82580_QUAD_FIBER:
 140	case E1000_DEV_ID_82580_SERDES:
 141	case E1000_DEV_ID_82580_SGMII:
 142	case E1000_DEV_ID_82580_COPPER_DUAL:
 143	case E1000_DEV_ID_DH89XXCC_SGMII:
 144	case E1000_DEV_ID_DH89XXCC_SERDES:
 145	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
 146	case E1000_DEV_ID_DH89XXCC_SFP:
 147		mac->type = e1000_82580;
 148		break;
 149	case E1000_DEV_ID_I350_COPPER:
 150	case E1000_DEV_ID_I350_FIBER:
 151	case E1000_DEV_ID_I350_SERDES:
 152	case E1000_DEV_ID_I350_SGMII:
 153		mac->type = e1000_i350;
 154		break;
 155	default:
 156		return -E1000_ERR_MAC_INIT;
 157		break;
 158	}
 159
 160	/* Set media type */
 161	/*
 162	 * The 82575 uses bits 22:23 for link mode. The mode can be changed
 163	 * based on the EEPROM. We cannot rely upon device ID. There
 164	 * is no distinguishable difference between fiber and internal
 165	 * SerDes mode on the 82575. There can be an external PHY attached
 166	 * on the SGMII interface. For this, we'll set sgmii_active to true.
 167	 */
 168	phy->media_type = e1000_media_type_copper;
 169	dev_spec->sgmii_active = false;
 170
 171	ctrl_ext = rd32(E1000_CTRL_EXT);
 172	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
 173	case E1000_CTRL_EXT_LINK_MODE_SGMII:
 174		dev_spec->sgmii_active = true;
 175		break;
 176	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
 177	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
 178		hw->phy.media_type = e1000_media_type_internal_serdes;
 179		break;
 180	default:
 181		break;
 182	}
 183
 184	/* Set mta register count */
 185	mac->mta_reg_count = 128;
 186	/* Set rar entry count */
 187	mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
 188	if (mac->type == e1000_82576)
 189		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
 190	if (mac->type == e1000_82580)
 191		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
 192	if (mac->type == e1000_i350)
 193		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
 194	/* reset */
 195	if (mac->type >= e1000_82580)
 196		mac->ops.reset_hw = igb_reset_hw_82580;
 197	else
 198		mac->ops.reset_hw = igb_reset_hw_82575;
 199	/* Set if part includes ASF firmware */
 200	mac->asf_firmware_present = true;
 201	/* Set if manageability features are enabled. */
 202	mac->arc_subsystem_valid =
 203		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
 204			? true : false;
 205	/* enable EEE on i350 parts */
 206	if (mac->type == e1000_i350)
 207		dev_spec->eee_disable = false;
 208	else
 209		dev_spec->eee_disable = true;
 210	/* physical interface link setup */
 211	mac->ops.setup_physical_interface =
 212		(hw->phy.media_type == e1000_media_type_copper)
 213			? igb_setup_copper_link_82575
 214			: igb_setup_serdes_link_82575;
 215
 216	/* NVM initialization */
 217	eecd = rd32(E1000_EECD);
 218
 219	nvm->opcode_bits        = 8;
 220	nvm->delay_usec         = 1;
 221	switch (nvm->override) {
 222	case e1000_nvm_override_spi_large:
 223		nvm->page_size    = 32;
 224		nvm->address_bits = 16;
 225		break;
 226	case e1000_nvm_override_spi_small:
 227		nvm->page_size    = 8;
 228		nvm->address_bits = 8;
 229		break;
 230	default:
 231		nvm->page_size    = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
 232		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
 233		break;
 234	}
 235
 236	nvm->type = e1000_nvm_eeprom_spi;
 237
 238	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
 239		     E1000_EECD_SIZE_EX_SHIFT);
 240
 241	/*
 242	 * Added to a constant, "size" becomes the left-shift value
 243	 * for setting word_size.
 244	 */
 245	size += NVM_WORD_SIZE_BASE_SHIFT;
 246
 247	/*
 248	 * Check for invalid size
 249	 */
 250	if ((hw->mac.type == e1000_82576) && (size > 15)) {
 251		printk("igb: The NVM size is not valid, "
 252			"defaulting to 32K.\n");
 253		size = 15;
 254	}
 255	nvm->word_size = 1 << size;
 256	if (nvm->word_size == (1 << 15))
 257		nvm->page_size = 128;
 258
 259	/* NVM Function Pointers */
 260	nvm->ops.acquire = igb_acquire_nvm_82575;
 261	if (nvm->word_size < (1 << 15))
 262		nvm->ops.read = igb_read_nvm_eerd;
 263	else
 264		nvm->ops.read = igb_read_nvm_spi;
 265
 266	nvm->ops.release = igb_release_nvm_82575;
 267	switch (hw->mac.type) {
 268	case e1000_82580:
 269		nvm->ops.validate = igb_validate_nvm_checksum_82580;
 270		nvm->ops.update = igb_update_nvm_checksum_82580;
 271		break;
 272	case e1000_i350:
 273		nvm->ops.validate = igb_validate_nvm_checksum_i350;
 274		nvm->ops.update = igb_update_nvm_checksum_i350;
 275		break;
 276	default:
 277		nvm->ops.validate = igb_validate_nvm_checksum;
 278		nvm->ops.update = igb_update_nvm_checksum;
 279	}
 280	nvm->ops.write = igb_write_nvm_spi;
 281
 282	/* if part supports SR-IOV then initialize mailbox parameters */
 283	switch (mac->type) {
 284	case e1000_82576:
 285	case e1000_i350:
 286		igb_init_mbx_params_pf(hw);
 287		break;
 288	default:
 289		break;
 290	}
 291
 292	/* setup PHY parameters */
 293	if (phy->media_type != e1000_media_type_copper) {
 294		phy->type = e1000_phy_none;
 295		return 0;
 296	}
 297
 298	phy->autoneg_mask        = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 299	phy->reset_delay_us      = 100;
 300
 301	ctrl_ext = rd32(E1000_CTRL_EXT);
 302
 303	/* PHY function pointers */
 304	if (igb_sgmii_active_82575(hw)) {
 305		phy->ops.reset      = igb_phy_hw_reset_sgmii_82575;
 306		ctrl_ext |= E1000_CTRL_I2C_ENA;
 307	} else {
 308		phy->ops.reset      = igb_phy_hw_reset;
 309		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
 310	}
 311
 312	wr32(E1000_CTRL_EXT, ctrl_ext);
 313	igb_reset_mdicnfg_82580(hw);
 314
 315	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
 316		phy->ops.read_reg   = igb_read_phy_reg_sgmii_82575;
 317		phy->ops.write_reg  = igb_write_phy_reg_sgmii_82575;
 318	} else if (hw->mac.type >= e1000_82580) {
 319		phy->ops.read_reg   = igb_read_phy_reg_82580;
 320		phy->ops.write_reg  = igb_write_phy_reg_82580;
 321	} else {
 322		phy->ops.read_reg   = igb_read_phy_reg_igp;
 323		phy->ops.write_reg  = igb_write_phy_reg_igp;
 324	}
 325
 326	/* set lan id */
 327	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
 328	               E1000_STATUS_FUNC_SHIFT;
 329
 330	/* Set phy->phy_addr and phy->id. */
 331	ret_val = igb_get_phy_id_82575(hw);
 332	if (ret_val)
 333		return ret_val;
 334
 335	/* Verify phy id and set remaining function pointers */
 336	switch (phy->id) {
 337	case I347AT4_E_PHY_ID:
 338	case M88E1112_E_PHY_ID:
 339	case M88E1111_I_PHY_ID:
 340		phy->type                   = e1000_phy_m88;
 341		phy->ops.get_phy_info       = igb_get_phy_info_m88;
 342
 343		if (phy->id == I347AT4_E_PHY_ID ||
 344		    phy->id == M88E1112_E_PHY_ID)
 345			phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
 346		else
 347			phy->ops.get_cable_length = igb_get_cable_length_m88;
 348
 349		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
 350		break;
 351	case IGP03E1000_E_PHY_ID:
 352		phy->type                   = e1000_phy_igp_3;
 353		phy->ops.get_phy_info       = igb_get_phy_info_igp;
 354		phy->ops.get_cable_length   = igb_get_cable_length_igp_2;
 355		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
 356		phy->ops.set_d0_lplu_state  = igb_set_d0_lplu_state_82575;
 357		phy->ops.set_d3_lplu_state  = igb_set_d3_lplu_state;
 358		break;
 359	case I82580_I_PHY_ID:
 360	case I350_I_PHY_ID:
 361		phy->type                   = e1000_phy_82580;
 362		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_82580;
 363		phy->ops.get_cable_length   = igb_get_cable_length_82580;
 364		phy->ops.get_phy_info       = igb_get_phy_info_82580;
 365		break;
 366	default:
 367		return -E1000_ERR_PHY;
 368	}
 369
 370	return 0;
 371}
 372
 373/**
 374 *  igb_acquire_phy_82575 - Acquire rights to access PHY
 375 *  @hw: pointer to the HW structure
 376 *
 377 *  Acquire access rights to the correct PHY.  This is a
 378 *  function pointer entry point called by the api module.
 379 **/
 380static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
 381{
 382	u16 mask = E1000_SWFW_PHY0_SM;
 383
 384	if (hw->bus.func == E1000_FUNC_1)
 385		mask = E1000_SWFW_PHY1_SM;
 386	else if (hw->bus.func == E1000_FUNC_2)
 387		mask = E1000_SWFW_PHY2_SM;
 388	else if (hw->bus.func == E1000_FUNC_3)
 389		mask = E1000_SWFW_PHY3_SM;
 390
 391	return igb_acquire_swfw_sync_82575(hw, mask);
 392}
 393
 394/**
 395 *  igb_release_phy_82575 - Release rights to access PHY
 396 *  @hw: pointer to the HW structure
 397 *
 398 *  A wrapper to release access rights to the correct PHY.  This is a
 399 *  function pointer entry point called by the api module.
 400 **/
 401static void igb_release_phy_82575(struct e1000_hw *hw)
 402{
 403	u16 mask = E1000_SWFW_PHY0_SM;
 404
 405	if (hw->bus.func == E1000_FUNC_1)
 406		mask = E1000_SWFW_PHY1_SM;
 407	else if (hw->bus.func == E1000_FUNC_2)
 408		mask = E1000_SWFW_PHY2_SM;
 409	else if (hw->bus.func == E1000_FUNC_3)
 410		mask = E1000_SWFW_PHY3_SM;
 411
 412	igb_release_swfw_sync_82575(hw, mask);
 413}
 414
 415/**
 416 *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
 417 *  @hw: pointer to the HW structure
 418 *  @offset: register offset to be read
 419 *  @data: pointer to the read data
 420 *
 421 *  Reads the PHY register at offset using the serial gigabit media independent
 422 *  interface and stores the retrieved information in data.
 423 **/
 424static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
 425					  u16 *data)
 426{
 427	s32 ret_val = -E1000_ERR_PARAM;
 428
 429	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
 430		hw_dbg("PHY Address %u is out of range\n", offset);
 431		goto out;
 432	}
 433
 434	ret_val = hw->phy.ops.acquire(hw);
 435	if (ret_val)
 436		goto out;
 437
 438	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
 439
 440	hw->phy.ops.release(hw);
 441
 442out:
 443	return ret_val;
 444}
 445
 446/**
 447 *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
 448 *  @hw: pointer to the HW structure
 449 *  @offset: register offset to write to
 450 *  @data: data to write at register offset
 451 *
 452 *  Writes the data to PHY register at the offset using the serial gigabit
 453 *  media independent interface.
 454 **/
 455static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
 456					   u16 data)
 457{
 458	s32 ret_val = -E1000_ERR_PARAM;
 459
 460
 461	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
 462		hw_dbg("PHY Address %d is out of range\n", offset);
 463		goto out;
 464	}
 465
 466	ret_val = hw->phy.ops.acquire(hw);
 467	if (ret_val)
 468		goto out;
 469
 470	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
 471
 472	hw->phy.ops.release(hw);
 473
 474out:
 475	return ret_val;
 476}
 477
 478/**
 479 *  igb_get_phy_id_82575 - Retrieve PHY addr and id
 480 *  @hw: pointer to the HW structure
 481 *
 482 *  Retrieves the PHY address and ID for both PHY's which do and do not use
 483 *  sgmi interface.
 484 **/
 485static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
 486{
 487	struct e1000_phy_info *phy = &hw->phy;
 488	s32  ret_val = 0;
 489	u16 phy_id;
 490	u32 ctrl_ext;
 491	u32 mdic;
 492
 493	/*
 494	 * For SGMII PHYs, we try the list of possible addresses until
 495	 * we find one that works.  For non-SGMII PHYs
 496	 * (e.g. integrated copper PHYs), an address of 1 should
 497	 * work.  The result of this function should mean phy->phy_addr
 498	 * and phy->id are set correctly.
 499	 */
 500	if (!(igb_sgmii_active_82575(hw))) {
 501		phy->addr = 1;
 502		ret_val = igb_get_phy_id(hw);
 503		goto out;
 504	}
 505
 506	if (igb_sgmii_uses_mdio_82575(hw)) {
 507		switch (hw->mac.type) {
 508		case e1000_82575:
 509		case e1000_82576:
 510			mdic = rd32(E1000_MDIC);
 511			mdic &= E1000_MDIC_PHY_MASK;
 512			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
 513			break;
 514		case e1000_82580:
 515		case e1000_i350:
 516			mdic = rd32(E1000_MDICNFG);
 517			mdic &= E1000_MDICNFG_PHY_MASK;
 518			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
 519			break;
 520		default:
 521			ret_val = -E1000_ERR_PHY;
 522			goto out;
 523			break;
 524		}
 525		ret_val = igb_get_phy_id(hw);
 526		goto out;
 527	}
 528
 529	/* Power on sgmii phy if it is disabled */
 530	ctrl_ext = rd32(E1000_CTRL_EXT);
 531	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
 532	wrfl();
 533	msleep(300);
 534
 535	/*
 536	 * The address field in the I2CCMD register is 3 bits and 0 is invalid.
 537	 * Therefore, we need to test 1-7
 538	 */
 539	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
 540		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
 541		if (ret_val == 0) {
 542			hw_dbg("Vendor ID 0x%08X read at address %u\n",
 543			       phy_id, phy->addr);
 544			/*
 545			 * At the time of this writing, The M88 part is
 546			 * the only supported SGMII PHY product.
 547			 */
 548			if (phy_id == M88_VENDOR)
 549				break;
 550		} else {
 551			hw_dbg("PHY address %u was unreadable\n", phy->addr);
 552		}
 553	}
 554
 555	/* A valid PHY type couldn't be found. */
 556	if (phy->addr == 8) {
 557		phy->addr = 0;
 558		ret_val = -E1000_ERR_PHY;
 559		goto out;
 560	} else {
 561		ret_val = igb_get_phy_id(hw);
 562	}
 563
 564	/* restore previous sfp cage power state */
 565	wr32(E1000_CTRL_EXT, ctrl_ext);
 566
 567out:
 568	return ret_val;
 569}
 570
 571/**
 572 *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
 573 *  @hw: pointer to the HW structure
 574 *
 575 *  Resets the PHY using the serial gigabit media independent interface.
 576 **/
 577static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
 578{
 579	s32 ret_val;
 580
 581	/*
 582	 * This isn't a true "hard" reset, but is the only reset
 583	 * available to us at this time.
 584	 */
 585
 586	hw_dbg("Soft resetting SGMII attached PHY...\n");
 587
 588	/*
 589	 * SFP documentation requires the following to configure the SPF module
 590	 * to work on SGMII.  No further documentation is given.
 591	 */
 592	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
 593	if (ret_val)
 594		goto out;
 595
 596	ret_val = igb_phy_sw_reset(hw);
 597
 598out:
 599	return ret_val;
 600}
 601
 602/**
 603 *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
 604 *  @hw: pointer to the HW structure
 605 *  @active: true to enable LPLU, false to disable
 606 *
 607 *  Sets the LPLU D0 state according to the active flag.  When
 608 *  activating LPLU this function also disables smart speed
 609 *  and vice versa.  LPLU will not be activated unless the
 610 *  device autonegotiation advertisement meets standards of
 611 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 612 *  This is a function pointer entry point only called by
 613 *  PHY setup routines.
 614 **/
 615static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
 616{
 617	struct e1000_phy_info *phy = &hw->phy;
 618	s32 ret_val;
 619	u16 data;
 620
 621	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
 622	if (ret_val)
 623		goto out;
 624
 625	if (active) {
 626		data |= IGP02E1000_PM_D0_LPLU;
 627		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
 628						 data);
 629		if (ret_val)
 630			goto out;
 631
 632		/* When LPLU is enabled, we should disable SmartSpeed */
 633		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
 634						&data);
 635		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 636		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
 637						 data);
 638		if (ret_val)
 639			goto out;
 640	} else {
 641		data &= ~IGP02E1000_PM_D0_LPLU;
 642		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
 643						 data);
 644		/*
 645		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
 646		 * during Dx states where the power conservation is most
 647		 * important.  During driver activity we should enable
 648		 * SmartSpeed, so performance is maintained.
 649		 */
 650		if (phy->smart_speed == e1000_smart_speed_on) {
 651			ret_val = phy->ops.read_reg(hw,
 652					IGP01E1000_PHY_PORT_CONFIG, &data);
 653			if (ret_val)
 654				goto out;
 655
 656			data |= IGP01E1000_PSCFR_SMART_SPEED;
 657			ret_val = phy->ops.write_reg(hw,
 658					IGP01E1000_PHY_PORT_CONFIG, data);
 659			if (ret_val)
 660				goto out;
 661		} else if (phy->smart_speed == e1000_smart_speed_off) {
 662			ret_val = phy->ops.read_reg(hw,
 663					IGP01E1000_PHY_PORT_CONFIG, &data);
 664			if (ret_val)
 665				goto out;
 666
 667			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 668			ret_val = phy->ops.write_reg(hw,
 669					IGP01E1000_PHY_PORT_CONFIG, data);
 670			if (ret_val)
 671				goto out;
 672		}
 673	}
 674
 675out:
 676	return ret_val;
 677}
 678
 679/**
 680 *  igb_acquire_nvm_82575 - Request for access to EEPROM
 681 *  @hw: pointer to the HW structure
 682 *
 683 *  Acquire the necessary semaphores for exclusive access to the EEPROM.
 684 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
 685 *  Return successful if access grant bit set, else clear the request for
 686 *  EEPROM access and return -E1000_ERR_NVM (-1).
 687 **/
 688static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
 689{
 690	s32 ret_val;
 691
 692	ret_val = igb_acquire_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
 693	if (ret_val)
 694		goto out;
 695
 696	ret_val = igb_acquire_nvm(hw);
 697
 698	if (ret_val)
 699		igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
 700
 701out:
 702	return ret_val;
 703}
 704
 705/**
 706 *  igb_release_nvm_82575 - Release exclusive access to EEPROM
 707 *  @hw: pointer to the HW structure
 708 *
 709 *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
 710 *  then release the semaphores acquired.
 711 **/
 712static void igb_release_nvm_82575(struct e1000_hw *hw)
 713{
 714	igb_release_nvm(hw);
 715	igb_release_swfw_sync_82575(hw, E1000_SWFW_EEP_SM);
 716}
 717
 718/**
 719 *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
 720 *  @hw: pointer to the HW structure
 721 *  @mask: specifies which semaphore to acquire
 722 *
 723 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
 724 *  will also specify which port we're acquiring the lock for.
 725 **/
 726static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
 727{
 728	u32 swfw_sync;
 729	u32 swmask = mask;
 730	u32 fwmask = mask << 16;
 731	s32 ret_val = 0;
 732	s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
 733
 734	while (i < timeout) {
 735		if (igb_get_hw_semaphore(hw)) {
 736			ret_val = -E1000_ERR_SWFW_SYNC;
 737			goto out;
 738		}
 739
 740		swfw_sync = rd32(E1000_SW_FW_SYNC);
 741		if (!(swfw_sync & (fwmask | swmask)))
 742			break;
 743
 744		/*
 745		 * Firmware currently using resource (fwmask)
 746		 * or other software thread using resource (swmask)
 747		 */
 748		igb_put_hw_semaphore(hw);
 749		mdelay(5);
 750		i++;
 751	}
 752
 753	if (i == timeout) {
 754		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
 755		ret_val = -E1000_ERR_SWFW_SYNC;
 756		goto out;
 757	}
 758
 759	swfw_sync |= swmask;
 760	wr32(E1000_SW_FW_SYNC, swfw_sync);
 761
 762	igb_put_hw_semaphore(hw);
 763
 764out:
 765	return ret_val;
 766}
 767
 768/**
 769 *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
 770 *  @hw: pointer to the HW structure
 771 *  @mask: specifies which semaphore to acquire
 772 *
 773 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
 774 *  will also specify which port we're releasing the lock for.
 775 **/
 776static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
 777{
 778	u32 swfw_sync;
 779
 780	while (igb_get_hw_semaphore(hw) != 0);
 781	/* Empty */
 782
 783	swfw_sync = rd32(E1000_SW_FW_SYNC);
 784	swfw_sync &= ~mask;
 785	wr32(E1000_SW_FW_SYNC, swfw_sync);
 786
 787	igb_put_hw_semaphore(hw);
 788}
 789
 790/**
 791 *  igb_get_cfg_done_82575 - Read config done bit
 792 *  @hw: pointer to the HW structure
 793 *
 794 *  Read the management control register for the config done bit for
 795 *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
 796 *  to read the config done bit, so an error is *ONLY* logged and returns
 797 *  0.  If we were to return with error, EEPROM-less silicon
 798 *  would not be able to be reset or change link.
 799 **/
 800static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
 801{
 802	s32 timeout = PHY_CFG_TIMEOUT;
 803	s32 ret_val = 0;
 804	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
 805
 806	if (hw->bus.func == 1)
 807		mask = E1000_NVM_CFG_DONE_PORT_1;
 808	else if (hw->bus.func == E1000_FUNC_2)
 809		mask = E1000_NVM_CFG_DONE_PORT_2;
 810	else if (hw->bus.func == E1000_FUNC_3)
 811		mask = E1000_NVM_CFG_DONE_PORT_3;
 812
 813	while (timeout) {
 814		if (rd32(E1000_EEMNGCTL) & mask)
 815			break;
 816		msleep(1);
 817		timeout--;
 818	}
 819	if (!timeout)
 820		hw_dbg("MNG configuration cycle has not completed.\n");
 821
 822	/* If EEPROM is not marked present, init the PHY manually */
 823	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
 824	    (hw->phy.type == e1000_phy_igp_3))
 825		igb_phy_init_script_igp3(hw);
 826
 827	return ret_val;
 828}
 829
 830/**
 831 *  igb_check_for_link_82575 - Check for link
 832 *  @hw: pointer to the HW structure
 833 *
 834 *  If sgmii is enabled, then use the pcs register to determine link, otherwise
 835 *  use the generic interface for determining link.
 836 **/
 837static s32 igb_check_for_link_82575(struct e1000_hw *hw)
 838{
 839	s32 ret_val;
 840	u16 speed, duplex;
 841
 842	if (hw->phy.media_type != e1000_media_type_copper) {
 843		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
 844		                                             &duplex);
 845		/*
 846		 * Use this flag to determine if link needs to be checked or
 847		 * not.  If  we have link clear the flag so that we do not
 848		 * continue to check for link.
 849		 */
 850		hw->mac.get_link_status = !hw->mac.serdes_has_link;
 851	} else {
 852		ret_val = igb_check_for_copper_link(hw);
 853	}
 854
 855	return ret_val;
 856}
 857
 858/**
 859 *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
 860 *  @hw: pointer to the HW structure
 861 **/
 862void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
 863{
 864	u32 reg;
 865
 866
 867	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
 868	    !igb_sgmii_active_82575(hw))
 869		return;
 870
 871	/* Enable PCS to turn on link */
 872	reg = rd32(E1000_PCS_CFG0);
 873	reg |= E1000_PCS_CFG_PCS_EN;
 874	wr32(E1000_PCS_CFG0, reg);
 875
 876	/* Power up the laser */
 877	reg = rd32(E1000_CTRL_EXT);
 878	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
 879	wr32(E1000_CTRL_EXT, reg);
 880
 881	/* flush the write to verify completion */
 882	wrfl();
 883	msleep(1);
 884}
 885
 886/**
 887 *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
 888 *  @hw: pointer to the HW structure
 889 *  @speed: stores the current speed
 890 *  @duplex: stores the current duplex
 891 *
 892 *  Using the physical coding sub-layer (PCS), retrieve the current speed and
 893 *  duplex, then store the values in the pointers provided.
 894 **/
 895static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
 896						u16 *duplex)
 897{
 898	struct e1000_mac_info *mac = &hw->mac;
 899	u32 pcs;
 900
 901	/* Set up defaults for the return values of this function */
 902	mac->serdes_has_link = false;
 903	*speed = 0;
 904	*duplex = 0;
 905
 906	/*
 907	 * Read the PCS Status register for link state. For non-copper mode,
 908	 * the status register is not accurate. The PCS status register is
 909	 * used instead.
 910	 */
 911	pcs = rd32(E1000_PCS_LSTAT);
 912
 913	/*
 914	 * The link up bit determines when link is up on autoneg. The sync ok
 915	 * gets set once both sides sync up and agree upon link. Stable link
 916	 * can be determined by checking for both link up and link sync ok
 917	 */
 918	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
 919		mac->serdes_has_link = true;
 920
 921		/* Detect and store PCS speed */
 922		if (pcs & E1000_PCS_LSTS_SPEED_1000) {
 923			*speed = SPEED_1000;
 924		} else if (pcs & E1000_PCS_LSTS_SPEED_100) {
 925			*speed = SPEED_100;
 926		} else {
 927			*speed = SPEED_10;
 928		}
 929
 930		/* Detect and store PCS duplex */
 931		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) {
 932			*duplex = FULL_DUPLEX;
 933		} else {
 934			*duplex = HALF_DUPLEX;
 935		}
 936	}
 937
 938	return 0;
 939}
 940
 941/**
 942 *  igb_shutdown_serdes_link_82575 - Remove link during power down
 943 *  @hw: pointer to the HW structure
 944 *
 945 *  In the case of fiber serdes, shut down optics and PCS on driver unload
 946 *  when management pass thru is not enabled.
 947 **/
 948void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
 949{
 950	u32 reg;
 951
 952	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
 953	    igb_sgmii_active_82575(hw))
 954		return;
 955
 956	if (!igb_enable_mng_pass_thru(hw)) {
 957		/* Disable PCS to turn off link */
 958		reg = rd32(E1000_PCS_CFG0);
 959		reg &= ~E1000_PCS_CFG_PCS_EN;
 960		wr32(E1000_PCS_CFG0, reg);
 961
 962		/* shutdown the laser */
 963		reg = rd32(E1000_CTRL_EXT);
 964		reg |= E1000_CTRL_EXT_SDP3_DATA;
 965		wr32(E1000_CTRL_EXT, reg);
 966
 967		/* flush the write to verify completion */
 968		wrfl();
 969		msleep(1);
 970	}
 971}
 972
 973/**
 974 *  igb_reset_hw_82575 - Reset hardware
 975 *  @hw: pointer to the HW structure
 976 *
 977 *  This resets the hardware into a known state.  This is a
 978 *  function pointer entry point called by the api module.
 979 **/
 980static s32 igb_reset_hw_82575(struct e1000_hw *hw)
 981{
 982	u32 ctrl, icr;
 983	s32 ret_val;
 984
 985	/*
 986	 * Prevent the PCI-E bus from sticking if there is no TLP connection
 987	 * on the last TLP read/write transaction when MAC is reset.
 988	 */
 989	ret_val = igb_disable_pcie_master(hw);
 990	if (ret_val)
 991		hw_dbg("PCI-E Master disable polling has failed.\n");
 992
 993	/* set the completion timeout for interface */
 994	ret_val = igb_set_pcie_completion_timeout(hw);
 995	if (ret_val) {
 996		hw_dbg("PCI-E Set completion timeout has failed.\n");
 997	}
 998
 999	hw_dbg("Masking off all interrupts\n");
1000	wr32(E1000_IMC, 0xffffffff);
1001
1002	wr32(E1000_RCTL, 0);
1003	wr32(E1000_TCTL, E1000_TCTL_PSP);
1004	wrfl();
1005
1006	msleep(10);
1007
1008	ctrl = rd32(E1000_CTRL);
1009
1010	hw_dbg("Issuing a global reset to MAC\n");
1011	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1012
1013	ret_val = igb_get_auto_rd_done(hw);
1014	if (ret_val) {
1015		/*
1016		 * When auto config read does not complete, do not
1017		 * return with an error. This can happen in situations
1018		 * where there is no eeprom and prevents getting link.
1019		 */
1020		hw_dbg("Auto Read Done did not complete\n");
1021	}
1022
1023	/* If EEPROM is not present, run manual init scripts */
1024	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1025		igb_reset_init_script_82575(hw);
1026
1027	/* Clear any pending interrupt events. */
1028	wr32(E1000_IMC, 0xffffffff);
1029	icr = rd32(E1000_ICR);
1030
1031	/* Install any alternate MAC address into RAR0 */
1032	ret_val = igb_check_alt_mac_addr(hw);
1033
1034	return ret_val;
1035}
1036
1037/**
1038 *  igb_init_hw_82575 - Initialize hardware
1039 *  @hw: pointer to the HW structure
1040 *
1041 *  This inits the hardware readying it for operation.
1042 **/
1043static s32 igb_init_hw_82575(struct e1000_hw *hw)
1044{
1045	struct e1000_mac_info *mac = &hw->mac;
1046	s32 ret_val;
1047	u16 i, rar_count = mac->rar_entry_count;
1048
1049	/* Initialize identification LED */
1050	ret_val = igb_id_led_init(hw);
1051	if (ret_val) {
1052		hw_dbg("Error initializing identification LED\n");
1053		/* This is not fatal and we should not stop init due to this */
1054	}
1055
1056	/* Disabling VLAN filtering */
1057	hw_dbg("Initializing the IEEE VLAN\n");
1058	igb_clear_vfta(hw);
1059
1060	/* Setup the receive address */
1061	igb_init_rx_addrs(hw, rar_count);
1062
1063	/* Zero out the Multicast HASH table */
1064	hw_dbg("Zeroing the MTA\n");
1065	for (i = 0; i < mac->mta_reg_count; i++)
1066		array_wr32(E1000_MTA, i, 0);
1067
1068	/* Zero out the Unicast HASH table */
1069	hw_dbg("Zeroing the UTA\n");
1070	for (i = 0; i < mac->uta_reg_count; i++)
1071		array_wr32(E1000_UTA, i, 0);
1072
1073	/* Setup link and flow control */
1074	ret_val = igb_setup_link(hw);
1075
1076	/*
1077	 * Clear all of the statistics registers (clear on read).  It is
1078	 * important that we do this after we have tried to establish link
1079	 * because the symbol error count will increment wildly if there
1080	 * is no link.
1081	 */
1082	igb_clear_hw_cntrs_82575(hw);
1083
1084	return ret_val;
1085}
1086
1087/**
1088 *  igb_setup_copper_link_82575 - Configure copper link settings
1089 *  @hw: pointer to the HW structure
1090 *
1091 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1092 *  for link, once link is established calls to configure collision distance
1093 *  and flow control are called.
1094 **/
1095static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1096{
1097	u32 ctrl;
1098	s32  ret_val;
1099
1100	ctrl = rd32(E1000_CTRL);
1101	ctrl |= E1000_CTRL_SLU;
1102	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1103	wr32(E1000_CTRL, ctrl);
1104
1105	ret_val = igb_setup_serdes_link_82575(hw);
1106	if (ret_val)
1107		goto out;
1108
1109	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1110		/* allow time for SFP cage time to power up phy */
1111		msleep(300);
1112
1113		ret_val = hw->phy.ops.reset(hw);
1114		if (ret_val) {
1115			hw_dbg("Error resetting the PHY.\n");
1116			goto out;
1117		}
1118	}
1119	switch (hw->phy.type) {
1120	case e1000_phy_m88:
1121		if (hw->phy.id == I347AT4_E_PHY_ID ||
1122		    hw->phy.id == M88E1112_E_PHY_ID)
1123			ret_val = igb_copper_link_setup_m88_gen2(hw);
1124		else
1125			ret_val = igb_copper_link_setup_m88(hw);
1126		break;
1127	case e1000_phy_igp_3:
1128		ret_val = igb_copper_link_setup_igp(hw);
1129		break;
1130	case e1000_phy_82580:
1131		ret_val = igb_copper_link_setup_82580(hw);
1132		break;
1133	default:
1134		ret_val = -E1000_ERR_PHY;
1135		break;
1136	}
1137
1138	if (ret_val)
1139		goto out;
1140
1141	ret_val = igb_setup_copper_link(hw);
1142out:
1143	return ret_val;
1144}
1145
1146/**
1147 *  igb_setup_serdes_link_82575 - Setup link for serdes
1148 *  @hw: pointer to the HW structure
1149 *
1150 *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1151 *  used on copper connections where the serialized gigabit media independent
1152 *  interface (sgmii), or serdes fiber is being used.  Configures the link
1153 *  for auto-negotiation or forces speed/duplex.
1154 **/
1155static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1156{
1157	u32 ctrl_ext, ctrl_reg, reg;
1158	bool pcs_autoneg;
1159	s32 ret_val = E1000_SUCCESS;
1160	u16 data;
1161
1162	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1163	    !igb_sgmii_active_82575(hw))
1164		return ret_val;
1165
1166
1167	/*
1168	 * On the 82575, SerDes loopback mode persists until it is
1169	 * explicitly turned off or a power cycle is performed.  A read to
1170	 * the register does not indicate its status.  Therefore, we ensure
1171	 * loopback mode is disabled during initialization.
1172	 */
1173	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1174
1175	/* power on the sfp cage if present */
1176	ctrl_ext = rd32(E1000_CTRL_EXT);
1177	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1178	wr32(E1000_CTRL_EXT, ctrl_ext);
1179
1180	ctrl_reg = rd32(E1000_CTRL);
1181	ctrl_reg |= E1000_CTRL_SLU;
1182
1183	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1184		/* set both sw defined pins */
1185		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1186
1187		/* Set switch control to serdes energy detect */
1188		reg = rd32(E1000_CONNSW);
1189		reg |= E1000_CONNSW_ENRGSRC;
1190		wr32(E1000_CONNSW, reg);
1191	}
1192
1193	reg = rd32(E1000_PCS_LCTL);
1194
1195	/* default pcs_autoneg to the same setting as mac autoneg */
1196	pcs_autoneg = hw->mac.autoneg;
1197
1198	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1199	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1200		/* sgmii mode lets the phy handle forcing speed/duplex */
1201		pcs_autoneg = true;
1202		/* autoneg time out should be disabled for SGMII mode */
1203		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1204		break;
1205	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1206		/* disable PCS autoneg and support parallel detect only */
1207		pcs_autoneg = false;
1208	default:
1209		if (hw->mac.type == e1000_82575 ||
1210		    hw->mac.type == e1000_82576) {
1211			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1212			if (ret_val) {
1213				printk(KERN_DEBUG "NVM Read Error\n\n");
1214				return ret_val;
1215			}
1216
1217			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1218				pcs_autoneg = false;
1219		}
1220
1221		/*
1222		 * non-SGMII modes only supports a speed of 1000/Full for the
1223		 * link so it is best to just force the MAC and let the pcs
1224		 * link either autoneg or be forced to 1000/Full
1225		 */
1226		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1227		            E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1228
1229		/* set speed of 1000/Full if speed/duplex is forced */
1230		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1231		break;
1232	}
1233
1234	wr32(E1000_CTRL, ctrl_reg);
1235
1236	/*
1237	 * New SerDes mode allows for forcing speed or autonegotiating speed
1238	 * at 1gb. Autoneg should be default set by most drivers. This is the
1239	 * mode that will be compatible with older link partners and switches.
1240	 * However, both are supported by the hardware and some drivers/tools.
1241	 */
1242	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1243		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1244
1245	/*
1246	 * We force flow control to prevent the CTRL register values from being
1247	 * overwritten by the autonegotiated flow control values
1248	 */
1249	reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1250
1251	if (pcs_autoneg) {
1252		/* Set PCS register for autoneg */
1253		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1254		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1255		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1256	} else {
1257		/* Set PCS register for forced link */
1258		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1259
1260		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1261	}
1262
1263	wr32(E1000_PCS_LCTL, reg);
1264
1265	if (!igb_sgmii_active_82575(hw))
1266		igb_force_mac_fc(hw);
1267
1268	return ret_val;
1269}
1270
1271/**
1272 *  igb_sgmii_active_82575 - Return sgmii state
1273 *  @hw: pointer to the HW structure
1274 *
1275 *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1276 *  which can be enabled for use in the embedded applications.  Simply
1277 *  return the current state of the sgmii interface.
1278 **/
1279static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1280{
1281	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1282	return dev_spec->sgmii_active;
1283}
1284
1285/**
1286 *  igb_reset_init_script_82575 - Inits HW defaults after reset
1287 *  @hw: pointer to the HW structure
1288 *
1289 *  Inits recommended HW defaults after a reset when there is no EEPROM
1290 *  detected. This is only for the 82575.
1291 **/
1292static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1293{
1294	if (hw->mac.type == e1000_82575) {
1295		hw_dbg("Running reset init script for 82575\n");
1296		/* SerDes configuration via SERDESCTRL */
1297		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1298		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1299		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1300		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1301
1302		/* CCM configuration via CCMCTL register */
1303		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1304		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1305
1306		/* PCIe lanes configuration */
1307		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1308		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1309		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1310		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1311
1312		/* PCIe PLL Configuration */
1313		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1314		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1315		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1316	}
1317
1318	return 0;
1319}
1320
1321/**
1322 *  igb_read_mac_addr_82575 - Read device MAC address
1323 *  @hw: pointer to the HW structure
1324 **/
1325static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1326{
1327	s32 ret_val = 0;
1328
1329	/*
1330	 * If there's an alternate MAC address place it in RAR0
1331	 * so that it will override the Si installed default perm
1332	 * address.
1333	 */
1334	ret_val = igb_check_alt_mac_addr(hw);
1335	if (ret_val)
1336		goto out;
1337
1338	ret_val = igb_read_mac_addr(hw);
1339
1340out:
1341	return ret_val;
1342}
1343
1344/**
1345 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1346 * @hw: pointer to the HW structure
1347 *
1348 * In the case of a PHY power down to save power, or to turn off link during a
1349 * driver unload, or wake on lan is not enabled, remove the link.
1350 **/
1351void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1352{
1353	/* If the management interface is not enabled, then power down */
1354	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1355		igb_power_down_phy_copper(hw);
1356}
1357
1358/**
1359 *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1360 *  @hw: pointer to the HW structure
1361 *
1362 *  Clears the hardware counters by reading the counter registers.
1363 **/
1364static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1365{
1366	igb_clear_hw_cntrs_base(hw);
1367
1368	rd32(E1000_PRC64);
1369	rd32(E1000_PRC127);
1370	rd32(E1000_PRC255);
1371	rd32(E1000_PRC511);
1372	rd32(E1000_PRC1023);
1373	rd32(E1000_PRC1522);
1374	rd32(E1000_PTC64);
1375	rd32(E1000_PTC127);
1376	rd32(E1000_PTC255);
1377	rd32(E1000_PTC511);
1378	rd32(E1000_PTC1023);
1379	rd32(E1000_PTC1522);
1380
1381	rd32(E1000_ALGNERRC);
1382	rd32(E1000_RXERRC);
1383	rd32(E1000_TNCRS);
1384	rd32(E1000_CEXTERR);
1385	rd32(E1000_TSCTC);
1386	rd32(E1000_TSCTFC);
1387
1388	rd32(E1000_MGTPRC);
1389	rd32(E1000_MGTPDC);
1390	rd32(E1000_MGTPTC);
1391
1392	rd32(E1000_IAC);
1393	rd32(E1000_ICRXOC);
1394
1395	rd32(E1000_ICRXPTC);
1396	rd32(E1000_ICRXATC);
1397	rd32(E1000_ICTXPTC);
1398	rd32(E1000_ICTXATC);
1399	rd32(E1000_ICTXQEC);
1400	rd32(E1000_ICTXQMTC);
1401	rd32(E1000_ICRXDMTC);
1402
1403	rd32(E1000_CBTMPC);
1404	rd32(E1000_HTDPMC);
1405	rd32(E1000_CBRMPC);
1406	rd32(E1000_RPTHC);
1407	rd32(E1000_HGPTC);
1408	rd32(E1000_HTCBDPC);
1409	rd32(E1000_HGORCL);
1410	rd32(E1000_HGORCH);
1411	rd32(E1000_HGOTCL);
1412	rd32(E1000_HGOTCH);
1413	rd32(E1000_LENERRS);
1414
1415	/* This register should not be read in copper configurations */
1416	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1417	    igb_sgmii_active_82575(hw))
1418		rd32(E1000_SCVPC);
1419}
1420
1421/**
1422 *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1423 *  @hw: pointer to the HW structure
1424 *
1425 *  After rx enable if managability is enabled then there is likely some
1426 *  bad data at the start of the fifo and possibly in the DMA fifo.  This
1427 *  function clears the fifos and flushes any packets that came in as rx was
1428 *  being enabled.
1429 **/
1430void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1431{
1432	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1433	int i, ms_wait;
1434
1435	if (hw->mac.type != e1000_82575 ||
1436	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1437		return;
1438
1439	/* Disable all RX queues */
1440	for (i = 0; i < 4; i++) {
1441		rxdctl[i] = rd32(E1000_RXDCTL(i));
1442		wr32(E1000_RXDCTL(i),
1443		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1444	}
1445	/* Poll all queues to verify they have shut down */
1446	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1447		msleep(1);
1448		rx_enabled = 0;
1449		for (i = 0; i < 4; i++)
1450			rx_enabled |= rd32(E1000_RXDCTL(i));
1451		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1452			break;
1453	}
1454
1455	if (ms_wait == 10)
1456		hw_dbg("Queue disable timed out after 10ms\n");
1457
1458	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1459	 * incoming packets are rejected.  Set enable and wait 2ms so that
1460	 * any packet that was coming in as RCTL.EN was set is flushed
1461	 */
1462	rfctl = rd32(E1000_RFCTL);
1463	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1464
1465	rlpml = rd32(E1000_RLPML);
1466	wr32(E1000_RLPML, 0);
1467
1468	rctl = rd32(E1000_RCTL);
1469	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1470	temp_rctl |= E1000_RCTL_LPE;
1471
1472	wr32(E1000_RCTL, temp_rctl);
1473	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1474	wrfl();
1475	msleep(2);
1476
1477	/* Enable RX queues that were previously enabled and restore our
1478	 * previous state
1479	 */
1480	for (i = 0; i < 4; i++)
1481		wr32(E1000_RXDCTL(i), rxdctl[i]);
1482	wr32(E1000_RCTL, rctl);
1483	wrfl();
1484
1485	wr32(E1000_RLPML, rlpml);
1486	wr32(E1000_RFCTL, rfctl);
1487
1488	/* Flush receive errors generated by workaround */
1489	rd32(E1000_ROC);
1490	rd32(E1000_RNBC);
1491	rd32(E1000_MPC);
1492}
1493
1494/**
1495 *  igb_set_pcie_completion_timeout - set pci-e completion timeout
1496 *  @hw: pointer to the HW structure
1497 *
1498 *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
1499 *  however the hardware default for these parts is 500us to 1ms which is less
1500 *  than the 10ms recommended by the pci-e spec.  To address this we need to
1501 *  increase the value to either 10ms to 200ms for capability version 1 config,
1502 *  or 16ms to 55ms for version 2.
1503 **/
1504static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
1505{
1506	u32 gcr = rd32(E1000_GCR);
1507	s32 ret_val = 0;
1508	u16 pcie_devctl2;
1509
1510	/* only take action if timeout value is defaulted to 0 */
1511	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
1512		goto out;
1513
1514	/*
1515	 * if capababilities version is type 1 we can write the
1516	 * timeout of 10ms to 200ms through the GCR register
1517	 */
1518	if (!(gcr & E1000_GCR_CAP_VER2)) {
1519		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
1520		goto out;
1521	}
1522
1523	/*
1524	 * for version 2 capabilities we need to write the config space
1525	 * directly in order to set the completion timeout value for
1526	 * 16ms to 55ms
1527	 */
1528	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1529	                                &pcie_devctl2);
1530	if (ret_val)
1531		goto out;
1532
1533	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
1534
1535	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
1536	                                 &pcie_devctl2);
1537out:
1538	/* disable completion timeout resend */
1539	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
1540
1541	wr32(E1000_GCR, gcr);
1542	return ret_val;
1543}
1544
1545/**
1546 *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
1547 *  @hw: pointer to the hardware struct
1548 *  @enable: state to enter, either enabled or disabled
1549 *  @pf: Physical Function pool - do not set anti-spoofing for the PF
1550 *
1551 *  enables/disables L2 switch anti-spoofing functionality.
1552 **/
1553void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
1554{
1555	u32 dtxswc;
1556
1557	switch (hw->mac.type) {
1558	case e1000_82576:
1559	case e1000_i350:
1560		dtxswc = rd32(E1000_DTXSWC);
1561		if (enable) {
1562			dtxswc |= (E1000_DTXSWC_MAC_SPOOF_MASK |
1563				   E1000_DTXSWC_VLAN_SPOOF_MASK);
1564			/* The PF can spoof - it has to in order to
1565			 * support emulation mode NICs */
1566			dtxswc ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
1567		} else {
1568			dtxswc &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
1569				    E1000_DTXSWC_VLAN_SPOOF_MASK);
1570		}
1571		wr32(E1000_DTXSWC, dtxswc);
1572		break;
1573	default:
1574		break;
1575	}
1576}
1577
1578/**
1579 *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
1580 *  @hw: pointer to the hardware struct
1581 *  @enable: state to enter, either enabled or disabled
1582 *
1583 *  enables/disables L2 switch loopback functionality.
1584 **/
1585void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
1586{
1587	u32 dtxswc = rd32(E1000_DTXSWC);
1588
1589	if (enable)
1590		dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1591	else
1592		dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
1593
1594	wr32(E1000_DTXSWC, dtxswc);
1595}
1596
1597/**
1598 *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
1599 *  @hw: pointer to the hardware struct
1600 *  @enable: state to enter, either enabled or disabled
1601 *
1602 *  enables/disables replication of packets across multiple pools.
1603 **/
1604void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
1605{
1606	u32 vt_ctl = rd32(E1000_VT_CTL);
1607
1608	if (enable)
1609		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
1610	else
1611		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
1612
1613	wr32(E1000_VT_CTL, vt_ctl);
1614}
1615
1616/**
1617 *  igb_read_phy_reg_82580 - Read 82580 MDI control register
1618 *  @hw: pointer to the HW structure
1619 *  @offset: register offset to be read
1620 *  @data: pointer to the read data
1621 *
1622 *  Reads the MDI control register in the PHY at offset and stores the
1623 *  information read to data.
1624 **/
1625static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
1626{
1627	s32 ret_val;
1628
1629
1630	ret_val = hw->phy.ops.acquire(hw);
1631	if (ret_val)
1632		goto out;
1633
1634	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
1635
1636	hw->phy.ops.release(hw);
1637
1638out:
1639	return ret_val;
1640}
1641
1642/**
1643 *  igb_write_phy_reg_82580 - Write 82580 MDI control register
1644 *  @hw: pointer to the HW structure
1645 *  @offset: register offset to write to
1646 *  @data: data to write to register at offset
1647 *
1648 *  Writes data to MDI control register in the PHY at offset.
1649 **/
1650static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
1651{
1652	s32 ret_val;
1653
1654
1655	ret_val = hw->phy.ops.acquire(hw);
1656	if (ret_val)
1657		goto out;
1658
1659	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
1660
1661	hw->phy.ops.release(hw);
1662
1663out:
1664	return ret_val;
1665}
1666
1667/**
1668 *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
1669 *  @hw: pointer to the HW structure
1670 *
1671 *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
1672 *  the values found in the EEPROM.  This addresses an issue in which these
1673 *  bits are not restored from EEPROM after reset.
1674 **/
1675static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
1676{
1677	s32 ret_val = 0;
1678	u32 mdicnfg;
1679	u16 nvm_data = 0;
1680
1681	if (hw->mac.type != e1000_82580)
1682		goto out;
1683	if (!igb_sgmii_active_82575(hw))
1684		goto out;
1685
1686	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
1687				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
1688				   &nvm_data);
1689	if (ret_val) {
1690		hw_dbg("NVM Read Error\n");
1691		goto out;
1692	}
1693
1694	mdicnfg = rd32(E1000_MDICNFG);
1695	if (nvm_data & NVM_WORD24_EXT_MDIO)
1696		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
1697	if (nvm_data & NVM_WORD24_COM_MDIO)
1698		mdicnfg |= E1000_MDICNFG_COM_MDIO;
1699	wr32(E1000_MDICNFG, mdicnfg);
1700out:
1701	return ret_val;
1702}
1703
1704/**
1705 *  igb_reset_hw_82580 - Reset hardware
1706 *  @hw: pointer to the HW structure
1707 *
1708 *  This resets function or entire device (all ports, etc.)
1709 *  to a known state.
1710 **/
1711static s32 igb_reset_hw_82580(struct e1000_hw *hw)
1712{
1713	s32 ret_val = 0;
1714	/* BH SW mailbox bit in SW_FW_SYNC */
1715	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
1716	u32 ctrl, icr;
1717	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
1718
1719
1720	hw->dev_spec._82575.global_device_reset = false;
1721
1722	/* Get current control state. */
1723	ctrl = rd32(E1000_CTRL);
1724
1725	/*
1726	 * Prevent the PCI-E bus from sticking if there is no TLP connection
1727	 * on the last TLP read/write transaction when MAC is reset.
1728	 */
1729	ret_val = igb_disable_pcie_master(hw);
1730	if (ret_val)
1731		hw_dbg("PCI-E Master disable polling has failed.\n");
1732
1733	hw_dbg("Masking off all interrupts\n");
1734	wr32(E1000_IMC, 0xffffffff);
1735	wr32(E1000_RCTL, 0);
1736	wr32(E1000_TCTL, E1000_TCTL_PSP);
1737	wrfl();
1738
1739	msleep(10);
1740
1741	/* Determine whether or not a global dev reset is requested */
1742	if (global_device_reset &&
1743		igb_acquire_swfw_sync_82575(hw, swmbsw_mask))
1744			global_device_reset = false;
1745
1746	if (global_device_reset &&
1747		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
1748		ctrl |= E1000_CTRL_DEV_RST;
1749	else
1750		ctrl |= E1000_CTRL_RST;
1751
1752	wr32(E1000_CTRL, ctrl);
1753	wrfl();
1754
1755	/* Add delay to insure DEV_RST has time to complete */
1756	if (global_device_reset)
1757		msleep(5);
1758
1759	ret_val = igb_get_auto_rd_done(hw);
1760	if (ret_val) {
1761		/*
1762		 * When auto config read does not complete, do not
1763		 * return with an error. This can happen in situations
1764		 * where there is no eeprom and prevents getting link.
1765		 */
1766		hw_dbg("Auto Read Done did not complete\n");
1767	}
1768
1769	/* If EEPROM is not present, run manual init scripts */
1770	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1771		igb_reset_init_script_82575(hw);
1772
1773	/* clear global device reset status bit */
1774	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
1775
1776	/* Clear any pending interrupt events. */
1777	wr32(E1000_IMC, 0xffffffff);
1778	icr = rd32(E1000_ICR);
1779
1780	ret_val = igb_reset_mdicnfg_82580(hw);
1781	if (ret_val)
1782		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
1783
1784	/* Install any alternate MAC address into RAR0 */
1785	ret_val = igb_check_alt_mac_addr(hw);
1786
1787	/* Release semaphore */
1788	if (global_device_reset)
1789		igb_release_swfw_sync_82575(hw, swmbsw_mask);
1790
1791	return ret_val;
1792}
1793
1794/**
1795 *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
1796 *  @data: data received by reading RXPBS register
1797 *
1798 *  The 82580 uses a table based approach for packet buffer allocation sizes.
1799 *  This function converts the retrieved value into the correct table value
1800 *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
1801 *  0x0 36  72 144   1   2   4   8  16
1802 *  0x8 35  70 140 rsv rsv rsv rsv rsv
1803 */
1804u16 igb_rxpbs_adjust_82580(u32 data)
1805{
1806	u16 ret_val = 0;
1807
1808	if (data < E1000_82580_RXPBS_TABLE_SIZE)
1809		ret_val = e1000_82580_rxpbs_table[data];
1810
1811	return ret_val;
1812}
1813
1814/**
1815 *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
1816 *  checksum
1817 *  @hw: pointer to the HW structure
1818 *  @offset: offset in words of the checksum protected region
1819 *
1820 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
1821 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
1822 **/
1823s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
1824{
1825	s32 ret_val = 0;
1826	u16 checksum = 0;
1827	u16 i, nvm_data;
1828
1829	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
1830		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
1831		if (ret_val) {
1832			hw_dbg("NVM Read Error\n");
1833			goto out;
1834		}
1835		checksum += nvm_data;
1836	}
1837
1838	if (checksum != (u16) NVM_SUM) {
1839		hw_dbg("NVM Checksum Invalid\n");
1840		ret_val = -E1000_ERR_NVM;
1841		goto out;
1842	}
1843
1844out:
1845	return ret_val;
1846}
1847
1848/**
1849 *  igb_update_nvm_checksum_with_offset - Update EEPROM
1850 *  checksum
1851 *  @hw: pointer to the HW structure
1852 *  @offset: offset in words of the checksum protected region
1853 *
1854 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
1855 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
1856 *  value to the EEPROM.
1857 **/
1858s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
1859{
1860	s32 ret_val;
1861	u16 checksum = 0;
1862	u16 i, nvm_data;
1863
1864	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
1865		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
1866		if (ret_val) {
1867			hw_dbg("NVM Read Error while updating checksum.\n");
1868			goto out;
1869		}
1870		checksum += nvm_data;
1871	}
1872	checksum = (u16) NVM_SUM - checksum;
1873	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
1874				&checksum);
1875	if (ret_val)
1876		hw_dbg("NVM Write Error while updating checksum.\n");
1877
1878out:
1879	return ret_val;
1880}
1881
1882/**
1883 *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
1884 *  @hw: pointer to the HW structure
1885 *
1886 *  Calculates the EEPROM section checksum by reading/adding each word of
1887 *  the EEPROM and then verifies that the sum of the EEPROM is
1888 *  equal to 0xBABA.
1889 **/
1890static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
1891{
1892	s32 ret_val = 0;
1893	u16 eeprom_regions_count = 1;
1894	u16 j, nvm_data;
1895	u16 nvm_offset;
1896
1897	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
1898	if (ret_val) {
1899		hw_dbg("NVM Read Error\n");
1900		goto out;
1901	}
1902
1903	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
1904		/* if checksums compatibility bit is set validate checksums
1905		 * for all 4 ports. */
1906		eeprom_regions_count = 4;
1907	}
1908
1909	for (j = 0; j < eeprom_regions_count; j++) {
1910		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
1911		ret_val = igb_validate_nvm_checksum_with_offset(hw,
1912								nvm_offset);
1913		if (ret_val != 0)
1914			goto out;
1915	}
1916
1917out:
1918	return ret_val;
1919}
1920
1921/**
1922 *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
1923 *  @hw: pointer to the HW structure
1924 *
1925 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
1926 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
1927 *  checksum and writes the value to the EEPROM.
1928 **/
1929static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
1930{
1931	s32 ret_val;
1932	u16 j, nvm_data;
1933	u16 nvm_offset;
1934
1935	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
1936	if (ret_val) {
1937		hw_dbg("NVM Read Error while updating checksum"
1938			" compatibility bit.\n");
1939		goto out;
1940	}
1941
1942	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
1943		/* set compatibility bit to validate checksums appropriately */
1944		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
1945		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
1946					&nvm_data);
1947		if (ret_val) {
1948			hw_dbg("NVM Write Error while updating checksum"
1949				" compatibility bit.\n");
1950			goto out;
1951		}
1952	}
1953
1954	for (j = 0; j < 4; j++) {
1955		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
1956		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
1957		if (ret_val)
1958			goto out;
1959	}
1960
1961out:
1962	return ret_val;
1963}
1964
1965/**
1966 *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
1967 *  @hw: pointer to the HW structure
1968 *
1969 *  Calculates the EEPROM section checksum by reading/adding each word of
1970 *  the EEPROM and then verifies that the sum of the EEPROM is
1971 *  equal to 0xBABA.
1972 **/
1973static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
1974{
1975	s32 ret_val = 0;
1976	u16 j;
1977	u16 nvm_offset;
1978
1979	for (j = 0; j < 4; j++) {
1980		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
1981		ret_val = igb_validate_nvm_checksum_with_offset(hw,
1982								nvm_offset);
1983		if (ret_val != 0)
1984			goto out;
1985	}
1986
1987out:
1988	return ret_val;
1989}
1990
1991/**
1992 *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
1993 *  @hw: pointer to the HW structure
1994 *
1995 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
1996 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
1997 *  checksum and writes the value to the EEPROM.
1998 **/
1999static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2000{
2001	s32 ret_val = 0;
2002	u16 j;
2003	u16 nvm_offset;
2004
2005	for (j = 0; j < 4; j++) {
2006		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2007		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2008		if (ret_val != 0)
2009			goto out;
2010	}
2011
2012out:
2013	return ret_val;
2014}
2015
2016/**
2017 *  igb_set_eee_i350 - Enable/disable EEE support
2018 *  @hw: pointer to the HW structure
2019 *
2020 *  Enable/disable EEE based on setting in dev_spec structure.
2021 *
2022 **/
2023s32 igb_set_eee_i350(struct e1000_hw *hw)
2024{
2025	s32 ret_val = 0;
2026	u32 ipcnfg, eeer, ctrl_ext;
2027
2028	ctrl_ext = rd32(E1000_CTRL_EXT);
2029	if ((hw->mac.type != e1000_i350) ||
2030	    (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK))
2031		goto out;
2032	ipcnfg = rd32(E1000_IPCNFG);
2033	eeer = rd32(E1000_EEER);
2034
2035	/* enable or disable per user setting */
2036	if (!(hw->dev_spec._82575.eee_disable)) {
2037		ipcnfg |= (E1000_IPCNFG_EEE_1G_AN |
2038			E1000_IPCNFG_EEE_100M_AN);
2039		eeer |= (E1000_EEER_TX_LPI_EN |
2040			E1000_EEER_RX_LPI_EN |
2041			E1000_EEER_LPI_FC);
2042
2043	} else {
2044		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2045			E1000_IPCNFG_EEE_100M_AN);
2046		eeer &= ~(E1000_EEER_TX_LPI_EN |
2047			E1000_EEER_RX_LPI_EN |
2048			E1000_EEER_LPI_FC);
2049	}
2050	wr32(E1000_IPCNFG, ipcnfg);
2051	wr32(E1000_EEER, eeer);
2052out:
2053
2054	return ret_val;
2055}
2056
2057static struct e1000_mac_operations e1000_mac_ops_82575 = {
2058	.init_hw              = igb_init_hw_82575,
2059	.check_for_link       = igb_check_for_link_82575,
2060	.rar_set              = igb_rar_set,
2061	.read_mac_addr        = igb_read_mac_addr_82575,
2062	.get_speed_and_duplex = igb_get_speed_and_duplex_copper,
2063};
2064
2065static struct e1000_phy_operations e1000_phy_ops_82575 = {
2066	.acquire              = igb_acquire_phy_82575,
2067	.get_cfg_done         = igb_get_cfg_done_82575,
2068	.release              = igb_release_phy_82575,
2069};
2070
2071static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2072	.acquire              = igb_acquire_nvm_82575,
2073	.read                 = igb_read_nvm_eerd,
2074	.release              = igb_release_nvm_82575,
2075	.write                = igb_write_nvm_spi,
2076};
2077
2078const struct e1000_info e1000_82575_info = {
2079	.get_invariants = igb_get_invariants_82575,
2080	.mac_ops = &e1000_mac_ops_82575,
2081	.phy_ops = &e1000_phy_ops_82575,
2082	.nvm_ops = &e1000_nvm_ops_82575,
2083};
2084