Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * smc91x.c
   3 * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices.
   4 *
   5 * Copyright (C) 1996 by Erik Stahlman
   6 * Copyright (C) 2001 Standard Microsystems Corporation
   7 *	Developed by Simple Network Magic Corporation
   8 * Copyright (C) 2003 Monta Vista Software, Inc.
   9 *	Unified SMC91x driver by Nicolas Pitre
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2 of the License, or
  14 * (at your option) any later version.
  15 *
  16 * This program is distributed in the hope that it will be useful,
  17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  19 * GNU General Public License for more details.
  20 *
  21 * You should have received a copy of the GNU General Public License
  22 * along with this program; if not, see <http://www.gnu.org/licenses/>.
  23 *
  24 * Arguments:
  25 * 	io	= for the base address
  26 *	irq	= for the IRQ
  27 *	nowait	= 0 for normal wait states, 1 eliminates additional wait states
  28 *
  29 * original author:
  30 * 	Erik Stahlman <erik@vt.edu>
  31 *
  32 * hardware multicast code:
  33 *    Peter Cammaert <pc@denkart.be>
  34 *
  35 * contributors:
  36 * 	Daris A Nevil <dnevil@snmc.com>
  37 *      Nicolas Pitre <nico@fluxnic.net>
  38 *	Russell King <rmk@arm.linux.org.uk>
  39 *
  40 * History:
  41 *   08/20/00  Arnaldo Melo       fix kfree(skb) in smc_hardware_send_packet
  42 *   12/15/00  Christian Jullien  fix "Warning: kfree_skb on hard IRQ"
  43 *   03/16/01  Daris A Nevil      modified smc9194.c for use with LAN91C111
  44 *   08/22/01  Scott Anderson     merge changes from smc9194 to smc91111
  45 *   08/21/01  Pramod B Bhardwaj  added support for RevB of LAN91C111
  46 *   12/20/01  Jeff Sutherland    initial port to Xscale PXA with DMA support
  47 *   04/07/03  Nicolas Pitre      unified SMC91x driver, killed irq races,
  48 *                                more bus abstraction, big cleanup, etc.
  49 *   29/09/03  Russell King       - add driver model support
  50 *                                - ethtool support
  51 *                                - convert to use generic MII interface
  52 *                                - add link up/down notification
  53 *                                - don't try to handle full negotiation in
  54 *                                  smc_phy_configure
  55 *                                - clean up (and fix stack overrun) in PHY
  56 *                                  MII read/write functions
  57 *   22/09/04  Nicolas Pitre      big update (see commit log for details)
  58 */
  59static const char version[] =
  60	"smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@fluxnic.net>";
  61
  62/* Debugging level */
  63#ifndef SMC_DEBUG
  64#define SMC_DEBUG		0
  65#endif
  66
  67
  68#include <linux/module.h>
  69#include <linux/kernel.h>
  70#include <linux/sched.h>
  71#include <linux/delay.h>
  72#include <linux/interrupt.h>
  73#include <linux/irq.h>
  74#include <linux/errno.h>
  75#include <linux/ioport.h>
  76#include <linux/crc32.h>
  77#include <linux/platform_device.h>
  78#include <linux/spinlock.h>
  79#include <linux/ethtool.h>
  80#include <linux/mii.h>
  81#include <linux/workqueue.h>
  82#include <linux/of.h>
  83#include <linux/of_device.h>
  84#include <linux/of_gpio.h>
  85
  86#include <linux/netdevice.h>
  87#include <linux/etherdevice.h>
  88#include <linux/skbuff.h>
  89
  90#include <asm/io.h>
  91
  92#include "smc91x.h"
  93
  94#if defined(CONFIG_ASSABET_NEPONSET)
  95#include <mach/assabet.h>
  96#include <mach/neponset.h>
  97#endif
  98
  99#ifndef SMC_NOWAIT
 100# define SMC_NOWAIT		0
 101#endif
 102static int nowait = SMC_NOWAIT;
 103module_param(nowait, int, 0400);
 104MODULE_PARM_DESC(nowait, "set to 1 for no wait state");
 105
 106/*
 107 * Transmit timeout, default 5 seconds.
 108 */
 109static int watchdog = 1000;
 110module_param(watchdog, int, 0400);
 111MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
 112
 113MODULE_LICENSE("GPL");
 114MODULE_ALIAS("platform:smc91x");
 115
 116/*
 117 * The internal workings of the driver.  If you are changing anything
 118 * here with the SMC stuff, you should have the datasheet and know
 119 * what you are doing.
 120 */
 121#define CARDNAME "smc91x"
 122
 123/*
 124 * Use power-down feature of the chip
 125 */
 126#define POWER_DOWN		1
 127
 128/*
 129 * Wait time for memory to be free.  This probably shouldn't be
 130 * tuned that much, as waiting for this means nothing else happens
 131 * in the system
 132 */
 133#define MEMORY_WAIT_TIME	16
 134
 135/*
 136 * The maximum number of processing loops allowed for each call to the
 137 * IRQ handler.
 138 */
 139#define MAX_IRQ_LOOPS		8
 140
 141/*
 142 * This selects whether TX packets are sent one by one to the SMC91x internal
 143 * memory and throttled until transmission completes.  This may prevent
 144 * RX overruns a litle by keeping much of the memory free for RX packets
 145 * but to the expense of reduced TX throughput and increased IRQ overhead.
 146 * Note this is not a cure for a too slow data bus or too high IRQ latency.
 147 */
 148#define THROTTLE_TX_PKTS	0
 149
 150/*
 151 * The MII clock high/low times.  2x this number gives the MII clock period
 152 * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!)
 153 */
 154#define MII_DELAY		1
 155
 156#define DBG(n, dev, fmt, ...)					\
 157	do {							\
 158		if (SMC_DEBUG >= (n))				\
 159			netdev_dbg(dev, fmt, ##__VA_ARGS__);	\
 160	} while (0)
 161
 162#define PRINTK(dev, fmt, ...)					\
 163	do {							\
 164		if (SMC_DEBUG > 0)				\
 165			netdev_info(dev, fmt, ##__VA_ARGS__);	\
 166		else						\
 167			netdev_dbg(dev, fmt, ##__VA_ARGS__);	\
 168	} while (0)
 169
 170#if SMC_DEBUG > 3
 171static void PRINT_PKT(u_char *buf, int length)
 172{
 173	int i;
 174	int remainder;
 175	int lines;
 176
 177	lines = length / 16;
 178	remainder = length % 16;
 179
 180	for (i = 0; i < lines ; i ++) {
 181		int cur;
 182		printk(KERN_DEBUG);
 183		for (cur = 0; cur < 8; cur++) {
 184			u_char a, b;
 185			a = *buf++;
 186			b = *buf++;
 187			pr_cont("%02x%02x ", a, b);
 188		}
 189		pr_cont("\n");
 190	}
 191	printk(KERN_DEBUG);
 192	for (i = 0; i < remainder/2 ; i++) {
 193		u_char a, b;
 194		a = *buf++;
 195		b = *buf++;
 196		pr_cont("%02x%02x ", a, b);
 197	}
 198	pr_cont("\n");
 199}
 200#else
 201static inline void PRINT_PKT(u_char *buf, int length) { }
 202#endif
 203
 204
 205/* this enables an interrupt in the interrupt mask register */
 206#define SMC_ENABLE_INT(lp, x) do {					\
 207	unsigned char mask;						\
 208	unsigned long smc_enable_flags;					\
 209	spin_lock_irqsave(&lp->lock, smc_enable_flags);			\
 210	mask = SMC_GET_INT_MASK(lp);					\
 211	mask |= (x);							\
 212	SMC_SET_INT_MASK(lp, mask);					\
 213	spin_unlock_irqrestore(&lp->lock, smc_enable_flags);		\
 214} while (0)
 215
 216/* this disables an interrupt from the interrupt mask register */
 217#define SMC_DISABLE_INT(lp, x) do {					\
 218	unsigned char mask;						\
 219	unsigned long smc_disable_flags;				\
 220	spin_lock_irqsave(&lp->lock, smc_disable_flags);		\
 221	mask = SMC_GET_INT_MASK(lp);					\
 222	mask &= ~(x);							\
 223	SMC_SET_INT_MASK(lp, mask);					\
 224	spin_unlock_irqrestore(&lp->lock, smc_disable_flags);		\
 225} while (0)
 226
 227/*
 228 * Wait while MMU is busy.  This is usually in the order of a few nanosecs
 229 * if at all, but let's avoid deadlocking the system if the hardware
 230 * decides to go south.
 231 */
 232#define SMC_WAIT_MMU_BUSY(lp) do {					\
 233	if (unlikely(SMC_GET_MMU_CMD(lp) & MC_BUSY)) {		\
 234		unsigned long timeout = jiffies + 2;			\
 235		while (SMC_GET_MMU_CMD(lp) & MC_BUSY) {		\
 236			if (time_after(jiffies, timeout)) {		\
 237				netdev_dbg(dev, "timeout %s line %d\n",	\
 238					   __FILE__, __LINE__);		\
 239				break;					\
 240			}						\
 241			cpu_relax();					\
 242		}							\
 243	}								\
 244} while (0)
 245
 246
 247/*
 248 * this does a soft reset on the device
 249 */
 250static void smc_reset(struct net_device *dev)
 251{
 252	struct smc_local *lp = netdev_priv(dev);
 253	void __iomem *ioaddr = lp->base;
 254	unsigned int ctl, cfg;
 255	struct sk_buff *pending_skb;
 256
 257	DBG(2, dev, "%s\n", __func__);
 258
 259	/* Disable all interrupts, block TX tasklet */
 260	spin_lock_irq(&lp->lock);
 261	SMC_SELECT_BANK(lp, 2);
 262	SMC_SET_INT_MASK(lp, 0);
 263	pending_skb = lp->pending_tx_skb;
 264	lp->pending_tx_skb = NULL;
 265	spin_unlock_irq(&lp->lock);
 266
 267	/* free any pending tx skb */
 268	if (pending_skb) {
 269		dev_kfree_skb(pending_skb);
 270		dev->stats.tx_errors++;
 271		dev->stats.tx_aborted_errors++;
 272	}
 273
 274	/*
 275	 * This resets the registers mostly to defaults, but doesn't
 276	 * affect EEPROM.  That seems unnecessary
 277	 */
 278	SMC_SELECT_BANK(lp, 0);
 279	SMC_SET_RCR(lp, RCR_SOFTRST);
 280
 281	/*
 282	 * Setup the Configuration Register
 283	 * This is necessary because the CONFIG_REG is not affected
 284	 * by a soft reset
 285	 */
 286	SMC_SELECT_BANK(lp, 1);
 287
 288	cfg = CONFIG_DEFAULT;
 289
 290	/*
 291	 * Setup for fast accesses if requested.  If the card/system
 292	 * can't handle it then there will be no recovery except for
 293	 * a hard reset or power cycle
 294	 */
 295	if (lp->cfg.flags & SMC91X_NOWAIT)
 296		cfg |= CONFIG_NO_WAIT;
 297
 298	/*
 299	 * Release from possible power-down state
 300	 * Configuration register is not affected by Soft Reset
 301	 */
 302	cfg |= CONFIG_EPH_POWER_EN;
 303
 304	SMC_SET_CONFIG(lp, cfg);
 305
 306	/* this should pause enough for the chip to be happy */
 307	/*
 308	 * elaborate?  What does the chip _need_? --jgarzik
 309	 *
 310	 * This seems to be undocumented, but something the original
 311	 * driver(s) have always done.  Suspect undocumented timing
 312	 * info/determined empirically. --rmk
 313	 */
 314	udelay(1);
 315
 316	/* Disable transmit and receive functionality */
 317	SMC_SELECT_BANK(lp, 0);
 318	SMC_SET_RCR(lp, RCR_CLEAR);
 319	SMC_SET_TCR(lp, TCR_CLEAR);
 320
 321	SMC_SELECT_BANK(lp, 1);
 322	ctl = SMC_GET_CTL(lp) | CTL_LE_ENABLE;
 323
 324	/*
 325	 * Set the control register to automatically release successfully
 326	 * transmitted packets, to make the best use out of our limited
 327	 * memory
 328	 */
 329	if(!THROTTLE_TX_PKTS)
 330		ctl |= CTL_AUTO_RELEASE;
 331	else
 332		ctl &= ~CTL_AUTO_RELEASE;
 333	SMC_SET_CTL(lp, ctl);
 334
 335	/* Reset the MMU */
 336	SMC_SELECT_BANK(lp, 2);
 337	SMC_SET_MMU_CMD(lp, MC_RESET);
 338	SMC_WAIT_MMU_BUSY(lp);
 339}
 340
 341/*
 342 * Enable Interrupts, Receive, and Transmit
 343 */
 344static void smc_enable(struct net_device *dev)
 345{
 346	struct smc_local *lp = netdev_priv(dev);
 347	void __iomem *ioaddr = lp->base;
 348	int mask;
 349
 350	DBG(2, dev, "%s\n", __func__);
 351
 352	/* see the header file for options in TCR/RCR DEFAULT */
 353	SMC_SELECT_BANK(lp, 0);
 354	SMC_SET_TCR(lp, lp->tcr_cur_mode);
 355	SMC_SET_RCR(lp, lp->rcr_cur_mode);
 356
 357	SMC_SELECT_BANK(lp, 1);
 358	SMC_SET_MAC_ADDR(lp, dev->dev_addr);
 359
 360	/* now, enable interrupts */
 361	mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT;
 362	if (lp->version >= (CHIP_91100 << 4))
 363		mask |= IM_MDINT;
 364	SMC_SELECT_BANK(lp, 2);
 365	SMC_SET_INT_MASK(lp, mask);
 366
 367	/*
 368	 * From this point the register bank must _NOT_ be switched away
 369	 * to something else than bank 2 without proper locking against
 370	 * races with any tasklet or interrupt handlers until smc_shutdown()
 371	 * or smc_reset() is called.
 372	 */
 373}
 374
 375/*
 376 * this puts the device in an inactive state
 377 */
 378static void smc_shutdown(struct net_device *dev)
 379{
 380	struct smc_local *lp = netdev_priv(dev);
 381	void __iomem *ioaddr = lp->base;
 382	struct sk_buff *pending_skb;
 383
 384	DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
 385
 386	/* no more interrupts for me */
 387	spin_lock_irq(&lp->lock);
 388	SMC_SELECT_BANK(lp, 2);
 389	SMC_SET_INT_MASK(lp, 0);
 390	pending_skb = lp->pending_tx_skb;
 391	lp->pending_tx_skb = NULL;
 392	spin_unlock_irq(&lp->lock);
 393	if (pending_skb)
 394		dev_kfree_skb(pending_skb);
 395
 396	/* and tell the card to stay away from that nasty outside world */
 397	SMC_SELECT_BANK(lp, 0);
 398	SMC_SET_RCR(lp, RCR_CLEAR);
 399	SMC_SET_TCR(lp, TCR_CLEAR);
 400
 401#ifdef POWER_DOWN
 402	/* finally, shut the chip down */
 403	SMC_SELECT_BANK(lp, 1);
 404	SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN);
 405#endif
 406}
 407
 408/*
 409 * This is the procedure to handle the receipt of a packet.
 410 */
 411static inline void  smc_rcv(struct net_device *dev)
 412{
 413	struct smc_local *lp = netdev_priv(dev);
 414	void __iomem *ioaddr = lp->base;
 415	unsigned int packet_number, status, packet_len;
 416
 417	DBG(3, dev, "%s\n", __func__);
 418
 419	packet_number = SMC_GET_RXFIFO(lp);
 420	if (unlikely(packet_number & RXFIFO_REMPTY)) {
 421		PRINTK(dev, "smc_rcv with nothing on FIFO.\n");
 422		return;
 423	}
 424
 425	/* read from start of packet */
 426	SMC_SET_PTR(lp, PTR_READ | PTR_RCV | PTR_AUTOINC);
 427
 428	/* First two words are status and packet length */
 429	SMC_GET_PKT_HDR(lp, status, packet_len);
 430	packet_len &= 0x07ff;  /* mask off top bits */
 431	DBG(2, dev, "RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n",
 432	    packet_number, status, packet_len, packet_len);
 433
 434	back:
 435	if (unlikely(packet_len < 6 || status & RS_ERRORS)) {
 436		if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) {
 437			/* accept VLAN packets */
 438			status &= ~RS_TOOLONG;
 439			goto back;
 440		}
 441		if (packet_len < 6) {
 442			/* bloody hardware */
 443			netdev_err(dev, "fubar (rxlen %u status %x\n",
 444				   packet_len, status);
 445			status |= RS_TOOSHORT;
 446		}
 447		SMC_WAIT_MMU_BUSY(lp);
 448		SMC_SET_MMU_CMD(lp, MC_RELEASE);
 449		dev->stats.rx_errors++;
 450		if (status & RS_ALGNERR)
 451			dev->stats.rx_frame_errors++;
 452		if (status & (RS_TOOSHORT | RS_TOOLONG))
 453			dev->stats.rx_length_errors++;
 454		if (status & RS_BADCRC)
 455			dev->stats.rx_crc_errors++;
 456	} else {
 457		struct sk_buff *skb;
 458		unsigned char *data;
 459		unsigned int data_len;
 460
 461		/* set multicast stats */
 462		if (status & RS_MULTICAST)
 463			dev->stats.multicast++;
 464
 465		/*
 466		 * Actual payload is packet_len - 6 (or 5 if odd byte).
 467		 * We want skb_reserve(2) and the final ctrl word
 468		 * (2 bytes, possibly containing the payload odd byte).
 469		 * Furthermore, we add 2 bytes to allow rounding up to
 470		 * multiple of 4 bytes on 32 bit buses.
 471		 * Hence packet_len - 6 + 2 + 2 + 2.
 472		 */
 473		skb = netdev_alloc_skb(dev, packet_len);
 474		if (unlikely(skb == NULL)) {
 475			SMC_WAIT_MMU_BUSY(lp);
 476			SMC_SET_MMU_CMD(lp, MC_RELEASE);
 477			dev->stats.rx_dropped++;
 478			return;
 479		}
 480
 481		/* Align IP header to 32 bits */
 482		skb_reserve(skb, 2);
 483
 484		/* BUG: the LAN91C111 rev A never sets this bit. Force it. */
 485		if (lp->version == 0x90)
 486			status |= RS_ODDFRAME;
 487
 488		/*
 489		 * If odd length: packet_len - 5,
 490		 * otherwise packet_len - 6.
 491		 * With the trailing ctrl byte it's packet_len - 4.
 492		 */
 493		data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6);
 494		data = skb_put(skb, data_len);
 495		SMC_PULL_DATA(lp, data, packet_len - 4);
 496
 497		SMC_WAIT_MMU_BUSY(lp);
 498		SMC_SET_MMU_CMD(lp, MC_RELEASE);
 499
 500		PRINT_PKT(data, packet_len - 4);
 501
 502		skb->protocol = eth_type_trans(skb, dev);
 503		netif_rx(skb);
 504		dev->stats.rx_packets++;
 505		dev->stats.rx_bytes += data_len;
 506	}
 507}
 508
 509#ifdef CONFIG_SMP
 510/*
 511 * On SMP we have the following problem:
 512 *
 513 * 	A = smc_hardware_send_pkt()
 514 * 	B = smc_hard_start_xmit()
 515 * 	C = smc_interrupt()
 516 *
 517 * A and B can never be executed simultaneously.  However, at least on UP,
 518 * it is possible (and even desirable) for C to interrupt execution of
 519 * A or B in order to have better RX reliability and avoid overruns.
 520 * C, just like A and B, must have exclusive access to the chip and
 521 * each of them must lock against any other concurrent access.
 522 * Unfortunately this is not possible to have C suspend execution of A or
 523 * B taking place on another CPU. On UP this is no an issue since A and B
 524 * are run from softirq context and C from hard IRQ context, and there is
 525 * no other CPU where concurrent access can happen.
 526 * If ever there is a way to force at least B and C to always be executed
 527 * on the same CPU then we could use read/write locks to protect against
 528 * any other concurrent access and C would always interrupt B. But life
 529 * isn't that easy in a SMP world...
 530 */
 531#define smc_special_trylock(lock, flags)				\
 532({									\
 533	int __ret;							\
 534	local_irq_save(flags);						\
 535	__ret = spin_trylock(lock);					\
 536	if (!__ret)							\
 537		local_irq_restore(flags);				\
 538	__ret;								\
 539})
 540#define smc_special_lock(lock, flags)		spin_lock_irqsave(lock, flags)
 541#define smc_special_unlock(lock, flags) 	spin_unlock_irqrestore(lock, flags)
 542#else
 543#define smc_special_trylock(lock, flags)	((void)flags, true)
 544#define smc_special_lock(lock, flags)   	do { flags = 0; } while (0)
 545#define smc_special_unlock(lock, flags)	do { flags = 0; } while (0)
 546#endif
 547
 548/*
 549 * This is called to actually send a packet to the chip.
 550 */
 551static void smc_hardware_send_pkt(unsigned long data)
 552{
 553	struct net_device *dev = (struct net_device *)data;
 554	struct smc_local *lp = netdev_priv(dev);
 555	void __iomem *ioaddr = lp->base;
 556	struct sk_buff *skb;
 557	unsigned int packet_no, len;
 558	unsigned char *buf;
 559	unsigned long flags;
 560
 561	DBG(3, dev, "%s\n", __func__);
 562
 563	if (!smc_special_trylock(&lp->lock, flags)) {
 564		netif_stop_queue(dev);
 565		tasklet_schedule(&lp->tx_task);
 566		return;
 567	}
 568
 569	skb = lp->pending_tx_skb;
 570	if (unlikely(!skb)) {
 571		smc_special_unlock(&lp->lock, flags);
 572		return;
 573	}
 574	lp->pending_tx_skb = NULL;
 575
 576	packet_no = SMC_GET_AR(lp);
 577	if (unlikely(packet_no & AR_FAILED)) {
 578		netdev_err(dev, "Memory allocation failed.\n");
 579		dev->stats.tx_errors++;
 580		dev->stats.tx_fifo_errors++;
 581		smc_special_unlock(&lp->lock, flags);
 582		goto done;
 583	}
 584
 585	/* point to the beginning of the packet */
 586	SMC_SET_PN(lp, packet_no);
 587	SMC_SET_PTR(lp, PTR_AUTOINC);
 588
 589	buf = skb->data;
 590	len = skb->len;
 591	DBG(2, dev, "TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n",
 592	    packet_no, len, len, buf);
 593	PRINT_PKT(buf, len);
 594
 595	/*
 596	 * Send the packet length (+6 for status words, length, and ctl.
 597	 * The card will pad to 64 bytes with zeroes if packet is too small.
 598	 */
 599	SMC_PUT_PKT_HDR(lp, 0, len + 6);
 600
 601	/* send the actual data */
 602	SMC_PUSH_DATA(lp, buf, len & ~1);
 603
 604	/* Send final ctl word with the last byte if there is one */
 605	SMC_outw(lp, ((len & 1) ? (0x2000 | buf[len - 1]) : 0), ioaddr,
 606		 DATA_REG(lp));
 607
 608	/*
 609	 * If THROTTLE_TX_PKTS is set, we stop the queue here. This will
 610	 * have the effect of having at most one packet queued for TX
 611	 * in the chip's memory at all time.
 612	 *
 613	 * If THROTTLE_TX_PKTS is not set then the queue is stopped only
 614	 * when memory allocation (MC_ALLOC) does not succeed right away.
 615	 */
 616	if (THROTTLE_TX_PKTS)
 617		netif_stop_queue(dev);
 618
 619	/* queue the packet for TX */
 620	SMC_SET_MMU_CMD(lp, MC_ENQUEUE);
 621	smc_special_unlock(&lp->lock, flags);
 622
 623	netif_trans_update(dev);
 624	dev->stats.tx_packets++;
 625	dev->stats.tx_bytes += len;
 626
 627	SMC_ENABLE_INT(lp, IM_TX_INT | IM_TX_EMPTY_INT);
 628
 629done:	if (!THROTTLE_TX_PKTS)
 630		netif_wake_queue(dev);
 631
 632	dev_consume_skb_any(skb);
 633}
 634
 635/*
 636 * Since I am not sure if I will have enough room in the chip's ram
 637 * to store the packet, I call this routine which either sends it
 638 * now, or set the card to generates an interrupt when ready
 639 * for the packet.
 640 */
 641static int smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
 642{
 643	struct smc_local *lp = netdev_priv(dev);
 644	void __iomem *ioaddr = lp->base;
 645	unsigned int numPages, poll_count, status;
 646	unsigned long flags;
 647
 648	DBG(3, dev, "%s\n", __func__);
 649
 650	BUG_ON(lp->pending_tx_skb != NULL);
 651
 652	/*
 653	 * The MMU wants the number of pages to be the number of 256 bytes
 654	 * 'pages', minus 1 (since a packet can't ever have 0 pages :))
 655	 *
 656	 * The 91C111 ignores the size bits, but earlier models don't.
 657	 *
 658	 * Pkt size for allocating is data length +6 (for additional status
 659	 * words, length and ctl)
 660	 *
 661	 * If odd size then last byte is included in ctl word.
 662	 */
 663	numPages = ((skb->len & ~1) + (6 - 1)) >> 8;
 664	if (unlikely(numPages > 7)) {
 665		netdev_warn(dev, "Far too big packet error.\n");
 666		dev->stats.tx_errors++;
 667		dev->stats.tx_dropped++;
 668		dev_kfree_skb_any(skb);
 669		return NETDEV_TX_OK;
 670	}
 671
 672	smc_special_lock(&lp->lock, flags);
 673
 674	/* now, try to allocate the memory */
 675	SMC_SET_MMU_CMD(lp, MC_ALLOC | numPages);
 676
 677	/*
 678	 * Poll the chip for a short amount of time in case the
 679	 * allocation succeeds quickly.
 680	 */
 681	poll_count = MEMORY_WAIT_TIME;
 682	do {
 683		status = SMC_GET_INT(lp);
 684		if (status & IM_ALLOC_INT) {
 685			SMC_ACK_INT(lp, IM_ALLOC_INT);
 686  			break;
 687		}
 688   	} while (--poll_count);
 689
 690	smc_special_unlock(&lp->lock, flags);
 691
 692	lp->pending_tx_skb = skb;
 693   	if (!poll_count) {
 694		/* oh well, wait until the chip finds memory later */
 695		netif_stop_queue(dev);
 696		DBG(2, dev, "TX memory allocation deferred.\n");
 697		SMC_ENABLE_INT(lp, IM_ALLOC_INT);
 698   	} else {
 699		/*
 700		 * Allocation succeeded: push packet to the chip's own memory
 701		 * immediately.
 702		 */
 703		smc_hardware_send_pkt((unsigned long)dev);
 704	}
 705
 706	return NETDEV_TX_OK;
 707}
 708
 709/*
 710 * This handles a TX interrupt, which is only called when:
 711 * - a TX error occurred, or
 712 * - CTL_AUTO_RELEASE is not set and TX of a packet completed.
 713 */
 714static void smc_tx(struct net_device *dev)
 715{
 716	struct smc_local *lp = netdev_priv(dev);
 717	void __iomem *ioaddr = lp->base;
 718	unsigned int saved_packet, packet_no, tx_status, pkt_len;
 719
 720	DBG(3, dev, "%s\n", __func__);
 721
 722	/* If the TX FIFO is empty then nothing to do */
 723	packet_no = SMC_GET_TXFIFO(lp);
 724	if (unlikely(packet_no & TXFIFO_TEMPTY)) {
 725		PRINTK(dev, "smc_tx with nothing on FIFO.\n");
 726		return;
 727	}
 728
 729	/* select packet to read from */
 730	saved_packet = SMC_GET_PN(lp);
 731	SMC_SET_PN(lp, packet_no);
 732
 733	/* read the first word (status word) from this packet */
 734	SMC_SET_PTR(lp, PTR_AUTOINC | PTR_READ);
 735	SMC_GET_PKT_HDR(lp, tx_status, pkt_len);
 736	DBG(2, dev, "TX STATUS 0x%04x PNR 0x%02x\n",
 737	    tx_status, packet_no);
 738
 739	if (!(tx_status & ES_TX_SUC))
 740		dev->stats.tx_errors++;
 741
 742	if (tx_status & ES_LOSTCARR)
 743		dev->stats.tx_carrier_errors++;
 744
 745	if (tx_status & (ES_LATCOL | ES_16COL)) {
 746		PRINTK(dev, "%s occurred on last xmit\n",
 747		       (tx_status & ES_LATCOL) ?
 748			"late collision" : "too many collisions");
 749		dev->stats.tx_window_errors++;
 750		if (!(dev->stats.tx_window_errors & 63) && net_ratelimit()) {
 751			netdev_info(dev, "unexpectedly large number of bad collisions. Please check duplex setting.\n");
 752		}
 753	}
 754
 755	/* kill the packet */
 756	SMC_WAIT_MMU_BUSY(lp);
 757	SMC_SET_MMU_CMD(lp, MC_FREEPKT);
 758
 759	/* Don't restore Packet Number Reg until busy bit is cleared */
 760	SMC_WAIT_MMU_BUSY(lp);
 761	SMC_SET_PN(lp, saved_packet);
 762
 763	/* re-enable transmit */
 764	SMC_SELECT_BANK(lp, 0);
 765	SMC_SET_TCR(lp, lp->tcr_cur_mode);
 766	SMC_SELECT_BANK(lp, 2);
 767}
 768
 769
 770/*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
 771
 772static void smc_mii_out(struct net_device *dev, unsigned int val, int bits)
 773{
 774	struct smc_local *lp = netdev_priv(dev);
 775	void __iomem *ioaddr = lp->base;
 776	unsigned int mii_reg, mask;
 777
 778	mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
 779	mii_reg |= MII_MDOE;
 780
 781	for (mask = 1 << (bits - 1); mask; mask >>= 1) {
 782		if (val & mask)
 783			mii_reg |= MII_MDO;
 784		else
 785			mii_reg &= ~MII_MDO;
 786
 787		SMC_SET_MII(lp, mii_reg);
 788		udelay(MII_DELAY);
 789		SMC_SET_MII(lp, mii_reg | MII_MCLK);
 790		udelay(MII_DELAY);
 791	}
 792}
 793
 794static unsigned int smc_mii_in(struct net_device *dev, int bits)
 795{
 796	struct smc_local *lp = netdev_priv(dev);
 797	void __iomem *ioaddr = lp->base;
 798	unsigned int mii_reg, mask, val;
 799
 800	mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
 801	SMC_SET_MII(lp, mii_reg);
 802
 803	for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) {
 804		if (SMC_GET_MII(lp) & MII_MDI)
 805			val |= mask;
 806
 807		SMC_SET_MII(lp, mii_reg);
 808		udelay(MII_DELAY);
 809		SMC_SET_MII(lp, mii_reg | MII_MCLK);
 810		udelay(MII_DELAY);
 811	}
 812
 813	return val;
 814}
 815
 816/*
 817 * Reads a register from the MII Management serial interface
 818 */
 819static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg)
 820{
 821	struct smc_local *lp = netdev_priv(dev);
 822	void __iomem *ioaddr = lp->base;
 823	unsigned int phydata;
 824
 825	SMC_SELECT_BANK(lp, 3);
 826
 827	/* Idle - 32 ones */
 828	smc_mii_out(dev, 0xffffffff, 32);
 829
 830	/* Start code (01) + read (10) + phyaddr + phyreg */
 831	smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14);
 832
 833	/* Turnaround (2bits) + phydata */
 834	phydata = smc_mii_in(dev, 18);
 835
 836	/* Return to idle state */
 837	SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
 838
 839	DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
 840	    __func__, phyaddr, phyreg, phydata);
 841
 842	SMC_SELECT_BANK(lp, 2);
 843	return phydata;
 844}
 845
 846/*
 847 * Writes a register to the MII Management serial interface
 848 */
 849static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg,
 850			  int phydata)
 851{
 852	struct smc_local *lp = netdev_priv(dev);
 853	void __iomem *ioaddr = lp->base;
 854
 855	SMC_SELECT_BANK(lp, 3);
 856
 857	/* Idle - 32 ones */
 858	smc_mii_out(dev, 0xffffffff, 32);
 859
 860	/* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */
 861	smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32);
 862
 863	/* Return to idle state */
 864	SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
 865
 866	DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
 867	    __func__, phyaddr, phyreg, phydata);
 868
 869	SMC_SELECT_BANK(lp, 2);
 870}
 871
 872/*
 873 * Finds and reports the PHY address
 874 */
 875static void smc_phy_detect(struct net_device *dev)
 876{
 877	struct smc_local *lp = netdev_priv(dev);
 878	int phyaddr;
 879
 880	DBG(2, dev, "%s\n", __func__);
 881
 882	lp->phy_type = 0;
 883
 884	/*
 885	 * Scan all 32 PHY addresses if necessary, starting at
 886	 * PHY#1 to PHY#31, and then PHY#0 last.
 887	 */
 888	for (phyaddr = 1; phyaddr < 33; ++phyaddr) {
 889		unsigned int id1, id2;
 890
 891		/* Read the PHY identifiers */
 892		id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1);
 893		id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2);
 894
 895		DBG(3, dev, "phy_id1=0x%x, phy_id2=0x%x\n",
 896		    id1, id2);
 897
 898		/* Make sure it is a valid identifier */
 899		if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 &&
 900		    id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) {
 901			/* Save the PHY's address */
 902			lp->mii.phy_id = phyaddr & 31;
 903			lp->phy_type = id1 << 16 | id2;
 904			break;
 905		}
 906	}
 907}
 908
 909/*
 910 * Sets the PHY to a configuration as determined by the user
 911 */
 912static int smc_phy_fixed(struct net_device *dev)
 913{
 914	struct smc_local *lp = netdev_priv(dev);
 915	void __iomem *ioaddr = lp->base;
 916	int phyaddr = lp->mii.phy_id;
 917	int bmcr, cfg1;
 918
 919	DBG(3, dev, "%s\n", __func__);
 920
 921	/* Enter Link Disable state */
 922	cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG);
 923	cfg1 |= PHY_CFG1_LNKDIS;
 924	smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1);
 925
 926	/*
 927	 * Set our fixed capabilities
 928	 * Disable auto-negotiation
 929	 */
 930	bmcr = 0;
 931
 932	if (lp->ctl_rfduplx)
 933		bmcr |= BMCR_FULLDPLX;
 934
 935	if (lp->ctl_rspeed == 100)
 936		bmcr |= BMCR_SPEED100;
 937
 938	/* Write our capabilities to the phy control register */
 939	smc_phy_write(dev, phyaddr, MII_BMCR, bmcr);
 940
 941	/* Re-Configure the Receive/Phy Control register */
 942	SMC_SELECT_BANK(lp, 0);
 943	SMC_SET_RPC(lp, lp->rpc_cur_mode);
 944	SMC_SELECT_BANK(lp, 2);
 945
 946	return 1;
 947}
 948
 949/**
 950 * smc_phy_reset - reset the phy
 951 * @dev: net device
 952 * @phy: phy address
 953 *
 954 * Issue a software reset for the specified PHY and
 955 * wait up to 100ms for the reset to complete.  We should
 956 * not access the PHY for 50ms after issuing the reset.
 957 *
 958 * The time to wait appears to be dependent on the PHY.
 959 *
 960 * Must be called with lp->lock locked.
 961 */
 962static int smc_phy_reset(struct net_device *dev, int phy)
 963{
 964	struct smc_local *lp = netdev_priv(dev);
 965	unsigned int bmcr;
 966	int timeout;
 967
 968	smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET);
 969
 970	for (timeout = 2; timeout; timeout--) {
 971		spin_unlock_irq(&lp->lock);
 972		msleep(50);
 973		spin_lock_irq(&lp->lock);
 974
 975		bmcr = smc_phy_read(dev, phy, MII_BMCR);
 976		if (!(bmcr & BMCR_RESET))
 977			break;
 978	}
 979
 980	return bmcr & BMCR_RESET;
 981}
 982
 983/**
 984 * smc_phy_powerdown - powerdown phy
 985 * @dev: net device
 986 *
 987 * Power down the specified PHY
 988 */
 989static void smc_phy_powerdown(struct net_device *dev)
 990{
 991	struct smc_local *lp = netdev_priv(dev);
 992	unsigned int bmcr;
 993	int phy = lp->mii.phy_id;
 994
 995	if (lp->phy_type == 0)
 996		return;
 997
 998	/* We need to ensure that no calls to smc_phy_configure are
 999	   pending.
1000	*/
1001	cancel_work_sync(&lp->phy_configure);
1002
1003	bmcr = smc_phy_read(dev, phy, MII_BMCR);
1004	smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN);
1005}
1006
1007/**
1008 * smc_phy_check_media - check the media status and adjust TCR
1009 * @dev: net device
1010 * @init: set true for initialisation
1011 *
1012 * Select duplex mode depending on negotiation state.  This
1013 * also updates our carrier state.
1014 */
1015static void smc_phy_check_media(struct net_device *dev, int init)
1016{
1017	struct smc_local *lp = netdev_priv(dev);
1018	void __iomem *ioaddr = lp->base;
1019
1020	if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) {
1021		/* duplex state has changed */
1022		if (lp->mii.full_duplex) {
1023			lp->tcr_cur_mode |= TCR_SWFDUP;
1024		} else {
1025			lp->tcr_cur_mode &= ~TCR_SWFDUP;
1026		}
1027
1028		SMC_SELECT_BANK(lp, 0);
1029		SMC_SET_TCR(lp, lp->tcr_cur_mode);
1030	}
1031}
1032
1033/*
1034 * Configures the specified PHY through the MII management interface
1035 * using Autonegotiation.
1036 * Calls smc_phy_fixed() if the user has requested a certain config.
1037 * If RPC ANEG bit is set, the media selection is dependent purely on
1038 * the selection by the MII (either in the MII BMCR reg or the result
1039 * of autonegotiation.)  If the RPC ANEG bit is cleared, the selection
1040 * is controlled by the RPC SPEED and RPC DPLX bits.
1041 */
1042static void smc_phy_configure(struct work_struct *work)
1043{
1044	struct smc_local *lp =
1045		container_of(work, struct smc_local, phy_configure);
1046	struct net_device *dev = lp->dev;
1047	void __iomem *ioaddr = lp->base;
1048	int phyaddr = lp->mii.phy_id;
1049	int my_phy_caps; /* My PHY capabilities */
1050	int my_ad_caps; /* My Advertised capabilities */
1051	int status;
1052
1053	DBG(3, dev, "smc_program_phy()\n");
1054
1055	spin_lock_irq(&lp->lock);
1056
1057	/*
1058	 * We should not be called if phy_type is zero.
1059	 */
1060	if (lp->phy_type == 0)
1061		goto smc_phy_configure_exit;
1062
1063	if (smc_phy_reset(dev, phyaddr)) {
1064		netdev_info(dev, "PHY reset timed out\n");
1065		goto smc_phy_configure_exit;
1066	}
1067
1068	/*
1069	 * Enable PHY Interrupts (for register 18)
1070	 * Interrupts listed here are disabled
1071	 */
1072	smc_phy_write(dev, phyaddr, PHY_MASK_REG,
1073		PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD |
1074		PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB |
1075		PHY_INT_SPDDET | PHY_INT_DPLXDET);
1076
1077	/* Configure the Receive/Phy Control register */
1078	SMC_SELECT_BANK(lp, 0);
1079	SMC_SET_RPC(lp, lp->rpc_cur_mode);
1080
1081	/* If the user requested no auto neg, then go set his request */
1082	if (lp->mii.force_media) {
1083		smc_phy_fixed(dev);
1084		goto smc_phy_configure_exit;
1085	}
1086
1087	/* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
1088	my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR);
1089
1090	if (!(my_phy_caps & BMSR_ANEGCAPABLE)) {
1091		netdev_info(dev, "Auto negotiation NOT supported\n");
1092		smc_phy_fixed(dev);
1093		goto smc_phy_configure_exit;
1094	}
1095
1096	my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */
1097
1098	if (my_phy_caps & BMSR_100BASE4)
1099		my_ad_caps |= ADVERTISE_100BASE4;
1100	if (my_phy_caps & BMSR_100FULL)
1101		my_ad_caps |= ADVERTISE_100FULL;
1102	if (my_phy_caps & BMSR_100HALF)
1103		my_ad_caps |= ADVERTISE_100HALF;
1104	if (my_phy_caps & BMSR_10FULL)
1105		my_ad_caps |= ADVERTISE_10FULL;
1106	if (my_phy_caps & BMSR_10HALF)
1107		my_ad_caps |= ADVERTISE_10HALF;
1108
1109	/* Disable capabilities not selected by our user */
1110	if (lp->ctl_rspeed != 100)
1111		my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF);
1112
1113	if (!lp->ctl_rfduplx)
1114		my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL);
1115
1116	/* Update our Auto-Neg Advertisement Register */
1117	smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps);
1118	lp->mii.advertising = my_ad_caps;
1119
1120	/*
1121	 * Read the register back.  Without this, it appears that when
1122	 * auto-negotiation is restarted, sometimes it isn't ready and
1123	 * the link does not come up.
1124	 */
1125	status = smc_phy_read(dev, phyaddr, MII_ADVERTISE);
1126
1127	DBG(2, dev, "phy caps=%x\n", my_phy_caps);
1128	DBG(2, dev, "phy advertised caps=%x\n", my_ad_caps);
1129
1130	/* Restart auto-negotiation process in order to advertise my caps */
1131	smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART);
1132
1133	smc_phy_check_media(dev, 1);
1134
1135smc_phy_configure_exit:
1136	SMC_SELECT_BANK(lp, 2);
1137	spin_unlock_irq(&lp->lock);
1138}
1139
1140/*
1141 * smc_phy_interrupt
1142 *
1143 * Purpose:  Handle interrupts relating to PHY register 18. This is
1144 *  called from the "hard" interrupt handler under our private spinlock.
1145 */
1146static void smc_phy_interrupt(struct net_device *dev)
1147{
1148	struct smc_local *lp = netdev_priv(dev);
1149	int phyaddr = lp->mii.phy_id;
1150	int phy18;
1151
1152	DBG(2, dev, "%s\n", __func__);
1153
1154	if (lp->phy_type == 0)
1155		return;
1156
1157	for(;;) {
1158		smc_phy_check_media(dev, 0);
1159
1160		/* Read PHY Register 18, Status Output */
1161		phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG);
1162		if ((phy18 & PHY_INT_INT) == 0)
1163			break;
1164	}
1165}
1166
1167/*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
1168
1169static void smc_10bt_check_media(struct net_device *dev, int init)
1170{
1171	struct smc_local *lp = netdev_priv(dev);
1172	void __iomem *ioaddr = lp->base;
1173	unsigned int old_carrier, new_carrier;
1174
1175	old_carrier = netif_carrier_ok(dev) ? 1 : 0;
1176
1177	SMC_SELECT_BANK(lp, 0);
1178	new_carrier = (SMC_GET_EPH_STATUS(lp) & ES_LINK_OK) ? 1 : 0;
1179	SMC_SELECT_BANK(lp, 2);
1180
1181	if (init || (old_carrier != new_carrier)) {
1182		if (!new_carrier) {
1183			netif_carrier_off(dev);
1184		} else {
1185			netif_carrier_on(dev);
1186		}
1187		if (netif_msg_link(lp))
1188			netdev_info(dev, "link %s\n",
1189				    new_carrier ? "up" : "down");
1190	}
1191}
1192
1193static void smc_eph_interrupt(struct net_device *dev)
1194{
1195	struct smc_local *lp = netdev_priv(dev);
1196	void __iomem *ioaddr = lp->base;
1197	unsigned int ctl;
1198
1199	smc_10bt_check_media(dev, 0);
1200
1201	SMC_SELECT_BANK(lp, 1);
1202	ctl = SMC_GET_CTL(lp);
1203	SMC_SET_CTL(lp, ctl & ~CTL_LE_ENABLE);
1204	SMC_SET_CTL(lp, ctl);
1205	SMC_SELECT_BANK(lp, 2);
1206}
1207
1208/*
1209 * This is the main routine of the driver, to handle the device when
1210 * it needs some attention.
1211 */
1212static irqreturn_t smc_interrupt(int irq, void *dev_id)
1213{
1214	struct net_device *dev = dev_id;
1215	struct smc_local *lp = netdev_priv(dev);
1216	void __iomem *ioaddr = lp->base;
1217	int status, mask, timeout, card_stats;
1218	int saved_pointer;
1219
1220	DBG(3, dev, "%s\n", __func__);
1221
1222	spin_lock(&lp->lock);
1223
1224	/* A preamble may be used when there is a potential race
1225	 * between the interruptible transmit functions and this
1226	 * ISR. */
1227	SMC_INTERRUPT_PREAMBLE;
1228
1229	saved_pointer = SMC_GET_PTR(lp);
1230	mask = SMC_GET_INT_MASK(lp);
1231	SMC_SET_INT_MASK(lp, 0);
1232
1233	/* set a timeout value, so I don't stay here forever */
1234	timeout = MAX_IRQ_LOOPS;
1235
1236	do {
1237		status = SMC_GET_INT(lp);
1238
1239		DBG(2, dev, "INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n",
1240		    status, mask,
1241		    ({ int meminfo; SMC_SELECT_BANK(lp, 0);
1242		       meminfo = SMC_GET_MIR(lp);
1243		       SMC_SELECT_BANK(lp, 2); meminfo; }),
1244		    SMC_GET_FIFO(lp));
1245
1246		status &= mask;
1247		if (!status)
1248			break;
1249
1250		if (status & IM_TX_INT) {
1251			/* do this before RX as it will free memory quickly */
1252			DBG(3, dev, "TX int\n");
1253			smc_tx(dev);
1254			SMC_ACK_INT(lp, IM_TX_INT);
1255			if (THROTTLE_TX_PKTS)
1256				netif_wake_queue(dev);
1257		} else if (status & IM_RCV_INT) {
1258			DBG(3, dev, "RX irq\n");
1259			smc_rcv(dev);
1260		} else if (status & IM_ALLOC_INT) {
1261			DBG(3, dev, "Allocation irq\n");
1262			tasklet_hi_schedule(&lp->tx_task);
1263			mask &= ~IM_ALLOC_INT;
1264		} else if (status & IM_TX_EMPTY_INT) {
1265			DBG(3, dev, "TX empty\n");
1266			mask &= ~IM_TX_EMPTY_INT;
1267
1268			/* update stats */
1269			SMC_SELECT_BANK(lp, 0);
1270			card_stats = SMC_GET_COUNTER(lp);
1271			SMC_SELECT_BANK(lp, 2);
1272
1273			/* single collisions */
1274			dev->stats.collisions += card_stats & 0xF;
1275			card_stats >>= 4;
1276
1277			/* multiple collisions */
1278			dev->stats.collisions += card_stats & 0xF;
1279		} else if (status & IM_RX_OVRN_INT) {
1280			DBG(1, dev, "RX overrun (EPH_ST 0x%04x)\n",
1281			    ({ int eph_st; SMC_SELECT_BANK(lp, 0);
1282			       eph_st = SMC_GET_EPH_STATUS(lp);
1283			       SMC_SELECT_BANK(lp, 2); eph_st; }));
1284			SMC_ACK_INT(lp, IM_RX_OVRN_INT);
1285			dev->stats.rx_errors++;
1286			dev->stats.rx_fifo_errors++;
1287		} else if (status & IM_EPH_INT) {
1288			smc_eph_interrupt(dev);
1289		} else if (status & IM_MDINT) {
1290			SMC_ACK_INT(lp, IM_MDINT);
1291			smc_phy_interrupt(dev);
1292		} else if (status & IM_ERCV_INT) {
1293			SMC_ACK_INT(lp, IM_ERCV_INT);
1294			PRINTK(dev, "UNSUPPORTED: ERCV INTERRUPT\n");
1295		}
1296	} while (--timeout);
1297
1298	/* restore register states */
1299	SMC_SET_PTR(lp, saved_pointer);
1300	SMC_SET_INT_MASK(lp, mask);
1301	spin_unlock(&lp->lock);
1302
1303#ifndef CONFIG_NET_POLL_CONTROLLER
1304	if (timeout == MAX_IRQ_LOOPS)
1305		PRINTK(dev, "spurious interrupt (mask = 0x%02x)\n",
1306		       mask);
1307#endif
1308	DBG(3, dev, "Interrupt done (%d loops)\n",
1309	    MAX_IRQ_LOOPS - timeout);
1310
1311	/*
1312	 * We return IRQ_HANDLED unconditionally here even if there was
1313	 * nothing to do.  There is a possibility that a packet might
1314	 * get enqueued into the chip right after TX_EMPTY_INT is raised
1315	 * but just before the CPU acknowledges the IRQ.
1316	 * Better take an unneeded IRQ in some occasions than complexifying
1317	 * the code for all cases.
1318	 */
1319	return IRQ_HANDLED;
1320}
1321
1322#ifdef CONFIG_NET_POLL_CONTROLLER
1323/*
1324 * Polling receive - used by netconsole and other diagnostic tools
1325 * to allow network i/o with interrupts disabled.
1326 */
1327static void smc_poll_controller(struct net_device *dev)
1328{
1329	disable_irq(dev->irq);
1330	smc_interrupt(dev->irq, dev);
1331	enable_irq(dev->irq);
1332}
1333#endif
1334
1335/* Our watchdog timed out. Called by the networking layer */
1336static void smc_timeout(struct net_device *dev)
1337{
1338	struct smc_local *lp = netdev_priv(dev);
1339	void __iomem *ioaddr = lp->base;
1340	int status, mask, eph_st, meminfo, fifo;
1341
1342	DBG(2, dev, "%s\n", __func__);
1343
1344	spin_lock_irq(&lp->lock);
1345	status = SMC_GET_INT(lp);
1346	mask = SMC_GET_INT_MASK(lp);
1347	fifo = SMC_GET_FIFO(lp);
1348	SMC_SELECT_BANK(lp, 0);
1349	eph_st = SMC_GET_EPH_STATUS(lp);
1350	meminfo = SMC_GET_MIR(lp);
1351	SMC_SELECT_BANK(lp, 2);
1352	spin_unlock_irq(&lp->lock);
1353	PRINTK(dev, "TX timeout (INT 0x%02x INTMASK 0x%02x MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n",
1354	       status, mask, meminfo, fifo, eph_st);
1355
1356	smc_reset(dev);
1357	smc_enable(dev);
1358
1359	/*
1360	 * Reconfiguring the PHY doesn't seem like a bad idea here, but
1361	 * smc_phy_configure() calls msleep() which calls schedule_timeout()
1362	 * which calls schedule().  Hence we use a work queue.
1363	 */
1364	if (lp->phy_type != 0)
1365		schedule_work(&lp->phy_configure);
1366
1367	/* We can accept TX packets again */
1368	netif_trans_update(dev); /* prevent tx timeout */
1369	netif_wake_queue(dev);
1370}
1371
1372/*
1373 * This routine will, depending on the values passed to it,
1374 * either make it accept multicast packets, go into
1375 * promiscuous mode (for TCPDUMP and cousins) or accept
1376 * a select set of multicast packets
1377 */
1378static void smc_set_multicast_list(struct net_device *dev)
1379{
1380	struct smc_local *lp = netdev_priv(dev);
1381	void __iomem *ioaddr = lp->base;
1382	unsigned char multicast_table[8];
1383	int update_multicast = 0;
1384
1385	DBG(2, dev, "%s\n", __func__);
1386
1387	if (dev->flags & IFF_PROMISC) {
1388		DBG(2, dev, "RCR_PRMS\n");
1389		lp->rcr_cur_mode |= RCR_PRMS;
1390	}
1391
1392/* BUG?  I never disable promiscuous mode if multicasting was turned on.
1393   Now, I turn off promiscuous mode, but I don't do anything to multicasting
1394   when promiscuous mode is turned on.
1395*/
1396
1397	/*
1398	 * Here, I am setting this to accept all multicast packets.
1399	 * I don't need to zero the multicast table, because the flag is
1400	 * checked before the table is
1401	 */
1402	else if (dev->flags & IFF_ALLMULTI || netdev_mc_count(dev) > 16) {
1403		DBG(2, dev, "RCR_ALMUL\n");
1404		lp->rcr_cur_mode |= RCR_ALMUL;
1405	}
1406
1407	/*
1408	 * This sets the internal hardware table to filter out unwanted
1409	 * multicast packets before they take up memory.
1410	 *
1411	 * The SMC chip uses a hash table where the high 6 bits of the CRC of
1412	 * address are the offset into the table.  If that bit is 1, then the
1413	 * multicast packet is accepted.  Otherwise, it's dropped silently.
1414	 *
1415	 * To use the 6 bits as an offset into the table, the high 3 bits are
1416	 * the number of the 8 bit register, while the low 3 bits are the bit
1417	 * within that register.
1418	 */
1419	else if (!netdev_mc_empty(dev)) {
1420		struct netdev_hw_addr *ha;
1421
1422		/* table for flipping the order of 3 bits */
1423		static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7};
1424
1425		/* start with a table of all zeros: reject all */
1426		memset(multicast_table, 0, sizeof(multicast_table));
1427
1428		netdev_for_each_mc_addr(ha, dev) {
1429			int position;
1430
1431			/* only use the low order bits */
1432			position = crc32_le(~0, ha->addr, 6) & 0x3f;
1433
1434			/* do some messy swapping to put the bit in the right spot */
1435			multicast_table[invert3[position&7]] |=
1436				(1<<invert3[(position>>3)&7]);
1437		}
1438
1439		/* be sure I get rid of flags I might have set */
1440		lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1441
1442		/* now, the table can be loaded into the chipset */
1443		update_multicast = 1;
1444	} else  {
1445		DBG(2, dev, "~(RCR_PRMS|RCR_ALMUL)\n");
1446		lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1447
1448		/*
1449		 * since I'm disabling all multicast entirely, I need to
1450		 * clear the multicast list
1451		 */
1452		memset(multicast_table, 0, sizeof(multicast_table));
1453		update_multicast = 1;
1454	}
1455
1456	spin_lock_irq(&lp->lock);
1457	SMC_SELECT_BANK(lp, 0);
1458	SMC_SET_RCR(lp, lp->rcr_cur_mode);
1459	if (update_multicast) {
1460		SMC_SELECT_BANK(lp, 3);
1461		SMC_SET_MCAST(lp, multicast_table);
1462	}
1463	SMC_SELECT_BANK(lp, 2);
1464	spin_unlock_irq(&lp->lock);
1465}
1466
1467
1468/*
1469 * Open and Initialize the board
1470 *
1471 * Set up everything, reset the card, etc..
1472 */
1473static int
1474smc_open(struct net_device *dev)
1475{
1476	struct smc_local *lp = netdev_priv(dev);
1477
1478	DBG(2, dev, "%s\n", __func__);
1479
1480	/* Setup the default Register Modes */
1481	lp->tcr_cur_mode = TCR_DEFAULT;
1482	lp->rcr_cur_mode = RCR_DEFAULT;
1483	lp->rpc_cur_mode = RPC_DEFAULT |
1484				lp->cfg.leda << RPC_LSXA_SHFT |
1485				lp->cfg.ledb << RPC_LSXB_SHFT;
1486
1487	/*
1488	 * If we are not using a MII interface, we need to
1489	 * monitor our own carrier signal to detect faults.
1490	 */
1491	if (lp->phy_type == 0)
1492		lp->tcr_cur_mode |= TCR_MON_CSN;
1493
1494	/* reset the hardware */
1495	smc_reset(dev);
1496	smc_enable(dev);
1497
1498	/* Configure the PHY, initialize the link state */
1499	if (lp->phy_type != 0)
1500		smc_phy_configure(&lp->phy_configure);
1501	else {
1502		spin_lock_irq(&lp->lock);
1503		smc_10bt_check_media(dev, 1);
1504		spin_unlock_irq(&lp->lock);
1505	}
1506
1507	netif_start_queue(dev);
1508	return 0;
1509}
1510
1511/*
1512 * smc_close
1513 *
1514 * this makes the board clean up everything that it can
1515 * and not talk to the outside world.   Caused by
1516 * an 'ifconfig ethX down'
1517 */
1518static int smc_close(struct net_device *dev)
1519{
1520	struct smc_local *lp = netdev_priv(dev);
1521
1522	DBG(2, dev, "%s\n", __func__);
1523
1524	netif_stop_queue(dev);
1525	netif_carrier_off(dev);
1526
1527	/* clear everything */
1528	smc_shutdown(dev);
1529	tasklet_kill(&lp->tx_task);
1530	smc_phy_powerdown(dev);
1531	return 0;
1532}
1533
1534/*
1535 * Ethtool support
1536 */
1537static int
1538smc_ethtool_getsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1539{
1540	struct smc_local *lp = netdev_priv(dev);
1541	int ret;
1542
1543	cmd->maxtxpkt = 1;
1544	cmd->maxrxpkt = 1;
1545
1546	if (lp->phy_type != 0) {
1547		spin_lock_irq(&lp->lock);
1548		ret = mii_ethtool_gset(&lp->mii, cmd);
1549		spin_unlock_irq(&lp->lock);
1550	} else {
1551		cmd->supported = SUPPORTED_10baseT_Half |
1552				 SUPPORTED_10baseT_Full |
1553				 SUPPORTED_TP | SUPPORTED_AUI;
1554
1555		if (lp->ctl_rspeed == 10)
1556			ethtool_cmd_speed_set(cmd, SPEED_10);
1557		else if (lp->ctl_rspeed == 100)
1558			ethtool_cmd_speed_set(cmd, SPEED_100);
1559
1560		cmd->autoneg = AUTONEG_DISABLE;
1561		cmd->transceiver = XCVR_INTERNAL;
1562		cmd->port = 0;
1563		cmd->duplex = lp->tcr_cur_mode & TCR_SWFDUP ? DUPLEX_FULL : DUPLEX_HALF;
1564
1565		ret = 0;
1566	}
1567
1568	return ret;
1569}
1570
1571static int
1572smc_ethtool_setsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1573{
1574	struct smc_local *lp = netdev_priv(dev);
1575	int ret;
1576
1577	if (lp->phy_type != 0) {
1578		spin_lock_irq(&lp->lock);
1579		ret = mii_ethtool_sset(&lp->mii, cmd);
1580		spin_unlock_irq(&lp->lock);
1581	} else {
1582		if (cmd->autoneg != AUTONEG_DISABLE ||
1583		    cmd->speed != SPEED_10 ||
1584		    (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL) ||
1585		    (cmd->port != PORT_TP && cmd->port != PORT_AUI))
1586			return -EINVAL;
1587
1588//		lp->port = cmd->port;
1589		lp->ctl_rfduplx = cmd->duplex == DUPLEX_FULL;
1590
1591//		if (netif_running(dev))
1592//			smc_set_port(dev);
1593
1594		ret = 0;
1595	}
1596
1597	return ret;
1598}
1599
1600static void
1601smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1602{
1603	strlcpy(info->driver, CARDNAME, sizeof(info->driver));
1604	strlcpy(info->version, version, sizeof(info->version));
1605	strlcpy(info->bus_info, dev_name(dev->dev.parent),
1606		sizeof(info->bus_info));
1607}
1608
1609static int smc_ethtool_nwayreset(struct net_device *dev)
1610{
1611	struct smc_local *lp = netdev_priv(dev);
1612	int ret = -EINVAL;
1613
1614	if (lp->phy_type != 0) {
1615		spin_lock_irq(&lp->lock);
1616		ret = mii_nway_restart(&lp->mii);
1617		spin_unlock_irq(&lp->lock);
1618	}
1619
1620	return ret;
1621}
1622
1623static u32 smc_ethtool_getmsglevel(struct net_device *dev)
1624{
1625	struct smc_local *lp = netdev_priv(dev);
1626	return lp->msg_enable;
1627}
1628
1629static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level)
1630{
1631	struct smc_local *lp = netdev_priv(dev);
1632	lp->msg_enable = level;
1633}
1634
1635static int smc_write_eeprom_word(struct net_device *dev, u16 addr, u16 word)
1636{
1637	u16 ctl;
1638	struct smc_local *lp = netdev_priv(dev);
1639	void __iomem *ioaddr = lp->base;
1640
1641	spin_lock_irq(&lp->lock);
1642	/* load word into GP register */
1643	SMC_SELECT_BANK(lp, 1);
1644	SMC_SET_GP(lp, word);
1645	/* set the address to put the data in EEPROM */
1646	SMC_SELECT_BANK(lp, 2);
1647	SMC_SET_PTR(lp, addr);
1648	/* tell it to write */
1649	SMC_SELECT_BANK(lp, 1);
1650	ctl = SMC_GET_CTL(lp);
1651	SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_STORE));
1652	/* wait for it to finish */
1653	do {
1654		udelay(1);
1655	} while (SMC_GET_CTL(lp) & CTL_STORE);
1656	/* clean up */
1657	SMC_SET_CTL(lp, ctl);
1658	SMC_SELECT_BANK(lp, 2);
1659	spin_unlock_irq(&lp->lock);
1660	return 0;
1661}
1662
1663static int smc_read_eeprom_word(struct net_device *dev, u16 addr, u16 *word)
1664{
1665	u16 ctl;
1666	struct smc_local *lp = netdev_priv(dev);
1667	void __iomem *ioaddr = lp->base;
1668
1669	spin_lock_irq(&lp->lock);
1670	/* set the EEPROM address to get the data from */
1671	SMC_SELECT_BANK(lp, 2);
1672	SMC_SET_PTR(lp, addr | PTR_READ);
1673	/* tell it to load */
1674	SMC_SELECT_BANK(lp, 1);
1675	SMC_SET_GP(lp, 0xffff);	/* init to known */
1676	ctl = SMC_GET_CTL(lp);
1677	SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_RELOAD));
1678	/* wait for it to finish */
1679	do {
1680		udelay(1);
1681	} while (SMC_GET_CTL(lp) & CTL_RELOAD);
1682	/* read word from GP register */
1683	*word = SMC_GET_GP(lp);
1684	/* clean up */
1685	SMC_SET_CTL(lp, ctl);
1686	SMC_SELECT_BANK(lp, 2);
1687	spin_unlock_irq(&lp->lock);
1688	return 0;
1689}
1690
1691static int smc_ethtool_geteeprom_len(struct net_device *dev)
1692{
1693	return 0x23 * 2;
1694}
1695
1696static int smc_ethtool_geteeprom(struct net_device *dev,
1697		struct ethtool_eeprom *eeprom, u8 *data)
1698{
1699	int i;
1700	int imax;
1701
1702	DBG(1, dev, "Reading %d bytes at %d(0x%x)\n",
1703		eeprom->len, eeprom->offset, eeprom->offset);
1704	imax = smc_ethtool_geteeprom_len(dev);
1705	for (i = 0; i < eeprom->len; i += 2) {
1706		int ret;
1707		u16 wbuf;
1708		int offset = i + eeprom->offset;
1709		if (offset > imax)
1710			break;
1711		ret = smc_read_eeprom_word(dev, offset >> 1, &wbuf);
1712		if (ret != 0)
1713			return ret;
1714		DBG(2, dev, "Read 0x%x from 0x%x\n", wbuf, offset >> 1);
1715		data[i] = (wbuf >> 8) & 0xff;
1716		data[i+1] = wbuf & 0xff;
1717	}
1718	return 0;
1719}
1720
1721static int smc_ethtool_seteeprom(struct net_device *dev,
1722		struct ethtool_eeprom *eeprom, u8 *data)
1723{
1724	int i;
1725	int imax;
1726
1727	DBG(1, dev, "Writing %d bytes to %d(0x%x)\n",
1728	    eeprom->len, eeprom->offset, eeprom->offset);
1729	imax = smc_ethtool_geteeprom_len(dev);
1730	for (i = 0; i < eeprom->len; i += 2) {
1731		int ret;
1732		u16 wbuf;
1733		int offset = i + eeprom->offset;
1734		if (offset > imax)
1735			break;
1736		wbuf = (data[i] << 8) | data[i + 1];
1737		DBG(2, dev, "Writing 0x%x to 0x%x\n", wbuf, offset >> 1);
1738		ret = smc_write_eeprom_word(dev, offset >> 1, wbuf);
1739		if (ret != 0)
1740			return ret;
1741	}
1742	return 0;
1743}
1744
1745
1746static const struct ethtool_ops smc_ethtool_ops = {
1747	.get_settings	= smc_ethtool_getsettings,
1748	.set_settings	= smc_ethtool_setsettings,
1749	.get_drvinfo	= smc_ethtool_getdrvinfo,
1750
1751	.get_msglevel	= smc_ethtool_getmsglevel,
1752	.set_msglevel	= smc_ethtool_setmsglevel,
1753	.nway_reset	= smc_ethtool_nwayreset,
1754	.get_link	= ethtool_op_get_link,
1755	.get_eeprom_len = smc_ethtool_geteeprom_len,
1756	.get_eeprom	= smc_ethtool_geteeprom,
1757	.set_eeprom	= smc_ethtool_seteeprom,
1758};
1759
1760static const struct net_device_ops smc_netdev_ops = {
1761	.ndo_open		= smc_open,
1762	.ndo_stop		= smc_close,
1763	.ndo_start_xmit		= smc_hard_start_xmit,
1764	.ndo_tx_timeout		= smc_timeout,
1765	.ndo_set_rx_mode	= smc_set_multicast_list,
1766	.ndo_validate_addr	= eth_validate_addr,
1767	.ndo_set_mac_address 	= eth_mac_addr,
1768#ifdef CONFIG_NET_POLL_CONTROLLER
1769	.ndo_poll_controller	= smc_poll_controller,
1770#endif
1771};
1772
1773/*
1774 * smc_findirq
1775 *
1776 * This routine has a simple purpose -- make the SMC chip generate an
1777 * interrupt, so an auto-detect routine can detect it, and find the IRQ,
1778 */
1779/*
1780 * does this still work?
1781 *
1782 * I just deleted auto_irq.c, since it was never built...
1783 *   --jgarzik
1784 */
1785static int smc_findirq(struct smc_local *lp)
1786{
1787	void __iomem *ioaddr = lp->base;
1788	int timeout = 20;
1789	unsigned long cookie;
1790
1791	DBG(2, lp->dev, "%s: %s\n", CARDNAME, __func__);
1792
1793	cookie = probe_irq_on();
1794
1795	/*
1796	 * What I try to do here is trigger an ALLOC_INT. This is done
1797	 * by allocating a small chunk of memory, which will give an interrupt
1798	 * when done.
1799	 */
1800	/* enable ALLOCation interrupts ONLY */
1801	SMC_SELECT_BANK(lp, 2);
1802	SMC_SET_INT_MASK(lp, IM_ALLOC_INT);
1803
1804	/*
1805 	 * Allocate 512 bytes of memory.  Note that the chip was just
1806	 * reset so all the memory is available
1807	 */
1808	SMC_SET_MMU_CMD(lp, MC_ALLOC | 1);
1809
1810	/*
1811	 * Wait until positive that the interrupt has been generated
1812	 */
1813	do {
1814		int int_status;
1815		udelay(10);
1816		int_status = SMC_GET_INT(lp);
1817		if (int_status & IM_ALLOC_INT)
1818			break;		/* got the interrupt */
1819	} while (--timeout);
1820
1821	/*
1822	 * there is really nothing that I can do here if timeout fails,
1823	 * as autoirq_report will return a 0 anyway, which is what I
1824	 * want in this case.   Plus, the clean up is needed in both
1825	 * cases.
1826	 */
1827
1828	/* and disable all interrupts again */
1829	SMC_SET_INT_MASK(lp, 0);
1830
1831	/* and return what I found */
1832	return probe_irq_off(cookie);
1833}
1834
1835/*
1836 * Function: smc_probe(unsigned long ioaddr)
1837 *
1838 * Purpose:
1839 *	Tests to see if a given ioaddr points to an SMC91x chip.
1840 *	Returns a 0 on success
1841 *
1842 * Algorithm:
1843 *	(1) see if the high byte of BANK_SELECT is 0x33
1844 * 	(2) compare the ioaddr with the base register's address
1845 *	(3) see if I recognize the chip ID in the appropriate register
1846 *
1847 * Here I do typical initialization tasks.
1848 *
1849 * o  Initialize the structure if needed
1850 * o  print out my vanity message if not done so already
1851 * o  print out what type of hardware is detected
1852 * o  print out the ethernet address
1853 * o  find the IRQ
1854 * o  set up my private data
1855 * o  configure the dev structure with my subroutines
1856 * o  actually GRAB the irq.
1857 * o  GRAB the region
1858 */
1859static int smc_probe(struct net_device *dev, void __iomem *ioaddr,
1860		     unsigned long irq_flags)
1861{
1862	struct smc_local *lp = netdev_priv(dev);
1863	int retval;
1864	unsigned int val, revision_register;
1865	const char *version_string;
1866
1867	DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
1868
1869	/* First, see if the high byte is 0x33 */
1870	val = SMC_CURRENT_BANK(lp);
1871	DBG(2, dev, "%s: bank signature probe returned 0x%04x\n",
1872	    CARDNAME, val);
1873	if ((val & 0xFF00) != 0x3300) {
1874		if ((val & 0xFF) == 0x33) {
1875			netdev_warn(dev,
1876				    "%s: Detected possible byte-swapped interface at IOADDR %p\n",
1877				    CARDNAME, ioaddr);
1878		}
1879		retval = -ENODEV;
1880		goto err_out;
1881	}
1882
1883	/*
1884	 * The above MIGHT indicate a device, but I need to write to
1885	 * further test this.
1886	 */
1887	SMC_SELECT_BANK(lp, 0);
1888	val = SMC_CURRENT_BANK(lp);
1889	if ((val & 0xFF00) != 0x3300) {
1890		retval = -ENODEV;
1891		goto err_out;
1892	}
1893
1894	/*
1895	 * well, we've already written once, so hopefully another
1896	 * time won't hurt.  This time, I need to switch the bank
1897	 * register to bank 1, so I can access the base address
1898	 * register
1899	 */
1900	SMC_SELECT_BANK(lp, 1);
1901	val = SMC_GET_BASE(lp);
1902	val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT;
1903	if (((unsigned long)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) {
1904		netdev_warn(dev, "%s: IOADDR %p doesn't match configuration (%x).\n",
1905			    CARDNAME, ioaddr, val);
1906	}
1907
1908	/*
1909	 * check if the revision register is something that I
1910	 * recognize.  These might need to be added to later,
1911	 * as future revisions could be added.
1912	 */
1913	SMC_SELECT_BANK(lp, 3);
1914	revision_register = SMC_GET_REV(lp);
1915	DBG(2, dev, "%s: revision = 0x%04x\n", CARDNAME, revision_register);
1916	version_string = chip_ids[ (revision_register >> 4) & 0xF];
1917	if (!version_string || (revision_register & 0xff00) != 0x3300) {
1918		/* I don't recognize this chip, so... */
1919		netdev_warn(dev, "%s: IO %p: Unrecognized revision register 0x%04x, Contact author.\n",
1920			    CARDNAME, ioaddr, revision_register);
1921
1922		retval = -ENODEV;
1923		goto err_out;
1924	}
1925
1926	/* At this point I'll assume that the chip is an SMC91x. */
1927	pr_info_once("%s\n", version);
1928
1929	/* fill in some of the fields */
1930	dev->base_addr = (unsigned long)ioaddr;
1931	lp->base = ioaddr;
1932	lp->version = revision_register & 0xff;
1933	spin_lock_init(&lp->lock);
1934
1935	/* Get the MAC address */
1936	SMC_SELECT_BANK(lp, 1);
1937	SMC_GET_MAC_ADDR(lp, dev->dev_addr);
1938
1939	/* now, reset the chip, and put it into a known state */
1940	smc_reset(dev);
1941
1942	/*
1943	 * If dev->irq is 0, then the device has to be banged on to see
1944	 * what the IRQ is.
1945	 *
1946	 * This banging doesn't always detect the IRQ, for unknown reasons.
1947	 * a workaround is to reset the chip and try again.
1948	 *
1949	 * Interestingly, the DOS packet driver *SETS* the IRQ on the card to
1950	 * be what is requested on the command line.   I don't do that, mostly
1951	 * because the card that I have uses a non-standard method of accessing
1952	 * the IRQs, and because this _should_ work in most configurations.
1953	 *
1954	 * Specifying an IRQ is done with the assumption that the user knows
1955	 * what (s)he is doing.  No checking is done!!!!
1956	 */
1957	if (dev->irq < 1) {
1958		int trials;
1959
1960		trials = 3;
1961		while (trials--) {
1962			dev->irq = smc_findirq(lp);
1963			if (dev->irq)
1964				break;
1965			/* kick the card and try again */
1966			smc_reset(dev);
1967		}
1968	}
1969	if (dev->irq == 0) {
1970		netdev_warn(dev, "Couldn't autodetect your IRQ. Use irq=xx.\n");
1971		retval = -ENODEV;
1972		goto err_out;
1973	}
1974	dev->irq = irq_canonicalize(dev->irq);
1975
1976	dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1977	dev->netdev_ops = &smc_netdev_ops;
1978	dev->ethtool_ops = &smc_ethtool_ops;
1979
1980	tasklet_init(&lp->tx_task, smc_hardware_send_pkt, (unsigned long)dev);
1981	INIT_WORK(&lp->phy_configure, smc_phy_configure);
1982	lp->dev = dev;
1983	lp->mii.phy_id_mask = 0x1f;
1984	lp->mii.reg_num_mask = 0x1f;
1985	lp->mii.force_media = 0;
1986	lp->mii.full_duplex = 0;
1987	lp->mii.dev = dev;
1988	lp->mii.mdio_read = smc_phy_read;
1989	lp->mii.mdio_write = smc_phy_write;
1990
1991	/*
1992	 * Locate the phy, if any.
1993	 */
1994	if (lp->version >= (CHIP_91100 << 4))
1995		smc_phy_detect(dev);
1996
1997	/* then shut everything down to save power */
1998	smc_shutdown(dev);
1999	smc_phy_powerdown(dev);
2000
2001	/* Set default parameters */
2002	lp->msg_enable = NETIF_MSG_LINK;
2003	lp->ctl_rfduplx = 0;
2004	lp->ctl_rspeed = 10;
2005
2006	if (lp->version >= (CHIP_91100 << 4)) {
2007		lp->ctl_rfduplx = 1;
2008		lp->ctl_rspeed = 100;
2009	}
2010
2011	/* Grab the IRQ */
2012	retval = request_irq(dev->irq, smc_interrupt, irq_flags, dev->name, dev);
2013      	if (retval)
2014      		goto err_out;
2015
2016#ifdef CONFIG_ARCH_PXA
2017#  ifdef SMC_USE_PXA_DMA
2018	lp->cfg.flags |= SMC91X_USE_DMA;
2019#  endif
2020	if (lp->cfg.flags & SMC91X_USE_DMA) {
2021		dma_cap_mask_t mask;
2022		struct pxad_param param;
2023
2024		dma_cap_zero(mask);
2025		dma_cap_set(DMA_SLAVE, mask);
2026		param.prio = PXAD_PRIO_LOWEST;
2027		param.drcmr = -1UL;
2028
2029		lp->dma_chan =
2030			dma_request_slave_channel_compat(mask, pxad_filter_fn,
2031							 &param, &dev->dev,
2032							 "data");
2033	}
2034#endif
2035
2036	retval = register_netdev(dev);
2037	if (retval == 0) {
2038		/* now, print out the card info, in a short format.. */
2039		netdev_info(dev, "%s (rev %d) at %p IRQ %d",
2040			    version_string, revision_register & 0x0f,
2041			    lp->base, dev->irq);
2042
2043		if (lp->dma_chan)
2044			pr_cont(" DMA %p", lp->dma_chan);
2045
2046		pr_cont("%s%s\n",
2047			lp->cfg.flags & SMC91X_NOWAIT ? " [nowait]" : "",
2048			THROTTLE_TX_PKTS ? " [throttle_tx]" : "");
2049
2050		if (!is_valid_ether_addr(dev->dev_addr)) {
2051			netdev_warn(dev, "Invalid ethernet MAC address. Please set using ifconfig\n");
2052		} else {
2053			/* Print the Ethernet address */
2054			netdev_info(dev, "Ethernet addr: %pM\n",
2055				    dev->dev_addr);
2056		}
2057
2058		if (lp->phy_type == 0) {
2059			PRINTK(dev, "No PHY found\n");
2060		} else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) {
2061			PRINTK(dev, "PHY LAN83C183 (LAN91C111 Internal)\n");
2062		} else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) {
2063			PRINTK(dev, "PHY LAN83C180\n");
2064		}
2065	}
2066
2067err_out:
2068#ifdef CONFIG_ARCH_PXA
2069	if (retval && lp->dma_chan)
2070		dma_release_channel(lp->dma_chan);
2071#endif
2072	return retval;
2073}
2074
2075static int smc_enable_device(struct platform_device *pdev)
2076{
2077	struct net_device *ndev = platform_get_drvdata(pdev);
2078	struct smc_local *lp = netdev_priv(ndev);
2079	unsigned long flags;
2080	unsigned char ecor, ecsr;
2081	void __iomem *addr;
2082	struct resource * res;
2083
2084	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2085	if (!res)
2086		return 0;
2087
2088	/*
2089	 * Map the attribute space.  This is overkill, but clean.
2090	 */
2091	addr = ioremap(res->start, ATTRIB_SIZE);
2092	if (!addr)
2093		return -ENOMEM;
2094
2095	/*
2096	 * Reset the device.  We must disable IRQs around this
2097	 * since a reset causes the IRQ line become active.
2098	 */
2099	local_irq_save(flags);
2100	ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET;
2101	writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT));
2102	readb(addr + (ECOR << SMC_IO_SHIFT));
2103
2104	/*
2105	 * Wait 100us for the chip to reset.
2106	 */
2107	udelay(100);
2108
2109	/*
2110	 * The device will ignore all writes to the enable bit while
2111	 * reset is asserted, even if the reset bit is cleared in the
2112	 * same write.  Must clear reset first, then enable the device.
2113	 */
2114	writeb(ecor, addr + (ECOR << SMC_IO_SHIFT));
2115	writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT));
2116
2117	/*
2118	 * Set the appropriate byte/word mode.
2119	 */
2120	ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8;
2121	if (!SMC_16BIT(lp))
2122		ecsr |= ECSR_IOIS8;
2123	writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT));
2124	local_irq_restore(flags);
2125
2126	iounmap(addr);
2127
2128	/*
2129	 * Wait for the chip to wake up.  We could poll the control
2130	 * register in the main register space, but that isn't mapped
2131	 * yet.  We know this is going to take 750us.
2132	 */
2133	msleep(1);
2134
2135	return 0;
2136}
2137
2138static int smc_request_attrib(struct platform_device *pdev,
2139			      struct net_device *ndev)
2140{
2141	struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2142	struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2143
2144	if (!res)
2145		return 0;
2146
2147	if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME))
2148		return -EBUSY;
2149
2150	return 0;
2151}
2152
2153static void smc_release_attrib(struct platform_device *pdev,
2154			       struct net_device *ndev)
2155{
2156	struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2157	struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2158
2159	if (res)
2160		release_mem_region(res->start, ATTRIB_SIZE);
2161}
2162
2163static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev)
2164{
2165	if (SMC_CAN_USE_DATACS) {
2166		struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2167		struct smc_local *lp = netdev_priv(ndev);
2168
2169		if (!res)
2170			return;
2171
2172		if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) {
2173			netdev_info(ndev, "%s: failed to request datacs memory region.\n",
2174				    CARDNAME);
2175			return;
2176		}
2177
2178		lp->datacs = ioremap(res->start, SMC_DATA_EXTENT);
2179	}
2180}
2181
2182static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev)
2183{
2184	if (SMC_CAN_USE_DATACS) {
2185		struct smc_local *lp = netdev_priv(ndev);
2186		struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2187
2188		if (lp->datacs)
2189			iounmap(lp->datacs);
2190
2191		lp->datacs = NULL;
2192
2193		if (res)
2194			release_mem_region(res->start, SMC_DATA_EXTENT);
2195	}
2196}
2197
2198static const struct acpi_device_id smc91x_acpi_match[] = {
2199	{ "LNRO0003", 0 },
2200	{ }
2201};
2202MODULE_DEVICE_TABLE(acpi, smc91x_acpi_match);
2203
2204#if IS_BUILTIN(CONFIG_OF)
2205static const struct of_device_id smc91x_match[] = {
2206	{ .compatible = "smsc,lan91c94", },
2207	{ .compatible = "smsc,lan91c111", },
2208	{},
2209};
2210MODULE_DEVICE_TABLE(of, smc91x_match);
2211
2212/**
2213 * of_try_set_control_gpio - configure a gpio if it exists
2214 */
2215static int try_toggle_control_gpio(struct device *dev,
2216				   struct gpio_desc **desc,
2217				   const char *name, int index,
2218				   int value, unsigned int nsdelay)
2219{
2220	struct gpio_desc *gpio = *desc;
2221	enum gpiod_flags flags = value ? GPIOD_OUT_LOW : GPIOD_OUT_HIGH;
2222
2223	gpio = devm_gpiod_get_index_optional(dev, name, index, flags);
2224	if (IS_ERR(gpio))
2225		return PTR_ERR(gpio);
2226
2227	if (gpio) {
2228		if (nsdelay)
2229			usleep_range(nsdelay, 2 * nsdelay);
2230		gpiod_set_value_cansleep(gpio, value);
2231	}
2232	*desc = gpio;
2233
2234	return 0;
2235}
2236#endif
2237
2238/*
2239 * smc_init(void)
2240 *   Input parameters:
2241 *	dev->base_addr == 0, try to find all possible locations
2242 *	dev->base_addr > 0x1ff, this is the address to check
2243 *	dev->base_addr == <anything else>, return failure code
2244 *
2245 *   Output:
2246 *	0 --> there is a device
2247 *	anything else, error
2248 */
2249static int smc_drv_probe(struct platform_device *pdev)
2250{
2251	struct smc91x_platdata *pd = dev_get_platdata(&pdev->dev);
2252	const struct of_device_id *match = NULL;
2253	struct smc_local *lp;
2254	struct net_device *ndev;
2255	struct resource *res;
2256	unsigned int __iomem *addr;
2257	unsigned long irq_flags = SMC_IRQ_FLAGS;
2258	unsigned long irq_resflags;
2259	int ret;
2260
2261	ndev = alloc_etherdev(sizeof(struct smc_local));
2262	if (!ndev) {
2263		ret = -ENOMEM;
2264		goto out;
2265	}
2266	SET_NETDEV_DEV(ndev, &pdev->dev);
2267
2268	/* get configuration from platform data, only allow use of
2269	 * bus width if both SMC_CAN_USE_xxx and SMC91X_USE_xxx are set.
2270	 */
2271
2272	lp = netdev_priv(ndev);
2273	lp->cfg.flags = 0;
2274
2275	if (pd) {
2276		memcpy(&lp->cfg, pd, sizeof(lp->cfg));
2277		lp->io_shift = SMC91X_IO_SHIFT(lp->cfg.flags);
2278
2279		if (!SMC_8BIT(lp) && !SMC_16BIT(lp)) {
2280			dev_err(&pdev->dev,
2281				"at least one of 8-bit or 16-bit access support is required.\n");
2282			ret = -ENXIO;
2283			goto out_free_netdev;
2284		}
2285	}
2286
2287#if IS_BUILTIN(CONFIG_OF)
2288	match = of_match_device(of_match_ptr(smc91x_match), &pdev->dev);
2289	if (match) {
2290		u32 val;
2291
2292		/* Optional pwrdwn GPIO configured? */
2293		ret = try_toggle_control_gpio(&pdev->dev, &lp->power_gpio,
2294					      "power", 0, 0, 100);
2295		if (ret)
2296			return ret;
2297
2298		/*
2299		 * Optional reset GPIO configured? Minimum 100 ns reset needed
2300		 * according to LAN91C96 datasheet page 14.
2301		 */
2302		ret = try_toggle_control_gpio(&pdev->dev, &lp->reset_gpio,
2303					      "reset", 0, 0, 100);
2304		if (ret)
2305			return ret;
2306
2307		/*
2308		 * Need to wait for optional EEPROM to load, max 750 us according
2309		 * to LAN91C96 datasheet page 55.
2310		 */
2311		if (lp->reset_gpio)
2312			usleep_range(750, 1000);
2313
2314		/* Combination of IO widths supported, default to 16-bit */
2315		if (!device_property_read_u32(&pdev->dev, "reg-io-width",
2316					      &val)) {
2317			if (val & 1)
2318				lp->cfg.flags |= SMC91X_USE_8BIT;
2319			if ((val == 0) || (val & 2))
2320				lp->cfg.flags |= SMC91X_USE_16BIT;
2321			if (val & 4)
2322				lp->cfg.flags |= SMC91X_USE_32BIT;
2323		} else {
2324			lp->cfg.flags |= SMC91X_USE_16BIT;
2325		}
2326		if (!device_property_read_u32(&pdev->dev, "reg-shift",
2327					      &val))
2328			lp->io_shift = val;
2329		lp->cfg.pxa_u16_align4 =
2330			device_property_read_bool(&pdev->dev, "pxa-u16-align4");
2331	}
2332#endif
2333
2334	if (!pd && !match) {
2335		lp->cfg.flags |= (SMC_CAN_USE_8BIT)  ? SMC91X_USE_8BIT  : 0;
2336		lp->cfg.flags |= (SMC_CAN_USE_16BIT) ? SMC91X_USE_16BIT : 0;
2337		lp->cfg.flags |= (SMC_CAN_USE_32BIT) ? SMC91X_USE_32BIT : 0;
2338		lp->cfg.flags |= (nowait) ? SMC91X_NOWAIT : 0;
2339	}
2340
2341	if (!lp->cfg.leda && !lp->cfg.ledb) {
2342		lp->cfg.leda = RPC_LSA_DEFAULT;
2343		lp->cfg.ledb = RPC_LSB_DEFAULT;
2344	}
2345
2346	ndev->dma = (unsigned char)-1;
2347
2348	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2349	if (!res)
2350		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2351	if (!res) {
2352		ret = -ENODEV;
2353		goto out_free_netdev;
2354	}
2355
2356
2357	if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) {
2358		ret = -EBUSY;
2359		goto out_free_netdev;
2360	}
2361
2362	ndev->irq = platform_get_irq(pdev, 0);
2363	if (ndev->irq < 0) {
2364		ret = ndev->irq;
2365		goto out_release_io;
2366	}
2367	/*
2368	 * If this platform does not specify any special irqflags, or if
2369	 * the resource supplies a trigger, override the irqflags with
2370	 * the trigger flags from the resource.
2371	 */
2372	irq_resflags = irqd_get_trigger_type(irq_get_irq_data(ndev->irq));
2373	if (irq_flags == -1 || irq_resflags & IRQF_TRIGGER_MASK)
2374		irq_flags = irq_resflags & IRQF_TRIGGER_MASK;
2375
2376	ret = smc_request_attrib(pdev, ndev);
2377	if (ret)
2378		goto out_release_io;
2379#if defined(CONFIG_ASSABET_NEPONSET)
2380	if (machine_is_assabet() && machine_has_neponset())
2381		neponset_ncr_set(NCR_ENET_OSC_EN);
2382#endif
2383	platform_set_drvdata(pdev, ndev);
2384	ret = smc_enable_device(pdev);
2385	if (ret)
2386		goto out_release_attrib;
2387
2388	addr = ioremap(res->start, SMC_IO_EXTENT);
2389	if (!addr) {
2390		ret = -ENOMEM;
2391		goto out_release_attrib;
2392	}
2393
2394#ifdef CONFIG_ARCH_PXA
2395	{
2396		struct smc_local *lp = netdev_priv(ndev);
2397		lp->device = &pdev->dev;
2398		lp->physaddr = res->start;
2399
2400	}
2401#endif
2402
2403	ret = smc_probe(ndev, addr, irq_flags);
2404	if (ret != 0)
2405		goto out_iounmap;
2406
2407	smc_request_datacs(pdev, ndev);
2408
2409	return 0;
2410
2411 out_iounmap:
2412	iounmap(addr);
2413 out_release_attrib:
2414	smc_release_attrib(pdev, ndev);
2415 out_release_io:
2416	release_mem_region(res->start, SMC_IO_EXTENT);
2417 out_free_netdev:
2418	free_netdev(ndev);
2419 out:
2420	pr_info("%s: not found (%d).\n", CARDNAME, ret);
2421
2422	return ret;
2423}
2424
2425static int smc_drv_remove(struct platform_device *pdev)
2426{
2427	struct net_device *ndev = platform_get_drvdata(pdev);
2428	struct smc_local *lp = netdev_priv(ndev);
2429	struct resource *res;
2430
2431	unregister_netdev(ndev);
2432
2433	free_irq(ndev->irq, ndev);
2434
2435#ifdef CONFIG_ARCH_PXA
2436	if (lp->dma_chan)
2437		dma_release_channel(lp->dma_chan);
2438#endif
2439	iounmap(lp->base);
2440
2441	smc_release_datacs(pdev,ndev);
2442	smc_release_attrib(pdev,ndev);
2443
2444	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2445	if (!res)
2446		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2447	release_mem_region(res->start, SMC_IO_EXTENT);
2448
2449	free_netdev(ndev);
2450
2451	return 0;
2452}
2453
2454static int smc_drv_suspend(struct device *dev)
2455{
2456	struct platform_device *pdev = to_platform_device(dev);
2457	struct net_device *ndev = platform_get_drvdata(pdev);
2458
2459	if (ndev) {
2460		if (netif_running(ndev)) {
2461			netif_device_detach(ndev);
2462			smc_shutdown(ndev);
2463			smc_phy_powerdown(ndev);
2464		}
2465	}
2466	return 0;
2467}
2468
2469static int smc_drv_resume(struct device *dev)
2470{
2471	struct platform_device *pdev = to_platform_device(dev);
2472	struct net_device *ndev = platform_get_drvdata(pdev);
2473
2474	if (ndev) {
2475		struct smc_local *lp = netdev_priv(ndev);
2476		smc_enable_device(pdev);
2477		if (netif_running(ndev)) {
2478			smc_reset(ndev);
2479			smc_enable(ndev);
2480			if (lp->phy_type != 0)
2481				smc_phy_configure(&lp->phy_configure);
2482			netif_device_attach(ndev);
2483		}
2484	}
2485	return 0;
2486}
2487
2488static struct dev_pm_ops smc_drv_pm_ops = {
2489	.suspend	= smc_drv_suspend,
2490	.resume		= smc_drv_resume,
2491};
2492
2493static struct platform_driver smc_driver = {
2494	.probe		= smc_drv_probe,
2495	.remove		= smc_drv_remove,
2496	.driver		= {
2497		.name	= CARDNAME,
2498		.pm	= &smc_drv_pm_ops,
2499		.of_match_table   = of_match_ptr(smc91x_match),
2500		.acpi_match_table = smc91x_acpi_match,
2501	},
2502};
2503
2504module_platform_driver(smc_driver);