Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/****************************************************************************
   2 * Driver for Solarflare network controllers and boards
   3 * Copyright 2008-2013 Solarflare Communications Inc.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms of the GNU General Public License version 2 as published
   7 * by the Free Software Foundation, incorporated herein by reference.
   8 */
   9
  10#include <linux/delay.h>
  11#include <linux/moduleparam.h>
  12#include <linux/atomic.h>
  13#include "net_driver.h"
  14#include "nic.h"
  15#include "io.h"
  16#include "farch_regs.h"
  17#include "mcdi_pcol.h"
  18
  19/**************************************************************************
  20 *
  21 * Management-Controller-to-Driver Interface
  22 *
  23 **************************************************************************
  24 */
  25
  26#define MCDI_RPC_TIMEOUT       (10 * HZ)
  27
  28/* A reboot/assertion causes the MCDI status word to be set after the
  29 * command word is set or a REBOOT event is sent. If we notice a reboot
  30 * via these mechanisms then wait 250ms for the status word to be set.
  31 */
  32#define MCDI_STATUS_DELAY_US		100
  33#define MCDI_STATUS_DELAY_COUNT		2500
  34#define MCDI_STATUS_SLEEP_MS						\
  35	(MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
  36
  37#define SEQ_MASK							\
  38	EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
  39
  40struct efx_mcdi_async_param {
  41	struct list_head list;
  42	unsigned int cmd;
  43	size_t inlen;
  44	size_t outlen;
  45	bool quiet;
  46	efx_mcdi_async_completer *complete;
  47	unsigned long cookie;
  48	/* followed by request/response buffer */
  49};
  50
  51static void efx_mcdi_timeout_async(unsigned long context);
  52static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
  53			       bool *was_attached_out);
  54static bool efx_mcdi_poll_once(struct efx_nic *efx);
  55static void efx_mcdi_abandon(struct efx_nic *efx);
  56
  57#ifdef CONFIG_SFC_MCDI_LOGGING
  58static bool mcdi_logging_default;
  59module_param(mcdi_logging_default, bool, 0644);
  60MODULE_PARM_DESC(mcdi_logging_default,
  61		 "Enable MCDI logging on newly-probed functions");
  62#endif
  63
  64int efx_mcdi_init(struct efx_nic *efx)
  65{
  66	struct efx_mcdi_iface *mcdi;
  67	bool already_attached;
  68	int rc = -ENOMEM;
  69
  70	efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL);
  71	if (!efx->mcdi)
  72		goto fail;
  73
  74	mcdi = efx_mcdi(efx);
  75	mcdi->efx = efx;
  76#ifdef CONFIG_SFC_MCDI_LOGGING
  77	/* consuming code assumes buffer is page-sized */
  78	mcdi->logging_buffer = (char *)__get_free_page(GFP_KERNEL);
  79	if (!mcdi->logging_buffer)
  80		goto fail1;
  81	mcdi->logging_enabled = mcdi_logging_default;
  82#endif
  83	init_waitqueue_head(&mcdi->wq);
  84	init_waitqueue_head(&mcdi->proxy_rx_wq);
  85	spin_lock_init(&mcdi->iface_lock);
  86	mcdi->state = MCDI_STATE_QUIESCENT;
  87	mcdi->mode = MCDI_MODE_POLL;
  88	spin_lock_init(&mcdi->async_lock);
  89	INIT_LIST_HEAD(&mcdi->async_list);
  90	setup_timer(&mcdi->async_timer, efx_mcdi_timeout_async,
  91		    (unsigned long)mcdi);
  92
  93	(void) efx_mcdi_poll_reboot(efx);
  94	mcdi->new_epoch = true;
  95
  96	/* Recover from a failed assertion before probing */
  97	rc = efx_mcdi_handle_assertion(efx);
  98	if (rc)
  99		goto fail2;
 100
 101	/* Let the MC (and BMC, if this is a LOM) know that the driver
 102	 * is loaded. We should do this before we reset the NIC.
 103	 */
 104	rc = efx_mcdi_drv_attach(efx, true, &already_attached);
 105	if (rc) {
 106		netif_err(efx, probe, efx->net_dev,
 107			  "Unable to register driver with MCPU\n");
 108		goto fail2;
 109	}
 110	if (already_attached)
 111		/* Not a fatal error */
 112		netif_err(efx, probe, efx->net_dev,
 113			  "Host already registered with MCPU\n");
 114
 115	if (efx->mcdi->fn_flags &
 116	    (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
 117		efx->primary = efx;
 118
 119	return 0;
 120fail2:
 121#ifdef CONFIG_SFC_MCDI_LOGGING
 122	free_page((unsigned long)mcdi->logging_buffer);
 123fail1:
 124#endif
 125	kfree(efx->mcdi);
 126	efx->mcdi = NULL;
 127fail:
 128	return rc;
 129}
 130
 131void efx_mcdi_fini(struct efx_nic *efx)
 132{
 133	if (!efx->mcdi)
 134		return;
 135
 136	BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT);
 137
 138	/* Relinquish the device (back to the BMC, if this is a LOM) */
 139	efx_mcdi_drv_attach(efx, false, NULL);
 140
 141#ifdef CONFIG_SFC_MCDI_LOGGING
 142	free_page((unsigned long)efx->mcdi->iface.logging_buffer);
 143#endif
 144
 145	kfree(efx->mcdi);
 146}
 147
 148static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd,
 149				  const efx_dword_t *inbuf, size_t inlen)
 150{
 151	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
 152#ifdef CONFIG_SFC_MCDI_LOGGING
 153	char *buf = mcdi->logging_buffer; /* page-sized */
 154#endif
 155	efx_dword_t hdr[2];
 156	size_t hdr_len;
 157	u32 xflags, seqno;
 158
 159	BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT);
 160
 161	/* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
 162	spin_lock_bh(&mcdi->iface_lock);
 163	++mcdi->seqno;
 164	spin_unlock_bh(&mcdi->iface_lock);
 165
 166	seqno = mcdi->seqno & SEQ_MASK;
 167	xflags = 0;
 168	if (mcdi->mode == MCDI_MODE_EVENTS)
 169		xflags |= MCDI_HEADER_XFLAGS_EVREQ;
 170
 171	if (efx->type->mcdi_max_ver == 1) {
 172		/* MCDI v1 */
 173		EFX_POPULATE_DWORD_7(hdr[0],
 174				     MCDI_HEADER_RESPONSE, 0,
 175				     MCDI_HEADER_RESYNC, 1,
 176				     MCDI_HEADER_CODE, cmd,
 177				     MCDI_HEADER_DATALEN, inlen,
 178				     MCDI_HEADER_SEQ, seqno,
 179				     MCDI_HEADER_XFLAGS, xflags,
 180				     MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
 181		hdr_len = 4;
 182	} else {
 183		/* MCDI v2 */
 184		BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2);
 185		EFX_POPULATE_DWORD_7(hdr[0],
 186				     MCDI_HEADER_RESPONSE, 0,
 187				     MCDI_HEADER_RESYNC, 1,
 188				     MCDI_HEADER_CODE, MC_CMD_V2_EXTN,
 189				     MCDI_HEADER_DATALEN, 0,
 190				     MCDI_HEADER_SEQ, seqno,
 191				     MCDI_HEADER_XFLAGS, xflags,
 192				     MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch);
 193		EFX_POPULATE_DWORD_2(hdr[1],
 194				     MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd,
 195				     MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen);
 196		hdr_len = 8;
 197	}
 198
 199#ifdef CONFIG_SFC_MCDI_LOGGING
 200	if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
 201		int bytes = 0;
 202		int i;
 203		/* Lengths should always be a whole number of dwords, so scream
 204		 * if they're not.
 205		 */
 206		WARN_ON_ONCE(hdr_len % 4);
 207		WARN_ON_ONCE(inlen % 4);
 208
 209		/* We own the logging buffer, as only one MCDI can be in
 210		 * progress on a NIC at any one time.  So no need for locking.
 211		 */
 212		for (i = 0; i < hdr_len / 4 && bytes < PAGE_SIZE; i++)
 213			bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
 214					  " %08x", le32_to_cpu(hdr[i].u32[0]));
 215
 216		for (i = 0; i < inlen / 4 && bytes < PAGE_SIZE; i++)
 217			bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
 218					  " %08x", le32_to_cpu(inbuf[i].u32[0]));
 219
 220		netif_info(efx, hw, efx->net_dev, "MCDI RPC REQ:%s\n", buf);
 221	}
 222#endif
 223
 224	efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen);
 225
 226	mcdi->new_epoch = false;
 227}
 228
 229static int efx_mcdi_errno(unsigned int mcdi_err)
 230{
 231	switch (mcdi_err) {
 232	case 0:
 233		return 0;
 234#define TRANSLATE_ERROR(name)					\
 235	case MC_CMD_ERR_ ## name:				\
 236		return -name;
 237	TRANSLATE_ERROR(EPERM);
 238	TRANSLATE_ERROR(ENOENT);
 239	TRANSLATE_ERROR(EINTR);
 240	TRANSLATE_ERROR(EAGAIN);
 241	TRANSLATE_ERROR(EACCES);
 242	TRANSLATE_ERROR(EBUSY);
 243	TRANSLATE_ERROR(EINVAL);
 244	TRANSLATE_ERROR(EDEADLK);
 245	TRANSLATE_ERROR(ENOSYS);
 246	TRANSLATE_ERROR(ETIME);
 247	TRANSLATE_ERROR(EALREADY);
 248	TRANSLATE_ERROR(ENOSPC);
 249#undef TRANSLATE_ERROR
 250	case MC_CMD_ERR_ENOTSUP:
 251		return -EOPNOTSUPP;
 252	case MC_CMD_ERR_ALLOC_FAIL:
 253		return -ENOBUFS;
 254	case MC_CMD_ERR_MAC_EXIST:
 255		return -EADDRINUSE;
 256	default:
 257		return -EPROTO;
 258	}
 259}
 260
 261static void efx_mcdi_read_response_header(struct efx_nic *efx)
 262{
 263	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
 264	unsigned int respseq, respcmd, error;
 265#ifdef CONFIG_SFC_MCDI_LOGGING
 266	char *buf = mcdi->logging_buffer; /* page-sized */
 267#endif
 268	efx_dword_t hdr;
 269
 270	efx->type->mcdi_read_response(efx, &hdr, 0, 4);
 271	respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ);
 272	respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE);
 273	error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR);
 274
 275	if (respcmd != MC_CMD_V2_EXTN) {
 276		mcdi->resp_hdr_len = 4;
 277		mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN);
 278	} else {
 279		efx->type->mcdi_read_response(efx, &hdr, 4, 4);
 280		mcdi->resp_hdr_len = 8;
 281		mcdi->resp_data_len =
 282			EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN);
 283	}
 284
 285#ifdef CONFIG_SFC_MCDI_LOGGING
 286	if (mcdi->logging_enabled && !WARN_ON_ONCE(!buf)) {
 287		size_t hdr_len, data_len;
 288		int bytes = 0;
 289		int i;
 290
 291		WARN_ON_ONCE(mcdi->resp_hdr_len % 4);
 292		hdr_len = mcdi->resp_hdr_len / 4;
 293		/* MCDI_DECLARE_BUF ensures that underlying buffer is padded
 294		 * to dword size, and the MCDI buffer is always dword size
 295		 */
 296		data_len = DIV_ROUND_UP(mcdi->resp_data_len, 4);
 297
 298		/* We own the logging buffer, as only one MCDI can be in
 299		 * progress on a NIC at any one time.  So no need for locking.
 300		 */
 301		for (i = 0; i < hdr_len && bytes < PAGE_SIZE; i++) {
 302			efx->type->mcdi_read_response(efx, &hdr, (i * 4), 4);
 303			bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
 304					  " %08x", le32_to_cpu(hdr.u32[0]));
 305		}
 306
 307		for (i = 0; i < data_len && bytes < PAGE_SIZE; i++) {
 308			efx->type->mcdi_read_response(efx, &hdr,
 309					mcdi->resp_hdr_len + (i * 4), 4);
 310			bytes += snprintf(buf + bytes, PAGE_SIZE - bytes,
 311					  " %08x", le32_to_cpu(hdr.u32[0]));
 312		}
 313
 314		netif_info(efx, hw, efx->net_dev, "MCDI RPC RESP:%s\n", buf);
 315	}
 316#endif
 317
 318	mcdi->resprc_raw = 0;
 319	if (error && mcdi->resp_data_len == 0) {
 320		netif_err(efx, hw, efx->net_dev, "MC rebooted\n");
 321		mcdi->resprc = -EIO;
 322	} else if ((respseq ^ mcdi->seqno) & SEQ_MASK) {
 323		netif_err(efx, hw, efx->net_dev,
 324			  "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
 325			  respseq, mcdi->seqno);
 326		mcdi->resprc = -EIO;
 327	} else if (error) {
 328		efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4);
 329		mcdi->resprc_raw = EFX_DWORD_FIELD(hdr, EFX_DWORD_0);
 330		mcdi->resprc = efx_mcdi_errno(mcdi->resprc_raw);
 331	} else {
 332		mcdi->resprc = 0;
 333	}
 334}
 335
 336static bool efx_mcdi_poll_once(struct efx_nic *efx)
 337{
 338	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
 339
 340	rmb();
 341	if (!efx->type->mcdi_poll_response(efx))
 342		return false;
 343
 344	spin_lock_bh(&mcdi->iface_lock);
 345	efx_mcdi_read_response_header(efx);
 346	spin_unlock_bh(&mcdi->iface_lock);
 347
 348	return true;
 349}
 350
 351static int efx_mcdi_poll(struct efx_nic *efx)
 352{
 353	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
 354	unsigned long time, finish;
 355	unsigned int spins;
 356	int rc;
 357
 358	/* Check for a reboot atomically with respect to efx_mcdi_copyout() */
 359	rc = efx_mcdi_poll_reboot(efx);
 360	if (rc) {
 361		spin_lock_bh(&mcdi->iface_lock);
 362		mcdi->resprc = rc;
 363		mcdi->resp_hdr_len = 0;
 364		mcdi->resp_data_len = 0;
 365		spin_unlock_bh(&mcdi->iface_lock);
 366		return 0;
 367	}
 368
 369	/* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
 370	 * because generally mcdi responses are fast. After that, back off
 371	 * and poll once a jiffy (approximately)
 372	 */
 373	spins = TICK_USEC;
 374	finish = jiffies + MCDI_RPC_TIMEOUT;
 375
 376	while (1) {
 377		if (spins != 0) {
 378			--spins;
 379			udelay(1);
 380		} else {
 381			schedule_timeout_uninterruptible(1);
 382		}
 383
 384		time = jiffies;
 385
 386		if (efx_mcdi_poll_once(efx))
 387			break;
 388
 389		if (time_after(time, finish))
 390			return -ETIMEDOUT;
 391	}
 392
 393	/* Return rc=0 like wait_event_timeout() */
 394	return 0;
 395}
 396
 397/* Test and clear MC-rebooted flag for this port/function; reset
 398 * software state as necessary.
 399 */
 400int efx_mcdi_poll_reboot(struct efx_nic *efx)
 401{
 402	if (!efx->mcdi)
 403		return 0;
 404
 405	return efx->type->mcdi_poll_reboot(efx);
 406}
 407
 408static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi)
 409{
 410	return cmpxchg(&mcdi->state,
 411		       MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) ==
 412		MCDI_STATE_QUIESCENT;
 413}
 414
 415static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi)
 416{
 417	/* Wait until the interface becomes QUIESCENT and we win the race
 418	 * to mark it RUNNING_SYNC.
 419	 */
 420	wait_event(mcdi->wq,
 421		   cmpxchg(&mcdi->state,
 422			   MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) ==
 423		   MCDI_STATE_QUIESCENT);
 424}
 425
 426static int efx_mcdi_await_completion(struct efx_nic *efx)
 427{
 428	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
 429
 430	if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED,
 431			       MCDI_RPC_TIMEOUT) == 0)
 432		return -ETIMEDOUT;
 433
 434	/* Check if efx_mcdi_set_mode() switched us back to polled completions.
 435	 * In which case, poll for completions directly. If efx_mcdi_ev_cpl()
 436	 * completed the request first, then we'll just end up completing the
 437	 * request again, which is safe.
 438	 *
 439	 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
 440	 * wait_event_timeout() implicitly provides.
 441	 */
 442	if (mcdi->mode == MCDI_MODE_POLL)
 443		return efx_mcdi_poll(efx);
 444
 445	return 0;
 446}
 447
 448/* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
 449 * requester.  Return whether this was done.  Does not take any locks.
 450 */
 451static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi)
 452{
 453	if (cmpxchg(&mcdi->state,
 454		    MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) ==
 455	    MCDI_STATE_RUNNING_SYNC) {
 456		wake_up(&mcdi->wq);
 457		return true;
 458	}
 459
 460	return false;
 461}
 462
 463static void efx_mcdi_release(struct efx_mcdi_iface *mcdi)
 464{
 465	if (mcdi->mode == MCDI_MODE_EVENTS) {
 466		struct efx_mcdi_async_param *async;
 467		struct efx_nic *efx = mcdi->efx;
 468
 469		/* Process the asynchronous request queue */
 470		spin_lock_bh(&mcdi->async_lock);
 471		async = list_first_entry_or_null(
 472			&mcdi->async_list, struct efx_mcdi_async_param, list);
 473		if (async) {
 474			mcdi->state = MCDI_STATE_RUNNING_ASYNC;
 475			efx_mcdi_send_request(efx, async->cmd,
 476					      (const efx_dword_t *)(async + 1),
 477					      async->inlen);
 478			mod_timer(&mcdi->async_timer,
 479				  jiffies + MCDI_RPC_TIMEOUT);
 480		}
 481		spin_unlock_bh(&mcdi->async_lock);
 482
 483		if (async)
 484			return;
 485	}
 486
 487	mcdi->state = MCDI_STATE_QUIESCENT;
 488	wake_up(&mcdi->wq);
 489}
 490
 491/* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
 492 * asynchronous completion function, and release the interface.
 493 * Return whether this was done.  Must be called in bh-disabled
 494 * context.  Will take iface_lock and async_lock.
 495 */
 496static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout)
 497{
 498	struct efx_nic *efx = mcdi->efx;
 499	struct efx_mcdi_async_param *async;
 500	size_t hdr_len, data_len, err_len;
 501	efx_dword_t *outbuf;
 502	MCDI_DECLARE_BUF_ERR(errbuf);
 503	int rc;
 504
 505	if (cmpxchg(&mcdi->state,
 506		    MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) !=
 507	    MCDI_STATE_RUNNING_ASYNC)
 508		return false;
 509
 510	spin_lock(&mcdi->iface_lock);
 511	if (timeout) {
 512		/* Ensure that if the completion event arrives later,
 513		 * the seqno check in efx_mcdi_ev_cpl() will fail
 514		 */
 515		++mcdi->seqno;
 516		++mcdi->credits;
 517		rc = -ETIMEDOUT;
 518		hdr_len = 0;
 519		data_len = 0;
 520	} else {
 521		rc = mcdi->resprc;
 522		hdr_len = mcdi->resp_hdr_len;
 523		data_len = mcdi->resp_data_len;
 524	}
 525	spin_unlock(&mcdi->iface_lock);
 526
 527	/* Stop the timer.  In case the timer function is running, we
 528	 * must wait for it to return so that there is no possibility
 529	 * of it aborting the next request.
 530	 */
 531	if (!timeout)
 532		del_timer_sync(&mcdi->async_timer);
 533
 534	spin_lock(&mcdi->async_lock);
 535	async = list_first_entry(&mcdi->async_list,
 536				 struct efx_mcdi_async_param, list);
 537	list_del(&async->list);
 538	spin_unlock(&mcdi->async_lock);
 539
 540	outbuf = (efx_dword_t *)(async + 1);
 541	efx->type->mcdi_read_response(efx, outbuf, hdr_len,
 542				      min(async->outlen, data_len));
 543	if (!timeout && rc && !async->quiet) {
 544		err_len = min(sizeof(errbuf), data_len);
 545		efx->type->mcdi_read_response(efx, errbuf, hdr_len,
 546					      sizeof(errbuf));
 547		efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf,
 548				       err_len, rc);
 549	}
 550
 551	if (async->complete)
 552		async->complete(efx, async->cookie, rc, outbuf,
 553				min(async->outlen, data_len));
 554	kfree(async);
 555
 556	efx_mcdi_release(mcdi);
 557
 558	return true;
 559}
 560
 561static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno,
 562			    unsigned int datalen, unsigned int mcdi_err)
 563{
 564	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
 565	bool wake = false;
 566
 567	spin_lock(&mcdi->iface_lock);
 568
 569	if ((seqno ^ mcdi->seqno) & SEQ_MASK) {
 570		if (mcdi->credits)
 571			/* The request has been cancelled */
 572			--mcdi->credits;
 573		else
 574			netif_err(efx, hw, efx->net_dev,
 575				  "MC response mismatch tx seq 0x%x rx "
 576				  "seq 0x%x\n", seqno, mcdi->seqno);
 577	} else {
 578		if (efx->type->mcdi_max_ver >= 2) {
 579			/* MCDI v2 responses don't fit in an event */
 580			efx_mcdi_read_response_header(efx);
 581		} else {
 582			mcdi->resprc = efx_mcdi_errno(mcdi_err);
 583			mcdi->resp_hdr_len = 4;
 584			mcdi->resp_data_len = datalen;
 585		}
 586
 587		wake = true;
 588	}
 589
 590	spin_unlock(&mcdi->iface_lock);
 591
 592	if (wake) {
 593		if (!efx_mcdi_complete_async(mcdi, false))
 594			(void) efx_mcdi_complete_sync(mcdi);
 595
 596		/* If the interface isn't RUNNING_ASYNC or
 597		 * RUNNING_SYNC then we've received a duplicate
 598		 * completion after we've already transitioned back to
 599		 * QUIESCENT. [A subsequent invocation would increment
 600		 * seqno, so would have failed the seqno check].
 601		 */
 602	}
 603}
 604
 605static void efx_mcdi_timeout_async(unsigned long context)
 606{
 607	struct efx_mcdi_iface *mcdi = (struct efx_mcdi_iface *)context;
 608
 609	efx_mcdi_complete_async(mcdi, true);
 610}
 611
 612static int
 613efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen)
 614{
 615	if (efx->type->mcdi_max_ver < 0 ||
 616	     (efx->type->mcdi_max_ver < 2 &&
 617	      cmd > MC_CMD_CMD_SPACE_ESCAPE_7))
 618		return -EINVAL;
 619
 620	if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 ||
 621	    (efx->type->mcdi_max_ver < 2 &&
 622	     inlen > MCDI_CTL_SDU_LEN_MAX_V1))
 623		return -EMSGSIZE;
 624
 625	return 0;
 626}
 627
 628static bool efx_mcdi_get_proxy_handle(struct efx_nic *efx,
 629				      size_t hdr_len, size_t data_len,
 630				      u32 *proxy_handle)
 631{
 632	MCDI_DECLARE_BUF_ERR(testbuf);
 633	const size_t buflen = sizeof(testbuf);
 634
 635	if (!proxy_handle || data_len < buflen)
 636		return false;
 637
 638	efx->type->mcdi_read_response(efx, testbuf, hdr_len, buflen);
 639	if (MCDI_DWORD(testbuf, ERR_CODE) == MC_CMD_ERR_PROXY_PENDING) {
 640		*proxy_handle = MCDI_DWORD(testbuf, ERR_PROXY_PENDING_HANDLE);
 641		return true;
 642	}
 643
 644	return false;
 645}
 646
 647static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned int cmd,
 648				size_t inlen,
 649				efx_dword_t *outbuf, size_t outlen,
 650				size_t *outlen_actual, bool quiet,
 651				u32 *proxy_handle, int *raw_rc)
 652{
 653	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
 654	MCDI_DECLARE_BUF_ERR(errbuf);
 655	int rc;
 656
 657	if (mcdi->mode == MCDI_MODE_POLL)
 658		rc = efx_mcdi_poll(efx);
 659	else
 660		rc = efx_mcdi_await_completion(efx);
 661
 662	if (rc != 0) {
 663		netif_err(efx, hw, efx->net_dev,
 664			  "MC command 0x%x inlen %d mode %d timed out\n",
 665			  cmd, (int)inlen, mcdi->mode);
 666
 667		if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) {
 668			netif_err(efx, hw, efx->net_dev,
 669				  "MCDI request was completed without an event\n");
 670			rc = 0;
 671		}
 672
 673		efx_mcdi_abandon(efx);
 674
 675		/* Close the race with efx_mcdi_ev_cpl() executing just too late
 676		 * and completing a request we've just cancelled, by ensuring
 677		 * that the seqno check therein fails.
 678		 */
 679		spin_lock_bh(&mcdi->iface_lock);
 680		++mcdi->seqno;
 681		++mcdi->credits;
 682		spin_unlock_bh(&mcdi->iface_lock);
 683	}
 684
 685	if (proxy_handle)
 686		*proxy_handle = 0;
 687
 688	if (rc != 0) {
 689		if (outlen_actual)
 690			*outlen_actual = 0;
 691	} else {
 692		size_t hdr_len, data_len, err_len;
 693
 694		/* At the very least we need a memory barrier here to ensure
 695		 * we pick up changes from efx_mcdi_ev_cpl(). Protect against
 696		 * a spurious efx_mcdi_ev_cpl() running concurrently by
 697		 * acquiring the iface_lock. */
 698		spin_lock_bh(&mcdi->iface_lock);
 699		rc = mcdi->resprc;
 700		if (raw_rc)
 701			*raw_rc = mcdi->resprc_raw;
 702		hdr_len = mcdi->resp_hdr_len;
 703		data_len = mcdi->resp_data_len;
 704		err_len = min(sizeof(errbuf), data_len);
 705		spin_unlock_bh(&mcdi->iface_lock);
 706
 707		BUG_ON(rc > 0);
 708
 709		efx->type->mcdi_read_response(efx, outbuf, hdr_len,
 710					      min(outlen, data_len));
 711		if (outlen_actual)
 712			*outlen_actual = data_len;
 713
 714		efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len);
 715
 716		if (cmd == MC_CMD_REBOOT && rc == -EIO) {
 717			/* Don't reset if MC_CMD_REBOOT returns EIO */
 718		} else if (rc == -EIO || rc == -EINTR) {
 719			netif_err(efx, hw, efx->net_dev, "MC fatal error %d\n",
 720				  -rc);
 721			efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
 722		} else if (proxy_handle && (rc == -EPROTO) &&
 723			   efx_mcdi_get_proxy_handle(efx, hdr_len, data_len,
 724						     proxy_handle)) {
 725			mcdi->proxy_rx_status = 0;
 726			mcdi->proxy_rx_handle = 0;
 727			mcdi->state = MCDI_STATE_PROXY_WAIT;
 728		} else if (rc && !quiet) {
 729			efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len,
 730					       rc);
 731		}
 732
 733		if (rc == -EIO || rc == -EINTR) {
 734			msleep(MCDI_STATUS_SLEEP_MS);
 735			efx_mcdi_poll_reboot(efx);
 736			mcdi->new_epoch = true;
 737		}
 738	}
 739
 740	if (!proxy_handle || !*proxy_handle)
 741		efx_mcdi_release(mcdi);
 742	return rc;
 743}
 744
 745static void efx_mcdi_proxy_abort(struct efx_mcdi_iface *mcdi)
 746{
 747	if (mcdi->state == MCDI_STATE_PROXY_WAIT) {
 748		/* Interrupt the proxy wait. */
 749		mcdi->proxy_rx_status = -EINTR;
 750		wake_up(&mcdi->proxy_rx_wq);
 751	}
 752}
 753
 754static void efx_mcdi_ev_proxy_response(struct efx_nic *efx,
 755				       u32 handle, int status)
 756{
 757	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
 758
 759	WARN_ON(mcdi->state != MCDI_STATE_PROXY_WAIT);
 760
 761	mcdi->proxy_rx_status = efx_mcdi_errno(status);
 762	/* Ensure the status is written before we update the handle, since the
 763	 * latter is used to check if we've finished.
 764	 */
 765	wmb();
 766	mcdi->proxy_rx_handle = handle;
 767	wake_up(&mcdi->proxy_rx_wq);
 768}
 769
 770static int efx_mcdi_proxy_wait(struct efx_nic *efx, u32 handle, bool quiet)
 771{
 772	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
 773	int rc;
 774
 775	/* Wait for a proxy event, or timeout. */
 776	rc = wait_event_timeout(mcdi->proxy_rx_wq,
 777				mcdi->proxy_rx_handle != 0 ||
 778				mcdi->proxy_rx_status == -EINTR,
 779				MCDI_RPC_TIMEOUT);
 780
 781	if (rc <= 0) {
 782		netif_dbg(efx, hw, efx->net_dev,
 783			  "MCDI proxy timeout %d\n", handle);
 784		return -ETIMEDOUT;
 785	} else if (mcdi->proxy_rx_handle != handle) {
 786		netif_warn(efx, hw, efx->net_dev,
 787			   "MCDI proxy unexpected handle %d (expected %d)\n",
 788			   mcdi->proxy_rx_handle, handle);
 789		return -EINVAL;
 790	}
 791
 792	return mcdi->proxy_rx_status;
 793}
 794
 795static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned int cmd,
 796			 const efx_dword_t *inbuf, size_t inlen,
 797			 efx_dword_t *outbuf, size_t outlen,
 798			 size_t *outlen_actual, bool quiet, int *raw_rc)
 799{
 800	u32 proxy_handle = 0; /* Zero is an invalid proxy handle. */
 801	int rc;
 802
 803	if (inbuf && inlen && (inbuf == outbuf)) {
 804		/* The input buffer can't be aliased with the output. */
 805		WARN_ON(1);
 806		return -EINVAL;
 807	}
 808
 809	rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen);
 810	if (rc)
 811		return rc;
 812
 813	rc = _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
 814				  outlen_actual, quiet, &proxy_handle, raw_rc);
 815
 816	if (proxy_handle) {
 817		/* Handle proxy authorisation. This allows approval of MCDI
 818		 * operations to be delegated to the admin function, allowing
 819		 * fine control over (eg) multicast subscriptions.
 820		 */
 821		struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
 822
 823		netif_dbg(efx, hw, efx->net_dev,
 824			  "MCDI waiting for proxy auth %d\n",
 825			  proxy_handle);
 826		rc = efx_mcdi_proxy_wait(efx, proxy_handle, quiet);
 827
 828		if (rc == 0) {
 829			netif_dbg(efx, hw, efx->net_dev,
 830				  "MCDI proxy retry %d\n", proxy_handle);
 831
 832			/* We now retry the original request. */
 833			mcdi->state = MCDI_STATE_RUNNING_SYNC;
 834			efx_mcdi_send_request(efx, cmd, inbuf, inlen);
 835
 836			rc = _efx_mcdi_rpc_finish(efx, cmd, inlen,
 837						  outbuf, outlen, outlen_actual,
 838						  quiet, NULL, raw_rc);
 839		} else {
 840			netif_printk(efx, hw,
 841				     rc == -EPERM ? KERN_DEBUG : KERN_ERR,
 842				     efx->net_dev,
 843				     "MC command 0x%x failed after proxy auth rc=%d\n",
 844				     cmd, rc);
 845
 846			if (rc == -EINTR || rc == -EIO)
 847				efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
 848			efx_mcdi_release(mcdi);
 849		}
 850	}
 851
 852	return rc;
 853}
 854
 855static int _efx_mcdi_rpc_evb_retry(struct efx_nic *efx, unsigned cmd,
 856				   const efx_dword_t *inbuf, size_t inlen,
 857				   efx_dword_t *outbuf, size_t outlen,
 858				   size_t *outlen_actual, bool quiet)
 859{
 860	int raw_rc = 0;
 861	int rc;
 862
 863	rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
 864			   outbuf, outlen, outlen_actual, true, &raw_rc);
 865
 866	if ((rc == -EPROTO) && (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
 867	    efx->type->is_vf) {
 868		/* If the EVB port isn't available within a VF this may
 869		 * mean the PF is still bringing the switch up. We should
 870		 * retry our request shortly.
 871		 */
 872		unsigned long abort_time = jiffies + MCDI_RPC_TIMEOUT;
 873		unsigned int delay_us = 10000;
 874
 875		netif_dbg(efx, hw, efx->net_dev,
 876			  "%s: NO_EVB_PORT; will retry request\n",
 877			  __func__);
 878
 879		do {
 880			usleep_range(delay_us, delay_us + 10000);
 881			rc = _efx_mcdi_rpc(efx, cmd, inbuf, inlen,
 882					   outbuf, outlen, outlen_actual,
 883					   true, &raw_rc);
 884			if (delay_us < 100000)
 885				delay_us <<= 1;
 886		} while ((rc == -EPROTO) &&
 887			 (raw_rc == MC_CMD_ERR_NO_EVB_PORT) &&
 888			 time_before(jiffies, abort_time));
 889	}
 890
 891	if (rc && !quiet && !(cmd == MC_CMD_REBOOT && rc == -EIO))
 892		efx_mcdi_display_error(efx, cmd, inlen,
 893				       outbuf, outlen, rc);
 894
 895	return rc;
 896}
 897
 898/**
 899 * efx_mcdi_rpc - Issue an MCDI command and wait for completion
 900 * @efx: NIC through which to issue the command
 901 * @cmd: Command type number
 902 * @inbuf: Command parameters
 903 * @inlen: Length of command parameters, in bytes.  Must be a multiple
 904 *	of 4 and no greater than %MCDI_CTL_SDU_LEN_MAX_V1.
 905 * @outbuf: Response buffer.  May be %NULL if @outlen is 0.
 906 * @outlen: Length of response buffer, in bytes.  If the actual
 907 *	response is longer than @outlen & ~3, it will be truncated
 908 *	to that length.
 909 * @outlen_actual: Pointer through which to return the actual response
 910 *	length.  May be %NULL if this is not needed.
 911 *
 912 * This function may sleep and therefore must be called in an appropriate
 913 * context.
 914 *
 915 * Return: A negative error code, or zero if successful.  The error
 916 *	code may come from the MCDI response or may indicate a failure
 917 *	to communicate with the MC.  In the former case, the response
 918 *	will still be copied to @outbuf and *@outlen_actual will be
 919 *	set accordingly.  In the latter case, *@outlen_actual will be
 920 *	set to zero.
 921 */
 922int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
 923		 const efx_dword_t *inbuf, size_t inlen,
 924		 efx_dword_t *outbuf, size_t outlen,
 925		 size_t *outlen_actual)
 926{
 927	return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
 928				       outlen_actual, false);
 929}
 930
 931/* Normally, on receiving an error code in the MCDI response,
 932 * efx_mcdi_rpc will log an error message containing (among other
 933 * things) the raw error code, by means of efx_mcdi_display_error.
 934 * This _quiet version suppresses that; if the caller wishes to log
 935 * the error conditionally on the return code, it should call this
 936 * function and is then responsible for calling efx_mcdi_display_error
 937 * as needed.
 938 */
 939int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd,
 940		       const efx_dword_t *inbuf, size_t inlen,
 941		       efx_dword_t *outbuf, size_t outlen,
 942		       size_t *outlen_actual)
 943{
 944	return _efx_mcdi_rpc_evb_retry(efx, cmd, inbuf, inlen, outbuf, outlen,
 945				       outlen_actual, true);
 946}
 947
 948int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd,
 949		       const efx_dword_t *inbuf, size_t inlen)
 950{
 951	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
 952	int rc;
 953
 954	rc = efx_mcdi_check_supported(efx, cmd, inlen);
 955	if (rc)
 956		return rc;
 957
 958	if (efx->mc_bist_for_other_fn)
 959		return -ENETDOWN;
 960
 961	if (mcdi->mode == MCDI_MODE_FAIL)
 962		return -ENETDOWN;
 963
 964	efx_mcdi_acquire_sync(mcdi);
 965	efx_mcdi_send_request(efx, cmd, inbuf, inlen);
 966	return 0;
 967}
 968
 969static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
 970			       const efx_dword_t *inbuf, size_t inlen,
 971			       size_t outlen,
 972			       efx_mcdi_async_completer *complete,
 973			       unsigned long cookie, bool quiet)
 974{
 975	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
 976	struct efx_mcdi_async_param *async;
 977	int rc;
 978
 979	rc = efx_mcdi_check_supported(efx, cmd, inlen);
 980	if (rc)
 981		return rc;
 982
 983	if (efx->mc_bist_for_other_fn)
 984		return -ENETDOWN;
 985
 986	async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4),
 987			GFP_ATOMIC);
 988	if (!async)
 989		return -ENOMEM;
 990
 991	async->cmd = cmd;
 992	async->inlen = inlen;
 993	async->outlen = outlen;
 994	async->quiet = quiet;
 995	async->complete = complete;
 996	async->cookie = cookie;
 997	memcpy(async + 1, inbuf, inlen);
 998
 999	spin_lock_bh(&mcdi->async_lock);
1000
1001	if (mcdi->mode == MCDI_MODE_EVENTS) {
1002		list_add_tail(&async->list, &mcdi->async_list);
1003
1004		/* If this is at the front of the queue, try to start it
1005		 * immediately
1006		 */
1007		if (mcdi->async_list.next == &async->list &&
1008		    efx_mcdi_acquire_async(mcdi)) {
1009			efx_mcdi_send_request(efx, cmd, inbuf, inlen);
1010			mod_timer(&mcdi->async_timer,
1011				  jiffies + MCDI_RPC_TIMEOUT);
1012		}
1013	} else {
1014		kfree(async);
1015		rc = -ENETDOWN;
1016	}
1017
1018	spin_unlock_bh(&mcdi->async_lock);
1019
1020	return rc;
1021}
1022
1023/**
1024 * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
1025 * @efx: NIC through which to issue the command
1026 * @cmd: Command type number
1027 * @inbuf: Command parameters
1028 * @inlen: Length of command parameters, in bytes
1029 * @outlen: Length to allocate for response buffer, in bytes
1030 * @complete: Function to be called on completion or cancellation.
1031 * @cookie: Arbitrary value to be passed to @complete.
1032 *
1033 * This function does not sleep and therefore may be called in atomic
1034 * context.  It will fail if event queues are disabled or if MCDI
1035 * event completions have been disabled due to an error.
1036 *
1037 * If it succeeds, the @complete function will be called exactly once
1038 * in atomic context, when one of the following occurs:
1039 * (a) the completion event is received (in NAPI context)
1040 * (b) event queues are disabled (in the process that disables them)
1041 * (c) the request times-out (in timer context)
1042 */
1043int
1044efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd,
1045		   const efx_dword_t *inbuf, size_t inlen, size_t outlen,
1046		   efx_mcdi_async_completer *complete, unsigned long cookie)
1047{
1048	return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
1049				   cookie, false);
1050}
1051
1052int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd,
1053			     const efx_dword_t *inbuf, size_t inlen,
1054			     size_t outlen, efx_mcdi_async_completer *complete,
1055			     unsigned long cookie)
1056{
1057	return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete,
1058				   cookie, true);
1059}
1060
1061int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen,
1062			efx_dword_t *outbuf, size_t outlen,
1063			size_t *outlen_actual)
1064{
1065	return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
1066				    outlen_actual, false, NULL, NULL);
1067}
1068
1069int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen,
1070			      efx_dword_t *outbuf, size_t outlen,
1071			      size_t *outlen_actual)
1072{
1073	return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen,
1074				    outlen_actual, true, NULL, NULL);
1075}
1076
1077void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd,
1078			    size_t inlen, efx_dword_t *outbuf,
1079			    size_t outlen, int rc)
1080{
1081	int code = 0, err_arg = 0;
1082
1083	if (outlen >= MC_CMD_ERR_CODE_OFST + 4)
1084		code = MCDI_DWORD(outbuf, ERR_CODE);
1085	if (outlen >= MC_CMD_ERR_ARG_OFST + 4)
1086		err_arg = MCDI_DWORD(outbuf, ERR_ARG);
1087	netif_printk(efx, hw, rc == -EPERM ? KERN_DEBUG : KERN_ERR,
1088		     efx->net_dev,
1089		     "MC command 0x%x inlen %zu failed rc=%d (raw=%d) arg=%d\n",
1090		     cmd, inlen, rc, code, err_arg);
1091}
1092
1093/* Switch to polled MCDI completions.  This can be called in various
1094 * error conditions with various locks held, so it must be lockless.
1095 * Caller is responsible for flushing asynchronous requests later.
1096 */
1097void efx_mcdi_mode_poll(struct efx_nic *efx)
1098{
1099	struct efx_mcdi_iface *mcdi;
1100
1101	if (!efx->mcdi)
1102		return;
1103
1104	mcdi = efx_mcdi(efx);
1105	/* If already in polling mode, nothing to do.
1106	 * If in fail-fast state, don't switch to polled completion.
1107	 * FLR recovery will do that later.
1108	 */
1109	if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL)
1110		return;
1111
1112	/* We can switch from event completion to polled completion, because
1113	 * mcdi requests are always completed in shared memory. We do this by
1114	 * switching the mode to POLL'd then completing the request.
1115	 * efx_mcdi_await_completion() will then call efx_mcdi_poll().
1116	 *
1117	 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
1118	 * which efx_mcdi_complete_sync() provides for us.
1119	 */
1120	mcdi->mode = MCDI_MODE_POLL;
1121
1122	efx_mcdi_complete_sync(mcdi);
1123}
1124
1125/* Flush any running or queued asynchronous requests, after event processing
1126 * is stopped
1127 */
1128void efx_mcdi_flush_async(struct efx_nic *efx)
1129{
1130	struct efx_mcdi_async_param *async, *next;
1131	struct efx_mcdi_iface *mcdi;
1132
1133	if (!efx->mcdi)
1134		return;
1135
1136	mcdi = efx_mcdi(efx);
1137
1138	/* We must be in poll or fail mode so no more requests can be queued */
1139	BUG_ON(mcdi->mode == MCDI_MODE_EVENTS);
1140
1141	del_timer_sync(&mcdi->async_timer);
1142
1143	/* If a request is still running, make sure we give the MC
1144	 * time to complete it so that the response won't overwrite our
1145	 * next request.
1146	 */
1147	if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) {
1148		efx_mcdi_poll(efx);
1149		mcdi->state = MCDI_STATE_QUIESCENT;
1150	}
1151
1152	/* Nothing else will access the async list now, so it is safe
1153	 * to walk it without holding async_lock.  If we hold it while
1154	 * calling a completer then lockdep may warn that we have
1155	 * acquired locks in the wrong order.
1156	 */
1157	list_for_each_entry_safe(async, next, &mcdi->async_list, list) {
1158		if (async->complete)
1159			async->complete(efx, async->cookie, -ENETDOWN, NULL, 0);
1160		list_del(&async->list);
1161		kfree(async);
1162	}
1163}
1164
1165void efx_mcdi_mode_event(struct efx_nic *efx)
1166{
1167	struct efx_mcdi_iface *mcdi;
1168
1169	if (!efx->mcdi)
1170		return;
1171
1172	mcdi = efx_mcdi(efx);
1173	/* If already in event completion mode, nothing to do.
1174	 * If in fail-fast state, don't switch to event completion.  FLR
1175	 * recovery will do that later.
1176	 */
1177	if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL)
1178		return;
1179
1180	/* We can't switch from polled to event completion in the middle of a
1181	 * request, because the completion method is specified in the request.
1182	 * So acquire the interface to serialise the requestors. We don't need
1183	 * to acquire the iface_lock to change the mode here, but we do need a
1184	 * write memory barrier ensure that efx_mcdi_rpc() sees it, which
1185	 * efx_mcdi_acquire() provides.
1186	 */
1187	efx_mcdi_acquire_sync(mcdi);
1188	mcdi->mode = MCDI_MODE_EVENTS;
1189	efx_mcdi_release(mcdi);
1190}
1191
1192static void efx_mcdi_ev_death(struct efx_nic *efx, int rc)
1193{
1194	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1195
1196	/* If there is an outstanding MCDI request, it has been terminated
1197	 * either by a BADASSERT or REBOOT event. If the mcdi interface is
1198	 * in polled mode, then do nothing because the MC reboot handler will
1199	 * set the header correctly. However, if the mcdi interface is waiting
1200	 * for a CMDDONE event it won't receive it [and since all MCDI events
1201	 * are sent to the same queue, we can't be racing with
1202	 * efx_mcdi_ev_cpl()]
1203	 *
1204	 * If there is an outstanding asynchronous request, we can't
1205	 * complete it now (efx_mcdi_complete() would deadlock).  The
1206	 * reset process will take care of this.
1207	 *
1208	 * There's a race here with efx_mcdi_send_request(), because
1209	 * we might receive a REBOOT event *before* the request has
1210	 * been copied out. In polled mode (during startup) this is
1211	 * irrelevant, because efx_mcdi_complete_sync() is ignored. In
1212	 * event mode, this condition is just an edge-case of
1213	 * receiving a REBOOT event after posting the MCDI
1214	 * request. Did the mc reboot before or after the copyout? The
1215	 * best we can do always is just return failure.
1216	 *
1217	 * If there is an outstanding proxy response expected it is not going
1218	 * to arrive. We should thus abort it.
1219	 */
1220	spin_lock(&mcdi->iface_lock);
1221	efx_mcdi_proxy_abort(mcdi);
1222
1223	if (efx_mcdi_complete_sync(mcdi)) {
1224		if (mcdi->mode == MCDI_MODE_EVENTS) {
1225			mcdi->resprc = rc;
1226			mcdi->resp_hdr_len = 0;
1227			mcdi->resp_data_len = 0;
1228			++mcdi->credits;
1229		}
1230	} else {
1231		int count;
1232
1233		/* Consume the status word since efx_mcdi_rpc_finish() won't */
1234		for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) {
1235			rc = efx_mcdi_poll_reboot(efx);
1236			if (rc)
1237				break;
1238			udelay(MCDI_STATUS_DELAY_US);
1239		}
1240
1241		/* On EF10, a CODE_MC_REBOOT event can be received without the
1242		 * reboot detection in efx_mcdi_poll_reboot() being triggered.
1243		 * If zero was returned from the final call to
1244		 * efx_mcdi_poll_reboot(), the MC reboot wasn't noticed but the
1245		 * MC has definitely rebooted so prepare for the reset.
1246		 */
1247		if (!rc && efx->type->mcdi_reboot_detected)
1248			efx->type->mcdi_reboot_detected(efx);
1249
1250		mcdi->new_epoch = true;
1251
1252		/* Nobody was waiting for an MCDI request, so trigger a reset */
1253		efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
1254	}
1255
1256	spin_unlock(&mcdi->iface_lock);
1257}
1258
1259/* The MC is going down in to BIST mode. set the BIST flag to block
1260 * new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset
1261 * (which doesn't actually execute a reset, it waits for the controlling
1262 * function to reset it).
1263 */
1264static void efx_mcdi_ev_bist(struct efx_nic *efx)
1265{
1266	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1267
1268	spin_lock(&mcdi->iface_lock);
1269	efx->mc_bist_for_other_fn = true;
1270	efx_mcdi_proxy_abort(mcdi);
1271
1272	if (efx_mcdi_complete_sync(mcdi)) {
1273		if (mcdi->mode == MCDI_MODE_EVENTS) {
1274			mcdi->resprc = -EIO;
1275			mcdi->resp_hdr_len = 0;
1276			mcdi->resp_data_len = 0;
1277			++mcdi->credits;
1278		}
1279	}
1280	mcdi->new_epoch = true;
1281	efx_schedule_reset(efx, RESET_TYPE_MC_BIST);
1282	spin_unlock(&mcdi->iface_lock);
1283}
1284
1285/* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try
1286 * to recover.
1287 */
1288static void efx_mcdi_abandon(struct efx_nic *efx)
1289{
1290	struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1291
1292	if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL)
1293		return; /* it had already been done */
1294	netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n");
1295	efx_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT);
1296}
1297
1298/* Called from  falcon_process_eventq for MCDI events */
1299void efx_mcdi_process_event(struct efx_channel *channel,
1300			    efx_qword_t *event)
1301{
1302	struct efx_nic *efx = channel->efx;
1303	int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE);
1304	u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA);
1305
1306	switch (code) {
1307	case MCDI_EVENT_CODE_BADSSERT:
1308		netif_err(efx, hw, efx->net_dev,
1309			  "MC watchdog or assertion failure at 0x%x\n", data);
1310		efx_mcdi_ev_death(efx, -EINTR);
1311		break;
1312
1313	case MCDI_EVENT_CODE_PMNOTICE:
1314		netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n");
1315		break;
1316
1317	case MCDI_EVENT_CODE_CMDDONE:
1318		efx_mcdi_ev_cpl(efx,
1319				MCDI_EVENT_FIELD(*event, CMDDONE_SEQ),
1320				MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN),
1321				MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO));
1322		break;
1323
1324	case MCDI_EVENT_CODE_LINKCHANGE:
1325		efx_mcdi_process_link_change(efx, event);
1326		break;
1327	case MCDI_EVENT_CODE_SENSOREVT:
1328		efx_mcdi_sensor_event(efx, event);
1329		break;
1330	case MCDI_EVENT_CODE_SCHEDERR:
1331		netif_dbg(efx, hw, efx->net_dev,
1332			  "MC Scheduler alert (0x%x)\n", data);
1333		break;
1334	case MCDI_EVENT_CODE_REBOOT:
1335	case MCDI_EVENT_CODE_MC_REBOOT:
1336		netif_info(efx, hw, efx->net_dev, "MC Reboot\n");
1337		efx_mcdi_ev_death(efx, -EIO);
1338		break;
1339	case MCDI_EVENT_CODE_MC_BIST:
1340		netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n");
1341		efx_mcdi_ev_bist(efx);
1342		break;
1343	case MCDI_EVENT_CODE_MAC_STATS_DMA:
1344		/* MAC stats are gather lazily.  We can ignore this. */
1345		break;
1346	case MCDI_EVENT_CODE_FLR:
1347		if (efx->type->sriov_flr)
1348			efx->type->sriov_flr(efx,
1349					     MCDI_EVENT_FIELD(*event, FLR_VF));
1350		break;
1351	case MCDI_EVENT_CODE_PTP_RX:
1352	case MCDI_EVENT_CODE_PTP_FAULT:
1353	case MCDI_EVENT_CODE_PTP_PPS:
1354		efx_ptp_event(efx, event);
1355		break;
1356	case MCDI_EVENT_CODE_PTP_TIME:
1357		efx_time_sync_event(channel, event);
1358		break;
1359	case MCDI_EVENT_CODE_TX_FLUSH:
1360	case MCDI_EVENT_CODE_RX_FLUSH:
1361		/* Two flush events will be sent: one to the same event
1362		 * queue as completions, and one to event queue 0.
1363		 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER
1364		 * flag will be set, and we should ignore the event
1365		 * because we want to wait for all completions.
1366		 */
1367		BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN !=
1368			     MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN);
1369		if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER))
1370			efx_ef10_handle_drain_event(efx);
1371		break;
1372	case MCDI_EVENT_CODE_TX_ERR:
1373	case MCDI_EVENT_CODE_RX_ERR:
1374		netif_err(efx, hw, efx->net_dev,
1375			  "%s DMA error (event: "EFX_QWORD_FMT")\n",
1376			  code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX",
1377			  EFX_QWORD_VAL(*event));
1378		efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1379		break;
1380	case MCDI_EVENT_CODE_PROXY_RESPONSE:
1381		efx_mcdi_ev_proxy_response(efx,
1382				MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_HANDLE),
1383				MCDI_EVENT_FIELD(*event, PROXY_RESPONSE_RC));
1384		break;
1385	default:
1386		netif_err(efx, hw, efx->net_dev, "Unknown MCDI event 0x%x\n",
1387			  code);
1388	}
1389}
1390
1391/**************************************************************************
1392 *
1393 * Specific request functions
1394 *
1395 **************************************************************************
1396 */
1397
1398void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len)
1399{
1400	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_VERSION_OUT_LEN);
1401	size_t outlength;
1402	const __le16 *ver_words;
1403	size_t offset;
1404	int rc;
1405
1406	BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0);
1407	rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0,
1408			  outbuf, sizeof(outbuf), &outlength);
1409	if (rc)
1410		goto fail;
1411	if (outlength < MC_CMD_GET_VERSION_OUT_LEN) {
1412		rc = -EIO;
1413		goto fail;
1414	}
1415
1416	ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION);
1417	offset = snprintf(buf, len, "%u.%u.%u.%u",
1418			  le16_to_cpu(ver_words[0]), le16_to_cpu(ver_words[1]),
1419			  le16_to_cpu(ver_words[2]), le16_to_cpu(ver_words[3]));
1420
1421	/* EF10 may have multiple datapath firmware variants within a
1422	 * single version.  Report which variants are running.
1423	 */
1424	if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) {
1425		struct efx_ef10_nic_data *nic_data = efx->nic_data;
1426
1427		offset += snprintf(buf + offset, len - offset, " rx%x tx%x",
1428				   nic_data->rx_dpcpu_fw_id,
1429				   nic_data->tx_dpcpu_fw_id);
1430
1431		/* It's theoretically possible for the string to exceed 31
1432		 * characters, though in practice the first three version
1433		 * components are short enough that this doesn't happen.
1434		 */
1435		if (WARN_ON(offset >= len))
1436			buf[0] = 0;
1437	}
1438
1439	return;
1440
1441fail:
1442	netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1443	buf[0] = 0;
1444}
1445
1446static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
1447			       bool *was_attached)
1448{
1449	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN);
1450	MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN);
1451	size_t outlen;
1452	int rc;
1453
1454	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE,
1455		       driver_operating ? 1 : 0);
1456	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1);
1457	MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY);
1458
1459	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf),
1460				outbuf, sizeof(outbuf), &outlen);
1461	/* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID
1462	 * specified will fail with EPERM, and we have to tell the MC we don't
1463	 * care what firmware we get.
1464	 */
1465	if (rc == -EPERM) {
1466		netif_dbg(efx, probe, efx->net_dev,
1467			  "efx_mcdi_drv_attach with fw-variant setting failed EPERM, trying without it\n");
1468		MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID,
1469			       MC_CMD_FW_DONT_CARE);
1470		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_DRV_ATTACH, inbuf,
1471					sizeof(inbuf), outbuf, sizeof(outbuf),
1472					&outlen);
1473	}
1474	if (rc) {
1475		efx_mcdi_display_error(efx, MC_CMD_DRV_ATTACH, sizeof(inbuf),
1476				       outbuf, outlen, rc);
1477		goto fail;
1478	}
1479	if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) {
1480		rc = -EIO;
1481		goto fail;
1482	}
1483
1484	if (driver_operating) {
1485		if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) {
1486			efx->mcdi->fn_flags =
1487				MCDI_DWORD(outbuf,
1488					   DRV_ATTACH_EXT_OUT_FUNC_FLAGS);
1489		} else {
1490			/* Synthesise flags for Siena */
1491			efx->mcdi->fn_flags =
1492				1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL |
1493				1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED |
1494				(efx_port_num(efx) == 0) <<
1495				MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY;
1496		}
1497	}
1498
1499	/* We currently assume we have control of the external link
1500	 * and are completely trusted by firmware.  Abort probing
1501	 * if that's not true for this function.
1502	 */
1503
1504	if (was_attached != NULL)
1505		*was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE);
1506	return 0;
1507
1508fail:
1509	netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1510	return rc;
1511}
1512
1513int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
1514			   u16 *fw_subtype_list, u32 *capabilities)
1515{
1516	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX);
1517	size_t outlen, i;
1518	int port_num = efx_port_num(efx);
1519	int rc;
1520
1521	BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0);
1522	/* we need __aligned(2) for ether_addr_copy */
1523	BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1);
1524	BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1);
1525
1526	rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0,
1527			  outbuf, sizeof(outbuf), &outlen);
1528	if (rc)
1529		goto fail;
1530
1531	if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) {
1532		rc = -EIO;
1533		goto fail;
1534	}
1535
1536	if (mac_address)
1537		ether_addr_copy(mac_address,
1538				port_num ?
1539				MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) :
1540				MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0));
1541	if (fw_subtype_list) {
1542		for (i = 0;
1543		     i < MCDI_VAR_ARRAY_LEN(outlen,
1544					    GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST);
1545		     i++)
1546			fw_subtype_list[i] = MCDI_ARRAY_WORD(
1547				outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i);
1548		for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++)
1549			fw_subtype_list[i] = 0;
1550	}
1551	if (capabilities) {
1552		if (port_num)
1553			*capabilities = MCDI_DWORD(outbuf,
1554					GET_BOARD_CFG_OUT_CAPABILITIES_PORT1);
1555		else
1556			*capabilities = MCDI_DWORD(outbuf,
1557					GET_BOARD_CFG_OUT_CAPABILITIES_PORT0);
1558	}
1559
1560	return 0;
1561
1562fail:
1563	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n",
1564		  __func__, rc, (int)outlen);
1565
1566	return rc;
1567}
1568
1569int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq)
1570{
1571	MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN);
1572	u32 dest = 0;
1573	int rc;
1574
1575	if (uart)
1576		dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART;
1577	if (evq)
1578		dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ;
1579
1580	MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest);
1581	MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq);
1582
1583	BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0);
1584
1585	rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf),
1586			  NULL, 0, NULL);
1587	return rc;
1588}
1589
1590int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out)
1591{
1592	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN);
1593	size_t outlen;
1594	int rc;
1595
1596	BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0);
1597
1598	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0,
1599			  outbuf, sizeof(outbuf), &outlen);
1600	if (rc)
1601		goto fail;
1602	if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) {
1603		rc = -EIO;
1604		goto fail;
1605	}
1606
1607	*nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES);
1608	return 0;
1609
1610fail:
1611	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n",
1612		  __func__, rc);
1613	return rc;
1614}
1615
1616int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
1617			size_t *size_out, size_t *erase_size_out,
1618			bool *protected_out)
1619{
1620	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN);
1621	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN);
1622	size_t outlen;
1623	int rc;
1624
1625	MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type);
1626
1627	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf),
1628			  outbuf, sizeof(outbuf), &outlen);
1629	if (rc)
1630		goto fail;
1631	if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) {
1632		rc = -EIO;
1633		goto fail;
1634	}
1635
1636	*size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE);
1637	*erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE);
1638	*protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) &
1639				(1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN));
1640	return 0;
1641
1642fail:
1643	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1644	return rc;
1645}
1646
1647static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type)
1648{
1649	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN);
1650	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN);
1651	int rc;
1652
1653	MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type);
1654
1655	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf),
1656			  outbuf, sizeof(outbuf), NULL);
1657	if (rc)
1658		return rc;
1659
1660	switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) {
1661	case MC_CMD_NVRAM_TEST_PASS:
1662	case MC_CMD_NVRAM_TEST_NOTSUPP:
1663		return 0;
1664	default:
1665		return -EIO;
1666	}
1667}
1668
1669int efx_mcdi_nvram_test_all(struct efx_nic *efx)
1670{
1671	u32 nvram_types;
1672	unsigned int type;
1673	int rc;
1674
1675	rc = efx_mcdi_nvram_types(efx, &nvram_types);
1676	if (rc)
1677		goto fail1;
1678
1679	type = 0;
1680	while (nvram_types != 0) {
1681		if (nvram_types & 1) {
1682			rc = efx_mcdi_nvram_test(efx, type);
1683			if (rc)
1684				goto fail2;
1685		}
1686		type++;
1687		nvram_types >>= 1;
1688	}
1689
1690	return 0;
1691
1692fail2:
1693	netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n",
1694		  __func__, type);
1695fail1:
1696	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1697	return rc;
1698}
1699
1700/* Returns 1 if an assertion was read, 0 if no assertion had fired,
1701 * negative on error.
1702 */
1703static int efx_mcdi_read_assertion(struct efx_nic *efx)
1704{
1705	MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN);
1706	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN);
1707	unsigned int flags, index;
1708	const char *reason;
1709	size_t outlen;
1710	int retry;
1711	int rc;
1712
1713	/* Attempt to read any stored assertion state before we reboot
1714	 * the mcfw out of the assertion handler. Retry twice, once
1715	 * because a boot-time assertion might cause this command to fail
1716	 * with EINTR. And once again because GET_ASSERTS can race with
1717	 * MC_CMD_REBOOT running on the other port. */
1718	retry = 2;
1719	do {
1720		MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1);
1721		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS,
1722					inbuf, MC_CMD_GET_ASSERTS_IN_LEN,
1723					outbuf, sizeof(outbuf), &outlen);
1724		if (rc == -EPERM)
1725			return 0;
1726	} while ((rc == -EINTR || rc == -EIO) && retry-- > 0);
1727
1728	if (rc) {
1729		efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS,
1730				       MC_CMD_GET_ASSERTS_IN_LEN, outbuf,
1731				       outlen, rc);
1732		return rc;
1733	}
1734	if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN)
1735		return -EIO;
1736
1737	/* Print out any recorded assertion state */
1738	flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS);
1739	if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
1740		return 0;
1741
1742	reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
1743		? "system-level assertion"
1744		: (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
1745		? "thread-level assertion"
1746		: (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
1747		? "watchdog reset"
1748		: "unknown assertion";
1749	netif_err(efx, hw, efx->net_dev,
1750		  "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason,
1751		  MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS),
1752		  MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS));
1753
1754	/* Print out the registers */
1755	for (index = 0;
1756	     index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM;
1757	     index++)
1758		netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n",
1759			  1 + index,
1760			  MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS,
1761					   index));
1762
1763	return 1;
1764}
1765
1766static int efx_mcdi_exit_assertion(struct efx_nic *efx)
1767{
1768	MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1769	int rc;
1770
1771	/* If the MC is running debug firmware, it might now be
1772	 * waiting for a debugger to attach, but we just want it to
1773	 * reboot.  We set a flag that makes the command a no-op if it
1774	 * has already done so.
1775	 * The MCDI will thus return either 0 or -EIO.
1776	 */
1777	BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1778	MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS,
1779		       MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION);
1780	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN,
1781				NULL, 0, NULL);
1782	if (rc == -EIO)
1783		rc = 0;
1784	if (rc)
1785		efx_mcdi_display_error(efx, MC_CMD_REBOOT, MC_CMD_REBOOT_IN_LEN,
1786				       NULL, 0, rc);
1787	return rc;
1788}
1789
1790int efx_mcdi_handle_assertion(struct efx_nic *efx)
1791{
1792	int rc;
1793
1794	rc = efx_mcdi_read_assertion(efx);
1795	if (rc <= 0)
1796		return rc;
1797
1798	return efx_mcdi_exit_assertion(efx);
1799}
1800
1801void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1802{
1803	MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN);
1804	int rc;
1805
1806	BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF);
1807	BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON);
1808	BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT);
1809
1810	BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0);
1811
1812	MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode);
1813
1814	rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf),
1815			  NULL, 0, NULL);
1816}
1817
1818static int efx_mcdi_reset_func(struct efx_nic *efx)
1819{
1820	MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN);
1821	int rc;
1822
1823	BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0);
1824	MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG,
1825			      ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
1826	rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf),
1827			  NULL, 0, NULL);
1828	return rc;
1829}
1830
1831static int efx_mcdi_reset_mc(struct efx_nic *efx)
1832{
1833	MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN);
1834	int rc;
1835
1836	BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
1837	MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0);
1838	rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf),
1839			  NULL, 0, NULL);
1840	/* White is black, and up is down */
1841	if (rc == -EIO)
1842		return 0;
1843	if (rc == 0)
1844		rc = -EIO;
1845	return rc;
1846}
1847
1848enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason)
1849{
1850	return RESET_TYPE_RECOVER_OR_ALL;
1851}
1852
1853int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method)
1854{
1855	int rc;
1856
1857	/* If MCDI is down, we can't handle_assertion */
1858	if (method == RESET_TYPE_MCDI_TIMEOUT) {
1859		rc = pci_reset_function(efx->pci_dev);
1860		if (rc)
1861			return rc;
1862		/* Re-enable polled MCDI completion */
1863		if (efx->mcdi) {
1864			struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
1865			mcdi->mode = MCDI_MODE_POLL;
1866		}
1867		return 0;
1868	}
1869
1870	/* Recover from a failed assertion pre-reset */
1871	rc = efx_mcdi_handle_assertion(efx);
1872	if (rc)
1873		return rc;
1874
1875	if (method == RESET_TYPE_DATAPATH)
1876		return 0;
1877	else if (method == RESET_TYPE_WORLD)
1878		return efx_mcdi_reset_mc(efx);
1879	else
1880		return efx_mcdi_reset_func(efx);
1881}
1882
1883static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type,
1884				   const u8 *mac, int *id_out)
1885{
1886	MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN);
1887	MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN);
1888	size_t outlen;
1889	int rc;
1890
1891	MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type);
1892	MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE,
1893		       MC_CMD_FILTER_MODE_SIMPLE);
1894	ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac);
1895
1896	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf),
1897			  outbuf, sizeof(outbuf), &outlen);
1898	if (rc)
1899		goto fail;
1900
1901	if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) {
1902		rc = -EIO;
1903		goto fail;
1904	}
1905
1906	*id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID);
1907
1908	return 0;
1909
1910fail:
1911	*id_out = -1;
1912	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1913	return rc;
1914
1915}
1916
1917
1918int
1919efx_mcdi_wol_filter_set_magic(struct efx_nic *efx,  const u8 *mac, int *id_out)
1920{
1921	return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out);
1922}
1923
1924
1925int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out)
1926{
1927	MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN);
1928	size_t outlen;
1929	int rc;
1930
1931	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0,
1932			  outbuf, sizeof(outbuf), &outlen);
1933	if (rc)
1934		goto fail;
1935
1936	if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) {
1937		rc = -EIO;
1938		goto fail;
1939	}
1940
1941	*id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID);
1942
1943	return 0;
1944
1945fail:
1946	*id_out = -1;
1947	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1948	return rc;
1949}
1950
1951
1952int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id)
1953{
1954	MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN);
1955	int rc;
1956
1957	MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id);
1958
1959	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf),
1960			  NULL, 0, NULL);
1961	return rc;
1962}
1963
1964int efx_mcdi_flush_rxqs(struct efx_nic *efx)
1965{
1966	struct efx_channel *channel;
1967	struct efx_rx_queue *rx_queue;
1968	MCDI_DECLARE_BUF(inbuf,
1969			 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS));
1970	int rc, count;
1971
1972	BUILD_BUG_ON(EFX_MAX_CHANNELS >
1973		     MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM);
1974
1975	count = 0;
1976	efx_for_each_channel(channel, efx) {
1977		efx_for_each_channel_rx_queue(rx_queue, channel) {
1978			if (rx_queue->flush_pending) {
1979				rx_queue->flush_pending = false;
1980				atomic_dec(&efx->rxq_flush_pending);
1981				MCDI_SET_ARRAY_DWORD(
1982					inbuf, FLUSH_RX_QUEUES_IN_QID_OFST,
1983					count, efx_rx_queue_index(rx_queue));
1984				count++;
1985			}
1986		}
1987	}
1988
1989	rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf,
1990			  MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL);
1991	WARN_ON(rc < 0);
1992
1993	return rc;
1994}
1995
1996int efx_mcdi_wol_filter_reset(struct efx_nic *efx)
1997{
1998	int rc;
1999
2000	rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL);
2001	return rc;
2002}
2003
2004int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled,
2005			    unsigned int *flags)
2006{
2007	MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN);
2008	MCDI_DECLARE_BUF(outbuf, MC_CMD_WORKAROUND_EXT_OUT_LEN);
2009	size_t outlen;
2010	int rc;
2011
2012	BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0);
2013	MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type);
2014	MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled);
2015	rc = efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf),
2016			  outbuf, sizeof(outbuf), &outlen);
2017	if (rc)
2018		return rc;
2019
2020	if (!flags)
2021		return 0;
2022
2023	if (outlen >= MC_CMD_WORKAROUND_EXT_OUT_LEN)
2024		*flags = MCDI_DWORD(outbuf, WORKAROUND_EXT_OUT_FLAGS);
2025	else
2026		*flags = 0;
2027
2028	return 0;
2029}
2030
2031int efx_mcdi_get_workarounds(struct efx_nic *efx, unsigned int *impl_out,
2032			     unsigned int *enabled_out)
2033{
2034	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_WORKAROUNDS_OUT_LEN);
2035	size_t outlen;
2036	int rc;
2037
2038	rc = efx_mcdi_rpc(efx, MC_CMD_GET_WORKAROUNDS, NULL, 0,
2039			  outbuf, sizeof(outbuf), &outlen);
2040	if (rc)
2041		goto fail;
2042
2043	if (outlen < MC_CMD_GET_WORKAROUNDS_OUT_LEN) {
2044		rc = -EIO;
2045		goto fail;
2046	}
2047
2048	if (impl_out)
2049		*impl_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_IMPLEMENTED);
2050
2051	if (enabled_out)
2052		*enabled_out = MCDI_DWORD(outbuf, GET_WORKAROUNDS_OUT_ENABLED);
2053
2054	return 0;
2055
2056fail:
2057	/* Older firmware lacks GET_WORKAROUNDS and this isn't especially
2058	 * terrifying.  The call site will have to deal with it though.
2059	 */
2060	netif_printk(efx, hw, rc == -ENOSYS ? KERN_DEBUG : KERN_ERR,
2061		     efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2062	return rc;
2063}
2064
2065#ifdef CONFIG_SFC_MTD
2066
2067#define EFX_MCDI_NVRAM_LEN_MAX 128
2068
2069static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type)
2070{
2071	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_IN_LEN);
2072	int rc;
2073
2074	MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type);
2075
2076	BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0);
2077
2078	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf),
2079			  NULL, 0, NULL);
2080	return rc;
2081}
2082
2083static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type,
2084			       loff_t offset, u8 *buffer, size_t length)
2085{
2086	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_LEN);
2087	MCDI_DECLARE_BUF(outbuf,
2088			 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2089	size_t outlen;
2090	int rc;
2091
2092	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type);
2093	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset);
2094	MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length);
2095
2096	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf),
2097			  outbuf, sizeof(outbuf), &outlen);
2098	if (rc)
2099		return rc;
2100
2101	memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length);
2102	return 0;
2103}
2104
2105static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type,
2106				loff_t offset, const u8 *buffer, size_t length)
2107{
2108	MCDI_DECLARE_BUF(inbuf,
2109			 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX));
2110	int rc;
2111
2112	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type);
2113	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset);
2114	MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length);
2115	memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length);
2116
2117	BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0);
2118
2119	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf,
2120			  ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4),
2121			  NULL, 0, NULL);
2122	return rc;
2123}
2124
2125static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type,
2126				loff_t offset, size_t length)
2127{
2128	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN);
2129	int rc;
2130
2131	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type);
2132	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset);
2133	MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length);
2134
2135	BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0);
2136
2137	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf),
2138			  NULL, 0, NULL);
2139	return rc;
2140}
2141
2142static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type)
2143{
2144	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN);
2145	int rc;
2146
2147	MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type);
2148
2149	BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN != 0);
2150
2151	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf),
2152			  NULL, 0, NULL);
2153	return rc;
2154}
2155
2156int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start,
2157		      size_t len, size_t *retlen, u8 *buffer)
2158{
2159	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2160	struct efx_nic *efx = mtd->priv;
2161	loff_t offset = start;
2162	loff_t end = min_t(loff_t, start + len, mtd->size);
2163	size_t chunk;
2164	int rc = 0;
2165
2166	while (offset < end) {
2167		chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2168		rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset,
2169					 buffer, chunk);
2170		if (rc)
2171			goto out;
2172		offset += chunk;
2173		buffer += chunk;
2174	}
2175out:
2176	*retlen = offset - start;
2177	return rc;
2178}
2179
2180int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
2181{
2182	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2183	struct efx_nic *efx = mtd->priv;
2184	loff_t offset = start & ~((loff_t)(mtd->erasesize - 1));
2185	loff_t end = min_t(loff_t, start + len, mtd->size);
2186	size_t chunk = part->common.mtd.erasesize;
2187	int rc = 0;
2188
2189	if (!part->updating) {
2190		rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2191		if (rc)
2192			goto out;
2193		part->updating = true;
2194	}
2195
2196	/* The MCDI interface can in fact do multiple erase blocks at once;
2197	 * but erasing may be slow, so we make multiple calls here to avoid
2198	 * tripping the MCDI RPC timeout. */
2199	while (offset < end) {
2200		rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset,
2201					  chunk);
2202		if (rc)
2203			goto out;
2204		offset += chunk;
2205	}
2206out:
2207	return rc;
2208}
2209
2210int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start,
2211		       size_t len, size_t *retlen, const u8 *buffer)
2212{
2213	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2214	struct efx_nic *efx = mtd->priv;
2215	loff_t offset = start;
2216	loff_t end = min_t(loff_t, start + len, mtd->size);
2217	size_t chunk;
2218	int rc = 0;
2219
2220	if (!part->updating) {
2221		rc = efx_mcdi_nvram_update_start(efx, part->nvram_type);
2222		if (rc)
2223			goto out;
2224		part->updating = true;
2225	}
2226
2227	while (offset < end) {
2228		chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX);
2229		rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset,
2230					  buffer, chunk);
2231		if (rc)
2232			goto out;
2233		offset += chunk;
2234		buffer += chunk;
2235	}
2236out:
2237	*retlen = offset - start;
2238	return rc;
2239}
2240
2241int efx_mcdi_mtd_sync(struct mtd_info *mtd)
2242{
2243	struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd);
2244	struct efx_nic *efx = mtd->priv;
2245	int rc = 0;
2246
2247	if (part->updating) {
2248		part->updating = false;
2249		rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type);
2250	}
2251
2252	return rc;
2253}
2254
2255void efx_mcdi_mtd_rename(struct efx_mtd_partition *part)
2256{
2257	struct efx_mcdi_mtd_partition *mcdi_part =
2258		container_of(part, struct efx_mcdi_mtd_partition, common);
2259	struct efx_nic *efx = part->mtd.priv;
2260
2261	snprintf(part->name, sizeof(part->name), "%s %s:%02x",
2262		 efx->name, part->type_name, mcdi_part->fw_subtype);
2263}
2264
2265#endif /* CONFIG_SFC_MTD */