Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/**
   2 * drivers/net/ethernet/micrel/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
   3 *
   4 * Copyright (c) 2009-2010 Micrel, Inc.
   5 * 	Tristram Ha <Tristram.Ha@micrel.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 */
  16
  17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  18
  19#include <linux/init.h>
  20#include <linux/interrupt.h>
  21#include <linux/kernel.h>
  22#include <linux/module.h>
  23#include <linux/ioport.h>
  24#include <linux/pci.h>
  25#include <linux/proc_fs.h>
  26#include <linux/mii.h>
  27#include <linux/platform_device.h>
  28#include <linux/ethtool.h>
  29#include <linux/etherdevice.h>
  30#include <linux/in.h>
  31#include <linux/ip.h>
  32#include <linux/if_vlan.h>
  33#include <linux/crc32.h>
  34#include <linux/sched.h>
  35#include <linux/slab.h>
  36
  37
  38/* DMA Registers */
  39
  40#define KS_DMA_TX_CTRL			0x0000
  41#define DMA_TX_ENABLE			0x00000001
  42#define DMA_TX_CRC_ENABLE		0x00000002
  43#define DMA_TX_PAD_ENABLE		0x00000004
  44#define DMA_TX_LOOPBACK			0x00000100
  45#define DMA_TX_FLOW_ENABLE		0x00000200
  46#define DMA_TX_CSUM_IP			0x00010000
  47#define DMA_TX_CSUM_TCP			0x00020000
  48#define DMA_TX_CSUM_UDP			0x00040000
  49#define DMA_TX_BURST_SIZE		0x3F000000
  50
  51#define KS_DMA_RX_CTRL			0x0004
  52#define DMA_RX_ENABLE			0x00000001
  53#define KS884X_DMA_RX_MULTICAST		0x00000002
  54#define DMA_RX_PROMISCUOUS		0x00000004
  55#define DMA_RX_ERROR			0x00000008
  56#define DMA_RX_UNICAST			0x00000010
  57#define DMA_RX_ALL_MULTICAST		0x00000020
  58#define DMA_RX_BROADCAST		0x00000040
  59#define DMA_RX_FLOW_ENABLE		0x00000200
  60#define DMA_RX_CSUM_IP			0x00010000
  61#define DMA_RX_CSUM_TCP			0x00020000
  62#define DMA_RX_CSUM_UDP			0x00040000
  63#define DMA_RX_BURST_SIZE		0x3F000000
  64
  65#define DMA_BURST_SHIFT			24
  66#define DMA_BURST_DEFAULT		8
  67
  68#define KS_DMA_TX_START			0x0008
  69#define KS_DMA_RX_START			0x000C
  70#define DMA_START			0x00000001
  71
  72#define KS_DMA_TX_ADDR			0x0010
  73#define KS_DMA_RX_ADDR			0x0014
  74
  75#define DMA_ADDR_LIST_MASK		0xFFFFFFFC
  76#define DMA_ADDR_LIST_SHIFT		2
  77
  78/* MTR0 */
  79#define KS884X_MULTICAST_0_OFFSET	0x0020
  80#define KS884X_MULTICAST_1_OFFSET	0x0021
  81#define KS884X_MULTICAST_2_OFFSET	0x0022
  82#define KS884x_MULTICAST_3_OFFSET	0x0023
  83/* MTR1 */
  84#define KS884X_MULTICAST_4_OFFSET	0x0024
  85#define KS884X_MULTICAST_5_OFFSET	0x0025
  86#define KS884X_MULTICAST_6_OFFSET	0x0026
  87#define KS884X_MULTICAST_7_OFFSET	0x0027
  88
  89/* Interrupt Registers */
  90
  91/* INTEN */
  92#define KS884X_INTERRUPTS_ENABLE	0x0028
  93/* INTST */
  94#define KS884X_INTERRUPTS_STATUS	0x002C
  95
  96#define KS884X_INT_RX_STOPPED		0x02000000
  97#define KS884X_INT_TX_STOPPED		0x04000000
  98#define KS884X_INT_RX_OVERRUN		0x08000000
  99#define KS884X_INT_TX_EMPTY		0x10000000
 100#define KS884X_INT_RX			0x20000000
 101#define KS884X_INT_TX			0x40000000
 102#define KS884X_INT_PHY			0x80000000
 103
 104#define KS884X_INT_RX_MASK		\
 105	(KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
 106#define KS884X_INT_TX_MASK		\
 107	(KS884X_INT_TX | KS884X_INT_TX_EMPTY)
 108#define KS884X_INT_MASK	(KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)
 109
 110/* MAC Additional Station Address */
 111
 112/* MAAL0 */
 113#define KS_ADD_ADDR_0_LO		0x0080
 114/* MAAH0 */
 115#define KS_ADD_ADDR_0_HI		0x0084
 116/* MAAL1 */
 117#define KS_ADD_ADDR_1_LO		0x0088
 118/* MAAH1 */
 119#define KS_ADD_ADDR_1_HI		0x008C
 120/* MAAL2 */
 121#define KS_ADD_ADDR_2_LO		0x0090
 122/* MAAH2 */
 123#define KS_ADD_ADDR_2_HI		0x0094
 124/* MAAL3 */
 125#define KS_ADD_ADDR_3_LO		0x0098
 126/* MAAH3 */
 127#define KS_ADD_ADDR_3_HI		0x009C
 128/* MAAL4 */
 129#define KS_ADD_ADDR_4_LO		0x00A0
 130/* MAAH4 */
 131#define KS_ADD_ADDR_4_HI		0x00A4
 132/* MAAL5 */
 133#define KS_ADD_ADDR_5_LO		0x00A8
 134/* MAAH5 */
 135#define KS_ADD_ADDR_5_HI		0x00AC
 136/* MAAL6 */
 137#define KS_ADD_ADDR_6_LO		0x00B0
 138/* MAAH6 */
 139#define KS_ADD_ADDR_6_HI		0x00B4
 140/* MAAL7 */
 141#define KS_ADD_ADDR_7_LO		0x00B8
 142/* MAAH7 */
 143#define KS_ADD_ADDR_7_HI		0x00BC
 144/* MAAL8 */
 145#define KS_ADD_ADDR_8_LO		0x00C0
 146/* MAAH8 */
 147#define KS_ADD_ADDR_8_HI		0x00C4
 148/* MAAL9 */
 149#define KS_ADD_ADDR_9_LO		0x00C8
 150/* MAAH9 */
 151#define KS_ADD_ADDR_9_HI		0x00CC
 152/* MAAL10 */
 153#define KS_ADD_ADDR_A_LO		0x00D0
 154/* MAAH10 */
 155#define KS_ADD_ADDR_A_HI		0x00D4
 156/* MAAL11 */
 157#define KS_ADD_ADDR_B_LO		0x00D8
 158/* MAAH11 */
 159#define KS_ADD_ADDR_B_HI		0x00DC
 160/* MAAL12 */
 161#define KS_ADD_ADDR_C_LO		0x00E0
 162/* MAAH12 */
 163#define KS_ADD_ADDR_C_HI		0x00E4
 164/* MAAL13 */
 165#define KS_ADD_ADDR_D_LO		0x00E8
 166/* MAAH13 */
 167#define KS_ADD_ADDR_D_HI		0x00EC
 168/* MAAL14 */
 169#define KS_ADD_ADDR_E_LO		0x00F0
 170/* MAAH14 */
 171#define KS_ADD_ADDR_E_HI		0x00F4
 172/* MAAL15 */
 173#define KS_ADD_ADDR_F_LO		0x00F8
 174/* MAAH15 */
 175#define KS_ADD_ADDR_F_HI		0x00FC
 176
 177#define ADD_ADDR_HI_MASK		0x0000FFFF
 178#define ADD_ADDR_ENABLE			0x80000000
 179#define ADD_ADDR_INCR			8
 180
 181/* Miscellaneous Registers */
 182
 183/* MARL */
 184#define KS884X_ADDR_0_OFFSET		0x0200
 185#define KS884X_ADDR_1_OFFSET		0x0201
 186/* MARM */
 187#define KS884X_ADDR_2_OFFSET		0x0202
 188#define KS884X_ADDR_3_OFFSET		0x0203
 189/* MARH */
 190#define KS884X_ADDR_4_OFFSET		0x0204
 191#define KS884X_ADDR_5_OFFSET		0x0205
 192
 193/* OBCR */
 194#define KS884X_BUS_CTRL_OFFSET		0x0210
 195
 196#define BUS_SPEED_125_MHZ		0x0000
 197#define BUS_SPEED_62_5_MHZ		0x0001
 198#define BUS_SPEED_41_66_MHZ		0x0002
 199#define BUS_SPEED_25_MHZ		0x0003
 200
 201/* EEPCR */
 202#define KS884X_EEPROM_CTRL_OFFSET	0x0212
 203
 204#define EEPROM_CHIP_SELECT		0x0001
 205#define EEPROM_SERIAL_CLOCK		0x0002
 206#define EEPROM_DATA_OUT			0x0004
 207#define EEPROM_DATA_IN			0x0008
 208#define EEPROM_ACCESS_ENABLE		0x0010
 209
 210/* MBIR */
 211#define KS884X_MEM_INFO_OFFSET		0x0214
 212
 213#define RX_MEM_TEST_FAILED		0x0008
 214#define RX_MEM_TEST_FINISHED		0x0010
 215#define TX_MEM_TEST_FAILED		0x0800
 216#define TX_MEM_TEST_FINISHED		0x1000
 217
 218/* GCR */
 219#define KS884X_GLOBAL_CTRL_OFFSET	0x0216
 220#define GLOBAL_SOFTWARE_RESET		0x0001
 221
 222#define KS8841_POWER_MANAGE_OFFSET	0x0218
 223
 224/* WFCR */
 225#define KS8841_WOL_CTRL_OFFSET		0x021A
 226#define KS8841_WOL_MAGIC_ENABLE		0x0080
 227#define KS8841_WOL_FRAME3_ENABLE	0x0008
 228#define KS8841_WOL_FRAME2_ENABLE	0x0004
 229#define KS8841_WOL_FRAME1_ENABLE	0x0002
 230#define KS8841_WOL_FRAME0_ENABLE	0x0001
 231
 232/* WF0 */
 233#define KS8841_WOL_FRAME_CRC_OFFSET	0x0220
 234#define KS8841_WOL_FRAME_BYTE0_OFFSET	0x0224
 235#define KS8841_WOL_FRAME_BYTE2_OFFSET	0x0228
 236
 237/* IACR */
 238#define KS884X_IACR_P			0x04A0
 239#define KS884X_IACR_OFFSET		KS884X_IACR_P
 240
 241/* IADR1 */
 242#define KS884X_IADR1_P			0x04A2
 243#define KS884X_IADR2_P			0x04A4
 244#define KS884X_IADR3_P			0x04A6
 245#define KS884X_IADR4_P			0x04A8
 246#define KS884X_IADR5_P			0x04AA
 247
 248#define KS884X_ACC_CTRL_SEL_OFFSET	KS884X_IACR_P
 249#define KS884X_ACC_CTRL_INDEX_OFFSET	(KS884X_ACC_CTRL_SEL_OFFSET + 1)
 250
 251#define KS884X_ACC_DATA_0_OFFSET	KS884X_IADR4_P
 252#define KS884X_ACC_DATA_1_OFFSET	(KS884X_ACC_DATA_0_OFFSET + 1)
 253#define KS884X_ACC_DATA_2_OFFSET	KS884X_IADR5_P
 254#define KS884X_ACC_DATA_3_OFFSET	(KS884X_ACC_DATA_2_OFFSET + 1)
 255#define KS884X_ACC_DATA_4_OFFSET	KS884X_IADR2_P
 256#define KS884X_ACC_DATA_5_OFFSET	(KS884X_ACC_DATA_4_OFFSET + 1)
 257#define KS884X_ACC_DATA_6_OFFSET	KS884X_IADR3_P
 258#define KS884X_ACC_DATA_7_OFFSET	(KS884X_ACC_DATA_6_OFFSET + 1)
 259#define KS884X_ACC_DATA_8_OFFSET	KS884X_IADR1_P
 260
 261/* P1MBCR */
 262#define KS884X_P1MBCR_P			0x04D0
 263#define KS884X_P1MBSR_P			0x04D2
 264#define KS884X_PHY1ILR_P		0x04D4
 265#define KS884X_PHY1IHR_P		0x04D6
 266#define KS884X_P1ANAR_P			0x04D8
 267#define KS884X_P1ANLPR_P		0x04DA
 268
 269/* P2MBCR */
 270#define KS884X_P2MBCR_P			0x04E0
 271#define KS884X_P2MBSR_P			0x04E2
 272#define KS884X_PHY2ILR_P		0x04E4
 273#define KS884X_PHY2IHR_P		0x04E6
 274#define KS884X_P2ANAR_P			0x04E8
 275#define KS884X_P2ANLPR_P		0x04EA
 276
 277#define KS884X_PHY_1_CTRL_OFFSET	KS884X_P1MBCR_P
 278#define PHY_CTRL_INTERVAL		(KS884X_P2MBCR_P - KS884X_P1MBCR_P)
 279
 280#define KS884X_PHY_CTRL_OFFSET		0x00
 281
 282/* Mode Control Register */
 283#define PHY_REG_CTRL			0
 284
 285#define PHY_RESET			0x8000
 286#define PHY_LOOPBACK			0x4000
 287#define PHY_SPEED_100MBIT		0x2000
 288#define PHY_AUTO_NEG_ENABLE		0x1000
 289#define PHY_POWER_DOWN			0x0800
 290#define PHY_MII_DISABLE			0x0400
 291#define PHY_AUTO_NEG_RESTART		0x0200
 292#define PHY_FULL_DUPLEX			0x0100
 293#define PHY_COLLISION_TEST		0x0080
 294#define PHY_HP_MDIX			0x0020
 295#define PHY_FORCE_MDIX			0x0010
 296#define PHY_AUTO_MDIX_DISABLE		0x0008
 297#define PHY_REMOTE_FAULT_DISABLE	0x0004
 298#define PHY_TRANSMIT_DISABLE		0x0002
 299#define PHY_LED_DISABLE			0x0001
 300
 301#define KS884X_PHY_STATUS_OFFSET	0x02
 302
 303/* Mode Status Register */
 304#define PHY_REG_STATUS			1
 305
 306#define PHY_100BT4_CAPABLE		0x8000
 307#define PHY_100BTX_FD_CAPABLE		0x4000
 308#define PHY_100BTX_CAPABLE		0x2000
 309#define PHY_10BT_FD_CAPABLE		0x1000
 310#define PHY_10BT_CAPABLE		0x0800
 311#define PHY_MII_SUPPRESS_CAPABLE	0x0040
 312#define PHY_AUTO_NEG_ACKNOWLEDGE	0x0020
 313#define PHY_REMOTE_FAULT		0x0010
 314#define PHY_AUTO_NEG_CAPABLE		0x0008
 315#define PHY_LINK_STATUS			0x0004
 316#define PHY_JABBER_DETECT		0x0002
 317#define PHY_EXTENDED_CAPABILITY		0x0001
 318
 319#define KS884X_PHY_ID_1_OFFSET		0x04
 320#define KS884X_PHY_ID_2_OFFSET		0x06
 321
 322/* PHY Identifier Registers */
 323#define PHY_REG_ID_1			2
 324#define PHY_REG_ID_2			3
 325
 326#define KS884X_PHY_AUTO_NEG_OFFSET	0x08
 327
 328/* Auto-Negotiation Advertisement Register */
 329#define PHY_REG_AUTO_NEGOTIATION	4
 330
 331#define PHY_AUTO_NEG_NEXT_PAGE		0x8000
 332#define PHY_AUTO_NEG_REMOTE_FAULT	0x2000
 333/* Not supported. */
 334#define PHY_AUTO_NEG_ASYM_PAUSE		0x0800
 335#define PHY_AUTO_NEG_SYM_PAUSE		0x0400
 336#define PHY_AUTO_NEG_100BT4		0x0200
 337#define PHY_AUTO_NEG_100BTX_FD		0x0100
 338#define PHY_AUTO_NEG_100BTX		0x0080
 339#define PHY_AUTO_NEG_10BT_FD		0x0040
 340#define PHY_AUTO_NEG_10BT		0x0020
 341#define PHY_AUTO_NEG_SELECTOR		0x001F
 342#define PHY_AUTO_NEG_802_3		0x0001
 343
 344#define PHY_AUTO_NEG_PAUSE  (PHY_AUTO_NEG_SYM_PAUSE | PHY_AUTO_NEG_ASYM_PAUSE)
 345
 346#define KS884X_PHY_REMOTE_CAP_OFFSET	0x0A
 347
 348/* Auto-Negotiation Link Partner Ability Register */
 349#define PHY_REG_REMOTE_CAPABILITY	5
 350
 351#define PHY_REMOTE_NEXT_PAGE		0x8000
 352#define PHY_REMOTE_ACKNOWLEDGE		0x4000
 353#define PHY_REMOTE_REMOTE_FAULT		0x2000
 354#define PHY_REMOTE_SYM_PAUSE		0x0400
 355#define PHY_REMOTE_100BTX_FD		0x0100
 356#define PHY_REMOTE_100BTX		0x0080
 357#define PHY_REMOTE_10BT_FD		0x0040
 358#define PHY_REMOTE_10BT			0x0020
 359
 360/* P1VCT */
 361#define KS884X_P1VCT_P			0x04F0
 362#define KS884X_P1PHYCTRL_P		0x04F2
 363
 364/* P2VCT */
 365#define KS884X_P2VCT_P			0x04F4
 366#define KS884X_P2PHYCTRL_P		0x04F6
 367
 368#define KS884X_PHY_SPECIAL_OFFSET	KS884X_P1VCT_P
 369#define PHY_SPECIAL_INTERVAL		(KS884X_P2VCT_P - KS884X_P1VCT_P)
 370
 371#define KS884X_PHY_LINK_MD_OFFSET	0x00
 372
 373#define PHY_START_CABLE_DIAG		0x8000
 374#define PHY_CABLE_DIAG_RESULT		0x6000
 375#define PHY_CABLE_STAT_NORMAL		0x0000
 376#define PHY_CABLE_STAT_OPEN		0x2000
 377#define PHY_CABLE_STAT_SHORT		0x4000
 378#define PHY_CABLE_STAT_FAILED		0x6000
 379#define PHY_CABLE_10M_SHORT		0x1000
 380#define PHY_CABLE_FAULT_COUNTER		0x01FF
 381
 382#define KS884X_PHY_PHY_CTRL_OFFSET	0x02
 383
 384#define PHY_STAT_REVERSED_POLARITY	0x0020
 385#define PHY_STAT_MDIX			0x0010
 386#define PHY_FORCE_LINK			0x0008
 387#define PHY_POWER_SAVING_DISABLE	0x0004
 388#define PHY_REMOTE_LOOPBACK		0x0002
 389
 390/* SIDER */
 391#define KS884X_SIDER_P			0x0400
 392#define KS884X_CHIP_ID_OFFSET		KS884X_SIDER_P
 393#define KS884X_FAMILY_ID_OFFSET		(KS884X_CHIP_ID_OFFSET + 1)
 394
 395#define REG_FAMILY_ID			0x88
 396
 397#define REG_CHIP_ID_41			0x8810
 398#define REG_CHIP_ID_42			0x8800
 399
 400#define KS884X_CHIP_ID_MASK_41		0xFF10
 401#define KS884X_CHIP_ID_MASK		0xFFF0
 402#define KS884X_CHIP_ID_SHIFT		4
 403#define KS884X_REVISION_MASK		0x000E
 404#define KS884X_REVISION_SHIFT		1
 405#define KS8842_START			0x0001
 406
 407#define CHIP_IP_41_M			0x8810
 408#define CHIP_IP_42_M			0x8800
 409#define CHIP_IP_61_M			0x8890
 410#define CHIP_IP_62_M			0x8880
 411
 412#define CHIP_IP_41_P			0x8850
 413#define CHIP_IP_42_P			0x8840
 414#define CHIP_IP_61_P			0x88D0
 415#define CHIP_IP_62_P			0x88C0
 416
 417/* SGCR1 */
 418#define KS8842_SGCR1_P			0x0402
 419#define KS8842_SWITCH_CTRL_1_OFFSET	KS8842_SGCR1_P
 420
 421#define SWITCH_PASS_ALL			0x8000
 422#define SWITCH_TX_FLOW_CTRL		0x2000
 423#define SWITCH_RX_FLOW_CTRL		0x1000
 424#define SWITCH_CHECK_LENGTH		0x0800
 425#define SWITCH_AGING_ENABLE		0x0400
 426#define SWITCH_FAST_AGING		0x0200
 427#define SWITCH_AGGR_BACKOFF		0x0100
 428#define SWITCH_PASS_PAUSE		0x0008
 429#define SWITCH_LINK_AUTO_AGING		0x0001
 430
 431/* SGCR2 */
 432#define KS8842_SGCR2_P			0x0404
 433#define KS8842_SWITCH_CTRL_2_OFFSET	KS8842_SGCR2_P
 434
 435#define SWITCH_VLAN_ENABLE		0x8000
 436#define SWITCH_IGMP_SNOOP		0x4000
 437#define IPV6_MLD_SNOOP_ENABLE		0x2000
 438#define IPV6_MLD_SNOOP_OPTION		0x1000
 439#define PRIORITY_SCHEME_SELECT		0x0800
 440#define SWITCH_MIRROR_RX_TX		0x0100
 441#define UNICAST_VLAN_BOUNDARY		0x0080
 442#define MULTICAST_STORM_DISABLE		0x0040
 443#define SWITCH_BACK_PRESSURE		0x0020
 444#define FAIR_FLOW_CTRL			0x0010
 445#define NO_EXC_COLLISION_DROP		0x0008
 446#define SWITCH_HUGE_PACKET		0x0004
 447#define SWITCH_LEGAL_PACKET		0x0002
 448#define SWITCH_BUF_RESERVE		0x0001
 449
 450/* SGCR3 */
 451#define KS8842_SGCR3_P			0x0406
 452#define KS8842_SWITCH_CTRL_3_OFFSET	KS8842_SGCR3_P
 453
 454#define BROADCAST_STORM_RATE_LO		0xFF00
 455#define SWITCH_REPEATER			0x0080
 456#define SWITCH_HALF_DUPLEX		0x0040
 457#define SWITCH_FLOW_CTRL		0x0020
 458#define SWITCH_10_MBIT			0x0010
 459#define SWITCH_REPLACE_NULL_VID		0x0008
 460#define BROADCAST_STORM_RATE_HI		0x0007
 461
 462#define BROADCAST_STORM_RATE		0x07FF
 463
 464/* SGCR4 */
 465#define KS8842_SGCR4_P			0x0408
 466
 467/* SGCR5 */
 468#define KS8842_SGCR5_P			0x040A
 469#define KS8842_SWITCH_CTRL_5_OFFSET	KS8842_SGCR5_P
 470
 471#define LED_MODE			0x8200
 472#define LED_SPEED_DUPLEX_ACT		0x0000
 473#define LED_SPEED_DUPLEX_LINK_ACT	0x8000
 474#define LED_DUPLEX_10_100		0x0200
 475
 476/* SGCR6 */
 477#define KS8842_SGCR6_P			0x0410
 478#define KS8842_SWITCH_CTRL_6_OFFSET	KS8842_SGCR6_P
 479
 480#define KS8842_PRIORITY_MASK		3
 481#define KS8842_PRIORITY_SHIFT		2
 482
 483/* SGCR7 */
 484#define KS8842_SGCR7_P			0x0412
 485#define KS8842_SWITCH_CTRL_7_OFFSET	KS8842_SGCR7_P
 486
 487#define SWITCH_UNK_DEF_PORT_ENABLE	0x0008
 488#define SWITCH_UNK_DEF_PORT_3		0x0004
 489#define SWITCH_UNK_DEF_PORT_2		0x0002
 490#define SWITCH_UNK_DEF_PORT_1		0x0001
 491
 492/* MACAR1 */
 493#define KS8842_MACAR1_P			0x0470
 494#define KS8842_MACAR2_P			0x0472
 495#define KS8842_MACAR3_P			0x0474
 496#define KS8842_MAC_ADDR_1_OFFSET	KS8842_MACAR1_P
 497#define KS8842_MAC_ADDR_0_OFFSET	(KS8842_MAC_ADDR_1_OFFSET + 1)
 498#define KS8842_MAC_ADDR_3_OFFSET	KS8842_MACAR2_P
 499#define KS8842_MAC_ADDR_2_OFFSET	(KS8842_MAC_ADDR_3_OFFSET + 1)
 500#define KS8842_MAC_ADDR_5_OFFSET	KS8842_MACAR3_P
 501#define KS8842_MAC_ADDR_4_OFFSET	(KS8842_MAC_ADDR_5_OFFSET + 1)
 502
 503/* TOSR1 */
 504#define KS8842_TOSR1_P			0x0480
 505#define KS8842_TOSR2_P			0x0482
 506#define KS8842_TOSR3_P			0x0484
 507#define KS8842_TOSR4_P			0x0486
 508#define KS8842_TOSR5_P			0x0488
 509#define KS8842_TOSR6_P			0x048A
 510#define KS8842_TOSR7_P			0x0490
 511#define KS8842_TOSR8_P			0x0492
 512#define KS8842_TOS_1_OFFSET		KS8842_TOSR1_P
 513#define KS8842_TOS_2_OFFSET		KS8842_TOSR2_P
 514#define KS8842_TOS_3_OFFSET		KS8842_TOSR3_P
 515#define KS8842_TOS_4_OFFSET		KS8842_TOSR4_P
 516#define KS8842_TOS_5_OFFSET		KS8842_TOSR5_P
 517#define KS8842_TOS_6_OFFSET		KS8842_TOSR6_P
 518
 519#define KS8842_TOS_7_OFFSET		KS8842_TOSR7_P
 520#define KS8842_TOS_8_OFFSET		KS8842_TOSR8_P
 521
 522/* P1CR1 */
 523#define KS8842_P1CR1_P			0x0500
 524#define KS8842_P1CR2_P			0x0502
 525#define KS8842_P1VIDR_P			0x0504
 526#define KS8842_P1CR3_P			0x0506
 527#define KS8842_P1IRCR_P			0x0508
 528#define KS8842_P1ERCR_P			0x050A
 529#define KS884X_P1SCSLMD_P		0x0510
 530#define KS884X_P1CR4_P			0x0512
 531#define KS884X_P1SR_P			0x0514
 532
 533/* P2CR1 */
 534#define KS8842_P2CR1_P			0x0520
 535#define KS8842_P2CR2_P			0x0522
 536#define KS8842_P2VIDR_P			0x0524
 537#define KS8842_P2CR3_P			0x0526
 538#define KS8842_P2IRCR_P			0x0528
 539#define KS8842_P2ERCR_P			0x052A
 540#define KS884X_P2SCSLMD_P		0x0530
 541#define KS884X_P2CR4_P			0x0532
 542#define KS884X_P2SR_P			0x0534
 543
 544/* P3CR1 */
 545#define KS8842_P3CR1_P			0x0540
 546#define KS8842_P3CR2_P			0x0542
 547#define KS8842_P3VIDR_P			0x0544
 548#define KS8842_P3CR3_P			0x0546
 549#define KS8842_P3IRCR_P			0x0548
 550#define KS8842_P3ERCR_P			0x054A
 551
 552#define KS8842_PORT_1_CTRL_1		KS8842_P1CR1_P
 553#define KS8842_PORT_2_CTRL_1		KS8842_P2CR1_P
 554#define KS8842_PORT_3_CTRL_1		KS8842_P3CR1_P
 555
 556#define PORT_CTRL_ADDR(port, addr)		\
 557	(addr = KS8842_PORT_1_CTRL_1 + (port) *	\
 558		(KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))
 559
 560#define KS8842_PORT_CTRL_1_OFFSET	0x00
 561
 562#define PORT_BROADCAST_STORM		0x0080
 563#define PORT_DIFFSERV_ENABLE		0x0040
 564#define PORT_802_1P_ENABLE		0x0020
 565#define PORT_BASED_PRIORITY_MASK	0x0018
 566#define PORT_BASED_PRIORITY_BASE	0x0003
 567#define PORT_BASED_PRIORITY_SHIFT	3
 568#define PORT_BASED_PRIORITY_0		0x0000
 569#define PORT_BASED_PRIORITY_1		0x0008
 570#define PORT_BASED_PRIORITY_2		0x0010
 571#define PORT_BASED_PRIORITY_3		0x0018
 572#define PORT_INSERT_TAG			0x0004
 573#define PORT_REMOVE_TAG			0x0002
 574#define PORT_PRIO_QUEUE_ENABLE		0x0001
 575
 576#define KS8842_PORT_CTRL_2_OFFSET	0x02
 577
 578#define PORT_INGRESS_VLAN_FILTER	0x4000
 579#define PORT_DISCARD_NON_VID		0x2000
 580#define PORT_FORCE_FLOW_CTRL		0x1000
 581#define PORT_BACK_PRESSURE		0x0800
 582#define PORT_TX_ENABLE			0x0400
 583#define PORT_RX_ENABLE			0x0200
 584#define PORT_LEARN_DISABLE		0x0100
 585#define PORT_MIRROR_SNIFFER		0x0080
 586#define PORT_MIRROR_RX			0x0040
 587#define PORT_MIRROR_TX			0x0020
 588#define PORT_USER_PRIORITY_CEILING	0x0008
 589#define PORT_VLAN_MEMBERSHIP		0x0007
 590
 591#define KS8842_PORT_CTRL_VID_OFFSET	0x04
 592
 593#define PORT_DEFAULT_VID		0x0001
 594
 595#define KS8842_PORT_CTRL_3_OFFSET	0x06
 596
 597#define PORT_INGRESS_LIMIT_MODE		0x000C
 598#define PORT_INGRESS_ALL		0x0000
 599#define PORT_INGRESS_UNICAST		0x0004
 600#define PORT_INGRESS_MULTICAST		0x0008
 601#define PORT_INGRESS_BROADCAST		0x000C
 602#define PORT_COUNT_IFG			0x0002
 603#define PORT_COUNT_PREAMBLE		0x0001
 604
 605#define KS8842_PORT_IN_RATE_OFFSET	0x08
 606#define KS8842_PORT_OUT_RATE_OFFSET	0x0A
 607
 608#define PORT_PRIORITY_RATE		0x0F
 609#define PORT_PRIORITY_RATE_SHIFT	4
 610
 611#define KS884X_PORT_LINK_MD		0x10
 612
 613#define PORT_CABLE_10M_SHORT		0x8000
 614#define PORT_CABLE_DIAG_RESULT		0x6000
 615#define PORT_CABLE_STAT_NORMAL		0x0000
 616#define PORT_CABLE_STAT_OPEN		0x2000
 617#define PORT_CABLE_STAT_SHORT		0x4000
 618#define PORT_CABLE_STAT_FAILED		0x6000
 619#define PORT_START_CABLE_DIAG		0x1000
 620#define PORT_FORCE_LINK			0x0800
 621#define PORT_POWER_SAVING_DISABLE	0x0400
 622#define PORT_PHY_REMOTE_LOOPBACK	0x0200
 623#define PORT_CABLE_FAULT_COUNTER	0x01FF
 624
 625#define KS884X_PORT_CTRL_4_OFFSET	0x12
 626
 627#define PORT_LED_OFF			0x8000
 628#define PORT_TX_DISABLE			0x4000
 629#define PORT_AUTO_NEG_RESTART		0x2000
 630#define PORT_REMOTE_FAULT_DISABLE	0x1000
 631#define PORT_POWER_DOWN			0x0800
 632#define PORT_AUTO_MDIX_DISABLE		0x0400
 633#define PORT_FORCE_MDIX			0x0200
 634#define PORT_LOOPBACK			0x0100
 635#define PORT_AUTO_NEG_ENABLE		0x0080
 636#define PORT_FORCE_100_MBIT		0x0040
 637#define PORT_FORCE_FULL_DUPLEX		0x0020
 638#define PORT_AUTO_NEG_SYM_PAUSE		0x0010
 639#define PORT_AUTO_NEG_100BTX_FD		0x0008
 640#define PORT_AUTO_NEG_100BTX		0x0004
 641#define PORT_AUTO_NEG_10BT_FD		0x0002
 642#define PORT_AUTO_NEG_10BT		0x0001
 643
 644#define KS884X_PORT_STATUS_OFFSET	0x14
 645
 646#define PORT_HP_MDIX			0x8000
 647#define PORT_REVERSED_POLARITY		0x2000
 648#define PORT_RX_FLOW_CTRL		0x0800
 649#define PORT_TX_FLOW_CTRL		0x1000
 650#define PORT_STATUS_SPEED_100MBIT	0x0400
 651#define PORT_STATUS_FULL_DUPLEX		0x0200
 652#define PORT_REMOTE_FAULT		0x0100
 653#define PORT_MDIX_STATUS		0x0080
 654#define PORT_AUTO_NEG_COMPLETE		0x0040
 655#define PORT_STATUS_LINK_GOOD		0x0020
 656#define PORT_REMOTE_SYM_PAUSE		0x0010
 657#define PORT_REMOTE_100BTX_FD		0x0008
 658#define PORT_REMOTE_100BTX		0x0004
 659#define PORT_REMOTE_10BT_FD		0x0002
 660#define PORT_REMOTE_10BT		0x0001
 661
 662/*
 663#define STATIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
 664#define STATIC_MAC_TABLE_FWD_PORTS	00-00070000-00000000
 665#define STATIC_MAC_TABLE_VALID		00-00080000-00000000
 666#define STATIC_MAC_TABLE_OVERRIDE	00-00100000-00000000
 667#define STATIC_MAC_TABLE_USE_FID	00-00200000-00000000
 668#define STATIC_MAC_TABLE_FID		00-03C00000-00000000
 669*/
 670
 671#define STATIC_MAC_TABLE_ADDR		0x0000FFFF
 672#define STATIC_MAC_TABLE_FWD_PORTS	0x00070000
 673#define STATIC_MAC_TABLE_VALID		0x00080000
 674#define STATIC_MAC_TABLE_OVERRIDE	0x00100000
 675#define STATIC_MAC_TABLE_USE_FID	0x00200000
 676#define STATIC_MAC_TABLE_FID		0x03C00000
 677
 678#define STATIC_MAC_FWD_PORTS_SHIFT	16
 679#define STATIC_MAC_FID_SHIFT		22
 680
 681/*
 682#define VLAN_TABLE_VID			00-00000000-00000FFF
 683#define VLAN_TABLE_FID			00-00000000-0000F000
 684#define VLAN_TABLE_MEMBERSHIP		00-00000000-00070000
 685#define VLAN_TABLE_VALID		00-00000000-00080000
 686*/
 687
 688#define VLAN_TABLE_VID			0x00000FFF
 689#define VLAN_TABLE_FID			0x0000F000
 690#define VLAN_TABLE_MEMBERSHIP		0x00070000
 691#define VLAN_TABLE_VALID		0x00080000
 692
 693#define VLAN_TABLE_FID_SHIFT		12
 694#define VLAN_TABLE_MEMBERSHIP_SHIFT	16
 695
 696/*
 697#define DYNAMIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
 698#define DYNAMIC_MAC_TABLE_FID		00-000F0000-00000000
 699#define DYNAMIC_MAC_TABLE_SRC_PORT	00-00300000-00000000
 700#define DYNAMIC_MAC_TABLE_TIMESTAMP	00-00C00000-00000000
 701#define DYNAMIC_MAC_TABLE_ENTRIES	03-FF000000-00000000
 702#define DYNAMIC_MAC_TABLE_MAC_EMPTY	04-00000000-00000000
 703#define DYNAMIC_MAC_TABLE_RESERVED	78-00000000-00000000
 704#define DYNAMIC_MAC_TABLE_NOT_READY	80-00000000-00000000
 705*/
 706
 707#define DYNAMIC_MAC_TABLE_ADDR		0x0000FFFF
 708#define DYNAMIC_MAC_TABLE_FID		0x000F0000
 709#define DYNAMIC_MAC_TABLE_SRC_PORT	0x00300000
 710#define DYNAMIC_MAC_TABLE_TIMESTAMP	0x00C00000
 711#define DYNAMIC_MAC_TABLE_ENTRIES	0xFF000000
 712
 713#define DYNAMIC_MAC_TABLE_ENTRIES_H	0x03
 714#define DYNAMIC_MAC_TABLE_MAC_EMPTY	0x04
 715#define DYNAMIC_MAC_TABLE_RESERVED	0x78
 716#define DYNAMIC_MAC_TABLE_NOT_READY	0x80
 717
 718#define DYNAMIC_MAC_FID_SHIFT		16
 719#define DYNAMIC_MAC_SRC_PORT_SHIFT	20
 720#define DYNAMIC_MAC_TIMESTAMP_SHIFT	22
 721#define DYNAMIC_MAC_ENTRIES_SHIFT	24
 722#define DYNAMIC_MAC_ENTRIES_H_SHIFT	8
 723
 724/*
 725#define MIB_COUNTER_VALUE		00-00000000-3FFFFFFF
 726#define MIB_COUNTER_VALID		00-00000000-40000000
 727#define MIB_COUNTER_OVERFLOW		00-00000000-80000000
 728*/
 729
 730#define MIB_COUNTER_VALUE		0x3FFFFFFF
 731#define MIB_COUNTER_VALID		0x40000000
 732#define MIB_COUNTER_OVERFLOW		0x80000000
 733
 734#define MIB_PACKET_DROPPED		0x0000FFFF
 735
 736#define KS_MIB_PACKET_DROPPED_TX_0	0x100
 737#define KS_MIB_PACKET_DROPPED_TX_1	0x101
 738#define KS_MIB_PACKET_DROPPED_TX	0x102
 739#define KS_MIB_PACKET_DROPPED_RX_0	0x103
 740#define KS_MIB_PACKET_DROPPED_RX_1	0x104
 741#define KS_MIB_PACKET_DROPPED_RX	0x105
 742
 743/* Change default LED mode. */
 744#define SET_DEFAULT_LED			LED_SPEED_DUPLEX_ACT
 745
 746#define MAC_ADDR_ORDER(i)		(ETH_ALEN - 1 - (i))
 747
 748#define MAX_ETHERNET_BODY_SIZE		1500
 749#define ETHERNET_HEADER_SIZE		(14 + VLAN_HLEN)
 750
 751#define MAX_ETHERNET_PACKET_SIZE	\
 752	(MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)
 753
 754#define REGULAR_RX_BUF_SIZE		(MAX_ETHERNET_PACKET_SIZE + 4)
 755#define MAX_RX_BUF_SIZE			(1912 + 4)
 756
 757#define ADDITIONAL_ENTRIES		16
 758#define MAX_MULTICAST_LIST		32
 759
 760#define HW_MULTICAST_SIZE		8
 761
 762#define HW_TO_DEV_PORT(port)		(port - 1)
 763
 764enum {
 765	media_connected,
 766	media_disconnected
 767};
 768
 769enum {
 770	OID_COUNTER_UNKOWN,
 771
 772	OID_COUNTER_FIRST,
 773
 774	/* total transmit errors */
 775	OID_COUNTER_XMIT_ERROR,
 776
 777	/* total receive errors */
 778	OID_COUNTER_RCV_ERROR,
 779
 780	OID_COUNTER_LAST
 781};
 782
 783/*
 784 * Hardware descriptor definitions
 785 */
 786
 787#define DESC_ALIGNMENT			16
 788#define BUFFER_ALIGNMENT		8
 789
 790#define NUM_OF_RX_DESC			64
 791#define NUM_OF_TX_DESC			64
 792
 793#define KS_DESC_RX_FRAME_LEN		0x000007FF
 794#define KS_DESC_RX_FRAME_TYPE		0x00008000
 795#define KS_DESC_RX_ERROR_CRC		0x00010000
 796#define KS_DESC_RX_ERROR_RUNT		0x00020000
 797#define KS_DESC_RX_ERROR_TOO_LONG	0x00040000
 798#define KS_DESC_RX_ERROR_PHY		0x00080000
 799#define KS884X_DESC_RX_PORT_MASK	0x00300000
 800#define KS_DESC_RX_MULTICAST		0x01000000
 801#define KS_DESC_RX_ERROR		0x02000000
 802#define KS_DESC_RX_ERROR_CSUM_UDP	0x04000000
 803#define KS_DESC_RX_ERROR_CSUM_TCP	0x08000000
 804#define KS_DESC_RX_ERROR_CSUM_IP	0x10000000
 805#define KS_DESC_RX_LAST			0x20000000
 806#define KS_DESC_RX_FIRST		0x40000000
 807#define KS_DESC_RX_ERROR_COND		\
 808	(KS_DESC_RX_ERROR_CRC |		\
 809	KS_DESC_RX_ERROR_RUNT |		\
 810	KS_DESC_RX_ERROR_PHY |		\
 811	KS_DESC_RX_ERROR_TOO_LONG)
 812
 813#define KS_DESC_HW_OWNED		0x80000000
 814
 815#define KS_DESC_BUF_SIZE		0x000007FF
 816#define KS884X_DESC_TX_PORT_MASK	0x00300000
 817#define KS_DESC_END_OF_RING		0x02000000
 818#define KS_DESC_TX_CSUM_GEN_UDP		0x04000000
 819#define KS_DESC_TX_CSUM_GEN_TCP		0x08000000
 820#define KS_DESC_TX_CSUM_GEN_IP		0x10000000
 821#define KS_DESC_TX_LAST			0x20000000
 822#define KS_DESC_TX_FIRST		0x40000000
 823#define KS_DESC_TX_INTERRUPT		0x80000000
 824
 825#define KS_DESC_PORT_SHIFT		20
 826
 827#define KS_DESC_RX_MASK			(KS_DESC_BUF_SIZE)
 828
 829#define KS_DESC_TX_MASK			\
 830	(KS_DESC_TX_INTERRUPT |		\
 831	KS_DESC_TX_FIRST |		\
 832	KS_DESC_TX_LAST |		\
 833	KS_DESC_TX_CSUM_GEN_IP |	\
 834	KS_DESC_TX_CSUM_GEN_TCP |	\
 835	KS_DESC_TX_CSUM_GEN_UDP |	\
 836	KS_DESC_BUF_SIZE)
 837
 838struct ksz_desc_rx_stat {
 839#ifdef __BIG_ENDIAN_BITFIELD
 840	u32 hw_owned:1;
 841	u32 first_desc:1;
 842	u32 last_desc:1;
 843	u32 csum_err_ip:1;
 844	u32 csum_err_tcp:1;
 845	u32 csum_err_udp:1;
 846	u32 error:1;
 847	u32 multicast:1;
 848	u32 src_port:4;
 849	u32 err_phy:1;
 850	u32 err_too_long:1;
 851	u32 err_runt:1;
 852	u32 err_crc:1;
 853	u32 frame_type:1;
 854	u32 reserved1:4;
 855	u32 frame_len:11;
 856#else
 857	u32 frame_len:11;
 858	u32 reserved1:4;
 859	u32 frame_type:1;
 860	u32 err_crc:1;
 861	u32 err_runt:1;
 862	u32 err_too_long:1;
 863	u32 err_phy:1;
 864	u32 src_port:4;
 865	u32 multicast:1;
 866	u32 error:1;
 867	u32 csum_err_udp:1;
 868	u32 csum_err_tcp:1;
 869	u32 csum_err_ip:1;
 870	u32 last_desc:1;
 871	u32 first_desc:1;
 872	u32 hw_owned:1;
 873#endif
 874};
 875
 876struct ksz_desc_tx_stat {
 877#ifdef __BIG_ENDIAN_BITFIELD
 878	u32 hw_owned:1;
 879	u32 reserved1:31;
 880#else
 881	u32 reserved1:31;
 882	u32 hw_owned:1;
 883#endif
 884};
 885
 886struct ksz_desc_rx_buf {
 887#ifdef __BIG_ENDIAN_BITFIELD
 888	u32 reserved4:6;
 889	u32 end_of_ring:1;
 890	u32 reserved3:14;
 891	u32 buf_size:11;
 892#else
 893	u32 buf_size:11;
 894	u32 reserved3:14;
 895	u32 end_of_ring:1;
 896	u32 reserved4:6;
 897#endif
 898};
 899
 900struct ksz_desc_tx_buf {
 901#ifdef __BIG_ENDIAN_BITFIELD
 902	u32 intr:1;
 903	u32 first_seg:1;
 904	u32 last_seg:1;
 905	u32 csum_gen_ip:1;
 906	u32 csum_gen_tcp:1;
 907	u32 csum_gen_udp:1;
 908	u32 end_of_ring:1;
 909	u32 reserved4:1;
 910	u32 dest_port:4;
 911	u32 reserved3:9;
 912	u32 buf_size:11;
 913#else
 914	u32 buf_size:11;
 915	u32 reserved3:9;
 916	u32 dest_port:4;
 917	u32 reserved4:1;
 918	u32 end_of_ring:1;
 919	u32 csum_gen_udp:1;
 920	u32 csum_gen_tcp:1;
 921	u32 csum_gen_ip:1;
 922	u32 last_seg:1;
 923	u32 first_seg:1;
 924	u32 intr:1;
 925#endif
 926};
 927
 928union desc_stat {
 929	struct ksz_desc_rx_stat rx;
 930	struct ksz_desc_tx_stat tx;
 931	u32 data;
 932};
 933
 934union desc_buf {
 935	struct ksz_desc_rx_buf rx;
 936	struct ksz_desc_tx_buf tx;
 937	u32 data;
 938};
 939
 940/**
 941 * struct ksz_hw_desc - Hardware descriptor data structure
 942 * @ctrl:	Descriptor control value.
 943 * @buf:	Descriptor buffer value.
 944 * @addr:	Physical address of memory buffer.
 945 * @next:	Pointer to next hardware descriptor.
 946 */
 947struct ksz_hw_desc {
 948	union desc_stat ctrl;
 949	union desc_buf buf;
 950	u32 addr;
 951	u32 next;
 952};
 953
 954/**
 955 * struct ksz_sw_desc - Software descriptor data structure
 956 * @ctrl:	Descriptor control value.
 957 * @buf:	Descriptor buffer value.
 958 * @buf_size:	Current buffers size value in hardware descriptor.
 959 */
 960struct ksz_sw_desc {
 961	union desc_stat ctrl;
 962	union desc_buf buf;
 963	u32 buf_size;
 964};
 965
 966/**
 967 * struct ksz_dma_buf - OS dependent DMA buffer data structure
 968 * @skb:	Associated socket buffer.
 969 * @dma:	Associated physical DMA address.
 970 * len:		Actual len used.
 971 */
 972struct ksz_dma_buf {
 973	struct sk_buff *skb;
 974	dma_addr_t dma;
 975	int len;
 976};
 977
 978/**
 979 * struct ksz_desc - Descriptor structure
 980 * @phw:	Hardware descriptor pointer to uncached physical memory.
 981 * @sw:		Cached memory to hold hardware descriptor values for
 982 * 		manipulation.
 983 * @dma_buf:	Operating system dependent data structure to hold physical
 984 * 		memory buffer allocation information.
 985 */
 986struct ksz_desc {
 987	struct ksz_hw_desc *phw;
 988	struct ksz_sw_desc sw;
 989	struct ksz_dma_buf dma_buf;
 990};
 991
 992#define DMA_BUFFER(desc)  ((struct ksz_dma_buf *)(&(desc)->dma_buf))
 993
 994/**
 995 * struct ksz_desc_info - Descriptor information data structure
 996 * @ring:	First descriptor in the ring.
 997 * @cur:	Current descriptor being manipulated.
 998 * @ring_virt:	First hardware descriptor in the ring.
 999 * @ring_phys:	The physical address of the first descriptor of the ring.
1000 * @size:	Size of hardware descriptor.
1001 * @alloc:	Number of descriptors allocated.
1002 * @avail:	Number of descriptors available for use.
1003 * @last:	Index for last descriptor released to hardware.
1004 * @next:	Index for next descriptor available for use.
1005 * @mask:	Mask for index wrapping.
1006 */
1007struct ksz_desc_info {
1008	struct ksz_desc *ring;
1009	struct ksz_desc *cur;
1010	struct ksz_hw_desc *ring_virt;
1011	u32 ring_phys;
1012	int size;
1013	int alloc;
1014	int avail;
1015	int last;
1016	int next;
1017	int mask;
1018};
1019
1020/*
1021 * KSZ8842 switch definitions
1022 */
1023
1024enum {
1025	TABLE_STATIC_MAC = 0,
1026	TABLE_VLAN,
1027	TABLE_DYNAMIC_MAC,
1028	TABLE_MIB
1029};
1030
1031#define LEARNED_MAC_TABLE_ENTRIES	1024
1032#define STATIC_MAC_TABLE_ENTRIES	8
1033
1034/**
1035 * struct ksz_mac_table - Static MAC table data structure
1036 * @mac_addr:	MAC address to filter.
1037 * @vid:	VID value.
1038 * @fid:	FID value.
1039 * @ports:	Port membership.
1040 * @override:	Override setting.
1041 * @use_fid:	FID use setting.
1042 * @valid:	Valid setting indicating the entry is being used.
1043 */
1044struct ksz_mac_table {
1045	u8 mac_addr[ETH_ALEN];
1046	u16 vid;
1047	u8 fid;
1048	u8 ports;
1049	u8 override:1;
1050	u8 use_fid:1;
1051	u8 valid:1;
1052};
1053
1054#define VLAN_TABLE_ENTRIES		16
1055
1056/**
1057 * struct ksz_vlan_table - VLAN table data structure
1058 * @vid:	VID value.
1059 * @fid:	FID value.
1060 * @member:	Port membership.
1061 */
1062struct ksz_vlan_table {
1063	u16 vid;
1064	u8 fid;
1065	u8 member;
1066};
1067
1068#define DIFFSERV_ENTRIES		64
1069#define PRIO_802_1P_ENTRIES		8
1070#define PRIO_QUEUES			4
1071
1072#define SWITCH_PORT_NUM			2
1073#define TOTAL_PORT_NUM			(SWITCH_PORT_NUM + 1)
1074#define HOST_MASK			(1 << SWITCH_PORT_NUM)
1075#define PORT_MASK			7
1076
1077#define MAIN_PORT			0
1078#define OTHER_PORT			1
1079#define HOST_PORT			SWITCH_PORT_NUM
1080
1081#define PORT_COUNTER_NUM		0x20
1082#define TOTAL_PORT_COUNTER_NUM		(PORT_COUNTER_NUM + 2)
1083
1084#define MIB_COUNTER_RX_LO_PRIORITY	0x00
1085#define MIB_COUNTER_RX_HI_PRIORITY	0x01
1086#define MIB_COUNTER_RX_UNDERSIZE	0x02
1087#define MIB_COUNTER_RX_FRAGMENT		0x03
1088#define MIB_COUNTER_RX_OVERSIZE		0x04
1089#define MIB_COUNTER_RX_JABBER		0x05
1090#define MIB_COUNTER_RX_SYMBOL_ERR	0x06
1091#define MIB_COUNTER_RX_CRC_ERR		0x07
1092#define MIB_COUNTER_RX_ALIGNMENT_ERR	0x08
1093#define MIB_COUNTER_RX_CTRL_8808	0x09
1094#define MIB_COUNTER_RX_PAUSE		0x0A
1095#define MIB_COUNTER_RX_BROADCAST	0x0B
1096#define MIB_COUNTER_RX_MULTICAST	0x0C
1097#define MIB_COUNTER_RX_UNICAST		0x0D
1098#define MIB_COUNTER_RX_OCTET_64		0x0E
1099#define MIB_COUNTER_RX_OCTET_65_127	0x0F
1100#define MIB_COUNTER_RX_OCTET_128_255	0x10
1101#define MIB_COUNTER_RX_OCTET_256_511	0x11
1102#define MIB_COUNTER_RX_OCTET_512_1023	0x12
1103#define MIB_COUNTER_RX_OCTET_1024_1522	0x13
1104#define MIB_COUNTER_TX_LO_PRIORITY	0x14
1105#define MIB_COUNTER_TX_HI_PRIORITY	0x15
1106#define MIB_COUNTER_TX_LATE_COLLISION	0x16
1107#define MIB_COUNTER_TX_PAUSE		0x17
1108#define MIB_COUNTER_TX_BROADCAST	0x18
1109#define MIB_COUNTER_TX_MULTICAST	0x19
1110#define MIB_COUNTER_TX_UNICAST		0x1A
1111#define MIB_COUNTER_TX_DEFERRED		0x1B
1112#define MIB_COUNTER_TX_TOTAL_COLLISION	0x1C
1113#define MIB_COUNTER_TX_EXCESS_COLLISION	0x1D
1114#define MIB_COUNTER_TX_SINGLE_COLLISION	0x1E
1115#define MIB_COUNTER_TX_MULTI_COLLISION	0x1F
1116
1117#define MIB_COUNTER_RX_DROPPED_PACKET	0x20
1118#define MIB_COUNTER_TX_DROPPED_PACKET	0x21
1119
1120/**
1121 * struct ksz_port_mib - Port MIB data structure
1122 * @cnt_ptr:	Current pointer to MIB counter index.
1123 * @link_down:	Indication the link has just gone down.
1124 * @state:	Connection status of the port.
1125 * @mib_start:	The starting counter index.  Some ports do not start at 0.
1126 * @counter:	64-bit MIB counter value.
1127 * @dropped:	Temporary buffer to remember last read packet dropped values.
1128 *
1129 * MIB counters needs to be read periodically so that counters do not get
1130 * overflowed and give incorrect values.  A right balance is needed to
1131 * satisfy this condition and not waste too much CPU time.
1132 *
1133 * It is pointless to read MIB counters when the port is disconnected.  The
1134 * @state provides the connection status so that MIB counters are read only
1135 * when the port is connected.  The @link_down indicates the port is just
1136 * disconnected so that all MIB counters are read one last time to update the
1137 * information.
1138 */
1139struct ksz_port_mib {
1140	u8 cnt_ptr;
1141	u8 link_down;
1142	u8 state;
1143	u8 mib_start;
1144
1145	u64 counter[TOTAL_PORT_COUNTER_NUM];
1146	u32 dropped[2];
1147};
1148
1149/**
1150 * struct ksz_port_cfg - Port configuration data structure
1151 * @vid:	VID value.
1152 * @member:	Port membership.
1153 * @port_prio:	Port priority.
1154 * @rx_rate:	Receive priority rate.
1155 * @tx_rate:	Transmit priority rate.
1156 * @stp_state:	Current Spanning Tree Protocol state.
1157 */
1158struct ksz_port_cfg {
1159	u16 vid;
1160	u8 member;
1161	u8 port_prio;
1162	u32 rx_rate[PRIO_QUEUES];
1163	u32 tx_rate[PRIO_QUEUES];
1164	int stp_state;
1165};
1166
1167/**
1168 * struct ksz_switch - KSZ8842 switch data structure
1169 * @mac_table:	MAC table entries information.
1170 * @vlan_table:	VLAN table entries information.
1171 * @port_cfg:	Port configuration information.
1172 * @diffserv:	DiffServ priority settings.  Possible values from 6-bit of ToS
1173 * 		(bit7 ~ bit2) field.
1174 * @p_802_1p:	802.1P priority settings.  Possible values from 3-bit of 802.1p
1175 * 		Tag priority field.
1176 * @br_addr:	Bridge address.  Used for STP.
1177 * @other_addr:	Other MAC address.  Used for multiple network device mode.
1178 * @broad_per:	Broadcast storm percentage.
1179 * @member:	Current port membership.  Used for STP.
1180 */
1181struct ksz_switch {
1182	struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
1183	struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
1184	struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];
1185
1186	u8 diffserv[DIFFSERV_ENTRIES];
1187	u8 p_802_1p[PRIO_802_1P_ENTRIES];
1188
1189	u8 br_addr[ETH_ALEN];
1190	u8 other_addr[ETH_ALEN];
1191
1192	u8 broad_per;
1193	u8 member;
1194};
1195
1196#define TX_RATE_UNIT			10000
1197
1198/**
1199 * struct ksz_port_info - Port information data structure
1200 * @state:	Connection status of the port.
1201 * @tx_rate:	Transmit rate divided by 10000 to get Mbit.
1202 * @duplex:	Duplex mode.
1203 * @advertised:	Advertised auto-negotiation setting.  Used to determine link.
1204 * @partner:	Auto-negotiation partner setting.  Used to determine link.
1205 * @port_id:	Port index to access actual hardware register.
1206 * @pdev:	Pointer to OS dependent network device.
1207 */
1208struct ksz_port_info {
1209	uint state;
1210	uint tx_rate;
1211	u8 duplex;
1212	u8 advertised;
1213	u8 partner;
1214	u8 port_id;
1215	void *pdev;
1216};
1217
1218#define MAX_TX_HELD_SIZE		52000
1219
1220/* Hardware features and bug fixes. */
1221#define LINK_INT_WORKING		(1 << 0)
1222#define SMALL_PACKET_TX_BUG		(1 << 1)
1223#define HALF_DUPLEX_SIGNAL_BUG		(1 << 2)
1224#define RX_HUGE_FRAME			(1 << 4)
1225#define STP_SUPPORT			(1 << 8)
1226
1227/* Software overrides. */
1228#define PAUSE_FLOW_CTRL			(1 << 0)
1229#define FAST_AGING			(1 << 1)
1230
1231/**
1232 * struct ksz_hw - KSZ884X hardware data structure
1233 * @io:			Virtual address assigned.
1234 * @ksz_switch:		Pointer to KSZ8842 switch.
1235 * @port_info:		Port information.
1236 * @port_mib:		Port MIB information.
1237 * @dev_count:		Number of network devices this hardware supports.
1238 * @dst_ports:		Destination ports in switch for transmission.
1239 * @id:			Hardware ID.  Used for display only.
1240 * @mib_cnt:		Number of MIB counters this hardware has.
1241 * @mib_port_cnt:	Number of ports with MIB counters.
1242 * @tx_cfg:		Cached transmit control settings.
1243 * @rx_cfg:		Cached receive control settings.
1244 * @intr_mask:		Current interrupt mask.
1245 * @intr_set:		Current interrup set.
1246 * @intr_blocked:	Interrupt blocked.
1247 * @rx_desc_info:	Receive descriptor information.
1248 * @tx_desc_info:	Transmit descriptor information.
1249 * @tx_int_cnt:		Transmit interrupt count.  Used for TX optimization.
1250 * @tx_int_mask:	Transmit interrupt mask.  Used for TX optimization.
1251 * @tx_size:		Transmit data size.  Used for TX optimization.
1252 * 			The maximum is defined by MAX_TX_HELD_SIZE.
1253 * @perm_addr:		Permanent MAC address.
1254 * @override_addr:	Overrided MAC address.
1255 * @address:		Additional MAC address entries.
1256 * @addr_list_size:	Additional MAC address list size.
1257 * @mac_override:	Indication of MAC address overrided.
1258 * @promiscuous:	Counter to keep track of promiscuous mode set.
1259 * @all_multi:		Counter to keep track of all multicast mode set.
1260 * @multi_list:		Multicast address entries.
1261 * @multi_bits:		Cached multicast hash table settings.
1262 * @multi_list_size:	Multicast address list size.
1263 * @enabled:		Indication of hardware enabled.
1264 * @rx_stop:		Indication of receive process stop.
1265 * @features:		Hardware features to enable.
1266 * @overrides:		Hardware features to override.
1267 * @parent:		Pointer to parent, network device private structure.
1268 */
1269struct ksz_hw {
1270	void __iomem *io;
1271
1272	struct ksz_switch *ksz_switch;
1273	struct ksz_port_info port_info[SWITCH_PORT_NUM];
1274	struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
1275	int dev_count;
1276	int dst_ports;
1277	int id;
1278	int mib_cnt;
1279	int mib_port_cnt;
1280
1281	u32 tx_cfg;
1282	u32 rx_cfg;
1283	u32 intr_mask;
1284	u32 intr_set;
1285	uint intr_blocked;
1286
1287	struct ksz_desc_info rx_desc_info;
1288	struct ksz_desc_info tx_desc_info;
1289
1290	int tx_int_cnt;
1291	int tx_int_mask;
1292	int tx_size;
1293
1294	u8 perm_addr[ETH_ALEN];
1295	u8 override_addr[ETH_ALEN];
1296	u8 address[ADDITIONAL_ENTRIES][ETH_ALEN];
1297	u8 addr_list_size;
1298	u8 mac_override;
1299	u8 promiscuous;
1300	u8 all_multi;
1301	u8 multi_list[MAX_MULTICAST_LIST][ETH_ALEN];
1302	u8 multi_bits[HW_MULTICAST_SIZE];
1303	u8 multi_list_size;
1304
1305	u8 enabled;
1306	u8 rx_stop;
1307	u8 reserved2[1];
1308
1309	uint features;
1310	uint overrides;
1311
1312	void *parent;
1313};
1314
1315enum {
1316	PHY_NO_FLOW_CTRL,
1317	PHY_FLOW_CTRL,
1318	PHY_TX_ONLY,
1319	PHY_RX_ONLY
1320};
1321
1322/**
1323 * struct ksz_port - Virtual port data structure
1324 * @duplex:		Duplex mode setting.  1 for half duplex, 2 for full
1325 * 			duplex, and 0 for auto, which normally results in full
1326 * 			duplex.
1327 * @speed:		Speed setting.  10 for 10 Mbit, 100 for 100 Mbit, and
1328 * 			0 for auto, which normally results in 100 Mbit.
1329 * @force_link:		Force link setting.  0 for auto-negotiation, and 1 for
1330 * 			force.
1331 * @flow_ctrl:		Flow control setting.  PHY_NO_FLOW_CTRL for no flow
1332 * 			control, and PHY_FLOW_CTRL for flow control.
1333 * 			PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
1334 * 			Mbit PHY.
1335 * @first_port:		Index of first port this port supports.
1336 * @mib_port_cnt:	Number of ports with MIB counters.
1337 * @port_cnt:		Number of ports this port supports.
1338 * @counter:		Port statistics counter.
1339 * @hw:			Pointer to hardware structure.
1340 * @linked:		Pointer to port information linked to this port.
1341 */
1342struct ksz_port {
1343	u8 duplex;
1344	u8 speed;
1345	u8 force_link;
1346	u8 flow_ctrl;
1347
1348	int first_port;
1349	int mib_port_cnt;
1350	int port_cnt;
1351	u64 counter[OID_COUNTER_LAST];
1352
1353	struct ksz_hw *hw;
1354	struct ksz_port_info *linked;
1355};
1356
1357/**
1358 * struct ksz_timer_info - Timer information data structure
1359 * @timer:	Kernel timer.
1360 * @cnt:	Running timer counter.
1361 * @max:	Number of times to run timer; -1 for infinity.
1362 * @period:	Timer period in jiffies.
1363 */
1364struct ksz_timer_info {
1365	struct timer_list timer;
1366	int cnt;
1367	int max;
1368	int period;
1369};
1370
1371/**
1372 * struct ksz_shared_mem - OS dependent shared memory data structure
1373 * @dma_addr:	Physical DMA address allocated.
1374 * @alloc_size:	Allocation size.
1375 * @phys:	Actual physical address used.
1376 * @alloc_virt:	Virtual address allocated.
1377 * @virt:	Actual virtual address used.
1378 */
1379struct ksz_shared_mem {
1380	dma_addr_t dma_addr;
1381	uint alloc_size;
1382	uint phys;
1383	u8 *alloc_virt;
1384	u8 *virt;
1385};
1386
1387/**
1388 * struct ksz_counter_info - OS dependent counter information data structure
1389 * @counter:	Wait queue to wakeup after counters are read.
1390 * @time:	Next time in jiffies to read counter.
1391 * @read:	Indication of counters read in full or not.
1392 */
1393struct ksz_counter_info {
1394	wait_queue_head_t counter;
1395	unsigned long time;
1396	int read;
1397};
1398
1399/**
1400 * struct dev_info - Network device information data structure
1401 * @dev:		Pointer to network device.
1402 * @pdev:		Pointer to PCI device.
1403 * @hw:			Hardware structure.
1404 * @desc_pool:		Physical memory used for descriptor pool.
1405 * @hwlock:		Spinlock to prevent hardware from accessing.
1406 * @lock:		Mutex lock to prevent device from accessing.
1407 * @dev_rcv:		Receive process function used.
1408 * @last_skb:		Socket buffer allocated for descriptor rx fragments.
1409 * @skb_index:		Buffer index for receiving fragments.
1410 * @skb_len:		Buffer length for receiving fragments.
1411 * @mib_read:		Workqueue to read MIB counters.
1412 * @mib_timer_info:	Timer to read MIB counters.
1413 * @counter:		Used for MIB reading.
1414 * @mtu:		Current MTU used.  The default is REGULAR_RX_BUF_SIZE;
1415 * 			the maximum is MAX_RX_BUF_SIZE.
1416 * @opened:		Counter to keep track of device open.
1417 * @rx_tasklet:		Receive processing tasklet.
1418 * @tx_tasklet:		Transmit processing tasklet.
1419 * @wol_enable:		Wake-on-LAN enable set by ethtool.
1420 * @wol_support:	Wake-on-LAN support used by ethtool.
1421 * @pme_wait:		Used for KSZ8841 power management.
1422 */
1423struct dev_info {
1424	struct net_device *dev;
1425	struct pci_dev *pdev;
1426
1427	struct ksz_hw hw;
1428	struct ksz_shared_mem desc_pool;
1429
1430	spinlock_t hwlock;
1431	struct mutex lock;
1432
1433	int (*dev_rcv)(struct dev_info *);
1434
1435	struct sk_buff *last_skb;
1436	int skb_index;
1437	int skb_len;
1438
1439	struct work_struct mib_read;
1440	struct ksz_timer_info mib_timer_info;
1441	struct ksz_counter_info counter[TOTAL_PORT_NUM];
1442
1443	int mtu;
1444	int opened;
1445
1446	struct tasklet_struct rx_tasklet;
1447	struct tasklet_struct tx_tasklet;
1448
1449	int wol_enable;
1450	int wol_support;
1451	unsigned long pme_wait;
1452};
1453
1454/**
1455 * struct dev_priv - Network device private data structure
1456 * @adapter:		Adapter device information.
1457 * @port:		Port information.
1458 * @monitor_time_info:	Timer to monitor ports.
1459 * @proc_sem:		Semaphore for proc accessing.
1460 * @id:			Device ID.
1461 * @mii_if:		MII interface information.
1462 * @advertising:	Temporary variable to store advertised settings.
1463 * @msg_enable:		The message flags controlling driver output.
1464 * @media_state:	The connection status of the device.
1465 * @multicast:		The all multicast state of the device.
1466 * @promiscuous:	The promiscuous state of the device.
1467 */
1468struct dev_priv {
1469	struct dev_info *adapter;
1470	struct ksz_port port;
1471	struct ksz_timer_info monitor_timer_info;
1472
1473	struct semaphore proc_sem;
1474	int id;
1475
1476	struct mii_if_info mii_if;
1477	u32 advertising;
1478
1479	u32 msg_enable;
1480	int media_state;
1481	int multicast;
1482	int promiscuous;
1483};
1484
1485#define DRV_NAME		"KSZ884X PCI"
1486#define DEVICE_NAME		"KSZ884x PCI"
1487#define DRV_VERSION		"1.0.0"
1488#define DRV_RELDATE		"Feb 8, 2010"
1489
1490static char version[] =
1491	"Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";
1492
1493static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };
1494
1495/*
1496 * Interrupt processing primary routines
1497 */
1498
1499static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
1500{
1501	writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
1502}
1503
1504static inline void hw_dis_intr(struct ksz_hw *hw)
1505{
1506	hw->intr_blocked = hw->intr_mask;
1507	writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
1508	hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1509}
1510
1511static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
1512{
1513	hw->intr_set = interrupt;
1514	writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
1515}
1516
1517static inline void hw_ena_intr(struct ksz_hw *hw)
1518{
1519	hw->intr_blocked = 0;
1520	hw_set_intr(hw, hw->intr_mask);
1521}
1522
1523static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
1524{
1525	hw->intr_mask &= ~(bit);
1526}
1527
1528static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
1529{
1530	u32 read_intr;
1531
1532	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1533	hw->intr_set = read_intr & ~interrupt;
1534	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1535	hw_dis_intr_bit(hw, interrupt);
1536}
1537
1538/**
1539 * hw_turn_on_intr - turn on specified interrupts
1540 * @hw: 	The hardware instance.
1541 * @bit:	The interrupt bits to be on.
1542 *
1543 * This routine turns on the specified interrupts in the interrupt mask so that
1544 * those interrupts will be enabled.
1545 */
1546static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
1547{
1548	hw->intr_mask |= bit;
1549
1550	if (!hw->intr_blocked)
1551		hw_set_intr(hw, hw->intr_mask);
1552}
1553
1554static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt)
1555{
1556	u32 read_intr;
1557
1558	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1559	hw->intr_set = read_intr | interrupt;
1560	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1561}
1562
1563static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
1564{
1565	*status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
1566	*status = *status & hw->intr_set;
1567}
1568
1569static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
1570{
1571	if (interrupt)
1572		hw_ena_intr(hw);
1573}
1574
1575/**
1576 * hw_block_intr - block hardware interrupts
1577 *
1578 * This function blocks all interrupts of the hardware and returns the current
1579 * interrupt enable mask so that interrupts can be restored later.
1580 *
1581 * Return the current interrupt enable mask.
1582 */
1583static uint hw_block_intr(struct ksz_hw *hw)
1584{
1585	uint interrupt = 0;
1586
1587	if (!hw->intr_blocked) {
1588		hw_dis_intr(hw);
1589		interrupt = hw->intr_blocked;
1590	}
1591	return interrupt;
1592}
1593
1594/*
1595 * Hardware descriptor routines
1596 */
1597
1598static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
1599{
1600	status.rx.hw_owned = 0;
1601	desc->phw->ctrl.data = cpu_to_le32(status.data);
1602}
1603
1604static inline void release_desc(struct ksz_desc *desc)
1605{
1606	desc->sw.ctrl.tx.hw_owned = 1;
1607	if (desc->sw.buf_size != desc->sw.buf.data) {
1608		desc->sw.buf_size = desc->sw.buf.data;
1609		desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
1610	}
1611	desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
1612}
1613
1614static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
1615{
1616	*desc = &info->ring[info->last];
1617	info->last++;
1618	info->last &= info->mask;
1619	info->avail--;
1620	(*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
1621}
1622
1623static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
1624{
1625	desc->phw->addr = cpu_to_le32(addr);
1626}
1627
1628static inline void set_rx_len(struct ksz_desc *desc, u32 len)
1629{
1630	desc->sw.buf.rx.buf_size = len;
1631}
1632
1633static inline void get_tx_pkt(struct ksz_desc_info *info,
1634	struct ksz_desc **desc)
1635{
1636	*desc = &info->ring[info->next];
1637	info->next++;
1638	info->next &= info->mask;
1639	info->avail--;
1640	(*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
1641}
1642
1643static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
1644{
1645	desc->phw->addr = cpu_to_le32(addr);
1646}
1647
1648static inline void set_tx_len(struct ksz_desc *desc, u32 len)
1649{
1650	desc->sw.buf.tx.buf_size = len;
1651}
1652
1653/* Switch functions */
1654
1655#define TABLE_READ			0x10
1656#define TABLE_SEL_SHIFT			2
1657
1658#define HW_DELAY(hw, reg)			\
1659	do {					\
1660		u16 dummy;			\
1661		dummy = readw(hw->io + reg);	\
1662	} while (0)
1663
1664/**
1665 * sw_r_table - read 4 bytes of data from switch table
1666 * @hw:		The hardware instance.
1667 * @table:	The table selector.
1668 * @addr:	The address of the table entry.
1669 * @data:	Buffer to store the read data.
1670 *
1671 * This routine reads 4 bytes of data from the table of the switch.
1672 * Hardware interrupts are disabled to minimize corruption of read data.
1673 */
1674static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
1675{
1676	u16 ctrl_addr;
1677	uint interrupt;
1678
1679	ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;
1680
1681	interrupt = hw_block_intr(hw);
1682
1683	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1684	HW_DELAY(hw, KS884X_IACR_OFFSET);
1685	*data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1686
1687	hw_restore_intr(hw, interrupt);
1688}
1689
1690/**
1691 * sw_w_table_64 - write 8 bytes of data to the switch table
1692 * @hw:		The hardware instance.
1693 * @table:	The table selector.
1694 * @addr:	The address of the table entry.
1695 * @data_hi:	The high part of data to be written (bit63 ~ bit32).
1696 * @data_lo:	The low part of data to be written (bit31 ~ bit0).
1697 *
1698 * This routine writes 8 bytes of data to the table of the switch.
1699 * Hardware interrupts are disabled to minimize corruption of written data.
1700 */
1701static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
1702	u32 data_lo)
1703{
1704	u16 ctrl_addr;
1705	uint interrupt;
1706
1707	ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;
1708
1709	interrupt = hw_block_intr(hw);
1710
1711	writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
1712	writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);
1713
1714	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1715	HW_DELAY(hw, KS884X_IACR_OFFSET);
1716
1717	hw_restore_intr(hw, interrupt);
1718}
1719
1720/**
1721 * sw_w_sta_mac_table - write to the static MAC table
1722 * @hw: 	The hardware instance.
1723 * @addr:	The address of the table entry.
1724 * @mac_addr:	The MAC address.
1725 * @ports:	The port members.
1726 * @override:	The flag to override the port receive/transmit settings.
1727 * @valid:	The flag to indicate entry is valid.
1728 * @use_fid:	The flag to indicate the FID is valid.
1729 * @fid:	The FID value.
1730 *
1731 * This routine writes an entry of the static MAC table of the switch.  It
1732 * calls sw_w_table_64() to write the data.
1733 */
1734static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
1735	u8 ports, int override, int valid, int use_fid, u8 fid)
1736{
1737	u32 data_hi;
1738	u32 data_lo;
1739
1740	data_lo = ((u32) mac_addr[2] << 24) |
1741		((u32) mac_addr[3] << 16) |
1742		((u32) mac_addr[4] << 8) | mac_addr[5];
1743	data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
1744	data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;
1745
1746	if (override)
1747		data_hi |= STATIC_MAC_TABLE_OVERRIDE;
1748	if (use_fid) {
1749		data_hi |= STATIC_MAC_TABLE_USE_FID;
1750		data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
1751	}
1752	if (valid)
1753		data_hi |= STATIC_MAC_TABLE_VALID;
1754
1755	sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
1756}
1757
1758/**
1759 * sw_r_vlan_table - read from the VLAN table
1760 * @hw: 	The hardware instance.
1761 * @addr:	The address of the table entry.
1762 * @vid:	Buffer to store the VID.
1763 * @fid:	Buffer to store the VID.
1764 * @member:	Buffer to store the port membership.
1765 *
1766 * This function reads an entry of the VLAN table of the switch.  It calls
1767 * sw_r_table() to get the data.
1768 *
1769 * Return 0 if the entry is valid; otherwise -1.
1770 */
1771static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
1772	u8 *member)
1773{
1774	u32 data;
1775
1776	sw_r_table(hw, TABLE_VLAN, addr, &data);
1777	if (data & VLAN_TABLE_VALID) {
1778		*vid = (u16)(data & VLAN_TABLE_VID);
1779		*fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
1780		*member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
1781			VLAN_TABLE_MEMBERSHIP_SHIFT);
1782		return 0;
1783	}
1784	return -1;
1785}
1786
1787/**
1788 * port_r_mib_cnt - read MIB counter
1789 * @hw: 	The hardware instance.
1790 * @port:	The port index.
1791 * @addr:	The address of the counter.
1792 * @cnt:	Buffer to store the counter.
1793 *
1794 * This routine reads a MIB counter of the port.
1795 * Hardware interrupts are disabled to minimize corruption of read data.
1796 */
1797static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
1798{
1799	u32 data;
1800	u16 ctrl_addr;
1801	uint interrupt;
1802	int timeout;
1803
1804	ctrl_addr = addr + PORT_COUNTER_NUM * port;
1805
1806	interrupt = hw_block_intr(hw);
1807
1808	ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
1809	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1810	HW_DELAY(hw, KS884X_IACR_OFFSET);
1811
1812	for (timeout = 100; timeout > 0; timeout--) {
1813		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1814
1815		if (data & MIB_COUNTER_VALID) {
1816			if (data & MIB_COUNTER_OVERFLOW)
1817				*cnt += MIB_COUNTER_VALUE + 1;
1818			*cnt += data & MIB_COUNTER_VALUE;
1819			break;
1820		}
1821	}
1822
1823	hw_restore_intr(hw, interrupt);
1824}
1825
1826/**
1827 * port_r_mib_pkt - read dropped packet counts
1828 * @hw: 	The hardware instance.
1829 * @port:	The port index.
1830 * @cnt:	Buffer to store the receive and transmit dropped packet counts.
1831 *
1832 * This routine reads the dropped packet counts of the port.
1833 * Hardware interrupts are disabled to minimize corruption of read data.
1834 */
1835static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
1836{
1837	u32 cur;
1838	u32 data;
1839	u16 ctrl_addr;
1840	uint interrupt;
1841	int index;
1842
1843	index = KS_MIB_PACKET_DROPPED_RX_0 + port;
1844	do {
1845		interrupt = hw_block_intr(hw);
1846
1847		ctrl_addr = (u16) index;
1848		ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
1849			<< 8);
1850		writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1851		HW_DELAY(hw, KS884X_IACR_OFFSET);
1852		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1853
1854		hw_restore_intr(hw, interrupt);
1855
1856		data &= MIB_PACKET_DROPPED;
1857		cur = *last;
1858		if (data != cur) {
1859			*last = data;
1860			if (data < cur)
1861				data += MIB_PACKET_DROPPED + 1;
1862			data -= cur;
1863			*cnt += data;
1864		}
1865		++last;
1866		++cnt;
1867		index -= KS_MIB_PACKET_DROPPED_TX -
1868			KS_MIB_PACKET_DROPPED_TX_0 + 1;
1869	} while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
1870}
1871
1872/**
1873 * port_r_cnt - read MIB counters periodically
1874 * @hw: 	The hardware instance.
1875 * @port:	The port index.
1876 *
1877 * This routine is used to read the counters of the port periodically to avoid
1878 * counter overflow.  The hardware should be acquired first before calling this
1879 * routine.
1880 *
1881 * Return non-zero when not all counters not read.
1882 */
1883static int port_r_cnt(struct ksz_hw *hw, int port)
1884{
1885	struct ksz_port_mib *mib = &hw->port_mib[port];
1886
1887	if (mib->mib_start < PORT_COUNTER_NUM)
1888		while (mib->cnt_ptr < PORT_COUNTER_NUM) {
1889			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1890				&mib->counter[mib->cnt_ptr]);
1891			++mib->cnt_ptr;
1892		}
1893	if (hw->mib_cnt > PORT_COUNTER_NUM)
1894		port_r_mib_pkt(hw, port, mib->dropped,
1895			&mib->counter[PORT_COUNTER_NUM]);
1896	mib->cnt_ptr = 0;
1897	return 0;
1898}
1899
1900/**
1901 * port_init_cnt - initialize MIB counter values
1902 * @hw: 	The hardware instance.
1903 * @port:	The port index.
1904 *
1905 * This routine is used to initialize all counters to zero if the hardware
1906 * cannot do it after reset.
1907 */
1908static void port_init_cnt(struct ksz_hw *hw, int port)
1909{
1910	struct ksz_port_mib *mib = &hw->port_mib[port];
1911
1912	mib->cnt_ptr = 0;
1913	if (mib->mib_start < PORT_COUNTER_NUM)
1914		do {
1915			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1916				&mib->counter[mib->cnt_ptr]);
1917			++mib->cnt_ptr;
1918		} while (mib->cnt_ptr < PORT_COUNTER_NUM);
1919	if (hw->mib_cnt > PORT_COUNTER_NUM)
1920		port_r_mib_pkt(hw, port, mib->dropped,
1921			&mib->counter[PORT_COUNTER_NUM]);
1922	memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
1923	mib->cnt_ptr = 0;
1924}
1925
1926/*
1927 * Port functions
1928 */
1929
1930/**
1931 * port_chk - check port register bits
1932 * @hw: 	The hardware instance.
1933 * @port:	The port index.
1934 * @offset:	The offset of the port register.
1935 * @bits:	The data bits to check.
1936 *
1937 * This function checks whether the specified bits of the port register are set
1938 * or not.
1939 *
1940 * Return 0 if the bits are not set.
1941 */
1942static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits)
1943{
1944	u32 addr;
1945	u16 data;
1946
1947	PORT_CTRL_ADDR(port, addr);
1948	addr += offset;
1949	data = readw(hw->io + addr);
1950	return (data & bits) == bits;
1951}
1952
1953/**
1954 * port_cfg - set port register bits
1955 * @hw: 	The hardware instance.
1956 * @port:	The port index.
1957 * @offset:	The offset of the port register.
1958 * @bits:	The data bits to set.
1959 * @set:	The flag indicating whether the bits are to be set or not.
1960 *
1961 * This routine sets or resets the specified bits of the port register.
1962 */
1963static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
1964	int set)
1965{
1966	u32 addr;
1967	u16 data;
1968
1969	PORT_CTRL_ADDR(port, addr);
1970	addr += offset;
1971	data = readw(hw->io + addr);
1972	if (set)
1973		data |= bits;
1974	else
1975		data &= ~bits;
1976	writew(data, hw->io + addr);
1977}
1978
1979/**
1980 * port_chk_shift - check port bit
1981 * @hw: 	The hardware instance.
1982 * @port:	The port index.
1983 * @offset:	The offset of the register.
1984 * @shift:	Number of bits to shift.
1985 *
1986 * This function checks whether the specified port is set in the register or
1987 * not.
1988 *
1989 * Return 0 if the port is not set.
1990 */
1991static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift)
1992{
1993	u16 data;
1994	u16 bit = 1 << port;
1995
1996	data = readw(hw->io + addr);
1997	data >>= shift;
1998	return (data & bit) == bit;
1999}
2000
2001/**
2002 * port_cfg_shift - set port bit
2003 * @hw: 	The hardware instance.
2004 * @port:	The port index.
2005 * @offset:	The offset of the register.
2006 * @shift:	Number of bits to shift.
2007 * @set:	The flag indicating whether the port is to be set or not.
2008 *
2009 * This routine sets or resets the specified port in the register.
2010 */
2011static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift,
2012	int set)
2013{
2014	u16 data;
2015	u16 bits = 1 << port;
2016
2017	data = readw(hw->io + addr);
2018	bits <<= shift;
2019	if (set)
2020		data |= bits;
2021	else
2022		data &= ~bits;
2023	writew(data, hw->io + addr);
2024}
2025
2026/**
2027 * port_r8 - read byte from port register
2028 * @hw: 	The hardware instance.
2029 * @port:	The port index.
2030 * @offset:	The offset of the port register.
2031 * @data:	Buffer to store the data.
2032 *
2033 * This routine reads a byte from the port register.
2034 */
2035static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
2036{
2037	u32 addr;
2038
2039	PORT_CTRL_ADDR(port, addr);
2040	addr += offset;
2041	*data = readb(hw->io + addr);
2042}
2043
2044/**
2045 * port_r16 - read word from port register.
2046 * @hw: 	The hardware instance.
2047 * @port:	The port index.
2048 * @offset:	The offset of the port register.
2049 * @data:	Buffer to store the data.
2050 *
2051 * This routine reads a word from the port register.
2052 */
2053static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
2054{
2055	u32 addr;
2056
2057	PORT_CTRL_ADDR(port, addr);
2058	addr += offset;
2059	*data = readw(hw->io + addr);
2060}
2061
2062/**
2063 * port_w16 - write word to port register.
2064 * @hw: 	The hardware instance.
2065 * @port:	The port index.
2066 * @offset:	The offset of the port register.
2067 * @data:	Data to write.
2068 *
2069 * This routine writes a word to the port register.
2070 */
2071static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
2072{
2073	u32 addr;
2074
2075	PORT_CTRL_ADDR(port, addr);
2076	addr += offset;
2077	writew(data, hw->io + addr);
2078}
2079
2080/**
2081 * sw_chk - check switch register bits
2082 * @hw: 	The hardware instance.
2083 * @addr:	The address of the switch register.
2084 * @bits:	The data bits to check.
2085 *
2086 * This function checks whether the specified bits of the switch register are
2087 * set or not.
2088 *
2089 * Return 0 if the bits are not set.
2090 */
2091static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
2092{
2093	u16 data;
2094
2095	data = readw(hw->io + addr);
2096	return (data & bits) == bits;
2097}
2098
2099/**
2100 * sw_cfg - set switch register bits
2101 * @hw: 	The hardware instance.
2102 * @addr:	The address of the switch register.
2103 * @bits:	The data bits to set.
2104 * @set:	The flag indicating whether the bits are to be set or not.
2105 *
2106 * This function sets or resets the specified bits of the switch register.
2107 */
2108static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
2109{
2110	u16 data;
2111
2112	data = readw(hw->io + addr);
2113	if (set)
2114		data |= bits;
2115	else
2116		data &= ~bits;
2117	writew(data, hw->io + addr);
2118}
2119
2120/* Bandwidth */
2121
2122static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
2123{
2124	port_cfg(hw, p,
2125		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
2126}
2127
2128static inline int port_chk_broad_storm(struct ksz_hw *hw, int p)
2129{
2130	return port_chk(hw, p,
2131		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM);
2132}
2133
2134/* Driver set switch broadcast storm protection at 10% rate. */
2135#define BROADCAST_STORM_PROTECTION_RATE	10
2136
2137/* 148,800 frames * 67 ms / 100 */
2138#define BROADCAST_STORM_VALUE		9969
2139
2140/**
2141 * sw_cfg_broad_storm - configure broadcast storm threshold
2142 * @hw: 	The hardware instance.
2143 * @percent:	Broadcast storm threshold in percent of transmit rate.
2144 *
2145 * This routine configures the broadcast storm threshold of the switch.
2146 */
2147static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2148{
2149	u16 data;
2150	u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);
2151
2152	if (value > BROADCAST_STORM_RATE)
2153		value = BROADCAST_STORM_RATE;
2154
2155	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2156	data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
2157	data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
2158	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2159}
2160
2161/**
2162 * sw_get_board_storm - get broadcast storm threshold
2163 * @hw: 	The hardware instance.
2164 * @percent:	Buffer to store the broadcast storm threshold percentage.
2165 *
2166 * This routine retrieves the broadcast storm threshold of the switch.
2167 */
2168static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
2169{
2170	int num;
2171	u16 data;
2172
2173	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2174	num = (data & BROADCAST_STORM_RATE_HI);
2175	num <<= 8;
2176	num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
2177	num = (num * 100 + BROADCAST_STORM_VALUE / 2) / BROADCAST_STORM_VALUE;
2178	*percent = (u8) num;
2179}
2180
2181/**
2182 * sw_dis_broad_storm - disable broadstorm
2183 * @hw: 	The hardware instance.
2184 * @port:	The port index.
2185 *
2186 * This routine disables the broadcast storm limit function of the switch.
2187 */
2188static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
2189{
2190	port_cfg_broad_storm(hw, port, 0);
2191}
2192
2193/**
2194 * sw_ena_broad_storm - enable broadcast storm
2195 * @hw: 	The hardware instance.
2196 * @port:	The port index.
2197 *
2198 * This routine enables the broadcast storm limit function of the switch.
2199 */
2200static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
2201{
2202	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2203	port_cfg_broad_storm(hw, port, 1);
2204}
2205
2206/**
2207 * sw_init_broad_storm - initialize broadcast storm
2208 * @hw: 	The hardware instance.
2209 *
2210 * This routine initializes the broadcast storm limit function of the switch.
2211 */
2212static void sw_init_broad_storm(struct ksz_hw *hw)
2213{
2214	int port;
2215
2216	hw->ksz_switch->broad_per = 1;
2217	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2218	for (port = 0; port < TOTAL_PORT_NUM; port++)
2219		sw_dis_broad_storm(hw, port);
2220	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
2221}
2222
2223/**
2224 * hw_cfg_broad_storm - configure broadcast storm
2225 * @hw: 	The hardware instance.
2226 * @percent:	Broadcast storm threshold in percent of transmit rate.
2227 *
2228 * This routine configures the broadcast storm threshold of the switch.
2229 * It is called by user functions.  The hardware should be acquired first.
2230 */
2231static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2232{
2233	if (percent > 100)
2234		percent = 100;
2235
2236	sw_cfg_broad_storm(hw, percent);
2237	sw_get_broad_storm(hw, &percent);
2238	hw->ksz_switch->broad_per = percent;
2239}
2240
2241/**
2242 * sw_dis_prio_rate - disable switch priority rate
2243 * @hw: 	The hardware instance.
2244 * @port:	The port index.
2245 *
2246 * This routine disables the priority rate function of the switch.
2247 */
2248static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
2249{
2250	u32 addr;
2251
2252	PORT_CTRL_ADDR(port, addr);
2253	addr += KS8842_PORT_IN_RATE_OFFSET;
2254	writel(0, hw->io + addr);
2255}
2256
2257/**
2258 * sw_init_prio_rate - initialize switch prioirty rate
2259 * @hw: 	The hardware instance.
2260 *
2261 * This routine initializes the priority rate function of the switch.
2262 */
2263static void sw_init_prio_rate(struct ksz_hw *hw)
2264{
2265	int port;
2266	int prio;
2267	struct ksz_switch *sw = hw->ksz_switch;
2268
2269	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2270		for (prio = 0; prio < PRIO_QUEUES; prio++) {
2271			sw->port_cfg[port].rx_rate[prio] =
2272			sw->port_cfg[port].tx_rate[prio] = 0;
2273		}
2274		sw_dis_prio_rate(hw, port);
2275	}
2276}
2277
2278/* Communication */
2279
2280static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
2281{
2282	port_cfg(hw, p,
2283		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
2284}
2285
2286static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set)
2287{
2288	port_cfg(hw, p,
2289		KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set);
2290}
2291
2292static inline int port_chk_back_pressure(struct ksz_hw *hw, int p)
2293{
2294	return port_chk(hw, p,
2295		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE);
2296}
2297
2298static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p)
2299{
2300	return port_chk(hw, p,
2301		KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL);
2302}
2303
2304/* Spanning Tree */
2305
2306static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set)
2307{
2308	port_cfg(hw, p,
2309		KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set);
2310}
2311
2312static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set)
2313{
2314	port_cfg(hw, p,
2315		KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set);
2316}
2317
2318static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set)
2319{
2320	sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set);
2321}
2322
2323static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw)
2324{
2325	if (!(hw->overrides & FAST_AGING)) {
2326		sw_cfg_fast_aging(hw, 1);
2327		mdelay(1);
2328		sw_cfg_fast_aging(hw, 0);
2329	}
2330}
2331
2332/* VLAN */
2333
2334static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert)
2335{
2336	port_cfg(hw, p,
2337		KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert);
2338}
2339
2340static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove)
2341{
2342	port_cfg(hw, p,
2343		KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove);
2344}
2345
2346static inline int port_chk_ins_tag(struct ksz_hw *hw, int p)
2347{
2348	return port_chk(hw, p,
2349		KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG);
2350}
2351
2352static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p)
2353{
2354	return port_chk(hw, p,
2355		KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG);
2356}
2357
2358static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set)
2359{
2360	port_cfg(hw, p,
2361		KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set);
2362}
2363
2364static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set)
2365{
2366	port_cfg(hw, p,
2367		KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set);
2368}
2369
2370static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p)
2371{
2372	return port_chk(hw, p,
2373		KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID);
2374}
2375
2376static inline int port_chk_in_filter(struct ksz_hw *hw, int p)
2377{
2378	return port_chk(hw, p,
2379		KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER);
2380}
2381
2382/* Mirroring */
2383
2384static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
2385{
2386	port_cfg(hw, p,
2387		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
2388}
2389
2390static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
2391{
2392	port_cfg(hw, p,
2393		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
2394}
2395
2396static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
2397{
2398	port_cfg(hw, p,
2399		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
2400}
2401
2402static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
2403{
2404	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
2405}
2406
2407static void sw_init_mirror(struct ksz_hw *hw)
2408{
2409	int port;
2410
2411	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2412		port_cfg_mirror_sniffer(hw, port, 0);
2413		port_cfg_mirror_rx(hw, port, 0);
2414		port_cfg_mirror_tx(hw, port, 0);
2415	}
2416	sw_cfg_mirror_rx_tx(hw, 0);
2417}
2418
2419static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set)
2420{
2421	sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2422		SWITCH_UNK_DEF_PORT_ENABLE, set);
2423}
2424
2425static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw)
2426{
2427	return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2428		SWITCH_UNK_DEF_PORT_ENABLE);
2429}
2430
2431static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set)
2432{
2433	port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set);
2434}
2435
2436static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port)
2437{
2438	return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0);
2439}
2440
2441/* Priority */
2442
2443static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
2444{
2445	port_cfg(hw, p,
2446		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
2447}
2448
2449static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
2450{
2451	port_cfg(hw, p,
2452		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
2453}
2454
2455static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
2456{
2457	port_cfg(hw, p,
2458		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
2459}
2460
2461static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
2462{
2463	port_cfg(hw, p,
2464		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
2465}
2466
2467static inline int port_chk_diffserv(struct ksz_hw *hw, int p)
2468{
2469	return port_chk(hw, p,
2470		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE);
2471}
2472
2473static inline int port_chk_802_1p(struct ksz_hw *hw, int p)
2474{
2475	return port_chk(hw, p,
2476		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE);
2477}
2478
2479static inline int port_chk_replace_vid(struct ksz_hw *hw, int p)
2480{
2481	return port_chk(hw, p,
2482		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING);
2483}
2484
2485static inline int port_chk_prio(struct ksz_hw *hw, int p)
2486{
2487	return port_chk(hw, p,
2488		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE);
2489}
2490
2491/**
2492 * sw_dis_diffserv - disable switch DiffServ priority
2493 * @hw: 	The hardware instance.
2494 * @port:	The port index.
2495 *
2496 * This routine disables the DiffServ priority function of the switch.
2497 */
2498static void sw_dis_diffserv(struct ksz_hw *hw, int port)
2499{
2500	port_cfg_diffserv(hw, port, 0);
2501}
2502
2503/**
2504 * sw_dis_802_1p - disable switch 802.1p priority
2505 * @hw: 	The hardware instance.
2506 * @port:	The port index.
2507 *
2508 * This routine disables the 802.1p priority function of the switch.
2509 */
2510static void sw_dis_802_1p(struct ksz_hw *hw, int port)
2511{
2512	port_cfg_802_1p(hw, port, 0);
2513}
2514
2515/**
2516 * sw_cfg_replace_null_vid -
2517 * @hw: 	The hardware instance.
2518 * @set:	The flag to disable or enable.
2519 *
2520 */
2521static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
2522{
2523	sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
2524}
2525
2526/**
2527 * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
2528 * @hw: 	The hardware instance.
2529 * @port:	The port index.
2530 * @set:	The flag to disable or enable.
2531 *
2532 * This routine enables the 802.1p priority re-mapping function of the switch.
2533 * That allows 802.1p priority field to be replaced with the port's default
2534 * tag's priority value if the ingress packet's 802.1p priority has a higher
2535 * priority than port's default tag's priority.
2536 */
2537static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
2538{
2539	port_cfg_replace_vid(hw, port, set);
2540}
2541
2542/**
2543 * sw_cfg_port_based - configure switch port based priority
2544 * @hw: 	The hardware instance.
2545 * @port:	The port index.
2546 * @prio:	The priority to set.
2547 *
2548 * This routine configures the port based priority of the switch.
2549 */
2550static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
2551{
2552	u16 data;
2553
2554	if (prio > PORT_BASED_PRIORITY_BASE)
2555		prio = PORT_BASED_PRIORITY_BASE;
2556
2557	hw->ksz_switch->port_cfg[port].port_prio = prio;
2558
2559	port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
2560	data &= ~PORT_BASED_PRIORITY_MASK;
2561	data |= prio << PORT_BASED_PRIORITY_SHIFT;
2562	port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
2563}
2564
2565/**
2566 * sw_dis_multi_queue - disable transmit multiple queues
2567 * @hw: 	The hardware instance.
2568 * @port:	The port index.
2569 *
2570 * This routine disables the transmit multiple queues selection of the switch
2571 * port.  Only single transmit queue on the port.
2572 */
2573static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
2574{
2575	port_cfg_prio(hw, port, 0);
2576}
2577
2578/**
2579 * sw_init_prio - initialize switch priority
2580 * @hw: 	The hardware instance.
2581 *
2582 * This routine initializes the switch QoS priority functions.
2583 */
2584static void sw_init_prio(struct ksz_hw *hw)
2585{
2586	int port;
2587	int tos;
2588	struct ksz_switch *sw = hw->ksz_switch;
2589
2590	/*
2591	 * Init all the 802.1p tag priority value to be assigned to different
2592	 * priority queue.
2593	 */
2594	sw->p_802_1p[0] = 0;
2595	sw->p_802_1p[1] = 0;
2596	sw->p_802_1p[2] = 1;
2597	sw->p_802_1p[3] = 1;
2598	sw->p_802_1p[4] = 2;
2599	sw->p_802_1p[5] = 2;
2600	sw->p_802_1p[6] = 3;
2601	sw->p_802_1p[7] = 3;
2602
2603	/*
2604	 * Init all the DiffServ priority value to be assigned to priority
2605	 * queue 0.
2606	 */
2607	for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
2608		sw->diffserv[tos] = 0;
2609
2610	/* All QoS functions disabled. */
2611	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2612		sw_dis_multi_queue(hw, port);
2613		sw_dis_diffserv(hw, port);
2614		sw_dis_802_1p(hw, port);
2615		sw_cfg_replace_vid(hw, port, 0);
2616
2617		sw->port_cfg[port].port_prio = 0;
2618		sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
2619	}
2620	sw_cfg_replace_null_vid(hw, 0);
2621}
2622
2623/**
2624 * port_get_def_vid - get port default VID.
2625 * @hw: 	The hardware instance.
2626 * @port:	The port index.
2627 * @vid:	Buffer to store the VID.
2628 *
2629 * This routine retrieves the default VID of the port.
2630 */
2631static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
2632{
2633	u32 addr;
2634
2635	PORT_CTRL_ADDR(port, addr);
2636	addr += KS8842_PORT_CTRL_VID_OFFSET;
2637	*vid = readw(hw->io + addr);
2638}
2639
2640/**
2641 * sw_init_vlan - initialize switch VLAN
2642 * @hw: 	The hardware instance.
2643 *
2644 * This routine initializes the VLAN function of the switch.
2645 */
2646static void sw_init_vlan(struct ksz_hw *hw)
2647{
2648	int port;
2649	int entry;
2650	struct ksz_switch *sw = hw->ksz_switch;
2651
2652	/* Read 16 VLAN entries from device's VLAN table. */
2653	for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
2654		sw_r_vlan_table(hw, entry,
2655			&sw->vlan_table[entry].vid,
2656			&sw->vlan_table[entry].fid,
2657			&sw->vlan_table[entry].member);
2658	}
2659
2660	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2661		port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
2662		sw->port_cfg[port].member = PORT_MASK;
2663	}
2664}
2665
2666/**
2667 * sw_cfg_port_base_vlan - configure port-based VLAN membership
2668 * @hw: 	The hardware instance.
2669 * @port:	The port index.
2670 * @member:	The port-based VLAN membership.
2671 *
2672 * This routine configures the port-based VLAN membership of the port.
2673 */
2674static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
2675{
2676	u32 addr;
2677	u8 data;
2678
2679	PORT_CTRL_ADDR(port, addr);
2680	addr += KS8842_PORT_CTRL_2_OFFSET;
2681
2682	data = readb(hw->io + addr);
2683	data &= ~PORT_VLAN_MEMBERSHIP;
2684	data |= (member & PORT_MASK);
2685	writeb(data, hw->io + addr);
2686
2687	hw->ksz_switch->port_cfg[port].member = member;
2688}
2689
2690/**
2691 * sw_get_addr - get the switch MAC address.
2692 * @hw: 	The hardware instance.
2693 * @mac_addr:	Buffer to store the MAC address.
2694 *
2695 * This function retrieves the MAC address of the switch.
2696 */
2697static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr)
2698{
2699	int i;
2700
2701	for (i = 0; i < 6; i += 2) {
2702		mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2703		mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2704	}
2705}
2706
2707/**
2708 * sw_set_addr - configure switch MAC address
2709 * @hw: 	The hardware instance.
2710 * @mac_addr:	The MAC address.
2711 *
2712 * This function configures the MAC address of the switch.
2713 */
2714static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
2715{
2716	int i;
2717
2718	for (i = 0; i < 6; i += 2) {
2719		writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2720		writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2721	}
2722}
2723
2724/**
2725 * sw_set_global_ctrl - set switch global control
2726 * @hw: 	The hardware instance.
2727 *
2728 * This routine sets the global control of the switch function.
2729 */
2730static void sw_set_global_ctrl(struct ksz_hw *hw)
2731{
2732	u16 data;
2733
2734	/* Enable switch MII flow control. */
2735	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2736	data |= SWITCH_FLOW_CTRL;
2737	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2738
2739	data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2740
2741	/* Enable aggressive back off algorithm in half duplex mode. */
2742	data |= SWITCH_AGGR_BACKOFF;
2743
2744	/* Enable automatic fast aging when link changed detected. */
2745	data |= SWITCH_AGING_ENABLE;
2746	data |= SWITCH_LINK_AUTO_AGING;
2747
2748	if (hw->overrides & FAST_AGING)
2749		data |= SWITCH_FAST_AGING;
2750	else
2751		data &= ~SWITCH_FAST_AGING;
2752	writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2753
2754	data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2755
2756	/* Enable no excessive collision drop. */
2757	data |= NO_EXC_COLLISION_DROP;
2758	writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2759}
2760
2761enum {
2762	STP_STATE_DISABLED = 0,
2763	STP_STATE_LISTENING,
2764	STP_STATE_LEARNING,
2765	STP_STATE_FORWARDING,
2766	STP_STATE_BLOCKED,
2767	STP_STATE_SIMPLE
2768};
2769
2770/**
2771 * port_set_stp_state - configure port spanning tree state
2772 * @hw: 	The hardware instance.
2773 * @port:	The port index.
2774 * @state:	The spanning tree state.
2775 *
2776 * This routine configures the spanning tree state of the port.
2777 */
2778static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
2779{
2780	u16 data;
2781
2782	port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
2783	switch (state) {
2784	case STP_STATE_DISABLED:
2785		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2786		data |= PORT_LEARN_DISABLE;
2787		break;
2788	case STP_STATE_LISTENING:
2789/*
2790 * No need to turn on transmit because of port direct mode.
2791 * Turning on receive is required if static MAC table is not setup.
2792 */
2793		data &= ~PORT_TX_ENABLE;
2794		data |= PORT_RX_ENABLE;
2795		data |= PORT_LEARN_DISABLE;
2796		break;
2797	case STP_STATE_LEARNING:
2798		data &= ~PORT_TX_ENABLE;
2799		data |= PORT_RX_ENABLE;
2800		data &= ~PORT_LEARN_DISABLE;
2801		break;
2802	case STP_STATE_FORWARDING:
2803		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2804		data &= ~PORT_LEARN_DISABLE;
2805		break;
2806	case STP_STATE_BLOCKED:
2807/*
2808 * Need to setup static MAC table with override to keep receiving BPDU
2809 * messages.  See sw_init_stp routine.
2810 */
2811		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2812		data |= PORT_LEARN_DISABLE;
2813		break;
2814	case STP_STATE_SIMPLE:
2815		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2816		data |= PORT_LEARN_DISABLE;
2817		break;
2818	}
2819	port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
2820	hw->ksz_switch->port_cfg[port].stp_state = state;
2821}
2822
2823#define STP_ENTRY			0
2824#define BROADCAST_ENTRY			1
2825#define BRIDGE_ADDR_ENTRY		2
2826#define IPV6_ADDR_ENTRY			3
2827
2828/**
2829 * sw_clr_sta_mac_table - clear static MAC table
2830 * @hw: 	The hardware instance.
2831 *
2832 * This routine clears the static MAC table.
2833 */
2834static void sw_clr_sta_mac_table(struct ksz_hw *hw)
2835{
2836	struct ksz_mac_table *entry;
2837	int i;
2838
2839	for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
2840		entry = &hw->ksz_switch->mac_table[i];
2841		sw_w_sta_mac_table(hw, i,
2842			entry->mac_addr, entry->ports,
2843			entry->override, 0,
2844			entry->use_fid, entry->fid);
2845	}
2846}
2847
2848/**
2849 * sw_init_stp - initialize switch spanning tree support
2850 * @hw: 	The hardware instance.
2851 *
2852 * This routine initializes the spanning tree support of the switch.
2853 */
2854static void sw_init_stp(struct ksz_hw *hw)
2855{
2856	struct ksz_mac_table *entry;
2857
2858	entry = &hw->ksz_switch->mac_table[STP_ENTRY];
2859	entry->mac_addr[0] = 0x01;
2860	entry->mac_addr[1] = 0x80;
2861	entry->mac_addr[2] = 0xC2;
2862	entry->mac_addr[3] = 0x00;
2863	entry->mac_addr[4] = 0x00;
2864	entry->mac_addr[5] = 0x00;
2865	entry->ports = HOST_MASK;
2866	entry->override = 1;
2867	entry->valid = 1;
2868	sw_w_sta_mac_table(hw, STP_ENTRY,
2869		entry->mac_addr, entry->ports,
2870		entry->override, entry->valid,
2871		entry->use_fid, entry->fid);
2872}
2873
2874/**
2875 * sw_block_addr - block certain packets from the host port
2876 * @hw: 	The hardware instance.
2877 *
2878 * This routine blocks certain packets from reaching to the host port.
2879 */
2880static void sw_block_addr(struct ksz_hw *hw)
2881{
2882	struct ksz_mac_table *entry;
2883	int i;
2884
2885	for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
2886		entry = &hw->ksz_switch->mac_table[i];
2887		entry->valid = 0;
2888		sw_w_sta_mac_table(hw, i,
2889			entry->mac_addr, entry->ports,
2890			entry->override, entry->valid,
2891			entry->use_fid, entry->fid);
2892	}
2893}
2894
2895#define PHY_LINK_SUPPORT		\
2896	(PHY_AUTO_NEG_ASYM_PAUSE |	\
2897	PHY_AUTO_NEG_SYM_PAUSE |	\
2898	PHY_AUTO_NEG_100BT4 |		\
2899	PHY_AUTO_NEG_100BTX_FD |	\
2900	PHY_AUTO_NEG_100BTX |		\
2901	PHY_AUTO_NEG_10BT_FD |		\
2902	PHY_AUTO_NEG_10BT)
2903
2904static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
2905{
2906	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2907}
2908
2909static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
2910{
2911	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2912}
2913
2914static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data)
2915{
2916	*data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET);
2917}
2918
2919static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data)
2920{
2921	*data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2922}
2923
2924static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data)
2925{
2926	writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2927}
2928
2929static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data)
2930{
2931	*data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET);
2932}
2933
2934static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data)
2935{
2936	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2937}
2938
2939static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data)
2940{
2941	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2942}
2943
2944static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data)
2945{
2946	*data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2947}
2948
2949static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data)
2950{
2951	writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2952}
2953
2954static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data)
2955{
2956	*data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2957}
2958
2959static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data)
2960{
2961	writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2962}
2963
2964/**
2965 * hw_r_phy - read data from PHY register
2966 * @hw: 	The hardware instance.
2967 * @port:	Port to read.
2968 * @reg:	PHY register to read.
2969 * @val:	Buffer to store the read data.
2970 *
2971 * This routine reads data from the PHY register.
2972 */
2973static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
2974{
2975	int phy;
2976
2977	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2978	*val = readw(hw->io + phy);
2979}
2980
2981/**
2982 * port_w_phy - write data to PHY register
2983 * @hw: 	The hardware instance.
2984 * @port:	Port to write.
2985 * @reg:	PHY register to write.
2986 * @val:	Word data to write.
2987 *
2988 * This routine writes data to the PHY register.
2989 */
2990static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
2991{
2992	int phy;
2993
2994	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2995	writew(val, hw->io + phy);
2996}
2997
2998/*
2999 * EEPROM access functions
3000 */
3001
3002#define AT93C_CODE			0
3003#define AT93C_WR_OFF			0x00
3004#define AT93C_WR_ALL			0x10
3005#define AT93C_ER_ALL			0x20
3006#define AT93C_WR_ON			0x30
3007
3008#define AT93C_WRITE			1
3009#define AT93C_READ			2
3010#define AT93C_ERASE			3
3011
3012#define EEPROM_DELAY			4
3013
3014static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
3015{
3016	u16 data;
3017
3018	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3019	data &= ~gpio;
3020	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3021}
3022
3023static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
3024{
3025	u16 data;
3026
3027	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3028	data |= gpio;
3029	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3030}
3031
3032static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
3033{
3034	u16 data;
3035
3036	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3037	return (u8)(data & gpio);
3038}
3039
3040static void eeprom_clk(struct ksz_hw *hw)
3041{
3042	raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3043	udelay(EEPROM_DELAY);
3044	drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3045	udelay(EEPROM_DELAY);
3046}
3047
3048static u16 spi_r(struct ksz_hw *hw)
3049{
3050	int i;
3051	u16 temp = 0;
3052
3053	for (i = 15; i >= 0; i--) {
3054		raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3055		udelay(EEPROM_DELAY);
3056
3057		temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;
3058
3059		drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3060		udelay(EEPROM_DELAY);
3061	}
3062	return temp;
3063}
3064
3065static void spi_w(struct ksz_hw *hw, u16 data)
3066{
3067	int i;
3068
3069	for (i = 15; i >= 0; i--) {
3070		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3071			drop_gpio(hw, EEPROM_DATA_OUT);
3072		eeprom_clk(hw);
3073	}
3074}
3075
3076static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
3077{
3078	int i;
3079
3080	/* Initial start bit */
3081	raise_gpio(hw, EEPROM_DATA_OUT);
3082	eeprom_clk(hw);
3083
3084	/* AT93C operation */
3085	for (i = 1; i >= 0; i--) {
3086		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3087			drop_gpio(hw, EEPROM_DATA_OUT);
3088		eeprom_clk(hw);
3089	}
3090
3091	/* Address location */
3092	for (i = 5; i >= 0; i--) {
3093		(reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3094			drop_gpio(hw, EEPROM_DATA_OUT);
3095		eeprom_clk(hw);
3096	}
3097}
3098
3099#define EEPROM_DATA_RESERVED		0
3100#define EEPROM_DATA_MAC_ADDR_0		1
3101#define EEPROM_DATA_MAC_ADDR_1		2
3102#define EEPROM_DATA_MAC_ADDR_2		3
3103#define EEPROM_DATA_SUBSYS_ID		4
3104#define EEPROM_DATA_SUBSYS_VEN_ID	5
3105#define EEPROM_DATA_PM_CAP		6
3106
3107/* User defined EEPROM data */
3108#define EEPROM_DATA_OTHER_MAC_ADDR	9
3109
3110/**
3111 * eeprom_read - read from AT93C46 EEPROM
3112 * @hw: 	The hardware instance.
3113 * @reg:	The register offset.
3114 *
3115 * This function reads a word from the AT93C46 EEPROM.
3116 *
3117 * Return the data value.
3118 */
3119static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
3120{
3121	u16 data;
3122
3123	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3124
3125	spi_reg(hw, AT93C_READ, reg);
3126	data = spi_r(hw);
3127
3128	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3129
3130	return data;
3131}
3132
3133/**
3134 * eeprom_write - write to AT93C46 EEPROM
3135 * @hw: 	The hardware instance.
3136 * @reg:	The register offset.
3137 * @data:	The data value.
3138 *
3139 * This procedure writes a word to the AT93C46 EEPROM.
3140 */
3141static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
3142{
3143	int timeout;
3144
3145	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3146
3147	/* Enable write. */
3148	spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
3149	drop_gpio(hw, EEPROM_CHIP_SELECT);
3150	udelay(1);
3151
3152	/* Erase the register. */
3153	raise_gpio(hw, EEPROM_CHIP_SELECT);
3154	spi_reg(hw, AT93C_ERASE, reg);
3155	drop_gpio(hw, EEPROM_CHIP_SELECT);
3156	udelay(1);
3157
3158	/* Check operation complete. */
3159	raise_gpio(hw, EEPROM_CHIP_SELECT);
3160	timeout = 8;
3161	mdelay(2);
3162	do {
3163		mdelay(1);
3164	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3165	drop_gpio(hw, EEPROM_CHIP_SELECT);
3166	udelay(1);
3167
3168	/* Write the register. */
3169	raise_gpio(hw, EEPROM_CHIP_SELECT);
3170	spi_reg(hw, AT93C_WRITE, reg);
3171	spi_w(hw, data);
3172	drop_gpio(hw, EEPROM_CHIP_SELECT);
3173	udelay(1);
3174
3175	/* Check operation complete. */
3176	raise_gpio(hw, EEPROM_CHIP_SELECT);
3177	timeout = 8;
3178	mdelay(2);
3179	do {
3180		mdelay(1);
3181	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3182	drop_gpio(hw, EEPROM_CHIP_SELECT);
3183	udelay(1);
3184
3185	/* Disable write. */
3186	raise_gpio(hw, EEPROM_CHIP_SELECT);
3187	spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);
3188
3189	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3190}
3191
3192/*
3193 * Link detection routines
3194 */
3195
3196static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
3197{
3198	ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
3199	switch (port->flow_ctrl) {
3200	case PHY_FLOW_CTRL:
3201		ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
3202		break;
3203	/* Not supported. */
3204	case PHY_TX_ONLY:
3205	case PHY_RX_ONLY:
3206	default:
3207		break;
3208	}
3209	return ctrl;
3210}
3211
3212static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
3213{
3214	u32 rx_cfg;
3215	u32 tx_cfg;
3216
3217	rx_cfg = hw->rx_cfg;
3218	tx_cfg = hw->tx_cfg;
3219	if (rx)
3220		hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
3221	else
3222		hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
3223	if (tx)
3224		hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
3225	else
3226		hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3227	if (hw->enabled) {
3228		if (rx_cfg != hw->rx_cfg)
3229			writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3230		if (tx_cfg != hw->tx_cfg)
3231			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3232	}
3233}
3234
3235static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
3236	u16 local, u16 remote)
3237{
3238	int rx;
3239	int tx;
3240
3241	if (hw->overrides & PAUSE_FLOW_CTRL)
3242		return;
3243
3244	rx = tx = 0;
3245	if (port->force_link)
3246		rx = tx = 1;
3247	if (remote & PHY_AUTO_NEG_SYM_PAUSE) {
3248		if (local & PHY_AUTO_NEG_SYM_PAUSE) {
3249			rx = tx = 1;
3250		} else if ((remote & PHY_AUTO_NEG_ASYM_PAUSE) &&
3251				(local & PHY_AUTO_NEG_PAUSE) ==
3252				PHY_AUTO_NEG_ASYM_PAUSE) {
3253			tx = 1;
3254		}
3255	} else if (remote & PHY_AUTO_NEG_ASYM_PAUSE) {
3256		if ((local & PHY_AUTO_NEG_PAUSE) == PHY_AUTO_NEG_PAUSE)
3257			rx = 1;
3258	}
3259	if (!hw->ksz_switch)
3260		set_flow_ctrl(hw, rx, tx);
3261}
3262
3263static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
3264	struct ksz_port_info *info, u16 link_status)
3265{
3266	if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
3267			!(hw->overrides & PAUSE_FLOW_CTRL)) {
3268		u32 cfg = hw->tx_cfg;
3269
3270		/* Disable flow control in the half duplex mode. */
3271		if (1 == info->duplex)
3272			hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3273		if (hw->enabled && cfg != hw->tx_cfg)
3274			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3275	}
3276}
3277
3278/**
3279 * port_get_link_speed - get current link status
3280 * @port: 	The port instance.
3281 *
3282 * This routine reads PHY registers to determine the current link status of the
3283 * switch ports.
3284 */
3285static void port_get_link_speed(struct ksz_port *port)
3286{
3287	uint interrupt;
3288	struct ksz_port_info *info;
3289	struct ksz_port_info *linked = NULL;
3290	struct ksz_hw *hw = port->hw;
3291	u16 data;
3292	u16 status;
3293	u8 local;
3294	u8 remote;
3295	int i;
3296	int p;
3297	int change = 0;
3298
3299	interrupt = hw_block_intr(hw);
3300
3301	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3302		info = &hw->port_info[p];
3303		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3304		port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3305
3306		/*
3307		 * Link status is changing all the time even when there is no
3308		 * cable connection!
3309		 */
3310		remote = status & (PORT_AUTO_NEG_COMPLETE |
3311			PORT_STATUS_LINK_GOOD);
3312		local = (u8) data;
3313
3314		/* No change to status. */
3315		if (local == info->advertised && remote == info->partner)
3316			continue;
3317
3318		info->advertised = local;
3319		info->partner = remote;
3320		if (status & PORT_STATUS_LINK_GOOD) {
3321
3322			/* Remember the first linked port. */
3323			if (!linked)
3324				linked = info;
3325
3326			info->tx_rate = 10 * TX_RATE_UNIT;
3327			if (status & PORT_STATUS_SPEED_100MBIT)
3328				info->tx_rate = 100 * TX_RATE_UNIT;
3329
3330			info->duplex = 1;
3331			if (status & PORT_STATUS_FULL_DUPLEX)
3332				info->duplex = 2;
3333
3334			if (media_connected != info->state) {
3335				hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
3336					&data);
3337				hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
3338					&status);
3339				determine_flow_ctrl(hw, port, data, status);
3340				if (hw->ksz_switch) {
3341					port_cfg_back_pressure(hw, p,
3342						(1 == info->duplex));
3343				}
3344				change |= 1 << i;
3345				port_cfg_change(hw, port, info, status);
3346			}
3347			info->state = media_connected;
3348		} else {
3349			if (media_disconnected != info->state) {
3350				change |= 1 << i;
3351
3352				/* Indicate the link just goes down. */
3353				hw->port_mib[p].link_down = 1;
3354			}
3355			info->state = media_disconnected;
3356		}
3357		hw->port_mib[p].state = (u8) info->state;
3358	}
3359
3360	if (linked && media_disconnected == port->linked->state)
3361		port->linked = linked;
3362
3363	hw_restore_intr(hw, interrupt);
3364}
3365
3366#define PHY_RESET_TIMEOUT		10
3367
3368/**
3369 * port_set_link_speed - set port speed
3370 * @port: 	The port instance.
3371 *
3372 * This routine sets the link speed of the switch ports.
3373 */
3374static void port_set_link_speed(struct ksz_port *port)
3375{
3376	struct ksz_port_info *info;
3377	struct ksz_hw *hw = port->hw;
3378	u16 data;
3379	u16 cfg;
3380	u8 status;
3381	int i;
3382	int p;
3383
3384	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3385		info = &hw->port_info[p];
3386
3387		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3388		port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3389
3390		cfg = 0;
3391		if (status & PORT_STATUS_LINK_GOOD)
3392			cfg = data;
3393
3394		data |= PORT_AUTO_NEG_ENABLE;
3395		data = advertised_flow_ctrl(port, data);
3396
3397		data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
3398			PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;
3399
3400		/* Check if manual configuration is specified by the user. */
3401		if (port->speed || port->duplex) {
3402			if (10 == port->speed)
3403				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3404					PORT_AUTO_NEG_100BTX);
3405			else if (100 == port->speed)
3406				data &= ~(PORT_AUTO_NEG_10BT_FD |
3407					PORT_AUTO_NEG_10BT);
3408			if (1 == port->duplex)
3409				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3410					PORT_AUTO_NEG_10BT_FD);
3411			else if (2 == port->duplex)
3412				data &= ~(PORT_AUTO_NEG_100BTX |
3413					PORT_AUTO_NEG_10BT);
3414		}
3415		if (data != cfg) {
3416			data |= PORT_AUTO_NEG_RESTART;
3417			port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
3418		}
3419	}
3420}
3421
3422/**
3423 * port_force_link_speed - force port speed
3424 * @port: 	The port instance.
3425 *
3426 * This routine forces the link speed of the switch ports.
3427 */
3428static void port_force_link_speed(struct ksz_port *port)
3429{
3430	struct ksz_hw *hw = port->hw;
3431	u16 data;
3432	int i;
3433	int phy;
3434	int p;
3435
3436	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3437		phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
3438		hw_r_phy_ctrl(hw, phy, &data);
3439
3440		data &= ~PHY_AUTO_NEG_ENABLE;
3441
3442		if (10 == port->speed)
3443			data &= ~PHY_SPEED_100MBIT;
3444		else if (100 == port->speed)
3445			data |= PHY_SPEED_100MBIT;
3446		if (1 == port->duplex)
3447			data &= ~PHY_FULL_DUPLEX;
3448		else if (2 == port->duplex)
3449			data |= PHY_FULL_DUPLEX;
3450		hw_w_phy_ctrl(hw, phy, data);
3451	}
3452}
3453
3454static void port_set_power_saving(struct ksz_port *port, int enable)
3455{
3456	struct ksz_hw *hw = port->hw;
3457	int i;
3458	int p;
3459
3460	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
3461		port_cfg(hw, p,
3462			KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
3463}
3464
3465/*
3466 * KSZ8841 power management functions
3467 */
3468
3469/**
3470 * hw_chk_wol_pme_status - check PMEN pin
3471 * @hw: 	The hardware instance.
3472 *
3473 * This function is used to check PMEN pin is asserted.
3474 *
3475 * Return 1 if PMEN pin is asserted; otherwise, 0.
3476 */
3477static int hw_chk_wol_pme_status(struct ksz_hw *hw)
3478{
3479	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3480	struct pci_dev *pdev = hw_priv->pdev;
3481	u16 data;
3482
3483	if (!pdev->pm_cap)
3484		return 0;
3485	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3486	return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
3487}
3488
3489/**
3490 * hw_clr_wol_pme_status - clear PMEN pin
3491 * @hw: 	The hardware instance.
3492 *
3493 * This routine is used to clear PME_Status to deassert PMEN pin.
3494 */
3495static void hw_clr_wol_pme_status(struct ksz_hw *hw)
3496{
3497	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3498	struct pci_dev *pdev = hw_priv->pdev;
3499	u16 data;
3500
3501	if (!pdev->pm_cap)
3502		return;
3503
3504	/* Clear PME_Status to deassert PMEN pin. */
3505	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3506	data |= PCI_PM_CTRL_PME_STATUS;
3507	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3508}
3509
3510/**
3511 * hw_cfg_wol_pme - enable or disable Wake-on-LAN
3512 * @hw: 	The hardware instance.
3513 * @set:	The flag indicating whether to enable or disable.
3514 *
3515 * This routine is used to enable or disable Wake-on-LAN.
3516 */
3517static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
3518{
3519	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3520	struct pci_dev *pdev = hw_priv->pdev;
3521	u16 data;
3522
3523	if (!pdev->pm_cap)
3524		return;
3525	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3526	data &= ~PCI_PM_CTRL_STATE_MASK;
3527	if (set)
3528		data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
3529	else
3530		data &= ~PCI_PM_CTRL_PME_ENABLE;
3531	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3532}
3533
3534/**
3535 * hw_cfg_wol - configure Wake-on-LAN features
3536 * @hw: 	The hardware instance.
3537 * @frame:	The pattern frame bit.
3538 * @set:	The flag indicating whether to enable or disable.
3539 *
3540 * This routine is used to enable or disable certain Wake-on-LAN features.
3541 */
3542static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
3543{
3544	u16 data;
3545
3546	data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
3547	if (set)
3548		data |= frame;
3549	else
3550		data &= ~frame;
3551	writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
3552}
3553
3554/**
3555 * hw_set_wol_frame - program Wake-on-LAN pattern
3556 * @hw: 	The hardware instance.
3557 * @i:		The frame index.
3558 * @mask_size:	The size of the mask.
3559 * @mask:	Mask to ignore certain bytes in the pattern.
3560 * @frame_size:	The size of the frame.
3561 * @pattern:	The frame data.
3562 *
3563 * This routine is used to program Wake-on-LAN pattern.
3564 */
3565static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
3566	const u8 *mask, uint frame_size, const u8 *pattern)
3567{
3568	int bits;
3569	int from;
3570	int len;
3571	int to;
3572	u32 crc;
3573	u8 data[64];
3574	u8 val = 0;
3575
3576	if (frame_size > mask_size * 8)
3577		frame_size = mask_size * 8;
3578	if (frame_size > 64)
3579		frame_size = 64;
3580
3581	i *= 0x10;
3582	writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
3583	writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);
3584
3585	bits = len = from = to = 0;
3586	do {
3587		if (bits) {
3588			if ((val & 1))
3589				data[to++] = pattern[from];
3590			val >>= 1;
3591			++from;
3592			--bits;
3593		} else {
3594			val = mask[len];
3595			writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
3596				+ len);
3597			++len;
3598			if (val)
3599				bits = 8;
3600			else
3601				from += 8;
3602		}
3603	} while (from < (int) frame_size);
3604	if (val) {
3605		bits = mask[len - 1];
3606		val <<= (from % 8);
3607		bits &= ~val;
3608		writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
3609			1);
3610	}
3611	crc = ether_crc(to, data);
3612	writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
3613}
3614
3615/**
3616 * hw_add_wol_arp - add ARP pattern
3617 * @hw: 	The hardware instance.
3618 * @ip_addr:	The IPv4 address assigned to the device.
3619 *
3620 * This routine is used to add ARP pattern for waking up the host.
3621 */
3622static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr)
3623{
3624	static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
3625	u8 pattern[42] = {
3626		0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
3627		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3628		0x08, 0x06,
3629		0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
3630		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3631		0x00, 0x00, 0x00, 0x00,
3632		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3633		0x00, 0x00, 0x00, 0x00 };
3634
3635	memcpy(&pattern[38], ip_addr, 4);
3636	hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
3637}
3638
3639/**
3640 * hw_add_wol_bcast - add broadcast pattern
3641 * @hw: 	The hardware instance.
3642 *
3643 * This routine is used to add broadcast pattern for waking up the host.
3644 */
3645static void hw_add_wol_bcast(struct ksz_hw *hw)
3646{
3647	static const u8 mask[] = { 0x3F };
3648	static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3649
3650	hw_set_wol_frame(hw, 2, 1, mask, ETH_ALEN, pattern);
3651}
3652
3653/**
3654 * hw_add_wol_mcast - add multicast pattern
3655 * @hw: 	The hardware instance.
3656 *
3657 * This routine is used to add multicast pattern for waking up the host.
3658 *
3659 * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
3660 * by IPv6 ping command.  Note that multicast packets are filtred through the
3661 * multicast hash table, so not all multicast packets can wake up the host.
3662 */
3663static void hw_add_wol_mcast(struct ksz_hw *hw)
3664{
3665	static const u8 mask[] = { 0x3F };
3666	u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };
3667
3668	memcpy(&pattern[3], &hw->override_addr[3], 3);
3669	hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
3670}
3671
3672/**
3673 * hw_add_wol_ucast - add unicast pattern
3674 * @hw: 	The hardware instance.
3675 *
3676 * This routine is used to add unicast pattern to wakeup the host.
3677 *
3678 * It is assumed the unicast packet is directed to the device, as the hardware
3679 * can only receive them in normal case.
3680 */
3681static void hw_add_wol_ucast(struct ksz_hw *hw)
3682{
3683	static const u8 mask[] = { 0x3F };
3684
3685	hw_set_wol_frame(hw, 0, 1, mask, ETH_ALEN, hw->override_addr);
3686}
3687
3688/**
3689 * hw_enable_wol - enable Wake-on-LAN
3690 * @hw: 	The hardware instance.
3691 * @wol_enable:	The Wake-on-LAN settings.
3692 * @net_addr:	The IPv4 address assigned to the device.
3693 *
3694 * This routine is used to enable Wake-on-LAN depending on driver settings.
3695 */
3696static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr)
3697{
3698	hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
3699	hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
3700	hw_add_wol_ucast(hw);
3701	hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
3702	hw_add_wol_mcast(hw);
3703	hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
3704	hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
3705	hw_add_wol_arp(hw, net_addr);
3706}
3707
3708/**
3709 * hw_init - check driver is correct for the hardware
3710 * @hw: 	The hardware instance.
3711 *
3712 * This function checks the hardware is correct for this driver and sets the
3713 * hardware up for proper initialization.
3714 *
3715 * Return number of ports or 0 if not right.
3716 */
3717static int hw_init(struct ksz_hw *hw)
3718{
3719	int rc = 0;
3720	u16 data;
3721	u16 revision;
3722
3723	/* Set bus speed to 125MHz. */
3724	writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);
3725
3726	/* Check KSZ884x chip ID. */
3727	data = readw(hw->io + KS884X_CHIP_ID_OFFSET);
3728
3729	revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
3730	data &= KS884X_CHIP_ID_MASK_41;
3731	if (REG_CHIP_ID_41 == data)
3732		rc = 1;
3733	else if (REG_CHIP_ID_42 == data)
3734		rc = 2;
3735	else
3736		return 0;
3737
3738	/* Setup hardware features or bug workarounds. */
3739	if (revision <= 1) {
3740		hw->features |= SMALL_PACKET_TX_BUG;
3741		if (1 == rc)
3742			hw->features |= HALF_DUPLEX_SIGNAL_BUG;
3743	}
3744	return rc;
3745}
3746
3747/**
3748 * hw_reset - reset the hardware
3749 * @hw: 	The hardware instance.
3750 *
3751 * This routine resets the hardware.
3752 */
3753static void hw_reset(struct ksz_hw *hw)
3754{
3755	writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3756
3757	/* Wait for device to reset. */
3758	mdelay(10);
3759
3760	/* Write 0 to clear device reset. */
3761	writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3762}
3763
3764/**
3765 * hw_setup - setup the hardware
3766 * @hw: 	The hardware instance.
3767 *
3768 * This routine setup the hardware for proper operation.
3769 */
3770static void hw_setup(struct ksz_hw *hw)
3771{
3772#if SET_DEFAULT_LED
3773	u16 data;
3774
3775	/* Change default LED mode. */
3776	data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3777	data &= ~LED_MODE;
3778	data |= SET_DEFAULT_LED;
3779	writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3780#endif
3781
3782	/* Setup transmit control. */
3783	hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
3784		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);
3785
3786	/* Setup receive control. */
3787	hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
3788		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
3789	hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;
3790
3791	/* Hardware cannot handle UDP packet in IP fragments. */
3792	hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
3793
3794	if (hw->all_multi)
3795		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3796	if (hw->promiscuous)
3797		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3798}
3799
3800/**
3801 * hw_setup_intr - setup interrupt mask
3802 * @hw: 	The hardware instance.
3803 *
3804 * This routine setup the interrupt mask for proper operation.
3805 */
3806static void hw_setup_intr(struct ksz_hw *hw)
3807{
3808	hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
3809}
3810
3811static void ksz_check_desc_num(struct ksz_desc_info *info)
3812{
3813#define MIN_DESC_SHIFT  2
3814
3815	int alloc = info->alloc;
3816	int shift;
3817
3818	shift = 0;
3819	while (!(alloc & 1)) {
3820		shift++;
3821		alloc >>= 1;
3822	}
3823	if (alloc != 1 || shift < MIN_DESC_SHIFT) {
3824		pr_alert("Hardware descriptor numbers not right!\n");
3825		while (alloc) {
3826			shift++;
3827			alloc >>= 1;
3828		}
3829		if (shift < MIN_DESC_SHIFT)
3830			shift = MIN_DESC_SHIFT;
3831		alloc = 1 << shift;
3832		info->alloc = alloc;
3833	}
3834	info->mask = info->alloc - 1;
3835}
3836
3837static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
3838{
3839	int i;
3840	u32 phys = desc_info->ring_phys;
3841	struct ksz_hw_desc *desc = desc_info->ring_virt;
3842	struct ksz_desc *cur = desc_info->ring;
3843	struct ksz_desc *previous = NULL;
3844
3845	for (i = 0; i < desc_info->alloc; i++) {
3846		cur->phw = desc++;
3847		phys += desc_info->size;
3848		previous = cur++;
3849		previous->phw->next = cpu_to_le32(phys);
3850	}
3851	previous->phw->next = cpu_to_le32(desc_info->ring_phys);
3852	previous->sw.buf.rx.end_of_ring = 1;
3853	previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);
3854
3855	desc_info->avail = desc_info->alloc;
3856	desc_info->last = desc_info->next = 0;
3857
3858	desc_info->cur = desc_info->ring;
3859}
3860
3861/**
3862 * hw_set_desc_base - set descriptor base addresses
3863 * @hw: 	The hardware instance.
3864 * @tx_addr:	The transmit descriptor base.
3865 * @rx_addr:	The receive descriptor base.
3866 *
3867 * This routine programs the descriptor base addresses after reset.
3868 */
3869static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
3870{
3871	/* Set base address of Tx/Rx descriptors. */
3872	writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
3873	writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
3874}
3875
3876static void hw_reset_pkts(struct ksz_desc_info *info)
3877{
3878	info->cur = info->ring;
3879	info->avail = info->alloc;
3880	info->last = info->next = 0;
3881}
3882
3883static inline void hw_resume_rx(struct ksz_hw *hw)
3884{
3885	writel(DMA_START, hw->io + KS_DMA_RX_START);
3886}
3887
3888/**
3889 * hw_start_rx - start receiving
3890 * @hw: 	The hardware instance.
3891 *
3892 * This routine starts the receive function of the hardware.
3893 */
3894static void hw_start_rx(struct ksz_hw *hw)
3895{
3896	writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3897
3898	/* Notify when the receive stops. */
3899	hw->intr_mask |= KS884X_INT_RX_STOPPED;
3900
3901	writel(DMA_START, hw->io + KS_DMA_RX_START);
3902	hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
3903	hw->rx_stop++;
3904
3905	/* Variable overflows. */
3906	if (0 == hw->rx_stop)
3907		hw->rx_stop = 2;
3908}
3909
3910/**
3911 * hw_stop_rx - stop receiving
3912 * @hw: 	The hardware instance.
3913 *
3914 * This routine stops the receive function of the hardware.
3915 */
3916static void hw_stop_rx(struct ksz_hw *hw)
3917{
3918	hw->rx_stop = 0;
3919	hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
3920	writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
3921}
3922
3923/**
3924 * hw_start_tx - start transmitting
3925 * @hw: 	The hardware instance.
3926 *
3927 * This routine starts the transmit function of the hardware.
3928 */
3929static void hw_start_tx(struct ksz_hw *hw)
3930{
3931	writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3932}
3933
3934/**
3935 * hw_stop_tx - stop transmitting
3936 * @hw: 	The hardware instance.
3937 *
3938 * This routine stops the transmit function of the hardware.
3939 */
3940static void hw_stop_tx(struct ksz_hw *hw)
3941{
3942	writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
3943}
3944
3945/**
3946 * hw_disable - disable hardware
3947 * @hw: 	The hardware instance.
3948 *
3949 * This routine disables the hardware.
3950 */
3951static void hw_disable(struct ksz_hw *hw)
3952{
3953	hw_stop_rx(hw);
3954	hw_stop_tx(hw);
3955	hw->enabled = 0;
3956}
3957
3958/**
3959 * hw_enable - enable hardware
3960 * @hw: 	The hardware instance.
3961 *
3962 * This routine enables the hardware.
3963 */
3964static void hw_enable(struct ksz_hw *hw)
3965{
3966	hw_start_tx(hw);
3967	hw_start_rx(hw);
3968	hw->enabled = 1;
3969}
3970
3971/**
3972 * hw_alloc_pkt - allocate enough descriptors for transmission
3973 * @hw: 	The hardware instance.
3974 * @length:	The length of the packet.
3975 * @physical:	Number of descriptors required.
3976 *
3977 * This function allocates descriptors for transmission.
3978 *
3979 * Return 0 if not successful; 1 for buffer copy; or number of descriptors.
3980 */
3981static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
3982{
3983	/* Always leave one descriptor free. */
3984	if (hw->tx_desc_info.avail <= 1)
3985		return 0;
3986
3987	/* Allocate a descriptor for transmission and mark it current. */
3988	get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
3989	hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;
3990
3991	/* Keep track of number of transmit descriptors used so far. */
3992	++hw->tx_int_cnt;
3993	hw->tx_size += length;
3994
3995	/* Cannot hold on too much data. */
3996	if (hw->tx_size >= MAX_TX_HELD_SIZE)
3997		hw->tx_int_cnt = hw->tx_int_mask + 1;
3998
3999	if (physical > hw->tx_desc_info.avail)
4000		return 1;
4001
4002	return hw->tx_desc_info.avail;
4003}
4004
4005/**
4006 * hw_send_pkt - mark packet for transmission
4007 * @hw: 	The hardware instance.
4008 *
4009 * This routine marks the packet for transmission in PCI version.
4010 */
4011static void hw_send_pkt(struct ksz_hw *hw)
4012{
4013	struct ksz_desc *cur = hw->tx_desc_info.cur;
4014
4015	cur->sw.buf.tx.last_seg = 1;
4016
4017	/* Interrupt only after specified number of descriptors used. */
4018	if (hw->tx_int_cnt > hw->tx_int_mask) {
4019		cur->sw.buf.tx.intr = 1;
4020		hw->tx_int_cnt = 0;
4021		hw->tx_size = 0;
4022	}
4023
4024	/* KSZ8842 supports port directed transmission. */
4025	cur->sw.buf.tx.dest_port = hw->dst_ports;
4026
4027	release_desc(cur);
4028
4029	writel(0, hw->io + KS_DMA_TX_START);
4030}
4031
4032static int empty_addr(u8 *addr)
4033{
4034	u32 *addr1 = (u32 *) addr;
4035	u16 *addr2 = (u16 *) &addr[4];
4036
4037	return 0 == *addr1 && 0 == *addr2;
4038}
4039
4040/**
4041 * hw_set_addr - set MAC address
4042 * @hw: 	The hardware instance.
4043 *
4044 * This routine programs the MAC address of the hardware when the address is
4045 * overrided.
4046 */
4047static void hw_set_addr(struct ksz_hw *hw)
4048{
4049	int i;
4050
4051	for (i = 0; i < ETH_ALEN; i++)
4052		writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
4053			hw->io + KS884X_ADDR_0_OFFSET + i);
4054
4055	sw_set_addr(hw, hw->override_addr);
4056}
4057
4058/**
4059 * hw_read_addr - read MAC address
4060 * @hw: 	The hardware instance.
4061 *
4062 * This routine retrieves the MAC address of the hardware.
4063 */
4064static void hw_read_addr(struct ksz_hw *hw)
4065{
4066	int i;
4067
4068	for (i = 0; i < ETH_ALEN; i++)
4069		hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
4070			KS884X_ADDR_0_OFFSET + i);
4071
4072	if (!hw->mac_override) {
4073		memcpy(hw->override_addr, hw->perm_addr, ETH_ALEN);
4074		if (empty_addr(hw->override_addr)) {
4075			memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS, ETH_ALEN);
4076			memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
4077			       ETH_ALEN);
4078			hw->override_addr[5] += hw->id;
4079			hw_set_addr(hw);
4080		}
4081	}
4082}
4083
4084static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
4085{
4086	int i;
4087	u32 mac_addr_lo;
4088	u32 mac_addr_hi;
4089
4090	mac_addr_hi = 0;
4091	for (i = 0; i < 2; i++) {
4092		mac_addr_hi <<= 8;
4093		mac_addr_hi |= mac_addr[i];
4094	}
4095	mac_addr_hi |= ADD_ADDR_ENABLE;
4096	mac_addr_lo = 0;
4097	for (i = 2; i < 6; i++) {
4098		mac_addr_lo <<= 8;
4099		mac_addr_lo |= mac_addr[i];
4100	}
4101	index *= ADD_ADDR_INCR;
4102
4103	writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
4104	writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
4105}
4106
4107static void hw_set_add_addr(struct ksz_hw *hw)
4108{
4109	int i;
4110
4111	for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
4112		if (empty_addr(hw->address[i]))
4113			writel(0, hw->io + ADD_ADDR_INCR * i +
4114				KS_ADD_ADDR_0_HI);
4115		else
4116			hw_ena_add_addr(hw, i, hw->address[i]);
4117	}
4118}
4119
4120static int hw_add_addr(struct ksz_hw *hw, u8 *mac_addr)
4121{
4122	int i;
4123	int j = ADDITIONAL_ENTRIES;
4124
4125	if (ether_addr_equal(hw->override_addr, mac_addr))
4126		return 0;
4127	for (i = 0; i < hw->addr_list_size; i++) {
4128		if (ether_addr_equal(hw->address[i], mac_addr))
4129			return 0;
4130		if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
4131			j = i;
4132	}
4133	if (j < ADDITIONAL_ENTRIES) {
4134		memcpy(hw->address[j], mac_addr, ETH_ALEN);
4135		hw_ena_add_addr(hw, j, hw->address[j]);
4136		return 0;
4137	}
4138	return -1;
4139}
4140
4141static int hw_del_addr(struct ksz_hw *hw, u8 *mac_addr)
4142{
4143	int i;
4144
4145	for (i = 0; i < hw->addr_list_size; i++) {
4146		if (ether_addr_equal(hw->address[i], mac_addr)) {
4147			eth_zero_addr(hw->address[i]);
4148			writel(0, hw->io + ADD_ADDR_INCR * i +
4149				KS_ADD_ADDR_0_HI);
4150			return 0;
4151		}
4152	}
4153	return -1;
4154}
4155
4156/**
4157 * hw_clr_multicast - clear multicast addresses
4158 * @hw: 	The hardware instance.
4159 *
4160 * This routine removes all multicast addresses set in the hardware.
4161 */
4162static void hw_clr_multicast(struct ksz_hw *hw)
4163{
4164	int i;
4165
4166	for (i = 0; i < HW_MULTICAST_SIZE; i++) {
4167		hw->multi_bits[i] = 0;
4168
4169		writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
4170	}
4171}
4172
4173/**
4174 * hw_set_grp_addr - set multicast addresses
4175 * @hw: 	The hardware instance.
4176 *
4177 * This routine programs multicast addresses for the hardware to accept those
4178 * addresses.
4179 */
4180static void hw_set_grp_addr(struct ksz_hw *hw)
4181{
4182	int i;
4183	int index;
4184	int position;
4185	int value;
4186
4187	memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);
4188
4189	for (i = 0; i < hw->multi_list_size; i++) {
4190		position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
4191		index = position >> 3;
4192		value = 1 << (position & 7);
4193		hw->multi_bits[index] |= (u8) value;
4194	}
4195
4196	for (i = 0; i < HW_MULTICAST_SIZE; i++)
4197		writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
4198			i);
4199}
4200
4201/**
4202 * hw_set_multicast - enable or disable all multicast receiving
4203 * @hw: 	The hardware instance.
4204 * @multicast:	To turn on or off the all multicast feature.
4205 *
4206 * This routine enables/disables the hardware to accept all multicast packets.
4207 */
4208static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
4209{
4210	/* Stop receiving for reconfiguration. */
4211	hw_stop_rx(hw);
4212
4213	if (multicast)
4214		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
4215	else
4216		hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;
4217
4218	if (hw->enabled)
4219		hw_start_rx(hw);
4220}
4221
4222/**
4223 * hw_set_promiscuous - enable or disable promiscuous receiving
4224 * @hw: 	The hardware instance.
4225 * @prom:	To turn on or off the promiscuous feature.
4226 *
4227 * This routine enables/disables the hardware to accept all packets.
4228 */
4229static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
4230{
4231	/* Stop receiving for reconfiguration. */
4232	hw_stop_rx(hw);
4233
4234	if (prom)
4235		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
4236	else
4237		hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;
4238
4239	if (hw->enabled)
4240		hw_start_rx(hw);
4241}
4242
4243/**
4244 * sw_enable - enable the switch
4245 * @hw: 	The hardware instance.
4246 * @enable:	The flag to enable or disable the switch
4247 *
4248 * This routine is used to enable/disable the switch in KSZ8842.
4249 */
4250static void sw_enable(struct ksz_hw *hw, int enable)
4251{
4252	int port;
4253
4254	for (port = 0; port < SWITCH_PORT_NUM; port++) {
4255		if (hw->dev_count > 1) {
4256			/* Set port-base vlan membership with host port. */
4257			sw_cfg_port_base_vlan(hw, port,
4258				HOST_MASK | (1 << port));
4259			port_set_stp_state(hw, port, STP_STATE_DISABLED);
4260		} else {
4261			sw_cfg_port_base_vlan(hw, port, PORT_MASK);
4262			port_set_stp_state(hw, port, STP_STATE_FORWARDING);
4263		}
4264	}
4265	if (hw->dev_count > 1)
4266		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
4267	else
4268		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);
4269
4270	if (enable)
4271		enable = KS8842_START;
4272	writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
4273}
4274
4275/**
4276 * sw_setup - setup the switch
4277 * @hw: 	The hardware instance.
4278 *
4279 * This routine setup the hardware switch engine for default operation.
4280 */
4281static void sw_setup(struct ksz_hw *hw)
4282{
4283	int port;
4284
4285	sw_set_global_ctrl(hw);
4286
4287	/* Enable switch broadcast storm protection at 10% percent rate. */
4288	sw_init_broad_storm(hw);
4289	hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
4290	for (port = 0; port < SWITCH_PORT_NUM; port++)
4291		sw_ena_broad_storm(hw, port);
4292
4293	sw_init_prio(hw);
4294
4295	sw_init_mirror(hw);
4296
4297	sw_init_prio_rate(hw);
4298
4299	sw_init_vlan(hw);
4300
4301	if (hw->features & STP_SUPPORT)
4302		sw_init_stp(hw);
4303	if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
4304			SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
4305		hw->overrides |= PAUSE_FLOW_CTRL;
4306	sw_enable(hw, 1);
4307}
4308
4309/**
4310 * ksz_start_timer - start kernel timer
4311 * @info:	Kernel timer information.
4312 * @time:	The time tick.
4313 *
4314 * This routine starts the kernel timer after the specified time tick.
4315 */
4316static void ksz_start_timer(struct ksz_timer_info *info, int time)
4317{
4318	info->cnt = 0;
4319	info->timer.expires = jiffies + time;
4320	add_timer(&info->timer);
4321
4322	/* infinity */
4323	info->max = -1;
4324}
4325
4326/**
4327 * ksz_stop_timer - stop kernel timer
4328 * @info:	Kernel timer information.
4329 *
4330 * This routine stops the kernel timer.
4331 */
4332static void ksz_stop_timer(struct ksz_timer_info *info)
4333{
4334	if (info->max) {
4335		info->max = 0;
4336		del_timer_sync(&info->timer);
4337	}
4338}
4339
4340static void ksz_init_timer(struct ksz_timer_info *info, int period,
4341	void (*function)(unsigned long), void *data)
4342{
4343	info->max = 0;
4344	info->period = period;
4345	setup_timer(&info->timer, function, (unsigned long)data);
4346}
4347
4348static void ksz_update_timer(struct ksz_timer_info *info)
4349{
4350	++info->cnt;
4351	if (info->max > 0) {
4352		if (info->cnt < info->max) {
4353			info->timer.expires = jiffies + info->period;
4354			add_timer(&info->timer);
4355		} else
4356			info->max = 0;
4357	} else if (info->max < 0) {
4358		info->timer.expires = jiffies + info->period;
4359		add_timer(&info->timer);
4360	}
4361}
4362
4363/**
4364 * ksz_alloc_soft_desc - allocate software descriptors
4365 * @desc_info:	Descriptor information structure.
4366 * @transmit:	Indication that descriptors are for transmit.
4367 *
4368 * This local function allocates software descriptors for manipulation in
4369 * memory.
4370 *
4371 * Return 0 if successful.
4372 */
4373static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
4374{
4375	desc_info->ring = kzalloc(sizeof(struct ksz_desc) * desc_info->alloc,
4376				  GFP_KERNEL);
4377	if (!desc_info->ring)
4378		return 1;
4379	hw_init_desc(desc_info, transmit);
4380	return 0;
4381}
4382
4383/**
4384 * ksz_alloc_desc - allocate hardware descriptors
4385 * @adapter:	Adapter information structure.
4386 *
4387 * This local function allocates hardware descriptors for receiving and
4388 * transmitting.
4389 *
4390 * Return 0 if successful.
4391 */
4392static int ksz_alloc_desc(struct dev_info *adapter)
4393{
4394	struct ksz_hw *hw = &adapter->hw;
4395	int offset;
4396
4397	/* Allocate memory for RX & TX descriptors. */
4398	adapter->desc_pool.alloc_size =
4399		hw->rx_desc_info.size * hw->rx_desc_info.alloc +
4400		hw->tx_desc_info.size * hw->tx_desc_info.alloc +
4401		DESC_ALIGNMENT;
4402
4403	adapter->desc_pool.alloc_virt =
4404		pci_zalloc_consistent(adapter->pdev,
4405				      adapter->desc_pool.alloc_size,
4406				      &adapter->desc_pool.dma_addr);
4407	if (adapter->desc_pool.alloc_virt == NULL) {
4408		adapter->desc_pool.alloc_size = 0;
4409		return 1;
4410	}
4411
4412	/* Align to the next cache line boundary. */
4413	offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
4414		(DESC_ALIGNMENT -
4415		((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
4416	adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
4417	adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;
4418
4419	/* Allocate receive/transmit descriptors. */
4420	hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
4421		adapter->desc_pool.virt;
4422	hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
4423	offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
4424	hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
4425		(adapter->desc_pool.virt + offset);
4426	hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;
4427
4428	if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
4429		return 1;
4430	if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1))
4431		return 1;
4432
4433	return 0;
4434}
4435
4436/**
4437 * free_dma_buf - release DMA buffer resources
4438 * @adapter:	Adapter information structure.
4439 *
4440 * This routine is just a helper function to release the DMA buffer resources.
4441 */
4442static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf,
4443	int direction)
4444{
4445	pci_unmap_single(adapter->pdev, dma_buf->dma, dma_buf->len, direction);
4446	dev_kfree_skb(dma_buf->skb);
4447	dma_buf->skb = NULL;
4448	dma_buf->dma = 0;
4449}
4450
4451/**
4452 * ksz_init_rx_buffers - initialize receive descriptors
4453 * @adapter:	Adapter information structure.
4454 *
4455 * This routine initializes DMA buffers for receiving.
4456 */
4457static void ksz_init_rx_buffers(struct dev_info *adapter)
4458{
4459	int i;
4460	struct ksz_desc *desc;
4461	struct ksz_dma_buf *dma_buf;
4462	struct ksz_hw *hw = &adapter->hw;
4463	struct ksz_desc_info *info = &hw->rx_desc_info;
4464
4465	for (i = 0; i < hw->rx_desc_info.alloc; i++) {
4466		get_rx_pkt(info, &desc);
4467
4468		dma_buf = DMA_BUFFER(desc);
4469		if (dma_buf->skb && dma_buf->len != adapter->mtu)
4470			free_dma_buf(adapter, dma_buf, PCI_DMA_FROMDEVICE);
4471		dma_buf->len = adapter->mtu;
4472		if (!dma_buf->skb)
4473			dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC);
4474		if (dma_buf->skb && !dma_buf->dma)
4475			dma_buf->dma = pci_map_single(
4476				adapter->pdev,
4477				skb_tail_pointer(dma_buf->skb),
4478				dma_buf->len,
4479				PCI_DMA_FROMDEVICE);
4480
4481		/* Set descriptor. */
4482		set_rx_buf(desc, dma_buf->dma);
4483		set_rx_len(desc, dma_buf->len);
4484		release_desc(desc);
4485	}
4486}
4487
4488/**
4489 * ksz_alloc_mem - allocate memory for hardware descriptors
4490 * @adapter:	Adapter information structure.
4491 *
4492 * This function allocates memory for use by hardware descriptors for receiving
4493 * and transmitting.
4494 *
4495 * Return 0 if successful.
4496 */
4497static int ksz_alloc_mem(struct dev_info *adapter)
4498{
4499	struct ksz_hw *hw = &adapter->hw;
4500
4501	/* Determine the number of receive and transmit descriptors. */
4502	hw->rx_desc_info.alloc = NUM_OF_RX_DESC;
4503	hw->tx_desc_info.alloc = NUM_OF_TX_DESC;
4504
4505	/* Determine how many descriptors to skip transmit interrupt. */
4506	hw->tx_int_cnt = 0;
4507	hw->tx_int_mask = NUM_OF_TX_DESC / 4;
4508	if (hw->tx_int_mask > 8)
4509		hw->tx_int_mask = 8;
4510	while (hw->tx_int_mask) {
4511		hw->tx_int_cnt++;
4512		hw->tx_int_mask >>= 1;
4513	}
4514	if (hw->tx_int_cnt) {
4515		hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1;
4516		hw->tx_int_cnt = 0;
4517	}
4518
4519	/* Determine the descriptor size. */
4520	hw->rx_desc_info.size =
4521		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4522		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4523	hw->tx_desc_info.size =
4524		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4525		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4526	if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc))
4527		pr_alert("Hardware descriptor size not right!\n");
4528	ksz_check_desc_num(&hw->rx_desc_info);
4529	ksz_check_desc_num(&hw->tx_desc_info);
4530
4531	/* Allocate descriptors. */
4532	if (ksz_alloc_desc(adapter))
4533		return 1;
4534
4535	return 0;
4536}
4537
4538/**
4539 * ksz_free_desc - free software and hardware descriptors
4540 * @adapter:	Adapter information structure.
4541 *
4542 * This local routine frees the software and hardware descriptors allocated by
4543 * ksz_alloc_desc().
4544 */
4545static void ksz_free_desc(struct dev_info *adapter)
4546{
4547	struct ksz_hw *hw = &adapter->hw;
4548
4549	/* Reset descriptor. */
4550	hw->rx_desc_info.ring_virt = NULL;
4551	hw->tx_desc_info.ring_virt = NULL;
4552	hw->rx_desc_info.ring_phys = 0;
4553	hw->tx_desc_info.ring_phys = 0;
4554
4555	/* Free memory. */
4556	if (adapter->desc_pool.alloc_virt)
4557		pci_free_consistent(
4558			adapter->pdev,
4559			adapter->desc_pool.alloc_size,
4560			adapter->desc_pool.alloc_virt,
4561			adapter->desc_pool.dma_addr);
4562
4563	/* Reset resource pool. */
4564	adapter->desc_pool.alloc_size = 0;
4565	adapter->desc_pool.alloc_virt = NULL;
4566
4567	kfree(hw->rx_desc_info.ring);
4568	hw->rx_desc_info.ring = NULL;
4569	kfree(hw->tx_desc_info.ring);
4570	hw->tx_desc_info.ring = NULL;
4571}
4572
4573/**
4574 * ksz_free_buffers - free buffers used in the descriptors
4575 * @adapter:	Adapter information structure.
4576 * @desc_info:	Descriptor information structure.
4577 *
4578 * This local routine frees buffers used in the DMA buffers.
4579 */
4580static void ksz_free_buffers(struct dev_info *adapter,
4581	struct ksz_desc_info *desc_info, int direction)
4582{
4583	int i;
4584	struct ksz_dma_buf *dma_buf;
4585	struct ksz_desc *desc = desc_info->ring;
4586
4587	for (i = 0; i < desc_info->alloc; i++) {
4588		dma_buf = DMA_BUFFER(desc);
4589		if (dma_buf->skb)
4590			free_dma_buf(adapter, dma_buf, direction);
4591		desc++;
4592	}
4593}
4594
4595/**
4596 * ksz_free_mem - free all resources used by descriptors
4597 * @adapter:	Adapter information structure.
4598 *
4599 * This local routine frees all the resources allocated by ksz_alloc_mem().
4600 */
4601static void ksz_free_mem(struct dev_info *adapter)
4602{
4603	/* Free transmit buffers. */
4604	ksz_free_buffers(adapter, &adapter->hw.tx_desc_info,
4605		PCI_DMA_TODEVICE);
4606
4607	/* Free receive buffers. */
4608	ksz_free_buffers(adapter, &adapter->hw.rx_desc_info,
4609		PCI_DMA_FROMDEVICE);
4610
4611	/* Free descriptors. */
4612	ksz_free_desc(adapter);
4613}
4614
4615static void get_mib_counters(struct ksz_hw *hw, int first, int cnt,
4616	u64 *counter)
4617{
4618	int i;
4619	int mib;
4620	int port;
4621	struct ksz_port_mib *port_mib;
4622
4623	memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
4624	for (i = 0, port = first; i < cnt; i++, port++) {
4625		port_mib = &hw->port_mib[port];
4626		for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++)
4627			counter[mib] += port_mib->counter[mib];
4628	}
4629}
4630
4631/**
4632 * send_packet - send packet
4633 * @skb:	Socket buffer.
4634 * @dev:	Network device.
4635 *
4636 * This routine is used to send a packet out to the network.
4637 */
4638static void send_packet(struct sk_buff *skb, struct net_device *dev)
4639{
4640	struct ksz_desc *desc;
4641	struct ksz_desc *first;
4642	struct dev_priv *priv = netdev_priv(dev);
4643	struct dev_info *hw_priv = priv->adapter;
4644	struct ksz_hw *hw = &hw_priv->hw;
4645	struct ksz_desc_info *info = &hw->tx_desc_info;
4646	struct ksz_dma_buf *dma_buf;
4647	int len;
4648	int last_frag = skb_shinfo(skb)->nr_frags;
4649
4650	/*
4651	 * KSZ8842 with multiple device interfaces needs to be told which port
4652	 * to send.
4653	 */
4654	if (hw->dev_count > 1)
4655		hw->dst_ports = 1 << priv->port.first_port;
4656
4657	/* Hardware will pad the length to 60. */
4658	len = skb->len;
4659
4660	/* Remember the very first descriptor. */
4661	first = info->cur;
4662	desc = first;
4663
4664	dma_buf = DMA_BUFFER(desc);
4665	if (last_frag) {
4666		int frag;
4667		skb_frag_t *this_frag;
4668
4669		dma_buf->len = skb_headlen(skb);
4670
4671		dma_buf->dma = pci_map_single(
4672			hw_priv->pdev, skb->data, dma_buf->len,
4673			PCI_DMA_TODEVICE);
4674		set_tx_buf(desc, dma_buf->dma);
4675		set_tx_len(desc, dma_buf->len);
4676
4677		frag = 0;
4678		do {
4679			this_frag = &skb_shinfo(skb)->frags[frag];
4680
4681			/* Get a new descriptor. */
4682			get_tx_pkt(info, &desc);
4683
4684			/* Keep track of descriptors used so far. */
4685			++hw->tx_int_cnt;
4686
4687			dma_buf = DMA_BUFFER(desc);
4688			dma_buf->len = skb_frag_size(this_frag);
4689
4690			dma_buf->dma = pci_map_single(
4691				hw_priv->pdev,
4692				skb_frag_address(this_frag),
4693				dma_buf->len,
4694				PCI_DMA_TODEVICE);
4695			set_tx_buf(desc, dma_buf->dma);
4696			set_tx_len(desc, dma_buf->len);
4697
4698			frag++;
4699			if (frag == last_frag)
4700				break;
4701
4702			/* Do not release the last descriptor here. */
4703			release_desc(desc);
4704		} while (1);
4705
4706		/* current points to the last descriptor. */
4707		info->cur = desc;
4708
4709		/* Release the first descriptor. */
4710		release_desc(first);
4711	} else {
4712		dma_buf->len = len;
4713
4714		dma_buf->dma = pci_map_single(
4715			hw_priv->pdev, skb->data, dma_buf->len,
4716			PCI_DMA_TODEVICE);
4717		set_tx_buf(desc, dma_buf->dma);
4718		set_tx_len(desc, dma_buf->len);
4719	}
4720
4721	if (skb->ip_summed == CHECKSUM_PARTIAL) {
4722		(desc)->sw.buf.tx.csum_gen_tcp = 1;
4723		(desc)->sw.buf.tx.csum_gen_udp = 1;
4724	}
4725
4726	/*
4727	 * The last descriptor holds the packet so that it can be returned to
4728	 * network subsystem after all descriptors are transmitted.
4729	 */
4730	dma_buf->skb = skb;
4731
4732	hw_send_pkt(hw);
4733
4734	/* Update transmit statistics. */
4735	dev->stats.tx_packets++;
4736	dev->stats.tx_bytes += len;
4737}
4738
4739/**
4740 * transmit_cleanup - clean up transmit descriptors
4741 * @dev:	Network device.
4742 *
4743 * This routine is called to clean up the transmitted buffers.
4744 */
4745static void transmit_cleanup(struct dev_info *hw_priv, int normal)
4746{
4747	int last;
4748	union desc_stat status;
4749	struct ksz_hw *hw = &hw_priv->hw;
4750	struct ksz_desc_info *info = &hw->tx_desc_info;
4751	struct ksz_desc *desc;
4752	struct ksz_dma_buf *dma_buf;
4753	struct net_device *dev = NULL;
4754
4755	spin_lock_irq(&hw_priv->hwlock);
4756	last = info->last;
4757
4758	while (info->avail < info->alloc) {
4759		/* Get next descriptor which is not hardware owned. */
4760		desc = &info->ring[last];
4761		status.data = le32_to_cpu(desc->phw->ctrl.data);
4762		if (status.tx.hw_owned) {
4763			if (normal)
4764				break;
4765			else
4766				reset_desc(desc, status);
4767		}
4768
4769		dma_buf = DMA_BUFFER(desc);
4770		pci_unmap_single(
4771			hw_priv->pdev, dma_buf->dma, dma_buf->len,
4772			PCI_DMA_TODEVICE);
4773
4774		/* This descriptor contains the last buffer in the packet. */
4775		if (dma_buf->skb) {
4776			dev = dma_buf->skb->dev;
4777
4778			/* Release the packet back to network subsystem. */
4779			dev_kfree_skb_irq(dma_buf->skb);
4780			dma_buf->skb = NULL;
4781		}
4782
4783		/* Free the transmitted descriptor. */
4784		last++;
4785		last &= info->mask;
4786		info->avail++;
4787	}
4788	info->last = last;
4789	spin_unlock_irq(&hw_priv->hwlock);
4790
4791	/* Notify the network subsystem that the packet has been sent. */
4792	if (dev)
4793		netif_trans_update(dev);
4794}
4795
4796/**
4797 * transmit_done - transmit done processing
4798 * @dev:	Network device.
4799 *
4800 * This routine is called when the transmit interrupt is triggered, indicating
4801 * either a packet is sent successfully or there are transmit errors.
4802 */
4803static void tx_done(struct dev_info *hw_priv)
4804{
4805	struct ksz_hw *hw = &hw_priv->hw;
4806	int port;
4807
4808	transmit_cleanup(hw_priv, 1);
4809
4810	for (port = 0; port < hw->dev_count; port++) {
4811		struct net_device *dev = hw->port_info[port].pdev;
4812
4813		if (netif_running(dev) && netif_queue_stopped(dev))
4814			netif_wake_queue(dev);
4815	}
4816}
4817
4818static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb)
4819{
4820	skb->dev = old->dev;
4821	skb->protocol = old->protocol;
4822	skb->ip_summed = old->ip_summed;
4823	skb->csum = old->csum;
4824	skb_set_network_header(skb, ETH_HLEN);
4825
4826	dev_consume_skb_any(old);
4827}
4828
4829/**
4830 * netdev_tx - send out packet
4831 * @skb:	Socket buffer.
4832 * @dev:	Network device.
4833 *
4834 * This function is used by the upper network layer to send out a packet.
4835 *
4836 * Return 0 if successful; otherwise an error code indicating failure.
4837 */
4838static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev)
4839{
4840	struct dev_priv *priv = netdev_priv(dev);
4841	struct dev_info *hw_priv = priv->adapter;
4842	struct ksz_hw *hw = &hw_priv->hw;
4843	int left;
4844	int num = 1;
4845	int rc = 0;
4846
4847	if (hw->features & SMALL_PACKET_TX_BUG) {
4848		struct sk_buff *org_skb = skb;
4849
4850		if (skb->len <= 48) {
4851			if (skb_end_pointer(skb) - skb->data >= 50) {
4852				memset(&skb->data[skb->len], 0, 50 - skb->len);
4853				skb->len = 50;
4854			} else {
4855				skb = netdev_alloc_skb(dev, 50);
4856				if (!skb)
4857					return NETDEV_TX_BUSY;
4858				memcpy(skb->data, org_skb->data, org_skb->len);
4859				memset(&skb->data[org_skb->len], 0,
4860					50 - org_skb->len);
4861				skb->len = 50;
4862				copy_old_skb(org_skb, skb);
4863			}
4864		}
4865	}
4866
4867	spin_lock_irq(&hw_priv->hwlock);
4868
4869	num = skb_shinfo(skb)->nr_frags + 1;
4870	left = hw_alloc_pkt(hw, skb->len, num);
4871	if (left) {
4872		if (left < num ||
4873		    (CHECKSUM_PARTIAL == skb->ip_summed &&
4874		     skb->protocol == htons(ETH_P_IPV6))) {
4875			struct sk_buff *org_skb = skb;
4876
4877			skb = netdev_alloc_skb(dev, org_skb->len);
4878			if (!skb) {
4879				rc = NETDEV_TX_BUSY;
4880				goto unlock;
4881			}
4882			skb_copy_and_csum_dev(org_skb, skb->data);
4883			org_skb->ip_summed = CHECKSUM_NONE;
4884			skb->len = org_skb->len;
4885			copy_old_skb(org_skb, skb);
4886		}
4887		send_packet(skb, dev);
4888		if (left <= num)
4889			netif_stop_queue(dev);
4890	} else {
4891		/* Stop the transmit queue until packet is allocated. */
4892		netif_stop_queue(dev);
4893		rc = NETDEV_TX_BUSY;
4894	}
4895unlock:
4896	spin_unlock_irq(&hw_priv->hwlock);
4897
4898	return rc;
4899}
4900
4901/**
4902 * netdev_tx_timeout - transmit timeout processing
4903 * @dev:	Network device.
4904 *
4905 * This routine is called when the transmit timer expires.  That indicates the
4906 * hardware is not running correctly because transmit interrupts are not
4907 * triggered to free up resources so that the transmit routine can continue
4908 * sending out packets.  The hardware is reset to correct the problem.
4909 */
4910static void netdev_tx_timeout(struct net_device *dev)
4911{
4912	static unsigned long last_reset;
4913
4914	struct dev_priv *priv = netdev_priv(dev);
4915	struct dev_info *hw_priv = priv->adapter;
4916	struct ksz_hw *hw = &hw_priv->hw;
4917	int port;
4918
4919	if (hw->dev_count > 1) {
4920		/*
4921		 * Only reset the hardware if time between calls is long
4922		 * enough.
4923		 */
4924		if (time_before_eq(jiffies, last_reset + dev->watchdog_timeo))
4925			hw_priv = NULL;
4926	}
4927
4928	last_reset = jiffies;
4929	if (hw_priv) {
4930		hw_dis_intr(hw);
4931		hw_disable(hw);
4932
4933		transmit_cleanup(hw_priv, 0);
4934		hw_reset_pkts(&hw->rx_desc_info);
4935		hw_reset_pkts(&hw->tx_desc_info);
4936		ksz_init_rx_buffers(hw_priv);
4937
4938		hw_reset(hw);
4939
4940		hw_set_desc_base(hw,
4941			hw->tx_desc_info.ring_phys,
4942			hw->rx_desc_info.ring_phys);
4943		hw_set_addr(hw);
4944		if (hw->all_multi)
4945			hw_set_multicast(hw, hw->all_multi);
4946		else if (hw->multi_list_size)
4947			hw_set_grp_addr(hw);
4948
4949		if (hw->dev_count > 1) {
4950			hw_set_add_addr(hw);
4951			for (port = 0; port < SWITCH_PORT_NUM; port++) {
4952				struct net_device *port_dev;
4953
4954				port_set_stp_state(hw, port,
4955					STP_STATE_DISABLED);
4956
4957				port_dev = hw->port_info[port].pdev;
4958				if (netif_running(port_dev))
4959					port_set_stp_state(hw, port,
4960						STP_STATE_SIMPLE);
4961			}
4962		}
4963
4964		hw_enable(hw);
4965		hw_ena_intr(hw);
4966	}
4967
4968	netif_trans_update(dev);
4969	netif_wake_queue(dev);
4970}
4971
4972static inline void csum_verified(struct sk_buff *skb)
4973{
4974	unsigned short protocol;
4975	struct iphdr *iph;
4976
4977	protocol = skb->protocol;
4978	skb_reset_network_header(skb);
4979	iph = (struct iphdr *) skb_network_header(skb);
4980	if (protocol == htons(ETH_P_8021Q)) {
4981		protocol = iph->tot_len;
4982		skb_set_network_header(skb, VLAN_HLEN);
4983		iph = (struct iphdr *) skb_network_header(skb);
4984	}
4985	if (protocol == htons(ETH_P_IP)) {
4986		if (iph->protocol == IPPROTO_TCP)
4987			skb->ip_summed = CHECKSUM_UNNECESSARY;
4988	}
4989}
4990
4991static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw,
4992	struct ksz_desc *desc, union desc_stat status)
4993{
4994	int packet_len;
4995	struct dev_priv *priv = netdev_priv(dev);
4996	struct dev_info *hw_priv = priv->adapter;
4997	struct ksz_dma_buf *dma_buf;
4998	struct sk_buff *skb;
4999	int rx_status;
5000
5001	/* Received length includes 4-byte CRC. */
5002	packet_len = status.rx.frame_len - 4;
5003
5004	dma_buf = DMA_BUFFER(desc);
5005	pci_dma_sync_single_for_cpu(
5006		hw_priv->pdev, dma_buf->dma, packet_len + 4,
5007		PCI_DMA_FROMDEVICE);
5008
5009	do {
5010		/* skb->data != skb->head */
5011		skb = netdev_alloc_skb(dev, packet_len + 2);
5012		if (!skb) {
5013			dev->stats.rx_dropped++;
5014			return -ENOMEM;
5015		}
5016
5017		/*
5018		 * Align socket buffer in 4-byte boundary for better
5019		 * performance.
5020		 */
5021		skb_reserve(skb, 2);
5022
5023		memcpy(skb_put(skb, packet_len),
5024			dma_buf->skb->data, packet_len);
5025	} while (0);
5026
5027	skb->protocol = eth_type_trans(skb, dev);
5028
5029	if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP))
5030		csum_verified(skb);
5031
5032	/* Update receive statistics. */
5033	dev->stats.rx_packets++;
5034	dev->stats.rx_bytes += packet_len;
5035
5036	/* Notify upper layer for received packet. */
5037	rx_status = netif_rx(skb);
5038
5039	return 0;
5040}
5041
5042static int dev_rcv_packets(struct dev_info *hw_priv)
5043{
5044	int next;
5045	union desc_stat status;
5046	struct ksz_hw *hw = &hw_priv->hw;
5047	struct net_device *dev = hw->port_info[0].pdev;
5048	struct ksz_desc_info *info = &hw->rx_desc_info;
5049	int left = info->alloc;
5050	struct ksz_desc *desc;
5051	int received = 0;
5052
5053	next = info->next;
5054	while (left--) {
5055		/* Get next descriptor which is not hardware owned. */
5056		desc = &info->ring[next];
5057		status.data = le32_to_cpu(desc->phw->ctrl.data);
5058		if (status.rx.hw_owned)
5059			break;
5060
5061		/* Status valid only when last descriptor bit is set. */
5062		if (status.rx.last_desc && status.rx.first_desc) {
5063			if (rx_proc(dev, hw, desc, status))
5064				goto release_packet;
5065			received++;
5066		}
5067
5068release_packet:
5069		release_desc(desc);
5070		next++;
5071		next &= info->mask;
5072	}
5073	info->next = next;
5074
5075	return received;
5076}
5077
5078static int port_rcv_packets(struct dev_info *hw_priv)
5079{
5080	int next;
5081	union desc_stat status;
5082	struct ksz_hw *hw = &hw_priv->hw;
5083	struct net_device *dev = hw->port_info[0].pdev;
5084	struct ksz_desc_info *info = &hw->rx_desc_info;
5085	int left = info->alloc;
5086	struct ksz_desc *desc;
5087	int received = 0;
5088
5089	next = info->next;
5090	while (left--) {
5091		/* Get next descriptor which is not hardware owned. */
5092		desc = &info->ring[next];
5093		status.data = le32_to_cpu(desc->phw->ctrl.data);
5094		if (status.rx.hw_owned)
5095			break;
5096
5097		if (hw->dev_count > 1) {
5098			/* Get received port number. */
5099			int p = HW_TO_DEV_PORT(status.rx.src_port);
5100
5101			dev = hw->port_info[p].pdev;
5102			if (!netif_running(dev))
5103				goto release_packet;
5104		}
5105
5106		/* Status valid only when last descriptor bit is set. */
5107		if (status.rx.last_desc && status.rx.first_desc) {
5108			if (rx_proc(dev, hw, desc, status))
5109				goto release_packet;
5110			received++;
5111		}
5112
5113release_packet:
5114		release_desc(desc);
5115		next++;
5116		next &= info->mask;
5117	}
5118	info->next = next;
5119
5120	return received;
5121}
5122
5123static int dev_rcv_special(struct dev_info *hw_priv)
5124{
5125	int next;
5126	union desc_stat status;
5127	struct ksz_hw *hw = &hw_priv->hw;
5128	struct net_device *dev = hw->port_info[0].pdev;
5129	struct ksz_desc_info *info = &hw->rx_desc_info;
5130	int left = info->alloc;
5131	struct ksz_desc *desc;
5132	int received = 0;
5133
5134	next = info->next;
5135	while (left--) {
5136		/* Get next descriptor which is not hardware owned. */
5137		desc = &info->ring[next];
5138		status.data = le32_to_cpu(desc->phw->ctrl.data);
5139		if (status.rx.hw_owned)
5140			break;
5141
5142		if (hw->dev_count > 1) {
5143			/* Get received port number. */
5144			int p = HW_TO_DEV_PORT(status.rx.src_port);
5145
5146			dev = hw->port_info[p].pdev;
5147			if (!netif_running(dev))
5148				goto release_packet;
5149		}
5150
5151		/* Status valid only when last descriptor bit is set. */
5152		if (status.rx.last_desc && status.rx.first_desc) {
5153			/*
5154			 * Receive without error.  With receive errors
5155			 * disabled, packets with receive errors will be
5156			 * dropped, so no need to check the error bit.
5157			 */
5158			if (!status.rx.error || (status.data &
5159					KS_DESC_RX_ERROR_COND) ==
5160					KS_DESC_RX_ERROR_TOO_LONG) {
5161				if (rx_proc(dev, hw, desc, status))
5162					goto release_packet;
5163				received++;
5164			} else {
5165				struct dev_priv *priv = netdev_priv(dev);
5166
5167				/* Update receive error statistics. */
5168				priv->port.counter[OID_COUNTER_RCV_ERROR]++;
5169			}
5170		}
5171
5172release_packet:
5173		release_desc(desc);
5174		next++;
5175		next &= info->mask;
5176	}
5177	info->next = next;
5178
5179	return received;
5180}
5181
5182static void rx_proc_task(unsigned long data)
5183{
5184	struct dev_info *hw_priv = (struct dev_info *) data;
5185	struct ksz_hw *hw = &hw_priv->hw;
5186
5187	if (!hw->enabled)
5188		return;
5189	if (unlikely(!hw_priv->dev_rcv(hw_priv))) {
5190
5191		/* In case receive process is suspended because of overrun. */
5192		hw_resume_rx(hw);
5193
5194		/* tasklets are interruptible. */
5195		spin_lock_irq(&hw_priv->hwlock);
5196		hw_turn_on_intr(hw, KS884X_INT_RX_MASK);
5197		spin_unlock_irq(&hw_priv->hwlock);
5198	} else {
5199		hw_ack_intr(hw, KS884X_INT_RX);
5200		tasklet_schedule(&hw_priv->rx_tasklet);
5201	}
5202}
5203
5204static void tx_proc_task(unsigned long data)
5205{
5206	struct dev_info *hw_priv = (struct dev_info *) data;
5207	struct ksz_hw *hw = &hw_priv->hw;
5208
5209	hw_ack_intr(hw, KS884X_INT_TX_MASK);
5210
5211	tx_done(hw_priv);
5212
5213	/* tasklets are interruptible. */
5214	spin_lock_irq(&hw_priv->hwlock);
5215	hw_turn_on_intr(hw, KS884X_INT_TX);
5216	spin_unlock_irq(&hw_priv->hwlock);
5217}
5218
5219static inline void handle_rx_stop(struct ksz_hw *hw)
5220{
5221	/* Receive just has been stopped. */
5222	if (0 == hw->rx_stop)
5223		hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5224	else if (hw->rx_stop > 1) {
5225		if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) {
5226			hw_start_rx(hw);
5227		} else {
5228			hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5229			hw->rx_stop = 0;
5230		}
5231	} else
5232		/* Receive just has been started. */
5233		hw->rx_stop++;
5234}
5235
5236/**
5237 * netdev_intr - interrupt handling
5238 * @irq:	Interrupt number.
5239 * @dev_id:	Network device.
5240 *
5241 * This function is called by upper network layer to signal interrupt.
5242 *
5243 * Return IRQ_HANDLED if interrupt is handled.
5244 */
5245static irqreturn_t netdev_intr(int irq, void *dev_id)
5246{
5247	uint int_enable = 0;
5248	struct net_device *dev = (struct net_device *) dev_id;
5249	struct dev_priv *priv = netdev_priv(dev);
5250	struct dev_info *hw_priv = priv->adapter;
5251	struct ksz_hw *hw = &hw_priv->hw;
5252
5253	spin_lock(&hw_priv->hwlock);
5254
5255	hw_read_intr(hw, &int_enable);
5256
5257	/* Not our interrupt! */
5258	if (!int_enable) {
5259		spin_unlock(&hw_priv->hwlock);
5260		return IRQ_NONE;
5261	}
5262
5263	do {
5264		hw_ack_intr(hw, int_enable);
5265		int_enable &= hw->intr_mask;
5266
5267		if (unlikely(int_enable & KS884X_INT_TX_MASK)) {
5268			hw_dis_intr_bit(hw, KS884X_INT_TX_MASK);
5269			tasklet_schedule(&hw_priv->tx_tasklet);
5270		}
5271
5272		if (likely(int_enable & KS884X_INT_RX)) {
5273			hw_dis_intr_bit(hw, KS884X_INT_RX);
5274			tasklet_schedule(&hw_priv->rx_tasklet);
5275		}
5276
5277		if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) {
5278			dev->stats.rx_fifo_errors++;
5279			hw_resume_rx(hw);
5280		}
5281
5282		if (unlikely(int_enable & KS884X_INT_PHY)) {
5283			struct ksz_port *port = &priv->port;
5284
5285			hw->features |= LINK_INT_WORKING;
5286			port_get_link_speed(port);
5287		}
5288
5289		if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) {
5290			handle_rx_stop(hw);
5291			break;
5292		}
5293
5294		if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) {
5295			u32 data;
5296
5297			hw->intr_mask &= ~KS884X_INT_TX_STOPPED;
5298			pr_info("Tx stopped\n");
5299			data = readl(hw->io + KS_DMA_TX_CTRL);
5300			if (!(data & DMA_TX_ENABLE))
5301				pr_info("Tx disabled\n");
5302			break;
5303		}
5304	} while (0);
5305
5306	hw_ena_intr(hw);
5307
5308	spin_unlock(&hw_priv->hwlock);
5309
5310	return IRQ_HANDLED;
5311}
5312
5313/*
5314 * Linux network device functions
5315 */
5316
5317static unsigned long next_jiffies;
5318
5319#ifdef CONFIG_NET_POLL_CONTROLLER
5320static void netdev_netpoll(struct net_device *dev)
5321{
5322	struct dev_priv *priv = netdev_priv(dev);
5323	struct dev_info *hw_priv = priv->adapter;
5324
5325	hw_dis_intr(&hw_priv->hw);
5326	netdev_intr(dev->irq, dev);
5327}
5328#endif
5329
5330static void bridge_change(struct ksz_hw *hw)
5331{
5332	int port;
5333	u8  member;
5334	struct ksz_switch *sw = hw->ksz_switch;
5335
5336	/* No ports in forwarding state. */
5337	if (!sw->member) {
5338		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
5339		sw_block_addr(hw);
5340	}
5341	for (port = 0; port < SWITCH_PORT_NUM; port++) {
5342		if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state)
5343			member = HOST_MASK | sw->member;
5344		else
5345			member = HOST_MASK | (1 << port);
5346		if (member != sw->port_cfg[port].member)
5347			sw_cfg_port_base_vlan(hw, port, member);
5348	}
5349}
5350
5351/**
5352 * netdev_close - close network device
5353 * @dev:	Network device.
5354 *
5355 * This function process the close operation of network device.  This is caused
5356 * by the user command "ifconfig ethX down."
5357 *
5358 * Return 0 if successful; otherwise an error code indicating failure.
5359 */
5360static int netdev_close(struct net_device *dev)
5361{
5362	struct dev_priv *priv = netdev_priv(dev);
5363	struct dev_info *hw_priv = priv->adapter;
5364	struct ksz_port *port = &priv->port;
5365	struct ksz_hw *hw = &hw_priv->hw;
5366	int pi;
5367
5368	netif_stop_queue(dev);
5369
5370	ksz_stop_timer(&priv->monitor_timer_info);
5371
5372	/* Need to shut the port manually in multiple device interfaces mode. */
5373	if (hw->dev_count > 1) {
5374		port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED);
5375
5376		/* Port is closed.  Need to change bridge setting. */
5377		if (hw->features & STP_SUPPORT) {
5378			pi = 1 << port->first_port;
5379			if (hw->ksz_switch->member & pi) {
5380				hw->ksz_switch->member &= ~pi;
5381				bridge_change(hw);
5382			}
5383		}
5384	}
5385	if (port->first_port > 0)
5386		hw_del_addr(hw, dev->dev_addr);
5387	if (!hw_priv->wol_enable)
5388		port_set_power_saving(port, true);
5389
5390	if (priv->multicast)
5391		--hw->all_multi;
5392	if (priv->promiscuous)
5393		--hw->promiscuous;
5394
5395	hw_priv->opened--;
5396	if (!(hw_priv->opened)) {
5397		ksz_stop_timer(&hw_priv->mib_timer_info);
5398		flush_work(&hw_priv->mib_read);
5399
5400		hw_dis_intr(hw);
5401		hw_disable(hw);
5402		hw_clr_multicast(hw);
5403
5404		/* Delay for receive task to stop scheduling itself. */
5405		msleep(2000 / HZ);
5406
5407		tasklet_kill(&hw_priv->rx_tasklet);
5408		tasklet_kill(&hw_priv->tx_tasklet);
5409		free_irq(dev->irq, hw_priv->dev);
5410
5411		transmit_cleanup(hw_priv, 0);
5412		hw_reset_pkts(&hw->rx_desc_info);
5413		hw_reset_pkts(&hw->tx_desc_info);
5414
5415		/* Clean out static MAC table when the switch is shutdown. */
5416		if (hw->features & STP_SUPPORT)
5417			sw_clr_sta_mac_table(hw);
5418	}
5419
5420	return 0;
5421}
5422
5423static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw)
5424{
5425	if (hw->ksz_switch) {
5426		u32 data;
5427
5428		data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5429		if (hw->features & RX_HUGE_FRAME)
5430			data |= SWITCH_HUGE_PACKET;
5431		else
5432			data &= ~SWITCH_HUGE_PACKET;
5433		writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5434	}
5435	if (hw->features & RX_HUGE_FRAME) {
5436		hw->rx_cfg |= DMA_RX_ERROR;
5437		hw_priv->dev_rcv = dev_rcv_special;
5438	} else {
5439		hw->rx_cfg &= ~DMA_RX_ERROR;
5440		if (hw->dev_count > 1)
5441			hw_priv->dev_rcv = port_rcv_packets;
5442		else
5443			hw_priv->dev_rcv = dev_rcv_packets;
5444	}
5445}
5446
5447static int prepare_hardware(struct net_device *dev)
5448{
5449	struct dev_priv *priv = netdev_priv(dev);
5450	struct dev_info *hw_priv = priv->adapter;
5451	struct ksz_hw *hw = &hw_priv->hw;
5452	int rc = 0;
5453
5454	/* Remember the network device that requests interrupts. */
5455	hw_priv->dev = dev;
5456	rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev);
5457	if (rc)
5458		return rc;
5459	tasklet_init(&hw_priv->rx_tasklet, rx_proc_task,
5460		     (unsigned long) hw_priv);
5461	tasklet_init(&hw_priv->tx_tasklet, tx_proc_task,
5462		     (unsigned long) hw_priv);
5463
5464	hw->promiscuous = 0;
5465	hw->all_multi = 0;
5466	hw->multi_list_size = 0;
5467
5468	hw_reset(hw);
5469
5470	hw_set_desc_base(hw,
5471		hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys);
5472	hw_set_addr(hw);
5473	hw_cfg_huge_frame(hw_priv, hw);
5474	ksz_init_rx_buffers(hw_priv);
5475	return 0;
5476}
5477
5478static void set_media_state(struct net_device *dev, int media_state)
5479{
5480	struct dev_priv *priv = netdev_priv(dev);
5481
5482	if (media_state == priv->media_state)
5483		netif_carrier_on(dev);
5484	else
5485		netif_carrier_off(dev);
5486	netif_info(priv, link, dev, "link %s\n",
5487		   media_state == priv->media_state ? "on" : "off");
5488}
5489
5490/**
5491 * netdev_open - open network device
5492 * @dev:	Network device.
5493 *
5494 * This function process the open operation of network device.  This is caused
5495 * by the user command "ifconfig ethX up."
5496 *
5497 * Return 0 if successful; otherwise an error code indicating failure.
5498 */
5499static int netdev_open(struct net_device *dev)
5500{
5501	struct dev_priv *priv = netdev_priv(dev);
5502	struct dev_info *hw_priv = priv->adapter;
5503	struct ksz_hw *hw = &hw_priv->hw;
5504	struct ksz_port *port = &priv->port;
5505	int i;
5506	int p;
5507	int rc = 0;
5508
5509	priv->multicast = 0;
5510	priv->promiscuous = 0;
5511
5512	/* Reset device statistics. */
5513	memset(&dev->stats, 0, sizeof(struct net_device_stats));
5514	memset((void *) port->counter, 0,
5515		(sizeof(u64) * OID_COUNTER_LAST));
5516
5517	if (!(hw_priv->opened)) {
5518		rc = prepare_hardware(dev);
5519		if (rc)
5520			return rc;
5521		for (i = 0; i < hw->mib_port_cnt; i++) {
5522			if (next_jiffies < jiffies)
5523				next_jiffies = jiffies + HZ * 2;
5524			else
5525				next_jiffies += HZ * 1;
5526			hw_priv->counter[i].time = next_jiffies;
5527			hw->port_mib[i].state = media_disconnected;
5528			port_init_cnt(hw, i);
5529		}
5530		if (hw->ksz_switch)
5531			hw->port_mib[HOST_PORT].state = media_connected;
5532		else {
5533			hw_add_wol_bcast(hw);
5534			hw_cfg_wol_pme(hw, 0);
5535			hw_clr_wol_pme_status(&hw_priv->hw);
5536		}
5537	}
5538	port_set_power_saving(port, false);
5539
5540	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
5541		/*
5542		 * Initialize to invalid value so that link detection
5543		 * is done.
5544		 */
5545		hw->port_info[p].partner = 0xFF;
5546		hw->port_info[p].state = media_disconnected;
5547	}
5548
5549	/* Need to open the port in multiple device interfaces mode. */
5550	if (hw->dev_count > 1) {
5551		port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE);
5552		if (port->first_port > 0)
5553			hw_add_addr(hw, dev->dev_addr);
5554	}
5555
5556	port_get_link_speed(port);
5557	if (port->force_link)
5558		port_force_link_speed(port);
5559	else
5560		port_set_link_speed(port);
5561
5562	if (!(hw_priv->opened)) {
5563		hw_setup_intr(hw);
5564		hw_enable(hw);
5565		hw_ena_intr(hw);
5566
5567		if (hw->mib_port_cnt)
5568			ksz_start_timer(&hw_priv->mib_timer_info,
5569				hw_priv->mib_timer_info.period);
5570	}
5571
5572	hw_priv->opened++;
5573
5574	ksz_start_timer(&priv->monitor_timer_info,
5575		priv->monitor_timer_info.period);
5576
5577	priv->media_state = port->linked->state;
5578
5579	set_media_state(dev, media_connected);
5580	netif_start_queue(dev);
5581
5582	return 0;
5583}
5584
5585/* RX errors = rx_errors */
5586/* RX dropped = rx_dropped */
5587/* RX overruns = rx_fifo_errors */
5588/* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */
5589/* TX errors = tx_errors */
5590/* TX dropped = tx_dropped */
5591/* TX overruns = tx_fifo_errors */
5592/* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */
5593/* collisions = collisions */
5594
5595/**
5596 * netdev_query_statistics - query network device statistics
5597 * @dev:	Network device.
5598 *
5599 * This function returns the statistics of the network device.  The device
5600 * needs not be opened.
5601 *
5602 * Return network device statistics.
5603 */
5604static struct net_device_stats *netdev_query_statistics(struct net_device *dev)
5605{
5606	struct dev_priv *priv = netdev_priv(dev);
5607	struct ksz_port *port = &priv->port;
5608	struct ksz_hw *hw = &priv->adapter->hw;
5609	struct ksz_port_mib *mib;
5610	int i;
5611	int p;
5612
5613	dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR];
5614	dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR];
5615
5616	/* Reset to zero to add count later. */
5617	dev->stats.multicast = 0;
5618	dev->stats.collisions = 0;
5619	dev->stats.rx_length_errors = 0;
5620	dev->stats.rx_crc_errors = 0;
5621	dev->stats.rx_frame_errors = 0;
5622	dev->stats.tx_window_errors = 0;
5623
5624	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
5625		mib = &hw->port_mib[p];
5626
5627		dev->stats.multicast += (unsigned long)
5628			mib->counter[MIB_COUNTER_RX_MULTICAST];
5629
5630		dev->stats.collisions += (unsigned long)
5631			mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION];
5632
5633		dev->stats.rx_length_errors += (unsigned long)(
5634			mib->counter[MIB_COUNTER_RX_UNDERSIZE] +
5635			mib->counter[MIB_COUNTER_RX_FRAGMENT] +
5636			mib->counter[MIB_COUNTER_RX_OVERSIZE] +
5637			mib->counter[MIB_COUNTER_RX_JABBER]);
5638		dev->stats.rx_crc_errors += (unsigned long)
5639			mib->counter[MIB_COUNTER_RX_CRC_ERR];
5640		dev->stats.rx_frame_errors += (unsigned long)(
5641			mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] +
5642			mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]);
5643
5644		dev->stats.tx_window_errors += (unsigned long)
5645			mib->counter[MIB_COUNTER_TX_LATE_COLLISION];
5646	}
5647
5648	return &dev->stats;
5649}
5650
5651/**
5652 * netdev_set_mac_address - set network device MAC address
5653 * @dev:	Network device.
5654 * @addr:	Buffer of MAC address.
5655 *
5656 * This function is used to set the MAC address of the network device.
5657 *
5658 * Return 0 to indicate success.
5659 */
5660static int netdev_set_mac_address(struct net_device *dev, void *addr)
5661{
5662	struct dev_priv *priv = netdev_priv(dev);
5663	struct dev_info *hw_priv = priv->adapter;
5664	struct ksz_hw *hw = &hw_priv->hw;
5665	struct sockaddr *mac = addr;
5666	uint interrupt;
5667
5668	if (priv->port.first_port > 0)
5669		hw_del_addr(hw, dev->dev_addr);
5670	else {
5671		hw->mac_override = 1;
5672		memcpy(hw->override_addr, mac->sa_data, ETH_ALEN);
5673	}
5674
5675	memcpy(dev->dev_addr, mac->sa_data, ETH_ALEN);
5676
5677	interrupt = hw_block_intr(hw);
5678
5679	if (priv->port.first_port > 0)
5680		hw_add_addr(hw, dev->dev_addr);
5681	else
5682		hw_set_addr(hw);
5683	hw_restore_intr(hw, interrupt);
5684
5685	return 0;
5686}
5687
5688static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv,
5689	struct ksz_hw *hw, int promiscuous)
5690{
5691	if (promiscuous != priv->promiscuous) {
5692		u8 prev_state = hw->promiscuous;
5693
5694		if (promiscuous)
5695			++hw->promiscuous;
5696		else
5697			--hw->promiscuous;
5698		priv->promiscuous = promiscuous;
5699
5700		/* Turn on/off promiscuous mode. */
5701		if (hw->promiscuous <= 1 && prev_state <= 1)
5702			hw_set_promiscuous(hw, hw->promiscuous);
5703
5704		/*
5705		 * Port is not in promiscuous mode, meaning it is released
5706		 * from the bridge.
5707		 */
5708		if ((hw->features & STP_SUPPORT) && !promiscuous &&
5709		    (dev->priv_flags & IFF_BRIDGE_PORT)) {
5710			struct ksz_switch *sw = hw->ksz_switch;
5711			int port = priv->port.first_port;
5712
5713			port_set_stp_state(hw, port, STP_STATE_DISABLED);
5714			port = 1 << port;
5715			if (sw->member & port) {
5716				sw->member &= ~port;
5717				bridge_change(hw);
5718			}
5719		}
5720	}
5721}
5722
5723static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw,
5724	int multicast)
5725{
5726	if (multicast != priv->multicast) {
5727		u8 all_multi = hw->all_multi;
5728
5729		if (multicast)
5730			++hw->all_multi;
5731		else
5732			--hw->all_multi;
5733		priv->multicast = multicast;
5734
5735		/* Turn on/off all multicast mode. */
5736		if (hw->all_multi <= 1 && all_multi <= 1)
5737			hw_set_multicast(hw, hw->all_multi);
5738	}
5739}
5740
5741/**
5742 * netdev_set_rx_mode
5743 * @dev:	Network device.
5744 *
5745 * This routine is used to set multicast addresses or put the network device
5746 * into promiscuous mode.
5747 */
5748static void netdev_set_rx_mode(struct net_device *dev)
5749{
5750	struct dev_priv *priv = netdev_priv(dev);
5751	struct dev_info *hw_priv = priv->adapter;
5752	struct ksz_hw *hw = &hw_priv->hw;
5753	struct netdev_hw_addr *ha;
5754	int multicast = (dev->flags & IFF_ALLMULTI);
5755
5756	dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC));
5757
5758	if (hw_priv->hw.dev_count > 1)
5759		multicast |= (dev->flags & IFF_MULTICAST);
5760	dev_set_multicast(priv, hw, multicast);
5761
5762	/* Cannot use different hashes in multiple device interfaces mode. */
5763	if (hw_priv->hw.dev_count > 1)
5764		return;
5765
5766	if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
5767		int i = 0;
5768
5769		/* List too big to support so turn on all multicast mode. */
5770		if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) {
5771			if (MAX_MULTICAST_LIST != hw->multi_list_size) {
5772				hw->multi_list_size = MAX_MULTICAST_LIST;
5773				++hw->all_multi;
5774				hw_set_multicast(hw, hw->all_multi);
5775			}
5776			return;
5777		}
5778
5779		netdev_for_each_mc_addr(ha, dev) {
5780			if (i >= MAX_MULTICAST_LIST)
5781				break;
5782			memcpy(hw->multi_list[i++], ha->addr, ETH_ALEN);
5783		}
5784		hw->multi_list_size = (u8) i;
5785		hw_set_grp_addr(hw);
5786	} else {
5787		if (MAX_MULTICAST_LIST == hw->multi_list_size) {
5788			--hw->all_multi;
5789			hw_set_multicast(hw, hw->all_multi);
5790		}
5791		hw->multi_list_size = 0;
5792		hw_clr_multicast(hw);
5793	}
5794}
5795
5796static int netdev_change_mtu(struct net_device *dev, int new_mtu)
5797{
5798	struct dev_priv *priv = netdev_priv(dev);
5799	struct dev_info *hw_priv = priv->adapter;
5800	struct ksz_hw *hw = &hw_priv->hw;
5801	int hw_mtu;
5802
5803	if (netif_running(dev))
5804		return -EBUSY;
5805
5806	/* Cannot use different MTU in multiple device interfaces mode. */
5807	if (hw->dev_count > 1)
5808		if (dev != hw_priv->dev)
5809			return 0;
5810
5811	hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4;
5812	if (hw_mtu > REGULAR_RX_BUF_SIZE) {
5813		hw->features |= RX_HUGE_FRAME;
5814		hw_mtu = MAX_RX_BUF_SIZE;
5815	} else {
5816		hw->features &= ~RX_HUGE_FRAME;
5817		hw_mtu = REGULAR_RX_BUF_SIZE;
5818	}
5819	hw_mtu = (hw_mtu + 3) & ~3;
5820	hw_priv->mtu = hw_mtu;
5821	dev->mtu = new_mtu;
5822
5823	return 0;
5824}
5825
5826/**
5827 * netdev_ioctl - I/O control processing
5828 * @dev:	Network device.
5829 * @ifr:	Interface request structure.
5830 * @cmd:	I/O control code.
5831 *
5832 * This function is used to process I/O control calls.
5833 *
5834 * Return 0 to indicate success.
5835 */
5836static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5837{
5838	struct dev_priv *priv = netdev_priv(dev);
5839	struct dev_info *hw_priv = priv->adapter;
5840	struct ksz_hw *hw = &hw_priv->hw;
5841	struct ksz_port *port = &priv->port;
5842	int result = 0;
5843	struct mii_ioctl_data *data = if_mii(ifr);
5844
5845	if (down_interruptible(&priv->proc_sem))
5846		return -ERESTARTSYS;
5847
5848	switch (cmd) {
5849	/* Get address of MII PHY in use. */
5850	case SIOCGMIIPHY:
5851		data->phy_id = priv->id;
5852
5853		/* Fallthrough... */
5854
5855	/* Read MII PHY register. */
5856	case SIOCGMIIREG:
5857		if (data->phy_id != priv->id || data->reg_num >= 6)
5858			result = -EIO;
5859		else
5860			hw_r_phy(hw, port->linked->port_id, data->reg_num,
5861				&data->val_out);
5862		break;
5863
5864	/* Write MII PHY register. */
5865	case SIOCSMIIREG:
5866		if (!capable(CAP_NET_ADMIN))
5867			result = -EPERM;
5868		else if (data->phy_id != priv->id || data->reg_num >= 6)
5869			result = -EIO;
5870		else
5871			hw_w_phy(hw, port->linked->port_id, data->reg_num,
5872				data->val_in);
5873		break;
5874
5875	default:
5876		result = -EOPNOTSUPP;
5877	}
5878
5879	up(&priv->proc_sem);
5880
5881	return result;
5882}
5883
5884/*
5885 * MII support
5886 */
5887
5888/**
5889 * mdio_read - read PHY register
5890 * @dev:	Network device.
5891 * @phy_id:	The PHY id.
5892 * @reg_num:	The register number.
5893 *
5894 * This function returns the PHY register value.
5895 *
5896 * Return the register value.
5897 */
5898static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
5899{
5900	struct dev_priv *priv = netdev_priv(dev);
5901	struct ksz_port *port = &priv->port;
5902	struct ksz_hw *hw = port->hw;
5903	u16 val_out;
5904
5905	hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out);
5906	return val_out;
5907}
5908
5909/**
5910 * mdio_write - set PHY register
5911 * @dev:	Network device.
5912 * @phy_id:	The PHY id.
5913 * @reg_num:	The register number.
5914 * @val:	The register value.
5915 *
5916 * This procedure sets the PHY register value.
5917 */
5918static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
5919{
5920	struct dev_priv *priv = netdev_priv(dev);
5921	struct ksz_port *port = &priv->port;
5922	struct ksz_hw *hw = port->hw;
5923	int i;
5924	int pi;
5925
5926	for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++)
5927		hw_w_phy(hw, pi, reg_num << 1, val);
5928}
5929
5930/*
5931 * ethtool support
5932 */
5933
5934#define EEPROM_SIZE			0x40
5935
5936static u16 eeprom_data[EEPROM_SIZE] = { 0 };
5937
5938#define ADVERTISED_ALL			\
5939	(ADVERTISED_10baseT_Half |	\
5940	ADVERTISED_10baseT_Full |	\
5941	ADVERTISED_100baseT_Half |	\
5942	ADVERTISED_100baseT_Full)
5943
5944/* These functions use the MII functions in mii.c. */
5945
5946/**
5947 * netdev_get_settings - get network device settings
5948 * @dev:	Network device.
5949 * @cmd:	Ethtool command.
5950 *
5951 * This function queries the PHY and returns its state in the ethtool command.
5952 *
5953 * Return 0 if successful; otherwise an error code.
5954 */
5955static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
5956{
5957	struct dev_priv *priv = netdev_priv(dev);
5958	struct dev_info *hw_priv = priv->adapter;
5959
5960	mutex_lock(&hw_priv->lock);
5961	mii_ethtool_gset(&priv->mii_if, cmd);
5962	cmd->advertising |= SUPPORTED_TP;
5963	mutex_unlock(&hw_priv->lock);
5964
5965	/* Save advertised settings for workaround in next function. */
5966	priv->advertising = cmd->advertising;
5967	return 0;
5968}
5969
5970/**
5971 * netdev_set_settings - set network device settings
5972 * @dev:	Network device.
5973 * @cmd:	Ethtool command.
5974 *
5975 * This function sets the PHY according to the ethtool command.
5976 *
5977 * Return 0 if successful; otherwise an error code.
5978 */
5979static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
5980{
5981	struct dev_priv *priv = netdev_priv(dev);
5982	struct dev_info *hw_priv = priv->adapter;
5983	struct ksz_port *port = &priv->port;
5984	u32 speed = ethtool_cmd_speed(cmd);
5985	int rc;
5986
5987	/*
5988	 * ethtool utility does not change advertised setting if auto
5989	 * negotiation is not specified explicitly.
5990	 */
5991	if (cmd->autoneg && priv->advertising == cmd->advertising) {
5992		cmd->advertising |= ADVERTISED_ALL;
5993		if (10 == speed)
5994			cmd->advertising &=
5995				~(ADVERTISED_100baseT_Full |
5996				ADVERTISED_100baseT_Half);
5997		else if (100 == speed)
5998			cmd->advertising &=
5999				~(ADVERTISED_10baseT_Full |
6000				ADVERTISED_10baseT_Half);
6001		if (0 == cmd->duplex)
6002			cmd->advertising &=
6003				~(ADVERTISED_100baseT_Full |
6004				ADVERTISED_10baseT_Full);
6005		else if (1 == cmd->duplex)
6006			cmd->advertising &=
6007				~(ADVERTISED_100baseT_Half |
6008				ADVERTISED_10baseT_Half);
6009	}
6010	mutex_lock(&hw_priv->lock);
6011	if (cmd->autoneg &&
6012			(cmd->advertising & ADVERTISED_ALL) ==
6013			ADVERTISED_ALL) {
6014		port->duplex = 0;
6015		port->speed = 0;
6016		port->force_link = 0;
6017	} else {
6018		port->duplex = cmd->duplex + 1;
6019		if (1000 != speed)
6020			port->speed = speed;
6021		if (cmd->autoneg)
6022			port->force_link = 0;
6023		else
6024			port->force_link = 1;
6025	}
6026	rc = mii_ethtool_sset(&priv->mii_if, cmd);
6027	mutex_unlock(&hw_priv->lock);
6028	return rc;
6029}
6030
6031/**
6032 * netdev_nway_reset - restart auto-negotiation
6033 * @dev:	Network device.
6034 *
6035 * This function restarts the PHY for auto-negotiation.
6036 *
6037 * Return 0 if successful; otherwise an error code.
6038 */
6039static int netdev_nway_reset(struct net_device *dev)
6040{
6041	struct dev_priv *priv = netdev_priv(dev);
6042	struct dev_info *hw_priv = priv->adapter;
6043	int rc;
6044
6045	mutex_lock(&hw_priv->lock);
6046	rc = mii_nway_restart(&priv->mii_if);
6047	mutex_unlock(&hw_priv->lock);
6048	return rc;
6049}
6050
6051/**
6052 * netdev_get_link - get network device link status
6053 * @dev:	Network device.
6054 *
6055 * This function gets the link status from the PHY.
6056 *
6057 * Return true if PHY is linked and false otherwise.
6058 */
6059static u32 netdev_get_link(struct net_device *dev)
6060{
6061	struct dev_priv *priv = netdev_priv(dev);
6062	int rc;
6063
6064	rc = mii_link_ok(&priv->mii_if);
6065	return rc;
6066}
6067
6068/**
6069 * netdev_get_drvinfo - get network driver information
6070 * @dev:	Network device.
6071 * @info:	Ethtool driver info data structure.
6072 *
6073 * This procedure returns the driver information.
6074 */
6075static void netdev_get_drvinfo(struct net_device *dev,
6076	struct ethtool_drvinfo *info)
6077{
6078	struct dev_priv *priv = netdev_priv(dev);
6079	struct dev_info *hw_priv = priv->adapter;
6080
6081	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
6082	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
6083	strlcpy(info->bus_info, pci_name(hw_priv->pdev),
6084		sizeof(info->bus_info));
6085}
6086
6087/**
6088 * netdev_get_regs_len - get length of register dump
6089 * @dev:	Network device.
6090 *
6091 * This function returns the length of the register dump.
6092 *
6093 * Return length of the register dump.
6094 */
6095static struct hw_regs {
6096	int start;
6097	int end;
6098} hw_regs_range[] = {
6099	{ KS_DMA_TX_CTRL,	KS884X_INTERRUPTS_STATUS },
6100	{ KS_ADD_ADDR_0_LO,	KS_ADD_ADDR_F_HI },
6101	{ KS884X_ADDR_0_OFFSET,	KS8841_WOL_FRAME_BYTE2_OFFSET },
6102	{ KS884X_SIDER_P,	KS8842_SGCR7_P },
6103	{ KS8842_MACAR1_P,	KS8842_TOSR8_P },
6104	{ KS884X_P1MBCR_P,	KS8842_P3ERCR_P },
6105	{ 0, 0 }
6106};
6107
6108static int netdev_get_regs_len(struct net_device *dev)
6109{
6110	struct hw_regs *range = hw_regs_range;
6111	int regs_len = 0x10 * sizeof(u32);
6112
6113	while (range->end > range->start) {
6114		regs_len += (range->end - range->start + 3) / 4 * 4;
6115		range++;
6116	}
6117	return regs_len;
6118}
6119
6120/**
6121 * netdev_get_regs - get register dump
6122 * @dev:	Network device.
6123 * @regs:	Ethtool registers data structure.
6124 * @ptr:	Buffer to store the register values.
6125 *
6126 * This procedure dumps the register values in the provided buffer.
6127 */
6128static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs,
6129	void *ptr)
6130{
6131	struct dev_priv *priv = netdev_priv(dev);
6132	struct dev_info *hw_priv = priv->adapter;
6133	struct ksz_hw *hw = &hw_priv->hw;
6134	int *buf = (int *) ptr;
6135	struct hw_regs *range = hw_regs_range;
6136	int len;
6137
6138	mutex_lock(&hw_priv->lock);
6139	regs->version = 0;
6140	for (len = 0; len < 0x40; len += 4) {
6141		pci_read_config_dword(hw_priv->pdev, len, buf);
6142		buf++;
6143	}
6144	while (range->end > range->start) {
6145		for (len = range->start; len < range->end; len += 4) {
6146			*buf = readl(hw->io + len);
6147			buf++;
6148		}
6149		range++;
6150	}
6151	mutex_unlock(&hw_priv->lock);
6152}
6153
6154#define WOL_SUPPORT			\
6155	(WAKE_PHY | WAKE_MAGIC |	\
6156	WAKE_UCAST | WAKE_MCAST |	\
6157	WAKE_BCAST | WAKE_ARP)
6158
6159/**
6160 * netdev_get_wol - get Wake-on-LAN support
6161 * @dev:	Network device.
6162 * @wol:	Ethtool Wake-on-LAN data structure.
6163 *
6164 * This procedure returns Wake-on-LAN support.
6165 */
6166static void netdev_get_wol(struct net_device *dev,
6167	struct ethtool_wolinfo *wol)
6168{
6169	struct dev_priv *priv = netdev_priv(dev);
6170	struct dev_info *hw_priv = priv->adapter;
6171
6172	wol->supported = hw_priv->wol_support;
6173	wol->wolopts = hw_priv->wol_enable;
6174	memset(&wol->sopass, 0, sizeof(wol->sopass));
6175}
6176
6177/**
6178 * netdev_set_wol - set Wake-on-LAN support
6179 * @dev:	Network device.
6180 * @wol:	Ethtool Wake-on-LAN data structure.
6181 *
6182 * This function sets Wake-on-LAN support.
6183 *
6184 * Return 0 if successful; otherwise an error code.
6185 */
6186static int netdev_set_wol(struct net_device *dev,
6187	struct ethtool_wolinfo *wol)
6188{
6189	struct dev_priv *priv = netdev_priv(dev);
6190	struct dev_info *hw_priv = priv->adapter;
6191
6192	/* Need to find a way to retrieve the device IP address. */
6193	static const u8 net_addr[] = { 192, 168, 1, 1 };
6194
6195	if (wol->wolopts & ~hw_priv->wol_support)
6196		return -EINVAL;
6197
6198	hw_priv->wol_enable = wol->wolopts;
6199
6200	/* Link wakeup cannot really be disabled. */
6201	if (wol->wolopts)
6202		hw_priv->wol_enable |= WAKE_PHY;
6203	hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr);
6204	return 0;
6205}
6206
6207/**
6208 * netdev_get_msglevel - get debug message level
6209 * @dev:	Network device.
6210 *
6211 * This function returns current debug message level.
6212 *
6213 * Return current debug message flags.
6214 */
6215static u32 netdev_get_msglevel(struct net_device *dev)
6216{
6217	struct dev_priv *priv = netdev_priv(dev);
6218
6219	return priv->msg_enable;
6220}
6221
6222/**
6223 * netdev_set_msglevel - set debug message level
6224 * @dev:	Network device.
6225 * @value:	Debug message flags.
6226 *
6227 * This procedure sets debug message level.
6228 */
6229static void netdev_set_msglevel(struct net_device *dev, u32 value)
6230{
6231	struct dev_priv *priv = netdev_priv(dev);
6232
6233	priv->msg_enable = value;
6234}
6235
6236/**
6237 * netdev_get_eeprom_len - get EEPROM length
6238 * @dev:	Network device.
6239 *
6240 * This function returns the length of the EEPROM.
6241 *
6242 * Return length of the EEPROM.
6243 */
6244static int netdev_get_eeprom_len(struct net_device *dev)
6245{
6246	return EEPROM_SIZE * 2;
6247}
6248
6249/**
6250 * netdev_get_eeprom - get EEPROM data
6251 * @dev:	Network device.
6252 * @eeprom:	Ethtool EEPROM data structure.
6253 * @data:	Buffer to store the EEPROM data.
6254 *
6255 * This function dumps the EEPROM data in the provided buffer.
6256 *
6257 * Return 0 if successful; otherwise an error code.
6258 */
6259#define EEPROM_MAGIC			0x10A18842
6260
6261static int netdev_get_eeprom(struct net_device *dev,
6262	struct ethtool_eeprom *eeprom, u8 *data)
6263{
6264	struct dev_priv *priv = netdev_priv(dev);
6265	struct dev_info *hw_priv = priv->adapter;
6266	u8 *eeprom_byte = (u8 *) eeprom_data;
6267	int i;
6268	int len;
6269
6270	len = (eeprom->offset + eeprom->len + 1) / 2;
6271	for (i = eeprom->offset / 2; i < len; i++)
6272		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6273	eeprom->magic = EEPROM_MAGIC;
6274	memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len);
6275
6276	return 0;
6277}
6278
6279/**
6280 * netdev_set_eeprom - write EEPROM data
6281 * @dev:	Network device.
6282 * @eeprom:	Ethtool EEPROM data structure.
6283 * @data:	Data buffer.
6284 *
6285 * This function modifies the EEPROM data one byte at a time.
6286 *
6287 * Return 0 if successful; otherwise an error code.
6288 */
6289static int netdev_set_eeprom(struct net_device *dev,
6290	struct ethtool_eeprom *eeprom, u8 *data)
6291{
6292	struct dev_priv *priv = netdev_priv(dev);
6293	struct dev_info *hw_priv = priv->adapter;
6294	u16 eeprom_word[EEPROM_SIZE];
6295	u8 *eeprom_byte = (u8 *) eeprom_word;
6296	int i;
6297	int len;
6298
6299	if (eeprom->magic != EEPROM_MAGIC)
6300		return -EINVAL;
6301
6302	len = (eeprom->offset + eeprom->len + 1) / 2;
6303	for (i = eeprom->offset / 2; i < len; i++)
6304		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6305	memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2);
6306	memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len);
6307	for (i = 0; i < EEPROM_SIZE; i++)
6308		if (eeprom_word[i] != eeprom_data[i]) {
6309			eeprom_data[i] = eeprom_word[i];
6310			eeprom_write(&hw_priv->hw, i, eeprom_data[i]);
6311	}
6312
6313	return 0;
6314}
6315
6316/**
6317 * netdev_get_pauseparam - get flow control parameters
6318 * @dev:	Network device.
6319 * @pause:	Ethtool PAUSE settings data structure.
6320 *
6321 * This procedure returns the PAUSE control flow settings.
6322 */
6323static void netdev_get_pauseparam(struct net_device *dev,
6324	struct ethtool_pauseparam *pause)
6325{
6326	struct dev_priv *priv = netdev_priv(dev);
6327	struct dev_info *hw_priv = priv->adapter;
6328	struct ksz_hw *hw = &hw_priv->hw;
6329
6330	pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1;
6331	if (!hw->ksz_switch) {
6332		pause->rx_pause =
6333			(hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0;
6334		pause->tx_pause =
6335			(hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0;
6336	} else {
6337		pause->rx_pause =
6338			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6339				SWITCH_RX_FLOW_CTRL)) ? 1 : 0;
6340		pause->tx_pause =
6341			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6342				SWITCH_TX_FLOW_CTRL)) ? 1 : 0;
6343	}
6344}
6345
6346/**
6347 * netdev_set_pauseparam - set flow control parameters
6348 * @dev:	Network device.
6349 * @pause:	Ethtool PAUSE settings data structure.
6350 *
6351 * This function sets the PAUSE control flow settings.
6352 * Not implemented yet.
6353 *
6354 * Return 0 if successful; otherwise an error code.
6355 */
6356static int netdev_set_pauseparam(struct net_device *dev,
6357	struct ethtool_pauseparam *pause)
6358{
6359	struct dev_priv *priv = netdev_priv(dev);
6360	struct dev_info *hw_priv = priv->adapter;
6361	struct ksz_hw *hw = &hw_priv->hw;
6362	struct ksz_port *port = &priv->port;
6363
6364	mutex_lock(&hw_priv->lock);
6365	if (pause->autoneg) {
6366		if (!pause->rx_pause && !pause->tx_pause)
6367			port->flow_ctrl = PHY_NO_FLOW_CTRL;
6368		else
6369			port->flow_ctrl = PHY_FLOW_CTRL;
6370		hw->overrides &= ~PAUSE_FLOW_CTRL;
6371		port->force_link = 0;
6372		if (hw->ksz_switch) {
6373			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6374				SWITCH_RX_FLOW_CTRL, 1);
6375			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6376				SWITCH_TX_FLOW_CTRL, 1);
6377		}
6378		port_set_link_speed(port);
6379	} else {
6380		hw->overrides |= PAUSE_FLOW_CTRL;
6381		if (hw->ksz_switch) {
6382			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6383				SWITCH_RX_FLOW_CTRL, pause->rx_pause);
6384			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6385				SWITCH_TX_FLOW_CTRL, pause->tx_pause);
6386		} else
6387			set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause);
6388	}
6389	mutex_unlock(&hw_priv->lock);
6390
6391	return 0;
6392}
6393
6394/**
6395 * netdev_get_ringparam - get tx/rx ring parameters
6396 * @dev:	Network device.
6397 * @pause:	Ethtool RING settings data structure.
6398 *
6399 * This procedure returns the TX/RX ring settings.
6400 */
6401static void netdev_get_ringparam(struct net_device *dev,
6402	struct ethtool_ringparam *ring)
6403{
6404	struct dev_priv *priv = netdev_priv(dev);
6405	struct dev_info *hw_priv = priv->adapter;
6406	struct ksz_hw *hw = &hw_priv->hw;
6407
6408	ring->tx_max_pending = (1 << 9);
6409	ring->tx_pending = hw->tx_desc_info.alloc;
6410	ring->rx_max_pending = (1 << 9);
6411	ring->rx_pending = hw->rx_desc_info.alloc;
6412}
6413
6414#define STATS_LEN			(TOTAL_PORT_COUNTER_NUM)
6415
6416static struct {
6417	char string[ETH_GSTRING_LEN];
6418} ethtool_stats_keys[STATS_LEN] = {
6419	{ "rx_lo_priority_octets" },
6420	{ "rx_hi_priority_octets" },
6421	{ "rx_undersize_packets" },
6422	{ "rx_fragments" },
6423	{ "rx_oversize_packets" },
6424	{ "rx_jabbers" },
6425	{ "rx_symbol_errors" },
6426	{ "rx_crc_errors" },
6427	{ "rx_align_errors" },
6428	{ "rx_mac_ctrl_packets" },
6429	{ "rx_pause_packets" },
6430	{ "rx_bcast_packets" },
6431	{ "rx_mcast_packets" },
6432	{ "rx_ucast_packets" },
6433	{ "rx_64_or_less_octet_packets" },
6434	{ "rx_65_to_127_octet_packets" },
6435	{ "rx_128_to_255_octet_packets" },
6436	{ "rx_256_to_511_octet_packets" },
6437	{ "rx_512_to_1023_octet_packets" },
6438	{ "rx_1024_to_1522_octet_packets" },
6439
6440	{ "tx_lo_priority_octets" },
6441	{ "tx_hi_priority_octets" },
6442	{ "tx_late_collisions" },
6443	{ "tx_pause_packets" },
6444	{ "tx_bcast_packets" },
6445	{ "tx_mcast_packets" },
6446	{ "tx_ucast_packets" },
6447	{ "tx_deferred" },
6448	{ "tx_total_collisions" },
6449	{ "tx_excessive_collisions" },
6450	{ "tx_single_collisions" },
6451	{ "tx_mult_collisions" },
6452
6453	{ "rx_discards" },
6454	{ "tx_discards" },
6455};
6456
6457/**
6458 * netdev_get_strings - get statistics identity strings
6459 * @dev:	Network device.
6460 * @stringset:	String set identifier.
6461 * @buf:	Buffer to store the strings.
6462 *
6463 * This procedure returns the strings used to identify the statistics.
6464 */
6465static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
6466{
6467	struct dev_priv *priv = netdev_priv(dev);
6468	struct dev_info *hw_priv = priv->adapter;
6469	struct ksz_hw *hw = &hw_priv->hw;
6470
6471	if (ETH_SS_STATS == stringset)
6472		memcpy(buf, &ethtool_stats_keys,
6473			ETH_GSTRING_LEN * hw->mib_cnt);
6474}
6475
6476/**
6477 * netdev_get_sset_count - get statistics size
6478 * @dev:	Network device.
6479 * @sset:	The statistics set number.
6480 *
6481 * This function returns the size of the statistics to be reported.
6482 *
6483 * Return size of the statistics to be reported.
6484 */
6485static int netdev_get_sset_count(struct net_device *dev, int sset)
6486{
6487	struct dev_priv *priv = netdev_priv(dev);
6488	struct dev_info *hw_priv = priv->adapter;
6489	struct ksz_hw *hw = &hw_priv->hw;
6490
6491	switch (sset) {
6492	case ETH_SS_STATS:
6493		return hw->mib_cnt;
6494	default:
6495		return -EOPNOTSUPP;
6496	}
6497}
6498
6499/**
6500 * netdev_get_ethtool_stats - get network device statistics
6501 * @dev:	Network device.
6502 * @stats:	Ethtool statistics data structure.
6503 * @data:	Buffer to store the statistics.
6504 *
6505 * This procedure returns the statistics.
6506 */
6507static void netdev_get_ethtool_stats(struct net_device *dev,
6508	struct ethtool_stats *stats, u64 *data)
6509{
6510	struct dev_priv *priv = netdev_priv(dev);
6511	struct dev_info *hw_priv = priv->adapter;
6512	struct ksz_hw *hw = &hw_priv->hw;
6513	struct ksz_port *port = &priv->port;
6514	int n_stats = stats->n_stats;
6515	int i;
6516	int n;
6517	int p;
6518	int rc;
6519	u64 counter[TOTAL_PORT_COUNTER_NUM];
6520
6521	mutex_lock(&hw_priv->lock);
6522	n = SWITCH_PORT_NUM;
6523	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
6524		if (media_connected == hw->port_mib[p].state) {
6525			hw_priv->counter[p].read = 1;
6526
6527			/* Remember first port that requests read. */
6528			if (n == SWITCH_PORT_NUM)
6529				n = p;
6530		}
6531	}
6532	mutex_unlock(&hw_priv->lock);
6533
6534	if (n < SWITCH_PORT_NUM)
6535		schedule_work(&hw_priv->mib_read);
6536
6537	if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) {
6538		p = n;
6539		rc = wait_event_interruptible_timeout(
6540			hw_priv->counter[p].counter,
6541			2 == hw_priv->counter[p].read,
6542			HZ * 1);
6543	} else
6544		for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) {
6545			if (0 == i) {
6546				rc = wait_event_interruptible_timeout(
6547					hw_priv->counter[p].counter,
6548					2 == hw_priv->counter[p].read,
6549					HZ * 2);
6550			} else if (hw->port_mib[p].cnt_ptr) {
6551				rc = wait_event_interruptible_timeout(
6552					hw_priv->counter[p].counter,
6553					2 == hw_priv->counter[p].read,
6554					HZ * 1);
6555			}
6556		}
6557
6558	get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter);
6559	n = hw->mib_cnt;
6560	if (n > n_stats)
6561		n = n_stats;
6562	n_stats -= n;
6563	for (i = 0; i < n; i++)
6564		*data++ = counter[i];
6565}
6566
6567/**
6568 * netdev_set_features - set receive checksum support
6569 * @dev:	Network device.
6570 * @features:	New device features (offloads).
6571 *
6572 * This function sets receive checksum support setting.
6573 *
6574 * Return 0 if successful; otherwise an error code.
6575 */
6576static int netdev_set_features(struct net_device *dev,
6577	netdev_features_t features)
6578{
6579	struct dev_priv *priv = netdev_priv(dev);
6580	struct dev_info *hw_priv = priv->adapter;
6581	struct ksz_hw *hw = &hw_priv->hw;
6582
6583	mutex_lock(&hw_priv->lock);
6584
6585	/* see note in hw_setup() */
6586	if (features & NETIF_F_RXCSUM)
6587		hw->rx_cfg |= DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP;
6588	else
6589		hw->rx_cfg &= ~(DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
6590
6591	if (hw->enabled)
6592		writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
6593
6594	mutex_unlock(&hw_priv->lock);
6595
6596	return 0;
6597}
6598
6599static const struct ethtool_ops netdev_ethtool_ops = {
6600	.get_settings		= netdev_get_settings,
6601	.set_settings		= netdev_set_settings,
6602	.nway_reset		= netdev_nway_reset,
6603	.get_link		= netdev_get_link,
6604	.get_drvinfo		= netdev_get_drvinfo,
6605	.get_regs_len		= netdev_get_regs_len,
6606	.get_regs		= netdev_get_regs,
6607	.get_wol		= netdev_get_wol,
6608	.set_wol		= netdev_set_wol,
6609	.get_msglevel		= netdev_get_msglevel,
6610	.set_msglevel		= netdev_set_msglevel,
6611	.get_eeprom_len		= netdev_get_eeprom_len,
6612	.get_eeprom		= netdev_get_eeprom,
6613	.set_eeprom		= netdev_set_eeprom,
6614	.get_pauseparam		= netdev_get_pauseparam,
6615	.set_pauseparam		= netdev_set_pauseparam,
6616	.get_ringparam		= netdev_get_ringparam,
6617	.get_strings		= netdev_get_strings,
6618	.get_sset_count		= netdev_get_sset_count,
6619	.get_ethtool_stats	= netdev_get_ethtool_stats,
6620};
6621
6622/*
6623 * Hardware monitoring
6624 */
6625
6626static void update_link(struct net_device *dev, struct dev_priv *priv,
6627	struct ksz_port *port)
6628{
6629	if (priv->media_state != port->linked->state) {
6630		priv->media_state = port->linked->state;
6631		if (netif_running(dev))
6632			set_media_state(dev, media_connected);
6633	}
6634}
6635
6636static void mib_read_work(struct work_struct *work)
6637{
6638	struct dev_info *hw_priv =
6639		container_of(work, struct dev_info, mib_read);
6640	struct ksz_hw *hw = &hw_priv->hw;
6641	struct ksz_port_mib *mib;
6642	int i;
6643
6644	next_jiffies = jiffies;
6645	for (i = 0; i < hw->mib_port_cnt; i++) {
6646		mib = &hw->port_mib[i];
6647
6648		/* Reading MIB counters or requested to read. */
6649		if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) {
6650
6651			/* Need to process receive interrupt. */
6652			if (port_r_cnt(hw, i))
6653				break;
6654			hw_priv->counter[i].read = 0;
6655
6656			/* Finish reading counters. */
6657			if (0 == mib->cnt_ptr) {
6658				hw_priv->counter[i].read = 2;
6659				wake_up_interruptible(
6660					&hw_priv->counter[i].counter);
6661			}
6662		} else if (time_after_eq(jiffies, hw_priv->counter[i].time)) {
6663			/* Only read MIB counters when the port is connected. */
6664			if (media_connected == mib->state)
6665				hw_priv->counter[i].read = 1;
6666			next_jiffies += HZ * 1 * hw->mib_port_cnt;
6667			hw_priv->counter[i].time = next_jiffies;
6668
6669		/* Port is just disconnected. */
6670		} else if (mib->link_down) {
6671			mib->link_down = 0;
6672
6673			/* Read counters one last time after link is lost. */
6674			hw_priv->counter[i].read = 1;
6675		}
6676	}
6677}
6678
6679static void mib_monitor(unsigned long ptr)
6680{
6681	struct dev_info *hw_priv = (struct dev_info *) ptr;
6682
6683	mib_read_work(&hw_priv->mib_read);
6684
6685	/* This is used to verify Wake-on-LAN is working. */
6686	if (hw_priv->pme_wait) {
6687		if (time_is_before_eq_jiffies(hw_priv->pme_wait)) {
6688			hw_clr_wol_pme_status(&hw_priv->hw);
6689			hw_priv->pme_wait = 0;
6690		}
6691	} else if (hw_chk_wol_pme_status(&hw_priv->hw)) {
6692
6693		/* PME is asserted.  Wait 2 seconds to clear it. */
6694		hw_priv->pme_wait = jiffies + HZ * 2;
6695	}
6696
6697	ksz_update_timer(&hw_priv->mib_timer_info);
6698}
6699
6700/**
6701 * dev_monitor - periodic monitoring
6702 * @ptr:	Network device pointer.
6703 *
6704 * This routine is run in a kernel timer to monitor the network device.
6705 */
6706static void dev_monitor(unsigned long ptr)
6707{
6708	struct net_device *dev = (struct net_device *) ptr;
6709	struct dev_priv *priv = netdev_priv(dev);
6710	struct dev_info *hw_priv = priv->adapter;
6711	struct ksz_hw *hw = &hw_priv->hw;
6712	struct ksz_port *port = &priv->port;
6713
6714	if (!(hw->features & LINK_INT_WORKING))
6715		port_get_link_speed(port);
6716	update_link(dev, priv, port);
6717
6718	ksz_update_timer(&priv->monitor_timer_info);
6719}
6720
6721/*
6722 * Linux network device interface functions
6723 */
6724
6725/* Driver exported variables */
6726
6727static int msg_enable;
6728
6729static char *macaddr = ":";
6730static char *mac1addr = ":";
6731
6732/*
6733 * This enables multiple network device mode for KSZ8842, which contains a
6734 * switch with two physical ports.  Some users like to take control of the
6735 * ports for running Spanning Tree Protocol.  The driver will create an
6736 * additional eth? device for the other port.
6737 *
6738 * Some limitations are the network devices cannot have different MTU and
6739 * multicast hash tables.
6740 */
6741static int multi_dev;
6742
6743/*
6744 * As most users select multiple network device mode to use Spanning Tree
6745 * Protocol, this enables a feature in which most unicast and multicast packets
6746 * are forwarded inside the switch and not passed to the host.  Only packets
6747 * that need the host's attention are passed to it.  This prevents the host
6748 * wasting CPU time to examine each and every incoming packets and do the
6749 * forwarding itself.
6750 *
6751 * As the hack requires the private bridge header, the driver cannot compile
6752 * with just the kernel headers.
6753 *
6754 * Enabling STP support also turns on multiple network device mode.
6755 */
6756static int stp;
6757
6758/*
6759 * This enables fast aging in the KSZ8842 switch.  Not sure what situation
6760 * needs that.  However, fast aging is used to flush the dynamic MAC table when
6761 * STP support is enabled.
6762 */
6763static int fast_aging;
6764
6765/**
6766 * netdev_init - initialize network device.
6767 * @dev:	Network device.
6768 *
6769 * This function initializes the network device.
6770 *
6771 * Return 0 if successful; otherwise an error code indicating failure.
6772 */
6773static int __init netdev_init(struct net_device *dev)
6774{
6775	struct dev_priv *priv = netdev_priv(dev);
6776
6777	/* 500 ms timeout */
6778	ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000,
6779		dev_monitor, dev);
6780
6781	/* 500 ms timeout */
6782	dev->watchdog_timeo = HZ / 2;
6783
6784	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM;
6785
6786	/*
6787	 * Hardware does not really support IPv6 checksum generation, but
6788	 * driver actually runs faster with this on.
6789	 */
6790	dev->hw_features |= NETIF_F_IPV6_CSUM;
6791
6792	dev->features |= dev->hw_features;
6793
6794	sema_init(&priv->proc_sem, 1);
6795
6796	priv->mii_if.phy_id_mask = 0x1;
6797	priv->mii_if.reg_num_mask = 0x7;
6798	priv->mii_if.dev = dev;
6799	priv->mii_if.mdio_read = mdio_read;
6800	priv->mii_if.mdio_write = mdio_write;
6801	priv->mii_if.phy_id = priv->port.first_port + 1;
6802
6803	priv->msg_enable = netif_msg_init(msg_enable,
6804		(NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK));
6805
6806	return 0;
6807}
6808
6809static const struct net_device_ops netdev_ops = {
6810	.ndo_init		= netdev_init,
6811	.ndo_open		= netdev_open,
6812	.ndo_stop		= netdev_close,
6813	.ndo_get_stats		= netdev_query_statistics,
6814	.ndo_start_xmit		= netdev_tx,
6815	.ndo_tx_timeout		= netdev_tx_timeout,
6816	.ndo_change_mtu		= netdev_change_mtu,
6817	.ndo_set_features	= netdev_set_features,
6818	.ndo_set_mac_address	= netdev_set_mac_address,
6819	.ndo_validate_addr	= eth_validate_addr,
6820	.ndo_do_ioctl		= netdev_ioctl,
6821	.ndo_set_rx_mode	= netdev_set_rx_mode,
6822#ifdef CONFIG_NET_POLL_CONTROLLER
6823	.ndo_poll_controller	= netdev_netpoll,
6824#endif
6825};
6826
6827static void netdev_free(struct net_device *dev)
6828{
6829	if (dev->watchdog_timeo)
6830		unregister_netdev(dev);
6831
6832	free_netdev(dev);
6833}
6834
6835struct platform_info {
6836	struct dev_info dev_info;
6837	struct net_device *netdev[SWITCH_PORT_NUM];
6838};
6839
6840static int net_device_present;
6841
6842static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port)
6843{
6844	int i;
6845	int j;
6846	int got_num;
6847	int num;
6848
6849	i = j = num = got_num = 0;
6850	while (j < ETH_ALEN) {
6851		if (macaddr[i]) {
6852			int digit;
6853
6854			got_num = 1;
6855			digit = hex_to_bin(macaddr[i]);
6856			if (digit >= 0)
6857				num = num * 16 + digit;
6858			else if (':' == macaddr[i])
6859				got_num = 2;
6860			else
6861				break;
6862		} else if (got_num)
6863			got_num = 2;
6864		else
6865			break;
6866		if (2 == got_num) {
6867			if (MAIN_PORT == port) {
6868				hw_priv->hw.override_addr[j++] = (u8) num;
6869				hw_priv->hw.override_addr[5] +=
6870					hw_priv->hw.id;
6871			} else {
6872				hw_priv->hw.ksz_switch->other_addr[j++] =
6873					(u8) num;
6874				hw_priv->hw.ksz_switch->other_addr[5] +=
6875					hw_priv->hw.id;
6876			}
6877			num = got_num = 0;
6878		}
6879		i++;
6880	}
6881	if (ETH_ALEN == j) {
6882		if (MAIN_PORT == port)
6883			hw_priv->hw.mac_override = 1;
6884	}
6885}
6886
6887#define KS884X_DMA_MASK			(~0x0UL)
6888
6889static void read_other_addr(struct ksz_hw *hw)
6890{
6891	int i;
6892	u16 data[3];
6893	struct ksz_switch *sw = hw->ksz_switch;
6894
6895	for (i = 0; i < 3; i++)
6896		data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR);
6897	if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) {
6898		sw->other_addr[5] = (u8) data[0];
6899		sw->other_addr[4] = (u8)(data[0] >> 8);
6900		sw->other_addr[3] = (u8) data[1];
6901		sw->other_addr[2] = (u8)(data[1] >> 8);
6902		sw->other_addr[1] = (u8) data[2];
6903		sw->other_addr[0] = (u8)(data[2] >> 8);
6904	}
6905}
6906
6907#ifndef PCI_VENDOR_ID_MICREL_KS
6908#define PCI_VENDOR_ID_MICREL_KS		0x16c6
6909#endif
6910
6911static int pcidev_init(struct pci_dev *pdev, const struct pci_device_id *id)
6912{
6913	struct net_device *dev;
6914	struct dev_priv *priv;
6915	struct dev_info *hw_priv;
6916	struct ksz_hw *hw;
6917	struct platform_info *info;
6918	struct ksz_port *port;
6919	unsigned long reg_base;
6920	unsigned long reg_len;
6921	int cnt;
6922	int i;
6923	int mib_port_count;
6924	int pi;
6925	int port_count;
6926	int result;
6927	char banner[sizeof(version)];
6928	struct ksz_switch *sw = NULL;
6929
6930	result = pci_enable_device(pdev);
6931	if (result)
6932		return result;
6933
6934	result = -ENODEV;
6935
6936	if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) ||
6937			pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
6938		return result;
6939
6940	reg_base = pci_resource_start(pdev, 0);
6941	reg_len = pci_resource_len(pdev, 0);
6942	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0)
6943		return result;
6944
6945	if (!request_mem_region(reg_base, reg_len, DRV_NAME))
6946		return result;
6947	pci_set_master(pdev);
6948
6949	result = -ENOMEM;
6950
6951	info = kzalloc(sizeof(struct platform_info), GFP_KERNEL);
6952	if (!info)
6953		goto pcidev_init_dev_err;
6954
6955	hw_priv = &info->dev_info;
6956	hw_priv->pdev = pdev;
6957
6958	hw = &hw_priv->hw;
6959
6960	hw->io = ioremap(reg_base, reg_len);
6961	if (!hw->io)
6962		goto pcidev_init_io_err;
6963
6964	cnt = hw_init(hw);
6965	if (!cnt) {
6966		if (msg_enable & NETIF_MSG_PROBE)
6967			pr_alert("chip not detected\n");
6968		result = -ENODEV;
6969		goto pcidev_init_alloc_err;
6970	}
6971
6972	snprintf(banner, sizeof(banner), "%s", version);
6973	banner[13] = cnt + '0';		/* Replace x in "Micrel KSZ884x" */
6974	dev_info(&hw_priv->pdev->dev, "%s\n", banner);
6975	dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq);
6976
6977	/* Assume device is KSZ8841. */
6978	hw->dev_count = 1;
6979	port_count = 1;
6980	mib_port_count = 1;
6981	hw->addr_list_size = 0;
6982	hw->mib_cnt = PORT_COUNTER_NUM;
6983	hw->mib_port_cnt = 1;
6984
6985	/* KSZ8842 has a switch with multiple ports. */
6986	if (2 == cnt) {
6987		if (fast_aging)
6988			hw->overrides |= FAST_AGING;
6989
6990		hw->mib_cnt = TOTAL_PORT_COUNTER_NUM;
6991
6992		/* Multiple network device interfaces are required. */
6993		if (multi_dev) {
6994			hw->dev_count = SWITCH_PORT_NUM;
6995			hw->addr_list_size = SWITCH_PORT_NUM - 1;
6996		}
6997
6998		/* Single network device has multiple ports. */
6999		if (1 == hw->dev_count) {
7000			port_count = SWITCH_PORT_NUM;
7001			mib_port_count = SWITCH_PORT_NUM;
7002		}
7003		hw->mib_port_cnt = TOTAL_PORT_NUM;
7004		hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL);
7005		if (!hw->ksz_switch)
7006			goto pcidev_init_alloc_err;
7007
7008		sw = hw->ksz_switch;
7009	}
7010	for (i = 0; i < hw->mib_port_cnt; i++)
7011		hw->port_mib[i].mib_start = 0;
7012
7013	hw->parent = hw_priv;
7014
7015	/* Default MTU is 1500. */
7016	hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3;
7017
7018	if (ksz_alloc_mem(hw_priv))
7019		goto pcidev_init_mem_err;
7020
7021	hw_priv->hw.id = net_device_present;
7022
7023	spin_lock_init(&hw_priv->hwlock);
7024	mutex_init(&hw_priv->lock);
7025
7026	for (i = 0; i < TOTAL_PORT_NUM; i++)
7027		init_waitqueue_head(&hw_priv->counter[i].counter);
7028
7029	if (macaddr[0] != ':')
7030		get_mac_addr(hw_priv, macaddr, MAIN_PORT);
7031
7032	/* Read MAC address and initialize override address if not overrided. */
7033	hw_read_addr(hw);
7034
7035	/* Multiple device interfaces mode requires a second MAC address. */
7036	if (hw->dev_count > 1) {
7037		memcpy(sw->other_addr, hw->override_addr, ETH_ALEN);
7038		read_other_addr(hw);
7039		if (mac1addr[0] != ':')
7040			get_mac_addr(hw_priv, mac1addr, OTHER_PORT);
7041	}
7042
7043	hw_setup(hw);
7044	if (hw->ksz_switch)
7045		sw_setup(hw);
7046	else {
7047		hw_priv->wol_support = WOL_SUPPORT;
7048		hw_priv->wol_enable = 0;
7049	}
7050
7051	INIT_WORK(&hw_priv->mib_read, mib_read_work);
7052
7053	/* 500 ms timeout */
7054	ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000,
7055		mib_monitor, hw_priv);
7056
7057	for (i = 0; i < hw->dev_count; i++) {
7058		dev = alloc_etherdev(sizeof(struct dev_priv));
7059		if (!dev)
7060			goto pcidev_init_reg_err;
7061		SET_NETDEV_DEV(dev, &pdev->dev);
7062		info->netdev[i] = dev;
7063
7064		priv = netdev_priv(dev);
7065		priv->adapter = hw_priv;
7066		priv->id = net_device_present++;
7067
7068		port = &priv->port;
7069		port->port_cnt = port_count;
7070		port->mib_port_cnt = mib_port_count;
7071		port->first_port = i;
7072		port->flow_ctrl = PHY_FLOW_CTRL;
7073
7074		port->hw = hw;
7075		port->linked = &hw->port_info[port->first_port];
7076
7077		for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) {
7078			hw->port_info[pi].port_id = pi;
7079			hw->port_info[pi].pdev = dev;
7080			hw->port_info[pi].state = media_disconnected;
7081		}
7082
7083		dev->mem_start = (unsigned long) hw->io;
7084		dev->mem_end = dev->mem_start + reg_len - 1;
7085		dev->irq = pdev->irq;
7086		if (MAIN_PORT == i)
7087			memcpy(dev->dev_addr, hw_priv->hw.override_addr,
7088			       ETH_ALEN);
7089		else {
7090			memcpy(dev->dev_addr, sw->other_addr, ETH_ALEN);
7091			if (ether_addr_equal(sw->other_addr, hw->override_addr))
7092				dev->dev_addr[5] += port->first_port;
7093		}
7094
7095		dev->netdev_ops = &netdev_ops;
7096		dev->ethtool_ops = &netdev_ethtool_ops;
7097
7098		/* MTU range: 60 - 1894 */
7099		dev->min_mtu = ETH_ZLEN;
7100		dev->max_mtu = MAX_RX_BUF_SIZE -
7101			       (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
7102
7103		if (register_netdev(dev))
7104			goto pcidev_init_reg_err;
7105		port_set_power_saving(port, true);
7106	}
7107
7108	pci_dev_get(hw_priv->pdev);
7109	pci_set_drvdata(pdev, info);
7110	return 0;
7111
7112pcidev_init_reg_err:
7113	for (i = 0; i < hw->dev_count; i++) {
7114		if (info->netdev[i]) {
7115			netdev_free(info->netdev[i]);
7116			info->netdev[i] = NULL;
7117		}
7118	}
7119
7120pcidev_init_mem_err:
7121	ksz_free_mem(hw_priv);
7122	kfree(hw->ksz_switch);
7123
7124pcidev_init_alloc_err:
7125	iounmap(hw->io);
7126
7127pcidev_init_io_err:
7128	kfree(info);
7129
7130pcidev_init_dev_err:
7131	release_mem_region(reg_base, reg_len);
7132
7133	return result;
7134}
7135
7136static void pcidev_exit(struct pci_dev *pdev)
7137{
7138	int i;
7139	struct platform_info *info = pci_get_drvdata(pdev);
7140	struct dev_info *hw_priv = &info->dev_info;
7141
7142	release_mem_region(pci_resource_start(pdev, 0),
7143		pci_resource_len(pdev, 0));
7144	for (i = 0; i < hw_priv->hw.dev_count; i++) {
7145		if (info->netdev[i])
7146			netdev_free(info->netdev[i]);
7147	}
7148	if (hw_priv->hw.io)
7149		iounmap(hw_priv->hw.io);
7150	ksz_free_mem(hw_priv);
7151	kfree(hw_priv->hw.ksz_switch);
7152	pci_dev_put(hw_priv->pdev);
7153	kfree(info);
7154}
7155
7156#ifdef CONFIG_PM
7157static int pcidev_resume(struct pci_dev *pdev)
7158{
7159	int i;
7160	struct platform_info *info = pci_get_drvdata(pdev);
7161	struct dev_info *hw_priv = &info->dev_info;
7162	struct ksz_hw *hw = &hw_priv->hw;
7163
7164	pci_set_power_state(pdev, PCI_D0);
7165	pci_restore_state(pdev);
7166	pci_enable_wake(pdev, PCI_D0, 0);
7167
7168	if (hw_priv->wol_enable)
7169		hw_cfg_wol_pme(hw, 0);
7170	for (i = 0; i < hw->dev_count; i++) {
7171		if (info->netdev[i]) {
7172			struct net_device *dev = info->netdev[i];
7173
7174			if (netif_running(dev)) {
7175				netdev_open(dev);
7176				netif_device_attach(dev);
7177			}
7178		}
7179	}
7180	return 0;
7181}
7182
7183static int pcidev_suspend(struct pci_dev *pdev, pm_message_t state)
7184{
7185	int i;
7186	struct platform_info *info = pci_get_drvdata(pdev);
7187	struct dev_info *hw_priv = &info->dev_info;
7188	struct ksz_hw *hw = &hw_priv->hw;
7189
7190	/* Need to find a way to retrieve the device IP address. */
7191	static const u8 net_addr[] = { 192, 168, 1, 1 };
7192
7193	for (i = 0; i < hw->dev_count; i++) {
7194		if (info->netdev[i]) {
7195			struct net_device *dev = info->netdev[i];
7196
7197			if (netif_running(dev)) {
7198				netif_device_detach(dev);
7199				netdev_close(dev);
7200			}
7201		}
7202	}
7203	if (hw_priv->wol_enable) {
7204		hw_enable_wol(hw, hw_priv->wol_enable, net_addr);
7205		hw_cfg_wol_pme(hw, 1);
7206	}
7207
7208	pci_save_state(pdev);
7209	pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
7210	pci_set_power_state(pdev, pci_choose_state(pdev, state));
7211	return 0;
7212}
7213#endif
7214
7215static char pcidev_name[] = "ksz884xp";
7216
7217static const struct pci_device_id pcidev_table[] = {
7218	{ PCI_VENDOR_ID_MICREL_KS, 0x8841,
7219		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7220	{ PCI_VENDOR_ID_MICREL_KS, 0x8842,
7221		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7222	{ 0 }
7223};
7224
7225MODULE_DEVICE_TABLE(pci, pcidev_table);
7226
7227static struct pci_driver pci_device_driver = {
7228#ifdef CONFIG_PM
7229	.suspend	= pcidev_suspend,
7230	.resume		= pcidev_resume,
7231#endif
7232	.name		= pcidev_name,
7233	.id_table	= pcidev_table,
7234	.probe		= pcidev_init,
7235	.remove		= pcidev_exit
7236};
7237
7238module_pci_driver(pci_device_driver);
7239
7240MODULE_DESCRIPTION("KSZ8841/2 PCI network driver");
7241MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>");
7242MODULE_LICENSE("GPL");
7243
7244module_param_named(message, msg_enable, int, 0);
7245MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
7246
7247module_param(macaddr, charp, 0);
7248module_param(mac1addr, charp, 0);
7249module_param(fast_aging, int, 0);
7250module_param(multi_dev, int, 0);
7251module_param(stp, int, 0);
7252MODULE_PARM_DESC(macaddr, "MAC address");
7253MODULE_PARM_DESC(mac1addr, "Second MAC address");
7254MODULE_PARM_DESC(fast_aging, "Fast aging");
7255MODULE_PARM_DESC(multi_dev, "Multiple device interfaces");
7256MODULE_PARM_DESC(stp, "STP support");