Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/*
   2 * Freescale QuadSPI driver.
   3 *
   4 * Copyright (C) 2013 Freescale Semiconductor, Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 */
  11#include <linux/kernel.h>
  12#include <linux/module.h>
  13#include <linux/interrupt.h>
  14#include <linux/errno.h>
  15#include <linux/platform_device.h>
  16#include <linux/sched.h>
  17#include <linux/delay.h>
  18#include <linux/io.h>
  19#include <linux/clk.h>
  20#include <linux/err.h>
  21#include <linux/of.h>
  22#include <linux/of_device.h>
  23#include <linux/timer.h>
  24#include <linux/jiffies.h>
  25#include <linux/completion.h>
  26#include <linux/mtd/mtd.h>
  27#include <linux/mtd/partitions.h>
  28#include <linux/mtd/spi-nor.h>
  29#include <linux/mutex.h>
  30#include <linux/pm_qos.h>
  31#include <linux/sizes.h>
  32
  33/* Controller needs driver to swap endian */
  34#define QUADSPI_QUIRK_SWAP_ENDIAN	(1 << 0)
  35/* Controller needs 4x internal clock */
  36#define QUADSPI_QUIRK_4X_INT_CLK	(1 << 1)
  37/*
  38 * TKT253890, Controller needs driver to fill txfifo till 16 byte to
  39 * trigger data transfer even though extern data will not transferred.
  40 */
  41#define QUADSPI_QUIRK_TKT253890		(1 << 2)
  42/* Controller cannot wake up from wait mode, TKT245618 */
  43#define QUADSPI_QUIRK_TKT245618         (1 << 3)
  44
  45/* The registers */
  46#define QUADSPI_MCR			0x00
  47#define QUADSPI_MCR_RESERVED_SHIFT	16
  48#define QUADSPI_MCR_RESERVED_MASK	(0xF << QUADSPI_MCR_RESERVED_SHIFT)
  49#define QUADSPI_MCR_MDIS_SHIFT		14
  50#define QUADSPI_MCR_MDIS_MASK		(1 << QUADSPI_MCR_MDIS_SHIFT)
  51#define QUADSPI_MCR_CLR_TXF_SHIFT	11
  52#define QUADSPI_MCR_CLR_TXF_MASK	(1 << QUADSPI_MCR_CLR_TXF_SHIFT)
  53#define QUADSPI_MCR_CLR_RXF_SHIFT	10
  54#define QUADSPI_MCR_CLR_RXF_MASK	(1 << QUADSPI_MCR_CLR_RXF_SHIFT)
  55#define QUADSPI_MCR_DDR_EN_SHIFT	7
  56#define QUADSPI_MCR_DDR_EN_MASK		(1 << QUADSPI_MCR_DDR_EN_SHIFT)
  57#define QUADSPI_MCR_END_CFG_SHIFT	2
  58#define QUADSPI_MCR_END_CFG_MASK	(3 << QUADSPI_MCR_END_CFG_SHIFT)
  59#define QUADSPI_MCR_SWRSTHD_SHIFT	1
  60#define QUADSPI_MCR_SWRSTHD_MASK	(1 << QUADSPI_MCR_SWRSTHD_SHIFT)
  61#define QUADSPI_MCR_SWRSTSD_SHIFT	0
  62#define QUADSPI_MCR_SWRSTSD_MASK	(1 << QUADSPI_MCR_SWRSTSD_SHIFT)
  63
  64#define QUADSPI_IPCR			0x08
  65#define QUADSPI_IPCR_SEQID_SHIFT	24
  66#define QUADSPI_IPCR_SEQID_MASK		(0xF << QUADSPI_IPCR_SEQID_SHIFT)
  67
  68#define QUADSPI_BUF0CR			0x10
  69#define QUADSPI_BUF1CR			0x14
  70#define QUADSPI_BUF2CR			0x18
  71#define QUADSPI_BUFXCR_INVALID_MSTRID	0xe
  72
  73#define QUADSPI_BUF3CR			0x1c
  74#define QUADSPI_BUF3CR_ALLMST_SHIFT	31
  75#define QUADSPI_BUF3CR_ALLMST_MASK	(1 << QUADSPI_BUF3CR_ALLMST_SHIFT)
  76#define QUADSPI_BUF3CR_ADATSZ_SHIFT		8
  77#define QUADSPI_BUF3CR_ADATSZ_MASK	(0xFF << QUADSPI_BUF3CR_ADATSZ_SHIFT)
  78
  79#define QUADSPI_BFGENCR			0x20
  80#define QUADSPI_BFGENCR_PAR_EN_SHIFT	16
  81#define QUADSPI_BFGENCR_PAR_EN_MASK	(1 << (QUADSPI_BFGENCR_PAR_EN_SHIFT))
  82#define QUADSPI_BFGENCR_SEQID_SHIFT	12
  83#define QUADSPI_BFGENCR_SEQID_MASK	(0xF << QUADSPI_BFGENCR_SEQID_SHIFT)
  84
  85#define QUADSPI_BUF0IND			0x30
  86#define QUADSPI_BUF1IND			0x34
  87#define QUADSPI_BUF2IND			0x38
  88#define QUADSPI_SFAR			0x100
  89
  90#define QUADSPI_SMPR			0x108
  91#define QUADSPI_SMPR_DDRSMP_SHIFT	16
  92#define QUADSPI_SMPR_DDRSMP_MASK	(7 << QUADSPI_SMPR_DDRSMP_SHIFT)
  93#define QUADSPI_SMPR_FSDLY_SHIFT	6
  94#define QUADSPI_SMPR_FSDLY_MASK		(1 << QUADSPI_SMPR_FSDLY_SHIFT)
  95#define QUADSPI_SMPR_FSPHS_SHIFT	5
  96#define QUADSPI_SMPR_FSPHS_MASK		(1 << QUADSPI_SMPR_FSPHS_SHIFT)
  97#define QUADSPI_SMPR_HSENA_SHIFT	0
  98#define QUADSPI_SMPR_HSENA_MASK		(1 << QUADSPI_SMPR_HSENA_SHIFT)
  99
 100#define QUADSPI_RBSR			0x10c
 101#define QUADSPI_RBSR_RDBFL_SHIFT	8
 102#define QUADSPI_RBSR_RDBFL_MASK		(0x3F << QUADSPI_RBSR_RDBFL_SHIFT)
 103
 104#define QUADSPI_RBCT			0x110
 105#define QUADSPI_RBCT_WMRK_MASK		0x1F
 106#define QUADSPI_RBCT_RXBRD_SHIFT	8
 107#define QUADSPI_RBCT_RXBRD_USEIPS	(0x1 << QUADSPI_RBCT_RXBRD_SHIFT)
 108
 109#define QUADSPI_TBSR			0x150
 110#define QUADSPI_TBDR			0x154
 111#define QUADSPI_SR			0x15c
 112#define QUADSPI_SR_IP_ACC_SHIFT		1
 113#define QUADSPI_SR_IP_ACC_MASK		(0x1 << QUADSPI_SR_IP_ACC_SHIFT)
 114#define QUADSPI_SR_AHB_ACC_SHIFT	2
 115#define QUADSPI_SR_AHB_ACC_MASK		(0x1 << QUADSPI_SR_AHB_ACC_SHIFT)
 116
 117#define QUADSPI_FR			0x160
 118#define QUADSPI_FR_TFF_MASK		0x1
 119
 120#define QUADSPI_SFA1AD			0x180
 121#define QUADSPI_SFA2AD			0x184
 122#define QUADSPI_SFB1AD			0x188
 123#define QUADSPI_SFB2AD			0x18c
 124#define QUADSPI_RBDR			0x200
 125
 126#define QUADSPI_LUTKEY			0x300
 127#define QUADSPI_LUTKEY_VALUE		0x5AF05AF0
 128
 129#define QUADSPI_LCKCR			0x304
 130#define QUADSPI_LCKER_LOCK		0x1
 131#define QUADSPI_LCKER_UNLOCK		0x2
 132
 133#define QUADSPI_RSER			0x164
 134#define QUADSPI_RSER_TFIE		(0x1 << 0)
 135
 136#define QUADSPI_LUT_BASE		0x310
 137
 138/*
 139 * The definition of the LUT register shows below:
 140 *
 141 *  ---------------------------------------------------
 142 *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
 143 *  ---------------------------------------------------
 144 */
 145#define OPRND0_SHIFT		0
 146#define PAD0_SHIFT		8
 147#define INSTR0_SHIFT		10
 148#define OPRND1_SHIFT		16
 149
 150/* Instruction set for the LUT register. */
 151#define LUT_STOP		0
 152#define LUT_CMD			1
 153#define LUT_ADDR		2
 154#define LUT_DUMMY		3
 155#define LUT_MODE		4
 156#define LUT_MODE2		5
 157#define LUT_MODE4		6
 158#define LUT_FSL_READ		7
 159#define LUT_FSL_WRITE		8
 160#define LUT_JMP_ON_CS		9
 161#define LUT_ADDR_DDR		10
 162#define LUT_MODE_DDR		11
 163#define LUT_MODE2_DDR		12
 164#define LUT_MODE4_DDR		13
 165#define LUT_FSL_READ_DDR		14
 166#define LUT_FSL_WRITE_DDR		15
 167#define LUT_DATA_LEARN		16
 168
 169/*
 170 * The PAD definitions for LUT register.
 171 *
 172 * The pad stands for the lines number of IO[0:3].
 173 * For example, the Quad read need four IO lines, so you should
 174 * set LUT_PAD4 which means we use four IO lines.
 175 */
 176#define LUT_PAD1		0
 177#define LUT_PAD2		1
 178#define LUT_PAD4		2
 179
 180/* Oprands for the LUT register. */
 181#define ADDR24BIT		0x18
 182#define ADDR32BIT		0x20
 183
 184/* Macros for constructing the LUT register. */
 185#define LUT0(ins, pad, opr)						\
 186		(((opr) << OPRND0_SHIFT) | ((LUT_##pad) << PAD0_SHIFT) | \
 187		((LUT_##ins) << INSTR0_SHIFT))
 188
 189#define LUT1(ins, pad, opr)	(LUT0(ins, pad, opr) << OPRND1_SHIFT)
 190
 191/* other macros for LUT register. */
 192#define QUADSPI_LUT(x)          (QUADSPI_LUT_BASE + (x) * 4)
 193#define QUADSPI_LUT_NUM		64
 194
 195/* SEQID -- we can have 16 seqids at most. */
 196#define SEQID_QUAD_READ		0
 197#define SEQID_WREN		1
 198#define SEQID_WRDI		2
 199#define SEQID_RDSR		3
 200#define SEQID_SE		4
 201#define SEQID_CHIP_ERASE	5
 202#define SEQID_PP		6
 203#define SEQID_RDID		7
 204#define SEQID_WRSR		8
 205#define SEQID_RDCR		9
 206#define SEQID_EN4B		10
 207#define SEQID_BRWR		11
 208
 209#define QUADSPI_MIN_IOMAP SZ_4M
 210
 211enum fsl_qspi_devtype {
 212	FSL_QUADSPI_VYBRID,
 213	FSL_QUADSPI_IMX6SX,
 214	FSL_QUADSPI_IMX7D,
 215	FSL_QUADSPI_IMX6UL,
 216	FSL_QUADSPI_LS1021A,
 217};
 218
 219struct fsl_qspi_devtype_data {
 220	enum fsl_qspi_devtype devtype;
 221	int rxfifo;
 222	int txfifo;
 223	int ahb_buf_size;
 224	int driver_data;
 225};
 226
 227static const struct fsl_qspi_devtype_data vybrid_data = {
 228	.devtype = FSL_QUADSPI_VYBRID,
 229	.rxfifo = 128,
 230	.txfifo = 64,
 231	.ahb_buf_size = 1024,
 232	.driver_data = QUADSPI_QUIRK_SWAP_ENDIAN,
 233};
 234
 235static const struct fsl_qspi_devtype_data imx6sx_data = {
 236	.devtype = FSL_QUADSPI_IMX6SX,
 237	.rxfifo = 128,
 238	.txfifo = 512,
 239	.ahb_buf_size = 1024,
 240	.driver_data = QUADSPI_QUIRK_4X_INT_CLK
 241		       | QUADSPI_QUIRK_TKT245618,
 242};
 243
 244static const struct fsl_qspi_devtype_data imx7d_data = {
 245	.devtype = FSL_QUADSPI_IMX7D,
 246	.rxfifo = 512,
 247	.txfifo = 512,
 248	.ahb_buf_size = 1024,
 249	.driver_data = QUADSPI_QUIRK_TKT253890
 250		       | QUADSPI_QUIRK_4X_INT_CLK,
 251};
 252
 253static const struct fsl_qspi_devtype_data imx6ul_data = {
 254	.devtype = FSL_QUADSPI_IMX6UL,
 255	.rxfifo = 128,
 256	.txfifo = 512,
 257	.ahb_buf_size = 1024,
 258	.driver_data = QUADSPI_QUIRK_TKT253890
 259		       | QUADSPI_QUIRK_4X_INT_CLK,
 260};
 261
 262static struct fsl_qspi_devtype_data ls1021a_data = {
 263	.devtype = FSL_QUADSPI_LS1021A,
 264	.rxfifo = 128,
 265	.txfifo = 64,
 266	.ahb_buf_size = 1024,
 267	.driver_data = 0,
 268};
 269
 270#define FSL_QSPI_MAX_CHIP	4
 271struct fsl_qspi {
 272	struct spi_nor nor[FSL_QSPI_MAX_CHIP];
 273	void __iomem *iobase;
 274	void __iomem *ahb_addr;
 275	u32 memmap_phy;
 276	u32 memmap_offs;
 277	u32 memmap_len;
 278	struct clk *clk, *clk_en;
 279	struct device *dev;
 280	struct completion c;
 281	const struct fsl_qspi_devtype_data *devtype_data;
 282	u32 nor_size;
 283	u32 nor_num;
 284	u32 clk_rate;
 285	unsigned int chip_base_addr; /* We may support two chips. */
 286	bool has_second_chip;
 287	bool big_endian;
 288	struct mutex lock;
 289	struct pm_qos_request pm_qos_req;
 290};
 291
 292static inline int needs_swap_endian(struct fsl_qspi *q)
 293{
 294	return q->devtype_data->driver_data & QUADSPI_QUIRK_SWAP_ENDIAN;
 295}
 296
 297static inline int needs_4x_clock(struct fsl_qspi *q)
 298{
 299	return q->devtype_data->driver_data & QUADSPI_QUIRK_4X_INT_CLK;
 300}
 301
 302static inline int needs_fill_txfifo(struct fsl_qspi *q)
 303{
 304	return q->devtype_data->driver_data & QUADSPI_QUIRK_TKT253890;
 305}
 306
 307static inline int needs_wakeup_wait_mode(struct fsl_qspi *q)
 308{
 309	return q->devtype_data->driver_data & QUADSPI_QUIRK_TKT245618;
 310}
 311
 312/*
 313 * R/W functions for big- or little-endian registers:
 314 * The qSPI controller's endian is independent of the CPU core's endian.
 315 * So far, although the CPU core is little-endian but the qSPI have two
 316 * versions for big-endian and little-endian.
 317 */
 318static void qspi_writel(struct fsl_qspi *q, u32 val, void __iomem *addr)
 319{
 320	if (q->big_endian)
 321		iowrite32be(val, addr);
 322	else
 323		iowrite32(val, addr);
 324}
 325
 326static u32 qspi_readl(struct fsl_qspi *q, void __iomem *addr)
 327{
 328	if (q->big_endian)
 329		return ioread32be(addr);
 330	else
 331		return ioread32(addr);
 332}
 333
 334/*
 335 * An IC bug makes us to re-arrange the 32-bit data.
 336 * The following chips, such as IMX6SLX, have fixed this bug.
 337 */
 338static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a)
 339{
 340	return needs_swap_endian(q) ? __swab32(a) : a;
 341}
 342
 343static inline void fsl_qspi_unlock_lut(struct fsl_qspi *q)
 344{
 345	qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
 346	qspi_writel(q, QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR);
 347}
 348
 349static inline void fsl_qspi_lock_lut(struct fsl_qspi *q)
 350{
 351	qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
 352	qspi_writel(q, QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR);
 353}
 354
 355static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id)
 356{
 357	struct fsl_qspi *q = dev_id;
 358	u32 reg;
 359
 360	/* clear interrupt */
 361	reg = qspi_readl(q, q->iobase + QUADSPI_FR);
 362	qspi_writel(q, reg, q->iobase + QUADSPI_FR);
 363
 364	if (reg & QUADSPI_FR_TFF_MASK)
 365		complete(&q->c);
 366
 367	dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", q->chip_base_addr, reg);
 368	return IRQ_HANDLED;
 369}
 370
 371static void fsl_qspi_init_lut(struct fsl_qspi *q)
 372{
 373	void __iomem *base = q->iobase;
 374	int rxfifo = q->devtype_data->rxfifo;
 375	u32 lut_base;
 376	u8 cmd, addrlen, dummy;
 377	int i;
 378
 379	fsl_qspi_unlock_lut(q);
 380
 381	/* Clear all the LUT table */
 382	for (i = 0; i < QUADSPI_LUT_NUM; i++)
 383		qspi_writel(q, 0, base + QUADSPI_LUT_BASE + i * 4);
 384
 385	/* Quad Read */
 386	lut_base = SEQID_QUAD_READ * 4;
 387
 388	if (q->nor_size <= SZ_16M) {
 389		cmd = SPINOR_OP_READ_1_1_4;
 390		addrlen = ADDR24BIT;
 391		dummy = 8;
 392	} else {
 393		/* use the 4-byte address */
 394		cmd = SPINOR_OP_READ_1_1_4;
 395		addrlen = ADDR32BIT;
 396		dummy = 8;
 397	}
 398
 399	qspi_writel(q, LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
 400			base + QUADSPI_LUT(lut_base));
 401	qspi_writel(q, LUT0(DUMMY, PAD1, dummy) | LUT1(FSL_READ, PAD4, rxfifo),
 402			base + QUADSPI_LUT(lut_base + 1));
 403
 404	/* Write enable */
 405	lut_base = SEQID_WREN * 4;
 406	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_WREN),
 407			base + QUADSPI_LUT(lut_base));
 408
 409	/* Page Program */
 410	lut_base = SEQID_PP * 4;
 411
 412	if (q->nor_size <= SZ_16M) {
 413		cmd = SPINOR_OP_PP;
 414		addrlen = ADDR24BIT;
 415	} else {
 416		/* use the 4-byte address */
 417		cmd = SPINOR_OP_PP;
 418		addrlen = ADDR32BIT;
 419	}
 420
 421	qspi_writel(q, LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
 422			base + QUADSPI_LUT(lut_base));
 423	qspi_writel(q, LUT0(FSL_WRITE, PAD1, 0),
 424			base + QUADSPI_LUT(lut_base + 1));
 425
 426	/* Read Status */
 427	lut_base = SEQID_RDSR * 4;
 428	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_RDSR) |
 429			LUT1(FSL_READ, PAD1, 0x1),
 430			base + QUADSPI_LUT(lut_base));
 431
 432	/* Erase a sector */
 433	lut_base = SEQID_SE * 4;
 434
 435	cmd = q->nor[0].erase_opcode;
 436	addrlen = q->nor_size <= SZ_16M ? ADDR24BIT : ADDR32BIT;
 437
 438	qspi_writel(q, LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
 439			base + QUADSPI_LUT(lut_base));
 440
 441	/* Erase the whole chip */
 442	lut_base = SEQID_CHIP_ERASE * 4;
 443	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_CHIP_ERASE),
 444			base + QUADSPI_LUT(lut_base));
 445
 446	/* READ ID */
 447	lut_base = SEQID_RDID * 4;
 448	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_RDID) |
 449			LUT1(FSL_READ, PAD1, 0x8),
 450			base + QUADSPI_LUT(lut_base));
 451
 452	/* Write Register */
 453	lut_base = SEQID_WRSR * 4;
 454	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_WRSR) |
 455			LUT1(FSL_WRITE, PAD1, 0x2),
 456			base + QUADSPI_LUT(lut_base));
 457
 458	/* Read Configuration Register */
 459	lut_base = SEQID_RDCR * 4;
 460	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_RDCR) |
 461			LUT1(FSL_READ, PAD1, 0x1),
 462			base + QUADSPI_LUT(lut_base));
 463
 464	/* Write disable */
 465	lut_base = SEQID_WRDI * 4;
 466	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_WRDI),
 467			base + QUADSPI_LUT(lut_base));
 468
 469	/* Enter 4 Byte Mode (Micron) */
 470	lut_base = SEQID_EN4B * 4;
 471	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_EN4B),
 472			base + QUADSPI_LUT(lut_base));
 473
 474	/* Enter 4 Byte Mode (Spansion) */
 475	lut_base = SEQID_BRWR * 4;
 476	qspi_writel(q, LUT0(CMD, PAD1, SPINOR_OP_BRWR),
 477			base + QUADSPI_LUT(lut_base));
 478
 479	fsl_qspi_lock_lut(q);
 480}
 481
 482/* Get the SEQID for the command */
 483static int fsl_qspi_get_seqid(struct fsl_qspi *q, u8 cmd)
 484{
 485	switch (cmd) {
 486	case SPINOR_OP_READ_1_1_4:
 487		return SEQID_QUAD_READ;
 488	case SPINOR_OP_WREN:
 489		return SEQID_WREN;
 490	case SPINOR_OP_WRDI:
 491		return SEQID_WRDI;
 492	case SPINOR_OP_RDSR:
 493		return SEQID_RDSR;
 494	case SPINOR_OP_SE:
 495		return SEQID_SE;
 496	case SPINOR_OP_CHIP_ERASE:
 497		return SEQID_CHIP_ERASE;
 498	case SPINOR_OP_PP:
 499		return SEQID_PP;
 500	case SPINOR_OP_RDID:
 501		return SEQID_RDID;
 502	case SPINOR_OP_WRSR:
 503		return SEQID_WRSR;
 504	case SPINOR_OP_RDCR:
 505		return SEQID_RDCR;
 506	case SPINOR_OP_EN4B:
 507		return SEQID_EN4B;
 508	case SPINOR_OP_BRWR:
 509		return SEQID_BRWR;
 510	default:
 511		if (cmd == q->nor[0].erase_opcode)
 512			return SEQID_SE;
 513		dev_err(q->dev, "Unsupported cmd 0x%.2x\n", cmd);
 514		break;
 515	}
 516	return -EINVAL;
 517}
 518
 519static int
 520fsl_qspi_runcmd(struct fsl_qspi *q, u8 cmd, unsigned int addr, int len)
 521{
 522	void __iomem *base = q->iobase;
 523	int seqid;
 524	u32 reg, reg2;
 525	int err;
 526
 527	init_completion(&q->c);
 528	dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len:%d, cmd:%.2x\n",
 529			q->chip_base_addr, addr, len, cmd);
 530
 531	/* save the reg */
 532	reg = qspi_readl(q, base + QUADSPI_MCR);
 533
 534	qspi_writel(q, q->memmap_phy + q->chip_base_addr + addr,
 535			base + QUADSPI_SFAR);
 536	qspi_writel(q, QUADSPI_RBCT_WMRK_MASK | QUADSPI_RBCT_RXBRD_USEIPS,
 537			base + QUADSPI_RBCT);
 538	qspi_writel(q, reg | QUADSPI_MCR_CLR_RXF_MASK, base + QUADSPI_MCR);
 539
 540	do {
 541		reg2 = qspi_readl(q, base + QUADSPI_SR);
 542		if (reg2 & (QUADSPI_SR_IP_ACC_MASK | QUADSPI_SR_AHB_ACC_MASK)) {
 543			udelay(1);
 544			dev_dbg(q->dev, "The controller is busy, 0x%x\n", reg2);
 545			continue;
 546		}
 547		break;
 548	} while (1);
 549
 550	/* trigger the LUT now */
 551	seqid = fsl_qspi_get_seqid(q, cmd);
 552	qspi_writel(q, (seqid << QUADSPI_IPCR_SEQID_SHIFT) | len,
 553			base + QUADSPI_IPCR);
 554
 555	/* Wait for the interrupt. */
 556	if (!wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000))) {
 557		dev_err(q->dev,
 558			"cmd 0x%.2x timeout, addr@%.8x, FR:0x%.8x, SR:0x%.8x\n",
 559			cmd, addr, qspi_readl(q, base + QUADSPI_FR),
 560			qspi_readl(q, base + QUADSPI_SR));
 561		err = -ETIMEDOUT;
 562	} else {
 563		err = 0;
 564	}
 565
 566	/* restore the MCR */
 567	qspi_writel(q, reg, base + QUADSPI_MCR);
 568
 569	return err;
 570}
 571
 572/* Read out the data from the QUADSPI_RBDR buffer registers. */
 573static void fsl_qspi_read_data(struct fsl_qspi *q, int len, u8 *rxbuf)
 574{
 575	u32 tmp;
 576	int i = 0;
 577
 578	while (len > 0) {
 579		tmp = qspi_readl(q, q->iobase + QUADSPI_RBDR + i * 4);
 580		tmp = fsl_qspi_endian_xchg(q, tmp);
 581		dev_dbg(q->dev, "chip addr:0x%.8x, rcv:0x%.8x\n",
 582				q->chip_base_addr, tmp);
 583
 584		if (len >= 4) {
 585			*((u32 *)rxbuf) = tmp;
 586			rxbuf += 4;
 587		} else {
 588			memcpy(rxbuf, &tmp, len);
 589			break;
 590		}
 591
 592		len -= 4;
 593		i++;
 594	}
 595}
 596
 597/*
 598 * If we have changed the content of the flash by writing or erasing,
 599 * we need to invalidate the AHB buffer. If we do not do so, we may read out
 600 * the wrong data. The spec tells us reset the AHB domain and Serial Flash
 601 * domain at the same time.
 602 */
 603static inline void fsl_qspi_invalid(struct fsl_qspi *q)
 604{
 605	u32 reg;
 606
 607	reg = qspi_readl(q, q->iobase + QUADSPI_MCR);
 608	reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK;
 609	qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
 610
 611	/*
 612	 * The minimum delay : 1 AHB + 2 SFCK clocks.
 613	 * Delay 1 us is enough.
 614	 */
 615	udelay(1);
 616
 617	reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK);
 618	qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
 619}
 620
 621static ssize_t fsl_qspi_nor_write(struct fsl_qspi *q, struct spi_nor *nor,
 622				u8 opcode, unsigned int to, u32 *txbuf,
 623				unsigned count)
 624{
 625	int ret, i, j;
 626	u32 tmp;
 627
 628	dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len : %d\n",
 629		q->chip_base_addr, to, count);
 630
 631	/* clear the TX FIFO. */
 632	tmp = qspi_readl(q, q->iobase + QUADSPI_MCR);
 633	qspi_writel(q, tmp | QUADSPI_MCR_CLR_TXF_MASK, q->iobase + QUADSPI_MCR);
 634
 635	/* fill the TX data to the FIFO */
 636	for (j = 0, i = ((count + 3) / 4); j < i; j++) {
 637		tmp = fsl_qspi_endian_xchg(q, *txbuf);
 638		qspi_writel(q, tmp, q->iobase + QUADSPI_TBDR);
 639		txbuf++;
 640	}
 641
 642	/* fill the TXFIFO upto 16 bytes for i.MX7d */
 643	if (needs_fill_txfifo(q))
 644		for (; i < 4; i++)
 645			qspi_writel(q, tmp, q->iobase + QUADSPI_TBDR);
 646
 647	/* Trigger it */
 648	ret = fsl_qspi_runcmd(q, opcode, to, count);
 649
 650	if (ret == 0)
 651		return count;
 652
 653	return ret;
 654}
 655
 656static void fsl_qspi_set_map_addr(struct fsl_qspi *q)
 657{
 658	int nor_size = q->nor_size;
 659	void __iomem *base = q->iobase;
 660
 661	qspi_writel(q, nor_size + q->memmap_phy, base + QUADSPI_SFA1AD);
 662	qspi_writel(q, nor_size * 2 + q->memmap_phy, base + QUADSPI_SFA2AD);
 663	qspi_writel(q, nor_size * 3 + q->memmap_phy, base + QUADSPI_SFB1AD);
 664	qspi_writel(q, nor_size * 4 + q->memmap_phy, base + QUADSPI_SFB2AD);
 665}
 666
 667/*
 668 * There are two different ways to read out the data from the flash:
 669 *  the "IP Command Read" and the "AHB Command Read".
 670 *
 671 * The IC guy suggests we use the "AHB Command Read" which is faster
 672 * then the "IP Command Read". (What's more is that there is a bug in
 673 * the "IP Command Read" in the Vybrid.)
 674 *
 675 * After we set up the registers for the "AHB Command Read", we can use
 676 * the memcpy to read the data directly. A "missed" access to the buffer
 677 * causes the controller to clear the buffer, and use the sequence pointed
 678 * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
 679 */
 680static void fsl_qspi_init_abh_read(struct fsl_qspi *q)
 681{
 682	void __iomem *base = q->iobase;
 683	int seqid;
 684
 685	/* AHB configuration for access buffer 0/1/2 .*/
 686	qspi_writel(q, QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF0CR);
 687	qspi_writel(q, QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF1CR);
 688	qspi_writel(q, QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF2CR);
 689	/*
 690	 * Set ADATSZ with the maximum AHB buffer size to improve the
 691	 * read performance.
 692	 */
 693	qspi_writel(q, QUADSPI_BUF3CR_ALLMST_MASK |
 694			((q->devtype_data->ahb_buf_size / 8)
 695			<< QUADSPI_BUF3CR_ADATSZ_SHIFT),
 696			base + QUADSPI_BUF3CR);
 697
 698	/* We only use the buffer3 */
 699	qspi_writel(q, 0, base + QUADSPI_BUF0IND);
 700	qspi_writel(q, 0, base + QUADSPI_BUF1IND);
 701	qspi_writel(q, 0, base + QUADSPI_BUF2IND);
 702
 703	/* Set the default lut sequence for AHB Read. */
 704	seqid = fsl_qspi_get_seqid(q, q->nor[0].read_opcode);
 705	qspi_writel(q, seqid << QUADSPI_BFGENCR_SEQID_SHIFT,
 706		q->iobase + QUADSPI_BFGENCR);
 707}
 708
 709/* This function was used to prepare and enable QSPI clock */
 710static int fsl_qspi_clk_prep_enable(struct fsl_qspi *q)
 711{
 712	int ret;
 713
 714	ret = clk_prepare_enable(q->clk_en);
 715	if (ret)
 716		return ret;
 717
 718	ret = clk_prepare_enable(q->clk);
 719	if (ret) {
 720		clk_disable_unprepare(q->clk_en);
 721		return ret;
 722	}
 723
 724	if (needs_wakeup_wait_mode(q))
 725		pm_qos_add_request(&q->pm_qos_req, PM_QOS_CPU_DMA_LATENCY, 0);
 726
 727	return 0;
 728}
 729
 730/* This function was used to disable and unprepare QSPI clock */
 731static void fsl_qspi_clk_disable_unprep(struct fsl_qspi *q)
 732{
 733	if (needs_wakeup_wait_mode(q))
 734		pm_qos_remove_request(&q->pm_qos_req);
 735
 736	clk_disable_unprepare(q->clk);
 737	clk_disable_unprepare(q->clk_en);
 738
 739}
 740
 741/* We use this function to do some basic init for spi_nor_scan(). */
 742static int fsl_qspi_nor_setup(struct fsl_qspi *q)
 743{
 744	void __iomem *base = q->iobase;
 745	u32 reg;
 746	int ret;
 747
 748	/* disable and unprepare clock to avoid glitch pass to controller */
 749	fsl_qspi_clk_disable_unprep(q);
 750
 751	/* the default frequency, we will change it in the future. */
 752	ret = clk_set_rate(q->clk, 66000000);
 753	if (ret)
 754		return ret;
 755
 756	ret = fsl_qspi_clk_prep_enable(q);
 757	if (ret)
 758		return ret;
 759
 760	/* Reset the module */
 761	qspi_writel(q, QUADSPI_MCR_SWRSTSD_MASK | QUADSPI_MCR_SWRSTHD_MASK,
 762		base + QUADSPI_MCR);
 763	udelay(1);
 764
 765	/* Init the LUT table. */
 766	fsl_qspi_init_lut(q);
 767
 768	/* Disable the module */
 769	qspi_writel(q, QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK,
 770			base + QUADSPI_MCR);
 771
 772	reg = qspi_readl(q, base + QUADSPI_SMPR);
 773	qspi_writel(q, reg & ~(QUADSPI_SMPR_FSDLY_MASK
 774			| QUADSPI_SMPR_FSPHS_MASK
 775			| QUADSPI_SMPR_HSENA_MASK
 776			| QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR);
 777
 778	/* Enable the module */
 779	qspi_writel(q, QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK,
 780			base + QUADSPI_MCR);
 781
 782	/* clear all interrupt status */
 783	qspi_writel(q, 0xffffffff, q->iobase + QUADSPI_FR);
 784
 785	/* enable the interrupt */
 786	qspi_writel(q, QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER);
 787
 788	return 0;
 789}
 790
 791static int fsl_qspi_nor_setup_last(struct fsl_qspi *q)
 792{
 793	unsigned long rate = q->clk_rate;
 794	int ret;
 795
 796	if (needs_4x_clock(q))
 797		rate *= 4;
 798
 799	/* disable and unprepare clock to avoid glitch pass to controller */
 800	fsl_qspi_clk_disable_unprep(q);
 801
 802	ret = clk_set_rate(q->clk, rate);
 803	if (ret)
 804		return ret;
 805
 806	ret = fsl_qspi_clk_prep_enable(q);
 807	if (ret)
 808		return ret;
 809
 810	/* Init the LUT table again. */
 811	fsl_qspi_init_lut(q);
 812
 813	/* Init for AHB read */
 814	fsl_qspi_init_abh_read(q);
 815
 816	return 0;
 817}
 818
 819static const struct of_device_id fsl_qspi_dt_ids[] = {
 820	{ .compatible = "fsl,vf610-qspi", .data = (void *)&vybrid_data, },
 821	{ .compatible = "fsl,imx6sx-qspi", .data = (void *)&imx6sx_data, },
 822	{ .compatible = "fsl,imx7d-qspi", .data = (void *)&imx7d_data, },
 823	{ .compatible = "fsl,imx6ul-qspi", .data = (void *)&imx6ul_data, },
 824	{ .compatible = "fsl,ls1021a-qspi", .data = (void *)&ls1021a_data, },
 825	{ /* sentinel */ }
 826};
 827MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids);
 828
 829static void fsl_qspi_set_base_addr(struct fsl_qspi *q, struct spi_nor *nor)
 830{
 831	q->chip_base_addr = q->nor_size * (nor - q->nor);
 832}
 833
 834static int fsl_qspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
 835{
 836	int ret;
 837	struct fsl_qspi *q = nor->priv;
 838
 839	ret = fsl_qspi_runcmd(q, opcode, 0, len);
 840	if (ret)
 841		return ret;
 842
 843	fsl_qspi_read_data(q, len, buf);
 844	return 0;
 845}
 846
 847static int fsl_qspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
 848{
 849	struct fsl_qspi *q = nor->priv;
 850	int ret;
 851
 852	if (!buf) {
 853		ret = fsl_qspi_runcmd(q, opcode, 0, 1);
 854		if (ret)
 855			return ret;
 856
 857		if (opcode == SPINOR_OP_CHIP_ERASE)
 858			fsl_qspi_invalid(q);
 859
 860	} else if (len > 0) {
 861		ret = fsl_qspi_nor_write(q, nor, opcode, 0,
 862					(u32 *)buf, len);
 863		if (ret > 0)
 864			return 0;
 865	} else {
 866		dev_err(q->dev, "invalid cmd %d\n", opcode);
 867		ret = -EINVAL;
 868	}
 869
 870	return ret;
 871}
 872
 873static ssize_t fsl_qspi_write(struct spi_nor *nor, loff_t to,
 874			      size_t len, const u_char *buf)
 875{
 876	struct fsl_qspi *q = nor->priv;
 877	ssize_t ret = fsl_qspi_nor_write(q, nor, nor->program_opcode, to,
 878					 (u32 *)buf, len);
 879
 880	/* invalid the data in the AHB buffer. */
 881	fsl_qspi_invalid(q);
 882	return ret;
 883}
 884
 885static ssize_t fsl_qspi_read(struct spi_nor *nor, loff_t from,
 886			     size_t len, u_char *buf)
 887{
 888	struct fsl_qspi *q = nor->priv;
 889	u8 cmd = nor->read_opcode;
 890
 891	/* if necessary,ioremap buffer before AHB read, */
 892	if (!q->ahb_addr) {
 893		q->memmap_offs = q->chip_base_addr + from;
 894		q->memmap_len = len > QUADSPI_MIN_IOMAP ? len : QUADSPI_MIN_IOMAP;
 895
 896		q->ahb_addr = ioremap_nocache(
 897				q->memmap_phy + q->memmap_offs,
 898				q->memmap_len);
 899		if (!q->ahb_addr) {
 900			dev_err(q->dev, "ioremap failed\n");
 901			return -ENOMEM;
 902		}
 903	/* ioremap if the data requested is out of range */
 904	} else if (q->chip_base_addr + from < q->memmap_offs
 905			|| q->chip_base_addr + from + len >
 906			q->memmap_offs + q->memmap_len) {
 907		iounmap(q->ahb_addr);
 908
 909		q->memmap_offs = q->chip_base_addr + from;
 910		q->memmap_len = len > QUADSPI_MIN_IOMAP ? len : QUADSPI_MIN_IOMAP;
 911		q->ahb_addr = ioremap_nocache(
 912				q->memmap_phy + q->memmap_offs,
 913				q->memmap_len);
 914		if (!q->ahb_addr) {
 915			dev_err(q->dev, "ioremap failed\n");
 916			return -ENOMEM;
 917		}
 918	}
 919
 920	dev_dbg(q->dev, "cmd [%x],read from %p, len:%zd\n",
 921		cmd, q->ahb_addr + q->chip_base_addr + from - q->memmap_offs,
 922		len);
 923
 924	/* Read out the data directly from the AHB buffer.*/
 925	memcpy(buf, q->ahb_addr + q->chip_base_addr + from - q->memmap_offs,
 926		len);
 927
 928	return len;
 929}
 930
 931static int fsl_qspi_erase(struct spi_nor *nor, loff_t offs)
 932{
 933	struct fsl_qspi *q = nor->priv;
 934	int ret;
 935
 936	dev_dbg(nor->dev, "%dKiB at 0x%08x:0x%08x\n",
 937		nor->mtd.erasesize / 1024, q->chip_base_addr, (u32)offs);
 938
 939	ret = fsl_qspi_runcmd(q, nor->erase_opcode, offs, 0);
 940	if (ret)
 941		return ret;
 942
 943	fsl_qspi_invalid(q);
 944	return 0;
 945}
 946
 947static int fsl_qspi_prep(struct spi_nor *nor, enum spi_nor_ops ops)
 948{
 949	struct fsl_qspi *q = nor->priv;
 950	int ret;
 951
 952	mutex_lock(&q->lock);
 953
 954	ret = fsl_qspi_clk_prep_enable(q);
 955	if (ret)
 956		goto err_mutex;
 957
 958	fsl_qspi_set_base_addr(q, nor);
 959	return 0;
 960
 961err_mutex:
 962	mutex_unlock(&q->lock);
 963	return ret;
 964}
 965
 966static void fsl_qspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
 967{
 968	struct fsl_qspi *q = nor->priv;
 969
 970	fsl_qspi_clk_disable_unprep(q);
 971	mutex_unlock(&q->lock);
 972}
 973
 974static int fsl_qspi_probe(struct platform_device *pdev)
 975{
 976	struct device_node *np = pdev->dev.of_node;
 977	struct device *dev = &pdev->dev;
 978	struct fsl_qspi *q;
 979	struct resource *res;
 980	struct spi_nor *nor;
 981	struct mtd_info *mtd;
 982	int ret, i = 0;
 983
 984	q = devm_kzalloc(dev, sizeof(*q), GFP_KERNEL);
 985	if (!q)
 986		return -ENOMEM;
 987
 988	q->nor_num = of_get_child_count(dev->of_node);
 989	if (!q->nor_num || q->nor_num > FSL_QSPI_MAX_CHIP)
 990		return -ENODEV;
 991
 992	q->dev = dev;
 993	q->devtype_data = of_device_get_match_data(dev);
 994	if (!q->devtype_data)
 995		return -ENODEV;
 996	platform_set_drvdata(pdev, q);
 997
 998	/* find the resources */
 999	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "QuadSPI");
1000	q->iobase = devm_ioremap_resource(dev, res);
1001	if (IS_ERR(q->iobase))
1002		return PTR_ERR(q->iobase);
1003
1004	q->big_endian = of_property_read_bool(np, "big-endian");
1005	res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1006					"QuadSPI-memory");
1007	if (!devm_request_mem_region(dev, res->start, resource_size(res),
1008				     res->name)) {
1009		dev_err(dev, "can't request region for resource %pR\n", res);
1010		return -EBUSY;
1011	}
1012
1013	q->memmap_phy = res->start;
1014
1015	/* find the clocks */
1016	q->clk_en = devm_clk_get(dev, "qspi_en");
1017	if (IS_ERR(q->clk_en))
1018		return PTR_ERR(q->clk_en);
1019
1020	q->clk = devm_clk_get(dev, "qspi");
1021	if (IS_ERR(q->clk))
1022		return PTR_ERR(q->clk);
1023
1024	ret = fsl_qspi_clk_prep_enable(q);
1025	if (ret) {
1026		dev_err(dev, "can not enable the clock\n");
1027		goto clk_failed;
1028	}
1029
1030	/* find the irq */
1031	ret = platform_get_irq(pdev, 0);
1032	if (ret < 0) {
1033		dev_err(dev, "failed to get the irq: %d\n", ret);
1034		goto irq_failed;
1035	}
1036
1037	ret = devm_request_irq(dev, ret,
1038			fsl_qspi_irq_handler, 0, pdev->name, q);
1039	if (ret) {
1040		dev_err(dev, "failed to request irq: %d\n", ret);
1041		goto irq_failed;
1042	}
1043
1044	ret = fsl_qspi_nor_setup(q);
1045	if (ret)
1046		goto irq_failed;
1047
1048	if (of_get_property(np, "fsl,qspi-has-second-chip", NULL))
1049		q->has_second_chip = true;
1050
1051	mutex_init(&q->lock);
1052
1053	/* iterate the subnodes. */
1054	for_each_available_child_of_node(dev->of_node, np) {
1055		/* skip the holes */
1056		if (!q->has_second_chip)
1057			i *= 2;
1058
1059		nor = &q->nor[i];
1060		mtd = &nor->mtd;
1061
1062		nor->dev = dev;
1063		spi_nor_set_flash_node(nor, np);
1064		nor->priv = q;
1065
1066		/* fill the hooks */
1067		nor->read_reg = fsl_qspi_read_reg;
1068		nor->write_reg = fsl_qspi_write_reg;
1069		nor->read = fsl_qspi_read;
1070		nor->write = fsl_qspi_write;
1071		nor->erase = fsl_qspi_erase;
1072
1073		nor->prepare = fsl_qspi_prep;
1074		nor->unprepare = fsl_qspi_unprep;
1075
1076		ret = of_property_read_u32(np, "spi-max-frequency",
1077				&q->clk_rate);
1078		if (ret < 0)
1079			goto mutex_failed;
1080
1081		/* set the chip address for READID */
1082		fsl_qspi_set_base_addr(q, nor);
1083
1084		ret = spi_nor_scan(nor, NULL, SPI_NOR_QUAD);
1085		if (ret)
1086			goto mutex_failed;
1087
1088		ret = mtd_device_register(mtd, NULL, 0);
1089		if (ret)
1090			goto mutex_failed;
1091
1092		/* Set the correct NOR size now. */
1093		if (q->nor_size == 0) {
1094			q->nor_size = mtd->size;
1095
1096			/* Map the SPI NOR to accessiable address */
1097			fsl_qspi_set_map_addr(q);
1098		}
1099
1100		/*
1101		 * The TX FIFO is 64 bytes in the Vybrid, but the Page Program
1102		 * may writes 265 bytes per time. The write is working in the
1103		 * unit of the TX FIFO, not in the unit of the SPI NOR's page
1104		 * size.
1105		 *
1106		 * So shrink the spi_nor->page_size if it is larger then the
1107		 * TX FIFO.
1108		 */
1109		if (nor->page_size > q->devtype_data->txfifo)
1110			nor->page_size = q->devtype_data->txfifo;
1111
1112		i++;
1113	}
1114
1115	/* finish the rest init. */
1116	ret = fsl_qspi_nor_setup_last(q);
1117	if (ret)
1118		goto last_init_failed;
1119
1120	fsl_qspi_clk_disable_unprep(q);
1121	return 0;
1122
1123last_init_failed:
1124	for (i = 0; i < q->nor_num; i++) {
1125		/* skip the holes */
1126		if (!q->has_second_chip)
1127			i *= 2;
1128		mtd_device_unregister(&q->nor[i].mtd);
1129	}
1130mutex_failed:
1131	mutex_destroy(&q->lock);
1132irq_failed:
1133	fsl_qspi_clk_disable_unprep(q);
1134clk_failed:
1135	dev_err(dev, "Freescale QuadSPI probe failed\n");
1136	return ret;
1137}
1138
1139static int fsl_qspi_remove(struct platform_device *pdev)
1140{
1141	struct fsl_qspi *q = platform_get_drvdata(pdev);
1142	int i;
1143
1144	for (i = 0; i < q->nor_num; i++) {
1145		/* skip the holes */
1146		if (!q->has_second_chip)
1147			i *= 2;
1148		mtd_device_unregister(&q->nor[i].mtd);
1149	}
1150
1151	/* disable the hardware */
1152	qspi_writel(q, QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR);
1153	qspi_writel(q, 0x0, q->iobase + QUADSPI_RSER);
1154
1155	mutex_destroy(&q->lock);
1156
1157	if (q->ahb_addr)
1158		iounmap(q->ahb_addr);
1159
1160	return 0;
1161}
1162
1163static int fsl_qspi_suspend(struct platform_device *pdev, pm_message_t state)
1164{
1165	return 0;
1166}
1167
1168static int fsl_qspi_resume(struct platform_device *pdev)
1169{
1170	int ret;
1171	struct fsl_qspi *q = platform_get_drvdata(pdev);
1172
1173	ret = fsl_qspi_clk_prep_enable(q);
1174	if (ret)
1175		return ret;
1176
1177	fsl_qspi_nor_setup(q);
1178	fsl_qspi_set_map_addr(q);
1179	fsl_qspi_nor_setup_last(q);
1180
1181	fsl_qspi_clk_disable_unprep(q);
1182
1183	return 0;
1184}
1185
1186static struct platform_driver fsl_qspi_driver = {
1187	.driver = {
1188		.name	= "fsl-quadspi",
1189		.bus	= &platform_bus_type,
1190		.of_match_table = fsl_qspi_dt_ids,
1191	},
1192	.probe          = fsl_qspi_probe,
1193	.remove		= fsl_qspi_remove,
1194	.suspend	= fsl_qspi_suspend,
1195	.resume		= fsl_qspi_resume,
1196};
1197module_platform_driver(fsl_qspi_driver);
1198
1199MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver");
1200MODULE_AUTHOR("Freescale Semiconductor Inc.");
1201MODULE_LICENSE("GPL v2");