Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * A fairly generic DMA-API to IOMMU-API glue layer.
  3 *
  4 * Copyright (C) 2014-2015 ARM Ltd.
  5 *
  6 * based in part on arch/arm/mm/dma-mapping.c:
  7 * Copyright (C) 2000-2004 Russell King
  8 *
  9 * This program is free software; you can redistribute it and/or modify
 10 * it under the terms of the GNU General Public License version 2 as
 11 * published by the Free Software Foundation.
 12 *
 13 * This program is distributed in the hope that it will be useful,
 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 16 * GNU General Public License for more details.
 17 *
 18 * You should have received a copy of the GNU General Public License
 19 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 20 */
 21
 22#include <linux/device.h>
 23#include <linux/dma-iommu.h>
 24#include <linux/gfp.h>
 25#include <linux/huge_mm.h>
 26#include <linux/iommu.h>
 27#include <linux/iova.h>
 28#include <linux/irq.h>
 29#include <linux/mm.h>
 30#include <linux/pci.h>
 31#include <linux/scatterlist.h>
 32#include <linux/vmalloc.h>
 33
 34struct iommu_dma_msi_page {
 35	struct list_head	list;
 36	dma_addr_t		iova;
 37	phys_addr_t		phys;
 38};
 39
 40struct iommu_dma_cookie {
 41	struct iova_domain	iovad;
 42	struct list_head	msi_page_list;
 43	spinlock_t		msi_lock;
 44};
 45
 46static inline struct iova_domain *cookie_iovad(struct iommu_domain *domain)
 47{
 48	return &((struct iommu_dma_cookie *)domain->iova_cookie)->iovad;
 49}
 50
 51int iommu_dma_init(void)
 52{
 53	return iova_cache_get();
 54}
 55
 56/**
 57 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
 58 * @domain: IOMMU domain to prepare for DMA-API usage
 59 *
 60 * IOMMU drivers should normally call this from their domain_alloc
 61 * callback when domain->type == IOMMU_DOMAIN_DMA.
 62 */
 63int iommu_get_dma_cookie(struct iommu_domain *domain)
 64{
 65	struct iommu_dma_cookie *cookie;
 66
 67	if (domain->iova_cookie)
 68		return -EEXIST;
 69
 70	cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
 71	if (!cookie)
 72		return -ENOMEM;
 73
 74	spin_lock_init(&cookie->msi_lock);
 75	INIT_LIST_HEAD(&cookie->msi_page_list);
 76	domain->iova_cookie = cookie;
 77	return 0;
 78}
 79EXPORT_SYMBOL(iommu_get_dma_cookie);
 80
 81/**
 82 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
 83 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
 84 *
 85 * IOMMU drivers should normally call this from their domain_free callback.
 86 */
 87void iommu_put_dma_cookie(struct iommu_domain *domain)
 88{
 89	struct iommu_dma_cookie *cookie = domain->iova_cookie;
 90	struct iommu_dma_msi_page *msi, *tmp;
 91
 92	if (!cookie)
 93		return;
 94
 95	if (cookie->iovad.granule)
 96		put_iova_domain(&cookie->iovad);
 97
 98	list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
 99		list_del(&msi->list);
100		kfree(msi);
101	}
102	kfree(cookie);
103	domain->iova_cookie = NULL;
104}
105EXPORT_SYMBOL(iommu_put_dma_cookie);
106
107static void iova_reserve_pci_windows(struct pci_dev *dev,
108		struct iova_domain *iovad)
109{
110	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
111	struct resource_entry *window;
112	unsigned long lo, hi;
113
114	resource_list_for_each_entry(window, &bridge->windows) {
115		if (resource_type(window->res) != IORESOURCE_MEM &&
116		    resource_type(window->res) != IORESOURCE_IO)
117			continue;
118
119		lo = iova_pfn(iovad, window->res->start - window->offset);
120		hi = iova_pfn(iovad, window->res->end - window->offset);
121		reserve_iova(iovad, lo, hi);
122	}
123}
124
125/**
126 * iommu_dma_init_domain - Initialise a DMA mapping domain
127 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
128 * @base: IOVA at which the mappable address space starts
129 * @size: Size of IOVA space
130 * @dev: Device the domain is being initialised for
131 *
132 * @base and @size should be exact multiples of IOMMU page granularity to
133 * avoid rounding surprises. If necessary, we reserve the page at address 0
134 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
135 * any change which could make prior IOVAs invalid will fail.
136 */
137int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
138		u64 size, struct device *dev)
139{
140	struct iova_domain *iovad = cookie_iovad(domain);
141	unsigned long order, base_pfn, end_pfn;
142
143	if (!iovad)
144		return -ENODEV;
145
146	/* Use the smallest supported page size for IOVA granularity */
147	order = __ffs(domain->pgsize_bitmap);
148	base_pfn = max_t(unsigned long, 1, base >> order);
149	end_pfn = (base + size - 1) >> order;
150
151	/* Check the domain allows at least some access to the device... */
152	if (domain->geometry.force_aperture) {
153		if (base > domain->geometry.aperture_end ||
154		    base + size <= domain->geometry.aperture_start) {
155			pr_warn("specified DMA range outside IOMMU capability\n");
156			return -EFAULT;
157		}
158		/* ...then finally give it a kicking to make sure it fits */
159		base_pfn = max_t(unsigned long, base_pfn,
160				domain->geometry.aperture_start >> order);
161		end_pfn = min_t(unsigned long, end_pfn,
162				domain->geometry.aperture_end >> order);
163	}
164
165	/* All we can safely do with an existing domain is enlarge it */
166	if (iovad->start_pfn) {
167		if (1UL << order != iovad->granule ||
168		    base_pfn != iovad->start_pfn ||
169		    end_pfn < iovad->dma_32bit_pfn) {
170			pr_warn("Incompatible range for DMA domain\n");
171			return -EFAULT;
172		}
173		iovad->dma_32bit_pfn = end_pfn;
174	} else {
175		init_iova_domain(iovad, 1UL << order, base_pfn, end_pfn);
176		if (dev && dev_is_pci(dev))
177			iova_reserve_pci_windows(to_pci_dev(dev), iovad);
178	}
179	return 0;
180}
181EXPORT_SYMBOL(iommu_dma_init_domain);
182
183/**
184 * dma_direction_to_prot - Translate DMA API directions to IOMMU API page flags
185 * @dir: Direction of DMA transfer
186 * @coherent: Is the DMA master cache-coherent?
187 *
188 * Return: corresponding IOMMU API page protection flags
189 */
190int dma_direction_to_prot(enum dma_data_direction dir, bool coherent)
191{
192	int prot = coherent ? IOMMU_CACHE : 0;
193
194	switch (dir) {
195	case DMA_BIDIRECTIONAL:
196		return prot | IOMMU_READ | IOMMU_WRITE;
197	case DMA_TO_DEVICE:
198		return prot | IOMMU_READ;
199	case DMA_FROM_DEVICE:
200		return prot | IOMMU_WRITE;
201	default:
202		return 0;
203	}
204}
205
206static struct iova *__alloc_iova(struct iommu_domain *domain, size_t size,
207		dma_addr_t dma_limit)
208{
209	struct iova_domain *iovad = cookie_iovad(domain);
210	unsigned long shift = iova_shift(iovad);
211	unsigned long length = iova_align(iovad, size) >> shift;
212
213	if (domain->geometry.force_aperture)
214		dma_limit = min(dma_limit, domain->geometry.aperture_end);
215	/*
216	 * Enforce size-alignment to be safe - there could perhaps be an
217	 * attribute to control this per-device, or at least per-domain...
218	 */
219	return alloc_iova(iovad, length, dma_limit >> shift, true);
220}
221
222/* The IOVA allocator knows what we mapped, so just unmap whatever that was */
223static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr)
224{
225	struct iova_domain *iovad = cookie_iovad(domain);
226	unsigned long shift = iova_shift(iovad);
227	unsigned long pfn = dma_addr >> shift;
228	struct iova *iova = find_iova(iovad, pfn);
229	size_t size;
230
231	if (WARN_ON(!iova))
232		return;
233
234	size = iova_size(iova) << shift;
235	size -= iommu_unmap(domain, pfn << shift, size);
236	/* ...and if we can't, then something is horribly, horribly wrong */
237	WARN_ON(size > 0);
238	__free_iova(iovad, iova);
239}
240
241static void __iommu_dma_free_pages(struct page **pages, int count)
242{
243	while (count--)
244		__free_page(pages[count]);
245	kvfree(pages);
246}
247
248static struct page **__iommu_dma_alloc_pages(unsigned int count,
249		unsigned long order_mask, gfp_t gfp)
250{
251	struct page **pages;
252	unsigned int i = 0, array_size = count * sizeof(*pages);
253
254	order_mask &= (2U << MAX_ORDER) - 1;
255	if (!order_mask)
256		return NULL;
257
258	if (array_size <= PAGE_SIZE)
259		pages = kzalloc(array_size, GFP_KERNEL);
260	else
261		pages = vzalloc(array_size);
262	if (!pages)
263		return NULL;
264
265	/* IOMMU can map any pages, so himem can also be used here */
266	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
267
268	while (count) {
269		struct page *page = NULL;
270		unsigned int order_size;
271
272		/*
273		 * Higher-order allocations are a convenience rather
274		 * than a necessity, hence using __GFP_NORETRY until
275		 * falling back to minimum-order allocations.
276		 */
277		for (order_mask &= (2U << __fls(count)) - 1;
278		     order_mask; order_mask &= ~order_size) {
279			unsigned int order = __fls(order_mask);
280
281			order_size = 1U << order;
282			page = alloc_pages((order_mask - order_size) ?
283					   gfp | __GFP_NORETRY : gfp, order);
284			if (!page)
285				continue;
286			if (!order)
287				break;
288			if (!PageCompound(page)) {
289				split_page(page, order);
290				break;
291			} else if (!split_huge_page(page)) {
292				break;
293			}
294			__free_pages(page, order);
295		}
296		if (!page) {
297			__iommu_dma_free_pages(pages, i);
298			return NULL;
299		}
300		count -= order_size;
301		while (order_size--)
302			pages[i++] = page++;
303	}
304	return pages;
305}
306
307/**
308 * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc()
309 * @dev: Device which owns this buffer
310 * @pages: Array of buffer pages as returned by iommu_dma_alloc()
311 * @size: Size of buffer in bytes
312 * @handle: DMA address of buffer
313 *
314 * Frees both the pages associated with the buffer, and the array
315 * describing them
316 */
317void iommu_dma_free(struct device *dev, struct page **pages, size_t size,
318		dma_addr_t *handle)
319{
320	__iommu_dma_unmap(iommu_get_domain_for_dev(dev), *handle);
321	__iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
322	*handle = DMA_ERROR_CODE;
323}
324
325/**
326 * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space
327 * @dev: Device to allocate memory for. Must be a real device
328 *	 attached to an iommu_dma_domain
329 * @size: Size of buffer in bytes
330 * @gfp: Allocation flags
331 * @attrs: DMA attributes for this allocation
332 * @prot: IOMMU mapping flags
333 * @handle: Out argument for allocated DMA handle
334 * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the
335 *		given VA/PA are visible to the given non-coherent device.
336 *
337 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
338 * but an IOMMU which supports smaller pages might not map the whole thing.
339 *
340 * Return: Array of struct page pointers describing the buffer,
341 *	   or NULL on failure.
342 */
343struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp,
344		unsigned long attrs, int prot, dma_addr_t *handle,
345		void (*flush_page)(struct device *, const void *, phys_addr_t))
346{
347	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
348	struct iova_domain *iovad = cookie_iovad(domain);
349	struct iova *iova;
350	struct page **pages;
351	struct sg_table sgt;
352	dma_addr_t dma_addr;
353	unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
354
355	*handle = DMA_ERROR_CODE;
356
357	min_size = alloc_sizes & -alloc_sizes;
358	if (min_size < PAGE_SIZE) {
359		min_size = PAGE_SIZE;
360		alloc_sizes |= PAGE_SIZE;
361	} else {
362		size = ALIGN(size, min_size);
363	}
364	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
365		alloc_sizes = min_size;
366
367	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
368	pages = __iommu_dma_alloc_pages(count, alloc_sizes >> PAGE_SHIFT, gfp);
369	if (!pages)
370		return NULL;
371
372	iova = __alloc_iova(domain, size, dev->coherent_dma_mask);
373	if (!iova)
374		goto out_free_pages;
375
376	size = iova_align(iovad, size);
377	if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
378		goto out_free_iova;
379
380	if (!(prot & IOMMU_CACHE)) {
381		struct sg_mapping_iter miter;
382		/*
383		 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't
384		 * sufficient here, so skip it by using the "wrong" direction.
385		 */
386		sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG);
387		while (sg_miter_next(&miter))
388			flush_page(dev, miter.addr, page_to_phys(miter.page));
389		sg_miter_stop(&miter);
390	}
391
392	dma_addr = iova_dma_addr(iovad, iova);
393	if (iommu_map_sg(domain, dma_addr, sgt.sgl, sgt.orig_nents, prot)
394			< size)
395		goto out_free_sg;
396
397	*handle = dma_addr;
398	sg_free_table(&sgt);
399	return pages;
400
401out_free_sg:
402	sg_free_table(&sgt);
403out_free_iova:
404	__free_iova(iovad, iova);
405out_free_pages:
406	__iommu_dma_free_pages(pages, count);
407	return NULL;
408}
409
410/**
411 * iommu_dma_mmap - Map a buffer into provided user VMA
412 * @pages: Array representing buffer from iommu_dma_alloc()
413 * @size: Size of buffer in bytes
414 * @vma: VMA describing requested userspace mapping
415 *
416 * Maps the pages of the buffer in @pages into @vma. The caller is responsible
417 * for verifying the correct size and protection of @vma beforehand.
418 */
419
420int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma)
421{
422	unsigned long uaddr = vma->vm_start;
423	unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT;
424	int ret = -ENXIO;
425
426	for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) {
427		ret = vm_insert_page(vma, uaddr, pages[i]);
428		if (ret)
429			break;
430		uaddr += PAGE_SIZE;
431	}
432	return ret;
433}
434
435static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
436		size_t size, int prot)
437{
438	dma_addr_t dma_addr;
439	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
440	struct iova_domain *iovad = cookie_iovad(domain);
441	size_t iova_off = iova_offset(iovad, phys);
442	size_t len = iova_align(iovad, size + iova_off);
443	struct iova *iova = __alloc_iova(domain, len, dma_get_mask(dev));
444
445	if (!iova)
446		return DMA_ERROR_CODE;
447
448	dma_addr = iova_dma_addr(iovad, iova);
449	if (iommu_map(domain, dma_addr, phys - iova_off, len, prot)) {
450		__free_iova(iovad, iova);
451		return DMA_ERROR_CODE;
452	}
453	return dma_addr + iova_off;
454}
455
456dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
457		unsigned long offset, size_t size, int prot)
458{
459	return __iommu_dma_map(dev, page_to_phys(page) + offset, size, prot);
460}
461
462void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size,
463		enum dma_data_direction dir, unsigned long attrs)
464{
465	__iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle);
466}
467
468/*
469 * Prepare a successfully-mapped scatterlist to give back to the caller.
470 *
471 * At this point the segments are already laid out by iommu_dma_map_sg() to
472 * avoid individually crossing any boundaries, so we merely need to check a
473 * segment's start address to avoid concatenating across one.
474 */
475static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
476		dma_addr_t dma_addr)
477{
478	struct scatterlist *s, *cur = sg;
479	unsigned long seg_mask = dma_get_seg_boundary(dev);
480	unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
481	int i, count = 0;
482
483	for_each_sg(sg, s, nents, i) {
484		/* Restore this segment's original unaligned fields first */
485		unsigned int s_iova_off = sg_dma_address(s);
486		unsigned int s_length = sg_dma_len(s);
487		unsigned int s_iova_len = s->length;
488
489		s->offset += s_iova_off;
490		s->length = s_length;
491		sg_dma_address(s) = DMA_ERROR_CODE;
492		sg_dma_len(s) = 0;
493
494		/*
495		 * Now fill in the real DMA data. If...
496		 * - there is a valid output segment to append to
497		 * - and this segment starts on an IOVA page boundary
498		 * - but doesn't fall at a segment boundary
499		 * - and wouldn't make the resulting output segment too long
500		 */
501		if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
502		    (cur_len + s_length <= max_len)) {
503			/* ...then concatenate it with the previous one */
504			cur_len += s_length;
505		} else {
506			/* Otherwise start the next output segment */
507			if (i > 0)
508				cur = sg_next(cur);
509			cur_len = s_length;
510			count++;
511
512			sg_dma_address(cur) = dma_addr + s_iova_off;
513		}
514
515		sg_dma_len(cur) = cur_len;
516		dma_addr += s_iova_len;
517
518		if (s_length + s_iova_off < s_iova_len)
519			cur_len = 0;
520	}
521	return count;
522}
523
524/*
525 * If mapping failed, then just restore the original list,
526 * but making sure the DMA fields are invalidated.
527 */
528static void __invalidate_sg(struct scatterlist *sg, int nents)
529{
530	struct scatterlist *s;
531	int i;
532
533	for_each_sg(sg, s, nents, i) {
534		if (sg_dma_address(s) != DMA_ERROR_CODE)
535			s->offset += sg_dma_address(s);
536		if (sg_dma_len(s))
537			s->length = sg_dma_len(s);
538		sg_dma_address(s) = DMA_ERROR_CODE;
539		sg_dma_len(s) = 0;
540	}
541}
542
543/*
544 * The DMA API client is passing in a scatterlist which could describe
545 * any old buffer layout, but the IOMMU API requires everything to be
546 * aligned to IOMMU pages. Hence the need for this complicated bit of
547 * impedance-matching, to be able to hand off a suitably-aligned list,
548 * but still preserve the original offsets and sizes for the caller.
549 */
550int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
551		int nents, int prot)
552{
553	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
554	struct iova_domain *iovad = cookie_iovad(domain);
555	struct iova *iova;
556	struct scatterlist *s, *prev = NULL;
557	dma_addr_t dma_addr;
558	size_t iova_len = 0;
559	unsigned long mask = dma_get_seg_boundary(dev);
560	int i;
561
562	/*
563	 * Work out how much IOVA space we need, and align the segments to
564	 * IOVA granules for the IOMMU driver to handle. With some clever
565	 * trickery we can modify the list in-place, but reversibly, by
566	 * stashing the unaligned parts in the as-yet-unused DMA fields.
567	 */
568	for_each_sg(sg, s, nents, i) {
569		size_t s_iova_off = iova_offset(iovad, s->offset);
570		size_t s_length = s->length;
571		size_t pad_len = (mask - iova_len + 1) & mask;
572
573		sg_dma_address(s) = s_iova_off;
574		sg_dma_len(s) = s_length;
575		s->offset -= s_iova_off;
576		s_length = iova_align(iovad, s_length + s_iova_off);
577		s->length = s_length;
578
579		/*
580		 * Due to the alignment of our single IOVA allocation, we can
581		 * depend on these assumptions about the segment boundary mask:
582		 * - If mask size >= IOVA size, then the IOVA range cannot
583		 *   possibly fall across a boundary, so we don't care.
584		 * - If mask size < IOVA size, then the IOVA range must start
585		 *   exactly on a boundary, therefore we can lay things out
586		 *   based purely on segment lengths without needing to know
587		 *   the actual addresses beforehand.
588		 * - The mask must be a power of 2, so pad_len == 0 if
589		 *   iova_len == 0, thus we cannot dereference prev the first
590		 *   time through here (i.e. before it has a meaningful value).
591		 */
592		if (pad_len && pad_len < s_length - 1) {
593			prev->length += pad_len;
594			iova_len += pad_len;
595		}
596
597		iova_len += s_length;
598		prev = s;
599	}
600
601	iova = __alloc_iova(domain, iova_len, dma_get_mask(dev));
602	if (!iova)
603		goto out_restore_sg;
604
605	/*
606	 * We'll leave any physical concatenation to the IOMMU driver's
607	 * implementation - it knows better than we do.
608	 */
609	dma_addr = iova_dma_addr(iovad, iova);
610	if (iommu_map_sg(domain, dma_addr, sg, nents, prot) < iova_len)
611		goto out_free_iova;
612
613	return __finalise_sg(dev, sg, nents, dma_addr);
614
615out_free_iova:
616	__free_iova(iovad, iova);
617out_restore_sg:
618	__invalidate_sg(sg, nents);
619	return 0;
620}
621
622void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
623		enum dma_data_direction dir, unsigned long attrs)
624{
625	/*
626	 * The scatterlist segments are mapped into a single
627	 * contiguous IOVA allocation, so this is incredibly easy.
628	 */
629	__iommu_dma_unmap(iommu_get_domain_for_dev(dev), sg_dma_address(sg));
630}
631
632dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
633		size_t size, enum dma_data_direction dir, unsigned long attrs)
634{
635	return __iommu_dma_map(dev, phys, size,
636			dma_direction_to_prot(dir, false) | IOMMU_MMIO);
637}
638
639void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
640		size_t size, enum dma_data_direction dir, unsigned long attrs)
641{
642	__iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle);
643}
644
645int iommu_dma_supported(struct device *dev, u64 mask)
646{
647	/*
648	 * 'Special' IOMMUs which don't have the same addressing capability
649	 * as the CPU will have to wait until we have some way to query that
650	 * before they'll be able to use this framework.
651	 */
652	return 1;
653}
654
655int iommu_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
656{
657	return dma_addr == DMA_ERROR_CODE;
658}
659
660static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
661		phys_addr_t msi_addr, struct iommu_domain *domain)
662{
663	struct iommu_dma_cookie *cookie = domain->iova_cookie;
664	struct iommu_dma_msi_page *msi_page;
665	struct iova_domain *iovad = &cookie->iovad;
666	struct iova *iova;
667	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
668
669	msi_addr &= ~(phys_addr_t)iova_mask(iovad);
670	list_for_each_entry(msi_page, &cookie->msi_page_list, list)
671		if (msi_page->phys == msi_addr)
672			return msi_page;
673
674	msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC);
675	if (!msi_page)
676		return NULL;
677
678	iova = __alloc_iova(domain, iovad->granule, dma_get_mask(dev));
679	if (!iova)
680		goto out_free_page;
681
682	msi_page->phys = msi_addr;
683	msi_page->iova = iova_dma_addr(iovad, iova);
684	if (iommu_map(domain, msi_page->iova, msi_addr, iovad->granule, prot))
685		goto out_free_iova;
686
687	INIT_LIST_HEAD(&msi_page->list);
688	list_add(&msi_page->list, &cookie->msi_page_list);
689	return msi_page;
690
691out_free_iova:
692	__free_iova(iovad, iova);
693out_free_page:
694	kfree(msi_page);
695	return NULL;
696}
697
698void iommu_dma_map_msi_msg(int irq, struct msi_msg *msg)
699{
700	struct device *dev = msi_desc_to_dev(irq_get_msi_desc(irq));
701	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
702	struct iommu_dma_cookie *cookie;
703	struct iommu_dma_msi_page *msi_page;
704	phys_addr_t msi_addr = (u64)msg->address_hi << 32 | msg->address_lo;
705	unsigned long flags;
706
707	if (!domain || !domain->iova_cookie)
708		return;
709
710	cookie = domain->iova_cookie;
711
712	/*
713	 * We disable IRQs to rule out a possible inversion against
714	 * irq_desc_lock if, say, someone tries to retarget the affinity
715	 * of an MSI from within an IPI handler.
716	 */
717	spin_lock_irqsave(&cookie->msi_lock, flags);
718	msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
719	spin_unlock_irqrestore(&cookie->msi_lock, flags);
720
721	if (WARN_ON(!msi_page)) {
722		/*
723		 * We're called from a void callback, so the best we can do is
724		 * 'fail' by filling the message with obviously bogus values.
725		 * Since we got this far due to an IOMMU being present, it's
726		 * not like the existing address would have worked anyway...
727		 */
728		msg->address_hi = ~0U;
729		msg->address_lo = ~0U;
730		msg->data = ~0U;
731	} else {
732		msg->address_hi = upper_32_bits(msi_page->iova);
733		msg->address_lo &= iova_mask(&cookie->iovad);
734		msg->address_lo += lower_32_bits(msi_page->iova);
735	}
736}