Linux Audio

Check our new training course

Loading...
v3.1
   1/*
   2    lm85.c - Part of lm_sensors, Linux kernel modules for hardware
   3             monitoring
   4    Copyright (c) 1998, 1999  Frodo Looijaard <frodol@dds.nl>
   5    Copyright (c) 2002, 2003  Philip Pokorny <ppokorny@penguincomputing.com>
   6    Copyright (c) 2003        Margit Schubert-While <margitsw@t-online.de>
   7    Copyright (c) 2004        Justin Thiessen <jthiessen@penguincomputing.com>
   8    Copyright (C) 2007--2009  Jean Delvare <khali@linux-fr.org>
   9
  10    Chip details at	      <http://www.national.com/ds/LM/LM85.pdf>
  11
  12    This program is free software; you can redistribute it and/or modify
  13    it under the terms of the GNU General Public License as published by
  14    the Free Software Foundation; either version 2 of the License, or
  15    (at your option) any later version.
  16
  17    This program is distributed in the hope that it will be useful,
  18    but WITHOUT ANY WARRANTY; without even the implied warranty of
  19    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20    GNU General Public License for more details.
  21
  22    You should have received a copy of the GNU General Public License
  23    along with this program; if not, write to the Free Software
  24    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25*/
  26
  27#include <linux/module.h>
  28#include <linux/init.h>
  29#include <linux/slab.h>
  30#include <linux/jiffies.h>
  31#include <linux/i2c.h>
  32#include <linux/hwmon.h>
  33#include <linux/hwmon-vid.h>
  34#include <linux/hwmon-sysfs.h>
  35#include <linux/err.h>
  36#include <linux/mutex.h>
 
  37
  38/* Addresses to scan */
  39static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
  40
  41enum chips {
  42	any_chip, lm85b, lm85c,
  43	adm1027, adt7463, adt7468,
  44	emc6d100, emc6d102, emc6d103, emc6d103s
  45};
  46
  47/* The LM85 registers */
  48
  49#define	LM85_REG_IN(nr)			(0x20 + (nr))
  50#define	LM85_REG_IN_MIN(nr)		(0x44 + (nr) * 2)
  51#define	LM85_REG_IN_MAX(nr)		(0x45 + (nr) * 2)
  52
  53#define	LM85_REG_TEMP(nr)		(0x25 + (nr))
  54#define	LM85_REG_TEMP_MIN(nr)		(0x4e + (nr) * 2)
  55#define	LM85_REG_TEMP_MAX(nr)		(0x4f + (nr) * 2)
  56
  57/* Fan speeds are LSB, MSB (2 bytes) */
  58#define	LM85_REG_FAN(nr)		(0x28 + (nr) * 2)
  59#define	LM85_REG_FAN_MIN(nr)		(0x54 + (nr) * 2)
  60
  61#define	LM85_REG_PWM(nr)		(0x30 + (nr))
  62
  63#define	LM85_REG_COMPANY		0x3e
  64#define	LM85_REG_VERSTEP		0x3f
  65
  66#define	ADT7468_REG_CFG5		0x7c
  67#define		ADT7468_OFF64		(1 << 0)
  68#define		ADT7468_HFPWM		(1 << 1)
  69#define	IS_ADT7468_OFF64(data)		\
  70	((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64))
  71#define	IS_ADT7468_HFPWM(data)		\
  72	((data)->type == adt7468 && !((data)->cfg5 & ADT7468_HFPWM))
  73
  74/* These are the recognized values for the above regs */
  75#define	LM85_COMPANY_NATIONAL		0x01
  76#define	LM85_COMPANY_ANALOG_DEV		0x41
  77#define	LM85_COMPANY_SMSC		0x5c
  78#define	LM85_VERSTEP_VMASK              0xf0
  79#define	LM85_VERSTEP_GENERIC		0x60
  80#define	LM85_VERSTEP_GENERIC2		0x70
  81#define	LM85_VERSTEP_LM85C		0x60
  82#define	LM85_VERSTEP_LM85B		0x62
  83#define	LM85_VERSTEP_LM96000_1		0x68
  84#define	LM85_VERSTEP_LM96000_2		0x69
  85#define	LM85_VERSTEP_ADM1027		0x60
  86#define	LM85_VERSTEP_ADT7463		0x62
  87#define	LM85_VERSTEP_ADT7463C		0x6A
  88#define	LM85_VERSTEP_ADT7468_1		0x71
  89#define	LM85_VERSTEP_ADT7468_2		0x72
  90#define	LM85_VERSTEP_EMC6D100_A0        0x60
  91#define	LM85_VERSTEP_EMC6D100_A1        0x61
  92#define	LM85_VERSTEP_EMC6D102		0x65
  93#define	LM85_VERSTEP_EMC6D103_A0	0x68
  94#define	LM85_VERSTEP_EMC6D103_A1	0x69
  95#define	LM85_VERSTEP_EMC6D103S		0x6A	/* Also known as EMC6D103:A2 */
  96
  97#define	LM85_REG_CONFIG			0x40
  98
  99#define	LM85_REG_ALARM1			0x41
 100#define	LM85_REG_ALARM2			0x42
 101
 102#define	LM85_REG_VID			0x43
 103
 104/* Automated FAN control */
 105#define	LM85_REG_AFAN_CONFIG(nr)	(0x5c + (nr))
 106#define	LM85_REG_AFAN_RANGE(nr)		(0x5f + (nr))
 107#define	LM85_REG_AFAN_SPIKE1		0x62
 108#define	LM85_REG_AFAN_MINPWM(nr)	(0x64 + (nr))
 109#define	LM85_REG_AFAN_LIMIT(nr)		(0x67 + (nr))
 110#define	LM85_REG_AFAN_CRITICAL(nr)	(0x6a + (nr))
 111#define	LM85_REG_AFAN_HYST1		0x6d
 112#define	LM85_REG_AFAN_HYST2		0x6e
 113
 114#define	ADM1027_REG_EXTEND_ADC1		0x76
 115#define	ADM1027_REG_EXTEND_ADC2		0x77
 116
 117#define EMC6D100_REG_ALARM3             0x7d
 118/* IN5, IN6 and IN7 */
 119#define	EMC6D100_REG_IN(nr)             (0x70 + ((nr) - 5))
 120#define	EMC6D100_REG_IN_MIN(nr)         (0x73 + ((nr) - 5) * 2)
 121#define	EMC6D100_REG_IN_MAX(nr)         (0x74 + ((nr) - 5) * 2)
 122#define	EMC6D102_REG_EXTEND_ADC1	0x85
 123#define	EMC6D102_REG_EXTEND_ADC2	0x86
 124#define	EMC6D102_REG_EXTEND_ADC3	0x87
 125#define	EMC6D102_REG_EXTEND_ADC4	0x88
 126
 127
 128/* Conversions. Rounding and limit checking is only done on the TO_REG
 129   variants. Note that you should be a bit careful with which arguments
 130   these macros are called: arguments may be evaluated more than once.
 131 */
 132
 133/* IN are scaled according to built-in resistors */
 134static const int lm85_scaling[] = {  /* .001 Volts */
 135	2500, 2250, 3300, 5000, 12000,
 136	3300, 1500, 1800 /*EMC6D100*/
 137};
 138#define SCALE(val, from, to)	(((val) * (to) + ((from) / 2)) / (from))
 139
 140#define INS_TO_REG(n, val)	\
 141		SENSORS_LIMIT(SCALE(val, lm85_scaling[n], 192), 0, 255)
 
 142
 143#define INSEXT_FROM_REG(n, val, ext)	\
 144		SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
 145
 146#define INS_FROM_REG(n, val)	SCALE((val), 192, lm85_scaling[n])
 147
 148/* FAN speed is measured using 90kHz clock */
 149static inline u16 FAN_TO_REG(unsigned long val)
 150{
 151	if (!val)
 152		return 0xffff;
 153	return SENSORS_LIMIT(5400000 / val, 1, 0xfffe);
 154}
 155#define FAN_FROM_REG(val)	((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
 156				 5400000 / (val))
 157
 158/* Temperature is reported in .001 degC increments */
 159#define TEMP_TO_REG(val)	\
 160		SENSORS_LIMIT(SCALE(val, 1000, 1), -127, 127)
 161#define TEMPEXT_FROM_REG(val, ext)	\
 162		SCALE(((val) << 4) + (ext), 16, 1000)
 163#define TEMP_FROM_REG(val)	((val) * 1000)
 164
 165#define PWM_TO_REG(val)			SENSORS_LIMIT(val, 0, 255)
 166#define PWM_FROM_REG(val)		(val)
 167
 168
 169/* ZONEs have the following parameters:
 
 170 *    Limit (low) temp,           1. degC
 171 *    Hysteresis (below limit),   1. degC (0-15)
 172 *    Range of speed control,     .1 degC (2-80)
 173 *    Critical (high) temp,       1. degC
 174 *
 175 * FAN PWMs have the following parameters:
 176 *    Reference Zone,                 1, 2, 3, etc.
 177 *    Spinup time,                    .05 sec
 178 *    PWM value at limit/low temp,    1 count
 179 *    PWM Frequency,                  1. Hz
 180 *    PWM is Min or OFF below limit,  flag
 181 *    Invert PWM output,              flag
 182 *
 183 * Some chips filter the temp, others the fan.
 184 *    Filter constant (or disabled)   .1 seconds
 185 */
 186
 187/* These are the zone temperature range encodings in .001 degree C */
 188static const int lm85_range_map[] = {
 189	2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
 190	13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
 191};
 192
 193static int RANGE_TO_REG(int range)
 194{
 195	int i;
 196
 197	/* Find the closest match */
 198	for (i = 0; i < 15; ++i) {
 199		if (range <= (lm85_range_map[i] + lm85_range_map[i + 1]) / 2)
 200			break;
 201	}
 202
 203	return i;
 204}
 205#define RANGE_FROM_REG(val)	lm85_range_map[(val) & 0x0f]
 206
 207/* These are the PWM frequency encodings */
 208static const int lm85_freq_map[8] = { /* 1 Hz */
 209	10, 15, 23, 30, 38, 47, 61, 94
 210};
 211static const int adm1027_freq_map[8] = { /* 1 Hz */
 212	11, 15, 22, 29, 35, 44, 59, 88
 213};
 
 214
 215static int FREQ_TO_REG(const int *map, int freq)
 
 216{
 217	int i;
 218
 219	/* Find the closest match */
 220	for (i = 0; i < 7; ++i)
 221		if (freq <= (map[i] + map[i + 1]) / 2)
 222			break;
 223	return i;
 224}
 225
 226static int FREQ_FROM_REG(const int *map, u8 reg)
 227{
 228	return map[reg & 0x07];
 229}
 230
 231/* Since we can't use strings, I'm abusing these numbers
 
 232 *   to stand in for the following meanings:
 233 *      1 -- PWM responds to Zone 1
 234 *      2 -- PWM responds to Zone 2
 235 *      3 -- PWM responds to Zone 3
 236 *     23 -- PWM responds to the higher temp of Zone 2 or 3
 237 *    123 -- PWM responds to highest of Zone 1, 2, or 3
 238 *      0 -- PWM is always at 0% (ie, off)
 239 *     -1 -- PWM is always at 100%
 240 *     -2 -- PWM responds to manual control
 241 */
 242
 243static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
 244#define ZONE_FROM_REG(val)	lm85_zone_map[(val) >> 5]
 245
 246static int ZONE_TO_REG(int zone)
 247{
 248	int i;
 249
 250	for (i = 0; i <= 7; ++i)
 251		if (zone == lm85_zone_map[i])
 252			break;
 253	if (i > 7)   /* Not found. */
 254		i = 3;  /* Always 100% */
 255	return i << 5;
 256}
 257
 258#define HYST_TO_REG(val)	SENSORS_LIMIT(((val) + 500) / 1000, 0, 15)
 259#define HYST_FROM_REG(val)	((val) * 1000)
 260
 261/* Chip sampling rates
 
 262 *
 263 * Some sensors are not updated more frequently than once per second
 264 *    so it doesn't make sense to read them more often than that.
 265 *    We cache the results and return the saved data if the driver
 266 *    is called again before a second has elapsed.
 267 *
 268 * Also, there is significant configuration data for this chip
 269 *    given the automatic PWM fan control that is possible.  There
 270 *    are about 47 bytes of config data to only 22 bytes of actual
 271 *    readings.  So, we keep the config data up to date in the cache
 272 *    when it is written and only sample it once every 1 *minute*
 273 */
 274#define LM85_DATA_INTERVAL  (HZ + HZ / 2)
 275#define LM85_CONFIG_INTERVAL  (1 * 60 * HZ)
 276
 277/* LM85 can automatically adjust fan speeds based on temperature
 
 278 * This structure encapsulates an entire Zone config.  There are
 279 * three zones (one for each temperature input) on the lm85
 280 */
 281struct lm85_zone {
 282	s8 limit;	/* Low temp limit */
 283	u8 hyst;	/* Low limit hysteresis. (0-15) */
 284	u8 range;	/* Temp range, encoded */
 285	s8 critical;	/* "All fans ON" temp limit */
 286	u8 max_desired; /* Actual "max" temperature specified.  Preserved
 
 287			 * to prevent "drift" as other autofan control
 288			 * values change.
 289			 */
 290};
 291
 292struct lm85_autofan {
 293	u8 config;	/* Register value */
 294	u8 min_pwm;	/* Minimum PWM value, encoded */
 295	u8 min_off;	/* Min PWM or OFF below "limit", flag */
 296};
 297
 298/* For each registered chip, we need to keep some data in memory.
 299   The structure is dynamically allocated. */
 
 
 300struct lm85_data {
 301	struct device *hwmon_dev;
 
 302	const int *freq_map;
 303	enum chips type;
 304
 305	bool has_vid5;	/* true if VID5 is configured for ADT7463 or ADT7468 */
 306
 307	struct mutex update_lock;
 308	int valid;		/* !=0 if following fields are valid */
 309	unsigned long last_reading;	/* In jiffies */
 310	unsigned long last_config;	/* In jiffies */
 311
 312	u8 in[8];		/* Register value */
 313	u8 in_max[8];		/* Register value */
 314	u8 in_min[8];		/* Register value */
 315	s8 temp[3];		/* Register value */
 316	s8 temp_min[3];		/* Register value */
 317	s8 temp_max[3];		/* Register value */
 318	u16 fan[4];		/* Register value */
 319	u16 fan_min[4];		/* Register value */
 320	u8 pwm[3];		/* Register value */
 321	u8 pwm_freq[3];		/* Register encoding */
 322	u8 temp_ext[3];		/* Decoded values */
 323	u8 in_ext[8];		/* Decoded values */
 324	u8 vid;			/* Register value */
 325	u8 vrm;			/* VRM version */
 326	u32 alarms;		/* Register encoding, combined */
 327	u8 cfg5;		/* Config Register 5 on ADT7468 */
 328	struct lm85_autofan autofan[3];
 329	struct lm85_zone zone[3];
 330};
 331
 332static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info);
 333static int lm85_probe(struct i2c_client *client,
 334		      const struct i2c_device_id *id);
 335static int lm85_remove(struct i2c_client *client);
 336
 337static int lm85_read_value(struct i2c_client *client, u8 reg);
 338static void lm85_write_value(struct i2c_client *client, u8 reg, int value);
 339static struct lm85_data *lm85_update_device(struct device *dev);
 340
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 341
 342static const struct i2c_device_id lm85_id[] = {
 343	{ "adm1027", adm1027 },
 344	{ "adt7463", adt7463 },
 345	{ "adt7468", adt7468 },
 346	{ "lm85", any_chip },
 347	{ "lm85b", lm85b },
 348	{ "lm85c", lm85c },
 349	{ "emc6d100", emc6d100 },
 350	{ "emc6d101", emc6d100 },
 351	{ "emc6d102", emc6d102 },
 352	{ "emc6d103", emc6d103 },
 353	{ "emc6d103s", emc6d103s },
 354	{ }
 355};
 356MODULE_DEVICE_TABLE(i2c, lm85_id);
 357
 358static struct i2c_driver lm85_driver = {
 359	.class		= I2C_CLASS_HWMON,
 360	.driver = {
 361		.name   = "lm85",
 362	},
 363	.probe		= lm85_probe,
 364	.remove		= lm85_remove,
 365	.id_table	= lm85_id,
 366	.detect		= lm85_detect,
 367	.address_list	= normal_i2c,
 368};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 370
 371/* 4 Fans */
 372static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
 373		char *buf)
 374{
 375	int nr = to_sensor_dev_attr(attr)->index;
 376	struct lm85_data *data = lm85_update_device(dev);
 377	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
 378}
 379
 380static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
 381		char *buf)
 382{
 383	int nr = to_sensor_dev_attr(attr)->index;
 384	struct lm85_data *data = lm85_update_device(dev);
 385	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
 386}
 387
 388static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
 389		const char *buf, size_t count)
 390{
 391	int nr = to_sensor_dev_attr(attr)->index;
 392	struct i2c_client *client = to_i2c_client(dev);
 393	struct lm85_data *data = i2c_get_clientdata(client);
 394	unsigned long val = simple_strtoul(buf, NULL, 10);
 
 
 
 
 
 395
 396	mutex_lock(&data->update_lock);
 397	data->fan_min[nr] = FAN_TO_REG(val);
 398	lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
 399	mutex_unlock(&data->update_lock);
 400	return count;
 401}
 402
 403#define show_fan_offset(offset)						\
 404static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO,			\
 405		show_fan, NULL, offset - 1);				\
 406static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR,		\
 407		show_fan_min, set_fan_min, offset - 1)
 408
 409show_fan_offset(1);
 410show_fan_offset(2);
 411show_fan_offset(3);
 412show_fan_offset(4);
 413
 414/* vid, vrm, alarms */
 415
 416static ssize_t show_vid_reg(struct device *dev, struct device_attribute *attr,
 417		char *buf)
 418{
 419	struct lm85_data *data = lm85_update_device(dev);
 420	int vid;
 421
 422	if (data->has_vid5) {
 423		/* 6-pin VID (VRM 10) */
 424		vid = vid_from_reg(data->vid & 0x3f, data->vrm);
 425	} else {
 426		/* 5-pin VID (VRM 9) */
 427		vid = vid_from_reg(data->vid & 0x1f, data->vrm);
 428	}
 429
 430	return sprintf(buf, "%d\n", vid);
 431}
 432
 433static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL);
 434
 435static ssize_t show_vrm_reg(struct device *dev, struct device_attribute *attr,
 436		char *buf)
 437{
 438	struct lm85_data *data = dev_get_drvdata(dev);
 439	return sprintf(buf, "%ld\n", (long) data->vrm);
 440}
 441
 442static ssize_t store_vrm_reg(struct device *dev, struct device_attribute *attr,
 443		const char *buf, size_t count)
 444{
 445	struct lm85_data *data = dev_get_drvdata(dev);
 446	data->vrm = simple_strtoul(buf, NULL, 10);
 
 
 
 
 
 
 
 
 
 
 447	return count;
 448}
 449
 450static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg);
 451
 452static ssize_t show_alarms_reg(struct device *dev, struct device_attribute
 453		*attr, char *buf)
 454{
 455	struct lm85_data *data = lm85_update_device(dev);
 456	return sprintf(buf, "%u\n", data->alarms);
 457}
 458
 459static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL);
 460
 461static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
 462		char *buf)
 463{
 464	int nr = to_sensor_dev_attr(attr)->index;
 465	struct lm85_data *data = lm85_update_device(dev);
 466	return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
 467}
 468
 469static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
 470static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
 471static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
 472static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
 473static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
 474static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 18);
 475static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 16);
 476static SENSOR_DEVICE_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 17);
 477static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
 478static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_alarm, NULL, 14);
 479static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
 480static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 6);
 481static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 15);
 482static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10);
 483static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11);
 484static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 12);
 485static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 13);
 486
 487/* pwm */
 488
 489static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
 490		char *buf)
 491{
 492	int nr = to_sensor_dev_attr(attr)->index;
 493	struct lm85_data *data = lm85_update_device(dev);
 494	return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
 495}
 496
 497static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
 498		const char *buf, size_t count)
 499{
 500	int nr = to_sensor_dev_attr(attr)->index;
 501	struct i2c_client *client = to_i2c_client(dev);
 502	struct lm85_data *data = i2c_get_clientdata(client);
 503	long val = simple_strtol(buf, NULL, 10);
 
 
 
 
 
 504
 505	mutex_lock(&data->update_lock);
 506	data->pwm[nr] = PWM_TO_REG(val);
 507	lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
 508	mutex_unlock(&data->update_lock);
 509	return count;
 510}
 511
 512static ssize_t show_pwm_enable(struct device *dev, struct device_attribute
 513		*attr, char *buf)
 514{
 515	int nr = to_sensor_dev_attr(attr)->index;
 516	struct lm85_data *data = lm85_update_device(dev);
 517	int pwm_zone, enable;
 518
 519	pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
 520	switch (pwm_zone) {
 521	case -1:	/* PWM is always at 100% */
 522		enable = 0;
 523		break;
 524	case 0:		/* PWM is always at 0% */
 525	case -2:	/* PWM responds to manual control */
 526		enable = 1;
 527		break;
 528	default:	/* PWM in automatic mode */
 529		enable = 2;
 530	}
 531	return sprintf(buf, "%d\n", enable);
 532}
 533
 534static ssize_t set_pwm_enable(struct device *dev, struct device_attribute
 535		*attr, const char *buf, size_t count)
 536{
 537	int nr = to_sensor_dev_attr(attr)->index;
 538	struct i2c_client *client = to_i2c_client(dev);
 539	struct lm85_data *data = i2c_get_clientdata(client);
 540	long val = simple_strtol(buf, NULL, 10);
 541	u8 config;
 
 
 
 
 
 
 542
 543	switch (val) {
 544	case 0:
 545		config = 3;
 546		break;
 547	case 1:
 548		config = 7;
 549		break;
 550	case 2:
 551		/* Here we have to choose arbitrarily one of the 5 possible
 552		   configurations; I go for the safest */
 
 
 553		config = 6;
 554		break;
 555	default:
 556		return -EINVAL;
 557	}
 558
 559	mutex_lock(&data->update_lock);
 560	data->autofan[nr].config = lm85_read_value(client,
 561		LM85_REG_AFAN_CONFIG(nr));
 562	data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
 563		| (config << 5);
 564	lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
 565		data->autofan[nr].config);
 566	mutex_unlock(&data->update_lock);
 567	return count;
 568}
 569
 570static ssize_t show_pwm_freq(struct device *dev,
 571		struct device_attribute *attr, char *buf)
 572{
 573	int nr = to_sensor_dev_attr(attr)->index;
 574	struct lm85_data *data = lm85_update_device(dev);
 575	int freq;
 576
 577	if (IS_ADT7468_HFPWM(data))
 578		freq = 22500;
 579	else
 580		freq = FREQ_FROM_REG(data->freq_map, data->pwm_freq[nr]);
 581
 582	return sprintf(buf, "%d\n", freq);
 583}
 584
 585static ssize_t set_pwm_freq(struct device *dev,
 586		struct device_attribute *attr, const char *buf, size_t count)
 587{
 588	int nr = to_sensor_dev_attr(attr)->index;
 589	struct i2c_client *client = to_i2c_client(dev);
 590	struct lm85_data *data = i2c_get_clientdata(client);
 591	long val = simple_strtol(buf, NULL, 10);
 
 
 
 
 
 592
 593	mutex_lock(&data->update_lock);
 594	/* The ADT7468 has a special high-frequency PWM output mode,
 
 595	 * where all PWM outputs are driven by a 22.5 kHz clock.
 596	 * This might confuse the user, but there's not much we can do. */
 
 597	if (data->type == adt7468 && val >= 11300) {	/* High freq. mode */
 598		data->cfg5 &= ~ADT7468_HFPWM;
 599		lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
 600	} else {					/* Low freq. mode */
 601		data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map, val);
 
 602		lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
 603				 (data->zone[nr].range << 4)
 604				 | data->pwm_freq[nr]);
 605		if (data->type == adt7468) {
 606			data->cfg5 |= ADT7468_HFPWM;
 607			lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
 608		}
 609	}
 610	mutex_unlock(&data->update_lock);
 611	return count;
 612}
 613
 614#define show_pwm_reg(offset)						\
 615static SENSOR_DEVICE_ATTR(pwm##offset, S_IRUGO | S_IWUSR,		\
 616		show_pwm, set_pwm, offset - 1);				\
 617static SENSOR_DEVICE_ATTR(pwm##offset##_enable, S_IRUGO | S_IWUSR,	\
 618		show_pwm_enable, set_pwm_enable, offset - 1);		\
 619static SENSOR_DEVICE_ATTR(pwm##offset##_freq, S_IRUGO | S_IWUSR,	\
 620		show_pwm_freq, set_pwm_freq, offset - 1)
 621
 622show_pwm_reg(1);
 623show_pwm_reg(2);
 624show_pwm_reg(3);
 625
 626/* Voltages */
 627
 628static ssize_t show_in(struct device *dev, struct device_attribute *attr,
 629		char *buf)
 630{
 631	int nr = to_sensor_dev_attr(attr)->index;
 632	struct lm85_data *data = lm85_update_device(dev);
 633	return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
 634						    data->in_ext[nr]));
 635}
 636
 637static ssize_t show_in_min(struct device *dev, struct device_attribute *attr,
 638		char *buf)
 639{
 640	int nr = to_sensor_dev_attr(attr)->index;
 641	struct lm85_data *data = lm85_update_device(dev);
 642	return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
 643}
 644
 645static ssize_t set_in_min(struct device *dev, struct device_attribute *attr,
 646		const char *buf, size_t count)
 647{
 648	int nr = to_sensor_dev_attr(attr)->index;
 649	struct i2c_client *client = to_i2c_client(dev);
 650	struct lm85_data *data = i2c_get_clientdata(client);
 651	long val = simple_strtol(buf, NULL, 10);
 
 
 
 
 
 652
 653	mutex_lock(&data->update_lock);
 654	data->in_min[nr] = INS_TO_REG(nr, val);
 655	lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
 656	mutex_unlock(&data->update_lock);
 657	return count;
 658}
 659
 660static ssize_t show_in_max(struct device *dev, struct device_attribute *attr,
 661		char *buf)
 662{
 663	int nr = to_sensor_dev_attr(attr)->index;
 664	struct lm85_data *data = lm85_update_device(dev);
 665	return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
 666}
 667
 668static ssize_t set_in_max(struct device *dev, struct device_attribute *attr,
 669		const char *buf, size_t count)
 670{
 671	int nr = to_sensor_dev_attr(attr)->index;
 672	struct i2c_client *client = to_i2c_client(dev);
 673	struct lm85_data *data = i2c_get_clientdata(client);
 674	long val = simple_strtol(buf, NULL, 10);
 
 
 
 
 
 675
 676	mutex_lock(&data->update_lock);
 677	data->in_max[nr] = INS_TO_REG(nr, val);
 678	lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
 679	mutex_unlock(&data->update_lock);
 680	return count;
 681}
 682
 683#define show_in_reg(offset)						\
 684static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO,			\
 685		show_in, NULL, offset);					\
 686static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR,		\
 687		show_in_min, set_in_min, offset);			\
 688static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR,		\
 689		show_in_max, set_in_max, offset)
 690
 691show_in_reg(0);
 692show_in_reg(1);
 693show_in_reg(2);
 694show_in_reg(3);
 695show_in_reg(4);
 696show_in_reg(5);
 697show_in_reg(6);
 698show_in_reg(7);
 699
 700/* Temps */
 701
 702static ssize_t show_temp(struct device *dev, struct device_attribute *attr,
 703		char *buf)
 704{
 705	int nr = to_sensor_dev_attr(attr)->index;
 706	struct lm85_data *data = lm85_update_device(dev);
 707	return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
 708						     data->temp_ext[nr]));
 709}
 710
 711static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr,
 712		char *buf)
 713{
 714	int nr = to_sensor_dev_attr(attr)->index;
 715	struct lm85_data *data = lm85_update_device(dev);
 716	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
 717}
 718
 719static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
 720		const char *buf, size_t count)
 721{
 722	int nr = to_sensor_dev_attr(attr)->index;
 723	struct i2c_client *client = to_i2c_client(dev);
 724	struct lm85_data *data = i2c_get_clientdata(client);
 725	long val = simple_strtol(buf, NULL, 10);
 
 
 
 
 
 726
 727	if (IS_ADT7468_OFF64(data))
 728		val += 64;
 729
 730	mutex_lock(&data->update_lock);
 731	data->temp_min[nr] = TEMP_TO_REG(val);
 732	lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
 733	mutex_unlock(&data->update_lock);
 734	return count;
 735}
 736
 737static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr,
 738		char *buf)
 739{
 740	int nr = to_sensor_dev_attr(attr)->index;
 741	struct lm85_data *data = lm85_update_device(dev);
 742	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
 743}
 744
 745static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
 746		const char *buf, size_t count)
 747{
 748	int nr = to_sensor_dev_attr(attr)->index;
 749	struct i2c_client *client = to_i2c_client(dev);
 750	struct lm85_data *data = i2c_get_clientdata(client);
 751	long val = simple_strtol(buf, NULL, 10);
 
 
 
 
 
 752
 753	if (IS_ADT7468_OFF64(data))
 754		val += 64;
 755
 756	mutex_lock(&data->update_lock);
 757	data->temp_max[nr] = TEMP_TO_REG(val);
 758	lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
 759	mutex_unlock(&data->update_lock);
 760	return count;
 761}
 762
 763#define show_temp_reg(offset)						\
 764static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO,		\
 765		show_temp, NULL, offset - 1);				\
 766static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR,	\
 767		show_temp_min, set_temp_min, offset - 1);		\
 768static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR,	\
 769		show_temp_max, set_temp_max, offset - 1);
 770
 771show_temp_reg(1);
 772show_temp_reg(2);
 773show_temp_reg(3);
 774
 775
 776/* Automatic PWM control */
 777
 778static ssize_t show_pwm_auto_channels(struct device *dev,
 779		struct device_attribute *attr, char *buf)
 780{
 781	int nr = to_sensor_dev_attr(attr)->index;
 782	struct lm85_data *data = lm85_update_device(dev);
 783	return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
 784}
 785
 786static ssize_t set_pwm_auto_channels(struct device *dev,
 787		struct device_attribute *attr, const char *buf, size_t count)
 788{
 789	int nr = to_sensor_dev_attr(attr)->index;
 790	struct i2c_client *client = to_i2c_client(dev);
 791	struct lm85_data *data = i2c_get_clientdata(client);
 792	long val = simple_strtol(buf, NULL, 10);
 
 
 
 
 
 793
 794	mutex_lock(&data->update_lock);
 795	data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
 796		| ZONE_TO_REG(val);
 797	lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
 798		data->autofan[nr].config);
 799	mutex_unlock(&data->update_lock);
 800	return count;
 801}
 802
 803static ssize_t show_pwm_auto_pwm_min(struct device *dev,
 804		struct device_attribute *attr, char *buf)
 805{
 806	int nr = to_sensor_dev_attr(attr)->index;
 807	struct lm85_data *data = lm85_update_device(dev);
 808	return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
 809}
 810
 811static ssize_t set_pwm_auto_pwm_min(struct device *dev,
 812		struct device_attribute *attr, const char *buf, size_t count)
 813{
 814	int nr = to_sensor_dev_attr(attr)->index;
 815	struct i2c_client *client = to_i2c_client(dev);
 816	struct lm85_data *data = i2c_get_clientdata(client);
 817	long val = simple_strtol(buf, NULL, 10);
 
 
 
 
 
 818
 819	mutex_lock(&data->update_lock);
 820	data->autofan[nr].min_pwm = PWM_TO_REG(val);
 821	lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
 822		data->autofan[nr].min_pwm);
 823	mutex_unlock(&data->update_lock);
 824	return count;
 825}
 826
 827static ssize_t show_pwm_auto_pwm_minctl(struct device *dev,
 828		struct device_attribute *attr, char *buf)
 829{
 830	int nr = to_sensor_dev_attr(attr)->index;
 831	struct lm85_data *data = lm85_update_device(dev);
 832	return sprintf(buf, "%d\n", data->autofan[nr].min_off);
 833}
 834
 835static ssize_t set_pwm_auto_pwm_minctl(struct device *dev,
 836		struct device_attribute *attr, const char *buf, size_t count)
 837{
 838	int nr = to_sensor_dev_attr(attr)->index;
 839	struct i2c_client *client = to_i2c_client(dev);
 840	struct lm85_data *data = i2c_get_clientdata(client);
 841	long val = simple_strtol(buf, NULL, 10);
 842	u8 tmp;
 
 
 
 
 
 
 843
 844	mutex_lock(&data->update_lock);
 845	data->autofan[nr].min_off = val;
 846	tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
 847	tmp &= ~(0x20 << nr);
 848	if (data->autofan[nr].min_off)
 849		tmp |= 0x20 << nr;
 850	lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
 851	mutex_unlock(&data->update_lock);
 852	return count;
 853}
 854
 855#define pwm_auto(offset)						\
 856static SENSOR_DEVICE_ATTR(pwm##offset##_auto_channels,			\
 857		S_IRUGO | S_IWUSR, show_pwm_auto_channels,		\
 858		set_pwm_auto_channels, offset - 1);			\
 859static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_min,			\
 860		S_IRUGO | S_IWUSR, show_pwm_auto_pwm_min,		\
 861		set_pwm_auto_pwm_min, offset - 1);			\
 862static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_minctl,		\
 863		S_IRUGO | S_IWUSR, show_pwm_auto_pwm_minctl,		\
 864		set_pwm_auto_pwm_minctl, offset - 1)
 865
 866pwm_auto(1);
 867pwm_auto(2);
 868pwm_auto(3);
 869
 870/* Temperature settings for automatic PWM control */
 871
 872static ssize_t show_temp_auto_temp_off(struct device *dev,
 873		struct device_attribute *attr, char *buf)
 874{
 875	int nr = to_sensor_dev_attr(attr)->index;
 876	struct lm85_data *data = lm85_update_device(dev);
 877	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
 878		HYST_FROM_REG(data->zone[nr].hyst));
 879}
 880
 881static ssize_t set_temp_auto_temp_off(struct device *dev,
 882		struct device_attribute *attr, const char *buf, size_t count)
 883{
 884	int nr = to_sensor_dev_attr(attr)->index;
 885	struct i2c_client *client = to_i2c_client(dev);
 886	struct lm85_data *data = i2c_get_clientdata(client);
 887	int min;
 888	long val = simple_strtol(buf, NULL, 10);
 
 
 
 
 
 889
 890	mutex_lock(&data->update_lock);
 891	min = TEMP_FROM_REG(data->zone[nr].limit);
 892	data->zone[nr].hyst = HYST_TO_REG(min - val);
 893	if (nr == 0 || nr == 1) {
 894		lm85_write_value(client, LM85_REG_AFAN_HYST1,
 895			(data->zone[0].hyst << 4)
 896			| data->zone[1].hyst);
 897	} else {
 898		lm85_write_value(client, LM85_REG_AFAN_HYST2,
 899			(data->zone[2].hyst << 4));
 900	}
 901	mutex_unlock(&data->update_lock);
 902	return count;
 903}
 904
 905static ssize_t show_temp_auto_temp_min(struct device *dev,
 906		struct device_attribute *attr, char *buf)
 907{
 908	int nr = to_sensor_dev_attr(attr)->index;
 909	struct lm85_data *data = lm85_update_device(dev);
 910	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
 911}
 912
 913static ssize_t set_temp_auto_temp_min(struct device *dev,
 914		struct device_attribute *attr, const char *buf, size_t count)
 915{
 916	int nr = to_sensor_dev_attr(attr)->index;
 917	struct i2c_client *client = to_i2c_client(dev);
 918	struct lm85_data *data = i2c_get_clientdata(client);
 919	long val = simple_strtol(buf, NULL, 10);
 
 
 
 
 
 920
 921	mutex_lock(&data->update_lock);
 922	data->zone[nr].limit = TEMP_TO_REG(val);
 923	lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
 924		data->zone[nr].limit);
 925
 926/* Update temp_auto_max and temp_auto_range */
 927	data->zone[nr].range = RANGE_TO_REG(
 928		TEMP_FROM_REG(data->zone[nr].max_desired) -
 929		TEMP_FROM_REG(data->zone[nr].limit));
 930	lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
 931		((data->zone[nr].range & 0x0f) << 4)
 932		| (data->pwm_freq[nr] & 0x07));
 933
 934	mutex_unlock(&data->update_lock);
 935	return count;
 936}
 937
 938static ssize_t show_temp_auto_temp_max(struct device *dev,
 939		struct device_attribute *attr, char *buf)
 940{
 941	int nr = to_sensor_dev_attr(attr)->index;
 942	struct lm85_data *data = lm85_update_device(dev);
 943	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
 944		RANGE_FROM_REG(data->zone[nr].range));
 945}
 946
 947static ssize_t set_temp_auto_temp_max(struct device *dev,
 948		struct device_attribute *attr, const char *buf, size_t count)
 949{
 950	int nr = to_sensor_dev_attr(attr)->index;
 951	struct i2c_client *client = to_i2c_client(dev);
 952	struct lm85_data *data = i2c_get_clientdata(client);
 953	int min;
 954	long val = simple_strtol(buf, NULL, 10);
 
 
 
 
 
 955
 956	mutex_lock(&data->update_lock);
 957	min = TEMP_FROM_REG(data->zone[nr].limit);
 958	data->zone[nr].max_desired = TEMP_TO_REG(val);
 959	data->zone[nr].range = RANGE_TO_REG(
 960		val - min);
 961	lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
 962		((data->zone[nr].range & 0x0f) << 4)
 963		| (data->pwm_freq[nr] & 0x07));
 964	mutex_unlock(&data->update_lock);
 965	return count;
 966}
 967
 968static ssize_t show_temp_auto_temp_crit(struct device *dev,
 969		struct device_attribute *attr, char *buf)
 970{
 971	int nr = to_sensor_dev_attr(attr)->index;
 972	struct lm85_data *data = lm85_update_device(dev);
 973	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
 974}
 975
 976static ssize_t set_temp_auto_temp_crit(struct device *dev,
 977		struct device_attribute *attr, const char *buf, size_t count)
 978{
 979	int nr = to_sensor_dev_attr(attr)->index;
 980	struct i2c_client *client = to_i2c_client(dev);
 981	struct lm85_data *data = i2c_get_clientdata(client);
 982	long val = simple_strtol(buf, NULL, 10);
 
 
 
 
 
 983
 984	mutex_lock(&data->update_lock);
 985	data->zone[nr].critical = TEMP_TO_REG(val);
 986	lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
 987		data->zone[nr].critical);
 988	mutex_unlock(&data->update_lock);
 989	return count;
 990}
 991
 992#define temp_auto(offset)						\
 993static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_off,			\
 994		S_IRUGO | S_IWUSR, show_temp_auto_temp_off,		\
 995		set_temp_auto_temp_off, offset - 1);			\
 996static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_min,			\
 997		S_IRUGO | S_IWUSR, show_temp_auto_temp_min,		\
 998		set_temp_auto_temp_min, offset - 1);			\
 999static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_max,			\
1000		S_IRUGO | S_IWUSR, show_temp_auto_temp_max,		\
1001		set_temp_auto_temp_max, offset - 1);			\
1002static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_crit,		\
1003		S_IRUGO | S_IWUSR, show_temp_auto_temp_crit,		\
1004		set_temp_auto_temp_crit, offset - 1);
1005
1006temp_auto(1);
1007temp_auto(2);
1008temp_auto(3);
1009
1010static struct attribute *lm85_attributes[] = {
1011	&sensor_dev_attr_fan1_input.dev_attr.attr,
1012	&sensor_dev_attr_fan2_input.dev_attr.attr,
1013	&sensor_dev_attr_fan3_input.dev_attr.attr,
1014	&sensor_dev_attr_fan4_input.dev_attr.attr,
1015	&sensor_dev_attr_fan1_min.dev_attr.attr,
1016	&sensor_dev_attr_fan2_min.dev_attr.attr,
1017	&sensor_dev_attr_fan3_min.dev_attr.attr,
1018	&sensor_dev_attr_fan4_min.dev_attr.attr,
1019	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
1020	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
1021	&sensor_dev_attr_fan3_alarm.dev_attr.attr,
1022	&sensor_dev_attr_fan4_alarm.dev_attr.attr,
1023
1024	&sensor_dev_attr_pwm1.dev_attr.attr,
1025	&sensor_dev_attr_pwm2.dev_attr.attr,
1026	&sensor_dev_attr_pwm3.dev_attr.attr,
1027	&sensor_dev_attr_pwm1_enable.dev_attr.attr,
1028	&sensor_dev_attr_pwm2_enable.dev_attr.attr,
1029	&sensor_dev_attr_pwm3_enable.dev_attr.attr,
1030	&sensor_dev_attr_pwm1_freq.dev_attr.attr,
1031	&sensor_dev_attr_pwm2_freq.dev_attr.attr,
1032	&sensor_dev_attr_pwm3_freq.dev_attr.attr,
1033
1034	&sensor_dev_attr_in0_input.dev_attr.attr,
1035	&sensor_dev_attr_in1_input.dev_attr.attr,
1036	&sensor_dev_attr_in2_input.dev_attr.attr,
1037	&sensor_dev_attr_in3_input.dev_attr.attr,
1038	&sensor_dev_attr_in0_min.dev_attr.attr,
1039	&sensor_dev_attr_in1_min.dev_attr.attr,
1040	&sensor_dev_attr_in2_min.dev_attr.attr,
1041	&sensor_dev_attr_in3_min.dev_attr.attr,
1042	&sensor_dev_attr_in0_max.dev_attr.attr,
1043	&sensor_dev_attr_in1_max.dev_attr.attr,
1044	&sensor_dev_attr_in2_max.dev_attr.attr,
1045	&sensor_dev_attr_in3_max.dev_attr.attr,
1046	&sensor_dev_attr_in0_alarm.dev_attr.attr,
1047	&sensor_dev_attr_in1_alarm.dev_attr.attr,
1048	&sensor_dev_attr_in2_alarm.dev_attr.attr,
1049	&sensor_dev_attr_in3_alarm.dev_attr.attr,
1050
1051	&sensor_dev_attr_temp1_input.dev_attr.attr,
1052	&sensor_dev_attr_temp2_input.dev_attr.attr,
1053	&sensor_dev_attr_temp3_input.dev_attr.attr,
1054	&sensor_dev_attr_temp1_min.dev_attr.attr,
1055	&sensor_dev_attr_temp2_min.dev_attr.attr,
1056	&sensor_dev_attr_temp3_min.dev_attr.attr,
1057	&sensor_dev_attr_temp1_max.dev_attr.attr,
1058	&sensor_dev_attr_temp2_max.dev_attr.attr,
1059	&sensor_dev_attr_temp3_max.dev_attr.attr,
1060	&sensor_dev_attr_temp1_alarm.dev_attr.attr,
1061	&sensor_dev_attr_temp2_alarm.dev_attr.attr,
1062	&sensor_dev_attr_temp3_alarm.dev_attr.attr,
1063	&sensor_dev_attr_temp1_fault.dev_attr.attr,
1064	&sensor_dev_attr_temp3_fault.dev_attr.attr,
1065
1066	&sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
1067	&sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
1068	&sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
1069	&sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
1070	&sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
1071	&sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
1072
1073	&sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
1074	&sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
1075	&sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
1076	&sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
1077	&sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
1078	&sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
1079	&sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
1080	&sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
1081	&sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
1082
1083	&dev_attr_vrm.attr,
1084	&dev_attr_cpu0_vid.attr,
1085	&dev_attr_alarms.attr,
1086	NULL
1087};
1088
1089static const struct attribute_group lm85_group = {
1090	.attrs = lm85_attributes,
1091};
1092
1093static struct attribute *lm85_attributes_minctl[] = {
1094	&sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
1095	&sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
1096	&sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
1097	NULL
1098};
1099
1100static const struct attribute_group lm85_group_minctl = {
1101	.attrs = lm85_attributes_minctl,
1102};
1103
1104static struct attribute *lm85_attributes_temp_off[] = {
1105	&sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
1106	&sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
1107	&sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
1108	NULL
1109};
1110
1111static const struct attribute_group lm85_group_temp_off = {
1112	.attrs = lm85_attributes_temp_off,
1113};
1114
1115static struct attribute *lm85_attributes_in4[] = {
1116	&sensor_dev_attr_in4_input.dev_attr.attr,
1117	&sensor_dev_attr_in4_min.dev_attr.attr,
1118	&sensor_dev_attr_in4_max.dev_attr.attr,
1119	&sensor_dev_attr_in4_alarm.dev_attr.attr,
1120	NULL
1121};
1122
1123static const struct attribute_group lm85_group_in4 = {
1124	.attrs = lm85_attributes_in4,
1125};
1126
1127static struct attribute *lm85_attributes_in567[] = {
1128	&sensor_dev_attr_in5_input.dev_attr.attr,
1129	&sensor_dev_attr_in6_input.dev_attr.attr,
1130	&sensor_dev_attr_in7_input.dev_attr.attr,
1131	&sensor_dev_attr_in5_min.dev_attr.attr,
1132	&sensor_dev_attr_in6_min.dev_attr.attr,
1133	&sensor_dev_attr_in7_min.dev_attr.attr,
1134	&sensor_dev_attr_in5_max.dev_attr.attr,
1135	&sensor_dev_attr_in6_max.dev_attr.attr,
1136	&sensor_dev_attr_in7_max.dev_attr.attr,
1137	&sensor_dev_attr_in5_alarm.dev_attr.attr,
1138	&sensor_dev_attr_in6_alarm.dev_attr.attr,
1139	&sensor_dev_attr_in7_alarm.dev_attr.attr,
1140	NULL
1141};
1142
1143static const struct attribute_group lm85_group_in567 = {
1144	.attrs = lm85_attributes_in567,
1145};
1146
1147static void lm85_init_client(struct i2c_client *client)
1148{
1149	int value;
1150
1151	/* Start monitoring if needed */
1152	value = lm85_read_value(client, LM85_REG_CONFIG);
1153	if (!(value & 0x01)) {
1154		dev_info(&client->dev, "Starting monitoring\n");
1155		lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
1156	}
1157
1158	/* Warn about unusual configuration bits */
1159	if (value & 0x02)
1160		dev_warn(&client->dev, "Device configuration is locked\n");
1161	if (!(value & 0x04))
1162		dev_warn(&client->dev, "Device is not ready\n");
1163}
1164
1165static int lm85_is_fake(struct i2c_client *client)
1166{
1167	/*
1168	 * Differenciate between real LM96000 and Winbond WPCD377I. The latter
1169	 * emulate the former except that it has no hardware monitoring function
1170	 * so the readings are always 0.
1171	 */
1172	int i;
1173	u8 in_temp, fan;
1174
1175	for (i = 0; i < 8; i++) {
1176		in_temp = i2c_smbus_read_byte_data(client, 0x20 + i);
1177		fan = i2c_smbus_read_byte_data(client, 0x28 + i);
1178		if (in_temp != 0x00 || fan != 0xff)
1179			return 0;
1180	}
1181
1182	return 1;
1183}
1184
1185/* Return 0 if detection is successful, -ENODEV otherwise */
1186static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info)
1187{
1188	struct i2c_adapter *adapter = client->adapter;
1189	int address = client->addr;
1190	const char *type_name;
1191	int company, verstep;
1192
1193	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
1194		/* We need to be able to do byte I/O */
1195		return -ENODEV;
1196	}
1197
1198	/* Determine the chip type */
1199	company = lm85_read_value(client, LM85_REG_COMPANY);
1200	verstep = lm85_read_value(client, LM85_REG_VERSTEP);
1201
1202	dev_dbg(&adapter->dev, "Detecting device at 0x%02x with "
1203		"COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
1204		address, company, verstep);
1205
1206	/* All supported chips have the version in common */
1207	if ((verstep & LM85_VERSTEP_VMASK) != LM85_VERSTEP_GENERIC &&
1208	    (verstep & LM85_VERSTEP_VMASK) != LM85_VERSTEP_GENERIC2) {
1209		dev_dbg(&adapter->dev,
1210			"Autodetection failed: unsupported version\n");
1211		return -ENODEV;
1212	}
1213	type_name = "lm85";
1214
1215	/* Now, refine the detection */
1216	if (company == LM85_COMPANY_NATIONAL) {
1217		switch (verstep) {
1218		case LM85_VERSTEP_LM85C:
1219			type_name = "lm85c";
1220			break;
1221		case LM85_VERSTEP_LM85B:
1222			type_name = "lm85b";
1223			break;
1224		case LM85_VERSTEP_LM96000_1:
1225		case LM85_VERSTEP_LM96000_2:
1226			/* Check for Winbond WPCD377I */
1227			if (lm85_is_fake(client)) {
1228				dev_dbg(&adapter->dev,
1229					"Found Winbond WPCD377I, ignoring\n");
1230				return -ENODEV;
1231			}
 
1232			break;
1233		}
1234	} else if (company == LM85_COMPANY_ANALOG_DEV) {
1235		switch (verstep) {
1236		case LM85_VERSTEP_ADM1027:
1237			type_name = "adm1027";
1238			break;
1239		case LM85_VERSTEP_ADT7463:
1240		case LM85_VERSTEP_ADT7463C:
1241			type_name = "adt7463";
1242			break;
1243		case LM85_VERSTEP_ADT7468_1:
1244		case LM85_VERSTEP_ADT7468_2:
1245			type_name = "adt7468";
1246			break;
1247		}
1248	} else if (company == LM85_COMPANY_SMSC) {
1249		switch (verstep) {
1250		case LM85_VERSTEP_EMC6D100_A0:
1251		case LM85_VERSTEP_EMC6D100_A1:
1252			/* Note: we can't tell a '100 from a '101 */
1253			type_name = "emc6d100";
1254			break;
1255		case LM85_VERSTEP_EMC6D102:
1256			type_name = "emc6d102";
1257			break;
1258		case LM85_VERSTEP_EMC6D103_A0:
1259		case LM85_VERSTEP_EMC6D103_A1:
1260			type_name = "emc6d103";
1261			break;
1262		case LM85_VERSTEP_EMC6D103S:
1263			type_name = "emc6d103s";
1264			break;
1265		}
1266	} else {
1267		dev_dbg(&adapter->dev,
1268			"Autodetection failed: unknown vendor\n");
1269		return -ENODEV;
1270	}
1271
 
 
 
1272	strlcpy(info->type, type_name, I2C_NAME_SIZE);
1273
1274	return 0;
1275}
1276
1277static void lm85_remove_files(struct i2c_client *client, struct lm85_data *data)
1278{
1279	sysfs_remove_group(&client->dev.kobj, &lm85_group);
1280	if (data->type != emc6d103s) {
1281		sysfs_remove_group(&client->dev.kobj, &lm85_group_minctl);
1282		sysfs_remove_group(&client->dev.kobj, &lm85_group_temp_off);
1283	}
1284	if (!data->has_vid5)
1285		sysfs_remove_group(&client->dev.kobj, &lm85_group_in4);
1286	if (data->type == emc6d100)
1287		sysfs_remove_group(&client->dev.kobj, &lm85_group_in567);
1288}
1289
1290static int lm85_probe(struct i2c_client *client,
1291		      const struct i2c_device_id *id)
1292{
 
 
1293	struct lm85_data *data;
1294	int err;
1295
1296	data = kzalloc(sizeof(struct lm85_data), GFP_KERNEL);
1297	if (!data)
1298		return -ENOMEM;
1299
1300	i2c_set_clientdata(client, data);
1301	data->type = id->driver_data;
1302	mutex_init(&data->update_lock);
1303
1304	/* Fill in the chip specific driver values */
1305	switch (data->type) {
1306	case adm1027:
1307	case adt7463:
1308	case adt7468:
1309	case emc6d100:
1310	case emc6d102:
1311	case emc6d103:
1312	case emc6d103s:
1313		data->freq_map = adm1027_freq_map;
1314		break;
1315	default:
1316		data->freq_map = lm85_freq_map;
1317	}
1318
1319	/* Set the VRM version */
1320	data->vrm = vid_which_vrm();
1321
1322	/* Initialize the LM85 chip */
1323	lm85_init_client(client);
1324
1325	/* Register sysfs hooks */
1326	err = sysfs_create_group(&client->dev.kobj, &lm85_group);
1327	if (err)
1328		goto err_kfree;
1329
1330	/* minctl and temp_off exist on all chips except emc6d103s */
1331	if (data->type != emc6d103s) {
1332		err = sysfs_create_group(&client->dev.kobj, &lm85_group_minctl);
1333		if (err)
1334			goto err_remove_files;
1335		err = sysfs_create_group(&client->dev.kobj,
1336					 &lm85_group_temp_off);
1337		if (err)
1338			goto err_remove_files;
1339	}
1340
1341	/* The ADT7463/68 have an optional VRM 10 mode where pin 21 is used
1342	   as a sixth digital VID input rather than an analog input. */
 
 
1343	if (data->type == adt7463 || data->type == adt7468) {
1344		u8 vid = lm85_read_value(client, LM85_REG_VID);
1345		if (vid & 0x80)
1346			data->has_vid5 = true;
1347	}
1348
1349	if (!data->has_vid5)
1350		if ((err = sysfs_create_group(&client->dev.kobj,
1351					&lm85_group_in4)))
1352			goto err_remove_files;
1353
1354	/* The EMC6D100 has 3 additional voltage inputs */
1355	if (data->type == emc6d100)
1356		if ((err = sysfs_create_group(&client->dev.kobj,
1357					&lm85_group_in567)))
1358			goto err_remove_files;
1359
1360	data->hwmon_dev = hwmon_device_register(&client->dev);
1361	if (IS_ERR(data->hwmon_dev)) {
1362		err = PTR_ERR(data->hwmon_dev);
1363		goto err_remove_files;
1364	}
1365
1366	return 0;
1367
1368	/* Error out and cleanup code */
1369 err_remove_files:
1370	lm85_remove_files(client, data);
1371 err_kfree:
1372	kfree(data);
1373	return err;
1374}
1375
1376static int lm85_remove(struct i2c_client *client)
1377{
1378	struct lm85_data *data = i2c_get_clientdata(client);
1379	hwmon_device_unregister(data->hwmon_dev);
1380	lm85_remove_files(client, data);
1381	kfree(data);
1382	return 0;
1383}
1384
1385
1386static int lm85_read_value(struct i2c_client *client, u8 reg)
1387{
1388	int res;
1389
1390	/* What size location is it? */
1391	switch (reg) {
1392	case LM85_REG_FAN(0):  /* Read WORD data */
1393	case LM85_REG_FAN(1):
1394	case LM85_REG_FAN(2):
1395	case LM85_REG_FAN(3):
1396	case LM85_REG_FAN_MIN(0):
1397	case LM85_REG_FAN_MIN(1):
1398	case LM85_REG_FAN_MIN(2):
1399	case LM85_REG_FAN_MIN(3):
1400	case LM85_REG_ALARM1:	/* Read both bytes at once */
1401		res = i2c_smbus_read_byte_data(client, reg) & 0xff;
1402		res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
1403		break;
1404	default:	/* Read BYTE data */
1405		res = i2c_smbus_read_byte_data(client, reg);
1406		break;
1407	}
1408
1409	return res;
1410}
1411
1412static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
1413{
1414	switch (reg) {
1415	case LM85_REG_FAN(0):  /* Write WORD data */
1416	case LM85_REG_FAN(1):
1417	case LM85_REG_FAN(2):
1418	case LM85_REG_FAN(3):
1419	case LM85_REG_FAN_MIN(0):
1420	case LM85_REG_FAN_MIN(1):
1421	case LM85_REG_FAN_MIN(2):
1422	case LM85_REG_FAN_MIN(3):
1423	/* NOTE: ALARM is read only, so not included here */
1424		i2c_smbus_write_byte_data(client, reg, value & 0xff);
1425		i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
1426		break;
1427	default:	/* Write BYTE data */
1428		i2c_smbus_write_byte_data(client, reg, value);
1429		break;
1430	}
1431}
1432
1433static struct lm85_data *lm85_update_device(struct device *dev)
1434{
1435	struct i2c_client *client = to_i2c_client(dev);
1436	struct lm85_data *data = i2c_get_clientdata(client);
1437	int i;
1438
1439	mutex_lock(&data->update_lock);
1440
1441	if (!data->valid ||
1442	     time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
1443		/* Things that change quickly */
1444		dev_dbg(&client->dev, "Reading sensor values\n");
1445
1446		/* Have to read extended bits first to "freeze" the
1447		 * more significant bits that are read later.
1448		 * There are 2 additional resolution bits per channel and we
1449		 * have room for 4, so we shift them to the left.
1450		 */
1451		if (data->type == adm1027 || data->type == adt7463 ||
1452		    data->type == adt7468) {
1453			int ext1 = lm85_read_value(client,
1454						   ADM1027_REG_EXTEND_ADC1);
1455			int ext2 =  lm85_read_value(client,
1456						    ADM1027_REG_EXTEND_ADC2);
1457			int val = (ext1 << 8) + ext2;
1458
1459			for (i = 0; i <= 4; i++)
1460				data->in_ext[i] =
1461					((val >> (i * 2)) & 0x03) << 2;
1462
1463			for (i = 0; i <= 2; i++)
1464				data->temp_ext[i] =
1465					(val >> ((i + 4) * 2)) & 0x0c;
1466		}
1467
1468		data->vid = lm85_read_value(client, LM85_REG_VID);
1469
1470		for (i = 0; i <= 3; ++i) {
1471			data->in[i] =
1472			    lm85_read_value(client, LM85_REG_IN(i));
1473			data->fan[i] =
1474			    lm85_read_value(client, LM85_REG_FAN(i));
1475		}
1476
1477		if (!data->has_vid5)
1478			data->in[4] = lm85_read_value(client, LM85_REG_IN(4));
1479
1480		if (data->type == adt7468)
1481			data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5);
1482
1483		for (i = 0; i <= 2; ++i) {
1484			data->temp[i] =
1485			    lm85_read_value(client, LM85_REG_TEMP(i));
1486			data->pwm[i] =
1487			    lm85_read_value(client, LM85_REG_PWM(i));
1488
1489			if (IS_ADT7468_OFF64(data))
1490				data->temp[i] -= 64;
1491		}
1492
1493		data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
1494
1495		if (data->type == emc6d100) {
1496			/* Three more voltage sensors */
1497			for (i = 5; i <= 7; ++i) {
1498				data->in[i] = lm85_read_value(client,
1499							EMC6D100_REG_IN(i));
1500			}
1501			/* More alarm bits */
1502			data->alarms |= lm85_read_value(client,
1503						EMC6D100_REG_ALARM3) << 16;
1504		} else if (data->type == emc6d102 || data->type == emc6d103 ||
1505			   data->type == emc6d103s) {
1506			/* Have to read LSB bits after the MSB ones because
1507			   the reading of the MSB bits has frozen the
1508			   LSBs (backward from the ADM1027).
1509			 */
1510			int ext1 = lm85_read_value(client,
1511						   EMC6D102_REG_EXTEND_ADC1);
1512			int ext2 = lm85_read_value(client,
1513						   EMC6D102_REG_EXTEND_ADC2);
1514			int ext3 = lm85_read_value(client,
1515						   EMC6D102_REG_EXTEND_ADC3);
1516			int ext4 = lm85_read_value(client,
1517						   EMC6D102_REG_EXTEND_ADC4);
1518			data->in_ext[0] = ext3 & 0x0f;
1519			data->in_ext[1] = ext4 & 0x0f;
1520			data->in_ext[2] = ext4 >> 4;
1521			data->in_ext[3] = ext3 >> 4;
1522			data->in_ext[4] = ext2 >> 4;
1523
1524			data->temp_ext[0] = ext1 & 0x0f;
1525			data->temp_ext[1] = ext2 & 0x0f;
1526			data->temp_ext[2] = ext1 >> 4;
1527		}
1528
1529		data->last_reading = jiffies;
1530	}  /* last_reading */
1531
1532	if (!data->valid ||
1533	     time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
1534		/* Things that don't change often */
1535		dev_dbg(&client->dev, "Reading config values\n");
1536
1537		for (i = 0; i <= 3; ++i) {
1538			data->in_min[i] =
1539			    lm85_read_value(client, LM85_REG_IN_MIN(i));
1540			data->in_max[i] =
1541			    lm85_read_value(client, LM85_REG_IN_MAX(i));
1542			data->fan_min[i] =
1543			    lm85_read_value(client, LM85_REG_FAN_MIN(i));
1544		}
1545
1546		if (!data->has_vid5)  {
1547			data->in_min[4] = lm85_read_value(client,
1548					  LM85_REG_IN_MIN(4));
1549			data->in_max[4] = lm85_read_value(client,
1550					  LM85_REG_IN_MAX(4));
1551		}
1552
1553		if (data->type == emc6d100) {
1554			for (i = 5; i <= 7; ++i) {
1555				data->in_min[i] = lm85_read_value(client,
1556						EMC6D100_REG_IN_MIN(i));
1557				data->in_max[i] = lm85_read_value(client,
1558						EMC6D100_REG_IN_MAX(i));
1559			}
1560		}
1561
1562		for (i = 0; i <= 2; ++i) {
1563			int val;
1564
1565			data->temp_min[i] =
1566			    lm85_read_value(client, LM85_REG_TEMP_MIN(i));
1567			data->temp_max[i] =
1568			    lm85_read_value(client, LM85_REG_TEMP_MAX(i));
1569
1570			data->autofan[i].config =
1571			    lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
1572			val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
1573			data->pwm_freq[i] = val & 0x07;
1574			data->zone[i].range = val >> 4;
1575			data->autofan[i].min_pwm =
1576			    lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
1577			data->zone[i].limit =
1578			    lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
1579			data->zone[i].critical =
1580			    lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
1581
1582			if (IS_ADT7468_OFF64(data)) {
1583				data->temp_min[i] -= 64;
1584				data->temp_max[i] -= 64;
1585				data->zone[i].limit -= 64;
1586				data->zone[i].critical -= 64;
1587			}
1588		}
1589
1590		if (data->type != emc6d103s) {
1591			i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
1592			data->autofan[0].min_off = (i & 0x20) != 0;
1593			data->autofan[1].min_off = (i & 0x40) != 0;
1594			data->autofan[2].min_off = (i & 0x80) != 0;
1595
1596			i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
1597			data->zone[0].hyst = i >> 4;
1598			data->zone[1].hyst = i & 0x0f;
1599
1600			i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
1601			data->zone[2].hyst = i >> 4;
1602		}
1603
1604		data->last_config = jiffies;
1605	}  /* last_config */
1606
1607	data->valid = 1;
1608
1609	mutex_unlock(&data->update_lock);
1610
1611	return data;
1612}
1613
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1614
1615static int __init sm_lm85_init(void)
1616{
1617	return i2c_add_driver(&lm85_driver);
1618}
 
 
 
 
 
 
1619
1620static void __exit sm_lm85_exit(void)
1621{
1622	i2c_del_driver(&lm85_driver);
1623}
1624
1625MODULE_LICENSE("GPL");
1626MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
1627	"Margit Schubert-While <margitsw@t-online.de>, "
1628	"Justin Thiessen <jthiessen@penguincomputing.com>");
1629MODULE_DESCRIPTION("LM85-B, LM85-C driver");
1630
1631module_init(sm_lm85_init);
1632module_exit(sm_lm85_exit);
v4.10.11
   1/*
   2 * lm85.c - Part of lm_sensors, Linux kernel modules for hardware
   3 *	    monitoring
   4 * Copyright (c) 1998, 1999  Frodo Looijaard <frodol@dds.nl>
   5 * Copyright (c) 2002, 2003  Philip Pokorny <ppokorny@penguincomputing.com>
   6 * Copyright (c) 2003        Margit Schubert-While <margitsw@t-online.de>
   7 * Copyright (c) 2004        Justin Thiessen <jthiessen@penguincomputing.com>
   8 * Copyright (C) 2007--2014  Jean Delvare <jdelvare@suse.de>
   9 *
  10 * Chip details at	      <http://www.national.com/ds/LM/LM85.pdf>
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License as published by
  14 * the Free Software Foundation; either version 2 of the License, or
  15 * (at your option) any later version.
  16 *
  17 * This program is distributed in the hope that it will be useful,
  18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 * GNU General Public License for more details.
  21 *
  22 * You should have received a copy of the GNU General Public License
  23 * along with this program; if not, write to the Free Software
  24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25 */
  26
  27#include <linux/module.h>
  28#include <linux/init.h>
  29#include <linux/slab.h>
  30#include <linux/jiffies.h>
  31#include <linux/i2c.h>
  32#include <linux/hwmon.h>
  33#include <linux/hwmon-vid.h>
  34#include <linux/hwmon-sysfs.h>
  35#include <linux/err.h>
  36#include <linux/mutex.h>
  37#include <linux/util_macros.h>
  38
  39/* Addresses to scan */
  40static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
  41
  42enum chips {
  43	lm85,
  44	adm1027, adt7463, adt7468,
  45	emc6d100, emc6d102, emc6d103, emc6d103s
  46};
  47
  48/* The LM85 registers */
  49
  50#define LM85_REG_IN(nr)			(0x20 + (nr))
  51#define LM85_REG_IN_MIN(nr)		(0x44 + (nr) * 2)
  52#define LM85_REG_IN_MAX(nr)		(0x45 + (nr) * 2)
  53
  54#define LM85_REG_TEMP(nr)		(0x25 + (nr))
  55#define LM85_REG_TEMP_MIN(nr)		(0x4e + (nr) * 2)
  56#define LM85_REG_TEMP_MAX(nr)		(0x4f + (nr) * 2)
  57
  58/* Fan speeds are LSB, MSB (2 bytes) */
  59#define LM85_REG_FAN(nr)		(0x28 + (nr) * 2)
  60#define LM85_REG_FAN_MIN(nr)		(0x54 + (nr) * 2)
  61
  62#define LM85_REG_PWM(nr)		(0x30 + (nr))
  63
  64#define LM85_REG_COMPANY		0x3e
  65#define LM85_REG_VERSTEP		0x3f
  66
  67#define ADT7468_REG_CFG5		0x7c
  68#define ADT7468_OFF64			(1 << 0)
  69#define ADT7468_HFPWM			(1 << 1)
  70#define IS_ADT7468_OFF64(data)		\
  71	((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64))
  72#define IS_ADT7468_HFPWM(data)		\
  73	((data)->type == adt7468 && !((data)->cfg5 & ADT7468_HFPWM))
  74
  75/* These are the recognized values for the above regs */
  76#define LM85_COMPANY_NATIONAL		0x01
  77#define LM85_COMPANY_ANALOG_DEV		0x41
  78#define LM85_COMPANY_SMSC		0x5c
  79#define LM85_VERSTEP_LM85C		0x60
  80#define LM85_VERSTEP_LM85B		0x62
  81#define LM85_VERSTEP_LM96000_1		0x68
  82#define LM85_VERSTEP_LM96000_2		0x69
  83#define LM85_VERSTEP_ADM1027		0x60
  84#define LM85_VERSTEP_ADT7463		0x62
  85#define LM85_VERSTEP_ADT7463C		0x6A
  86#define LM85_VERSTEP_ADT7468_1		0x71
  87#define LM85_VERSTEP_ADT7468_2		0x72
  88#define LM85_VERSTEP_EMC6D100_A0        0x60
  89#define LM85_VERSTEP_EMC6D100_A1        0x61
  90#define LM85_VERSTEP_EMC6D102		0x65
  91#define LM85_VERSTEP_EMC6D103_A0	0x68
  92#define LM85_VERSTEP_EMC6D103_A1	0x69
  93#define LM85_VERSTEP_EMC6D103S		0x6A	/* Also known as EMC6D103:A2 */
 
 
 
  94
  95#define LM85_REG_CONFIG			0x40
  96
  97#define LM85_REG_ALARM1			0x41
  98#define LM85_REG_ALARM2			0x42
  99
 100#define LM85_REG_VID			0x43
 101
 102/* Automated FAN control */
 103#define LM85_REG_AFAN_CONFIG(nr)	(0x5c + (nr))
 104#define LM85_REG_AFAN_RANGE(nr)		(0x5f + (nr))
 105#define LM85_REG_AFAN_SPIKE1		0x62
 106#define LM85_REG_AFAN_MINPWM(nr)	(0x64 + (nr))
 107#define LM85_REG_AFAN_LIMIT(nr)		(0x67 + (nr))
 108#define LM85_REG_AFAN_CRITICAL(nr)	(0x6a + (nr))
 109#define LM85_REG_AFAN_HYST1		0x6d
 110#define LM85_REG_AFAN_HYST2		0x6e
 111
 112#define ADM1027_REG_EXTEND_ADC1		0x76
 113#define ADM1027_REG_EXTEND_ADC2		0x77
 114
 115#define EMC6D100_REG_ALARM3             0x7d
 116/* IN5, IN6 and IN7 */
 117#define EMC6D100_REG_IN(nr)             (0x70 + ((nr) - 5))
 118#define EMC6D100_REG_IN_MIN(nr)         (0x73 + ((nr) - 5) * 2)
 119#define EMC6D100_REG_IN_MAX(nr)         (0x74 + ((nr) - 5) * 2)
 120#define EMC6D102_REG_EXTEND_ADC1	0x85
 121#define EMC6D102_REG_EXTEND_ADC2	0x86
 122#define EMC6D102_REG_EXTEND_ADC3	0x87
 123#define EMC6D102_REG_EXTEND_ADC4	0x88
 124
 125/*
 126 * Conversions. Rounding and limit checking is only done on the TO_REG
 127 * variants. Note that you should be a bit careful with which arguments
 128 * these macros are called: arguments may be evaluated more than once.
 129 */
 130
 131/* IN are scaled according to built-in resistors */
 132static const int lm85_scaling[] = {  /* .001 Volts */
 133	2500, 2250, 3300, 5000, 12000,
 134	3300, 1500, 1800 /*EMC6D100*/
 135};
 136#define SCALE(val, from, to)	(((val) * (to) + ((from) / 2)) / (from))
 137
 138#define INS_TO_REG(n, val)	\
 139		SCALE(clamp_val(val, 0, 255 * lm85_scaling[n] / 192), \
 140		      lm85_scaling[n], 192)
 141
 142#define INSEXT_FROM_REG(n, val, ext)	\
 143		SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
 144
 145#define INS_FROM_REG(n, val)	SCALE((val), 192, lm85_scaling[n])
 146
 147/* FAN speed is measured using 90kHz clock */
 148static inline u16 FAN_TO_REG(unsigned long val)
 149{
 150	if (!val)
 151		return 0xffff;
 152	return clamp_val(5400000 / val, 1, 0xfffe);
 153}
 154#define FAN_FROM_REG(val)	((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
 155				 5400000 / (val))
 156
 157/* Temperature is reported in .001 degC increments */
 158#define TEMP_TO_REG(val)	\
 159		DIV_ROUND_CLOSEST(clamp_val((val), -127000, 127000), 1000)
 160#define TEMPEXT_FROM_REG(val, ext)	\
 161		SCALE(((val) << 4) + (ext), 16, 1000)
 162#define TEMP_FROM_REG(val)	((val) * 1000)
 163
 164#define PWM_TO_REG(val)			clamp_val(val, 0, 255)
 165#define PWM_FROM_REG(val)		(val)
 166
 167
 168/*
 169 * ZONEs have the following parameters:
 170 *    Limit (low) temp,           1. degC
 171 *    Hysteresis (below limit),   1. degC (0-15)
 172 *    Range of speed control,     .1 degC (2-80)
 173 *    Critical (high) temp,       1. degC
 174 *
 175 * FAN PWMs have the following parameters:
 176 *    Reference Zone,                 1, 2, 3, etc.
 177 *    Spinup time,                    .05 sec
 178 *    PWM value at limit/low temp,    1 count
 179 *    PWM Frequency,                  1. Hz
 180 *    PWM is Min or OFF below limit,  flag
 181 *    Invert PWM output,              flag
 182 *
 183 * Some chips filter the temp, others the fan.
 184 *    Filter constant (or disabled)   .1 seconds
 185 */
 186
 187/* These are the zone temperature range encodings in .001 degree C */
 188static const int lm85_range_map[] = {
 189	2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
 190	13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
 191};
 192
 193static int RANGE_TO_REG(long range)
 194{
 195	return find_closest(range, lm85_range_map, ARRAY_SIZE(lm85_range_map));
 
 
 
 
 
 
 
 
 196}
 197#define RANGE_FROM_REG(val)	lm85_range_map[(val) & 0x0f]
 198
 199/* These are the PWM frequency encodings */
 200static const int lm85_freq_map[8] = { /* 1 Hz */
 201	10, 15, 23, 30, 38, 47, 61, 94
 202};
 203static const int adm1027_freq_map[8] = { /* 1 Hz */
 204	11, 15, 22, 29, 35, 44, 59, 88
 205};
 206#define FREQ_MAP_LEN	8
 207
 208static int FREQ_TO_REG(const int *map,
 209		       unsigned int map_size, unsigned long freq)
 210{
 211	return find_closest(freq, map, map_size);
 
 
 
 
 
 
 212}
 213
 214static int FREQ_FROM_REG(const int *map, u8 reg)
 215{
 216	return map[reg & 0x07];
 217}
 218
 219/*
 220 * Since we can't use strings, I'm abusing these numbers
 221 *   to stand in for the following meanings:
 222 *      1 -- PWM responds to Zone 1
 223 *      2 -- PWM responds to Zone 2
 224 *      3 -- PWM responds to Zone 3
 225 *     23 -- PWM responds to the higher temp of Zone 2 or 3
 226 *    123 -- PWM responds to highest of Zone 1, 2, or 3
 227 *      0 -- PWM is always at 0% (ie, off)
 228 *     -1 -- PWM is always at 100%
 229 *     -2 -- PWM responds to manual control
 230 */
 231
 232static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
 233#define ZONE_FROM_REG(val)	lm85_zone_map[(val) >> 5]
 234
 235static int ZONE_TO_REG(int zone)
 236{
 237	int i;
 238
 239	for (i = 0; i <= 7; ++i)
 240		if (zone == lm85_zone_map[i])
 241			break;
 242	if (i > 7)   /* Not found. */
 243		i = 3;  /* Always 100% */
 244	return i << 5;
 245}
 246
 247#define HYST_TO_REG(val)	clamp_val(((val) + 500) / 1000, 0, 15)
 248#define HYST_FROM_REG(val)	((val) * 1000)
 249
 250/*
 251 * Chip sampling rates
 252 *
 253 * Some sensors are not updated more frequently than once per second
 254 *    so it doesn't make sense to read them more often than that.
 255 *    We cache the results and return the saved data if the driver
 256 *    is called again before a second has elapsed.
 257 *
 258 * Also, there is significant configuration data for this chip
 259 *    given the automatic PWM fan control that is possible.  There
 260 *    are about 47 bytes of config data to only 22 bytes of actual
 261 *    readings.  So, we keep the config data up to date in the cache
 262 *    when it is written and only sample it once every 1 *minute*
 263 */
 264#define LM85_DATA_INTERVAL  (HZ + HZ / 2)
 265#define LM85_CONFIG_INTERVAL  (1 * 60 * HZ)
 266
 267/*
 268 * LM85 can automatically adjust fan speeds based on temperature
 269 * This structure encapsulates an entire Zone config.  There are
 270 * three zones (one for each temperature input) on the lm85
 271 */
 272struct lm85_zone {
 273	s8 limit;	/* Low temp limit */
 274	u8 hyst;	/* Low limit hysteresis. (0-15) */
 275	u8 range;	/* Temp range, encoded */
 276	s8 critical;	/* "All fans ON" temp limit */
 277	u8 max_desired; /*
 278			 * Actual "max" temperature specified.  Preserved
 279			 * to prevent "drift" as other autofan control
 280			 * values change.
 281			 */
 282};
 283
 284struct lm85_autofan {
 285	u8 config;	/* Register value */
 286	u8 min_pwm;	/* Minimum PWM value, encoded */
 287	u8 min_off;	/* Min PWM or OFF below "limit", flag */
 288};
 289
 290/*
 291 * For each registered chip, we need to keep some data in memory.
 292 * The structure is dynamically allocated.
 293 */
 294struct lm85_data {
 295	struct i2c_client *client;
 296	const struct attribute_group *groups[6];
 297	const int *freq_map;
 298	enum chips type;
 299
 300	bool has_vid5;	/* true if VID5 is configured for ADT7463 or ADT7468 */
 301
 302	struct mutex update_lock;
 303	int valid;		/* !=0 if following fields are valid */
 304	unsigned long last_reading;	/* In jiffies */
 305	unsigned long last_config;	/* In jiffies */
 306
 307	u8 in[8];		/* Register value */
 308	u8 in_max[8];		/* Register value */
 309	u8 in_min[8];		/* Register value */
 310	s8 temp[3];		/* Register value */
 311	s8 temp_min[3];		/* Register value */
 312	s8 temp_max[3];		/* Register value */
 313	u16 fan[4];		/* Register value */
 314	u16 fan_min[4];		/* Register value */
 315	u8 pwm[3];		/* Register value */
 316	u8 pwm_freq[3];		/* Register encoding */
 317	u8 temp_ext[3];		/* Decoded values */
 318	u8 in_ext[8];		/* Decoded values */
 319	u8 vid;			/* Register value */
 320	u8 vrm;			/* VRM version */
 321	u32 alarms;		/* Register encoding, combined */
 322	u8 cfg5;		/* Config Register 5 on ADT7468 */
 323	struct lm85_autofan autofan[3];
 324	struct lm85_zone zone[3];
 325};
 326
 327static int lm85_read_value(struct i2c_client *client, u8 reg)
 328{
 329	int res;
 
 
 
 
 
 330
 331	/* What size location is it? */
 332	switch (reg) {
 333	case LM85_REG_FAN(0):  /* Read WORD data */
 334	case LM85_REG_FAN(1):
 335	case LM85_REG_FAN(2):
 336	case LM85_REG_FAN(3):
 337	case LM85_REG_FAN_MIN(0):
 338	case LM85_REG_FAN_MIN(1):
 339	case LM85_REG_FAN_MIN(2):
 340	case LM85_REG_FAN_MIN(3):
 341	case LM85_REG_ALARM1:	/* Read both bytes at once */
 342		res = i2c_smbus_read_byte_data(client, reg) & 0xff;
 343		res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
 344		break;
 345	default:	/* Read BYTE data */
 346		res = i2c_smbus_read_byte_data(client, reg);
 347		break;
 348	}
 349
 350	return res;
 351}
 
 
 
 
 
 
 
 
 
 
 
 
 
 352
 353static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
 354{
 355	switch (reg) {
 356	case LM85_REG_FAN(0):  /* Write WORD data */
 357	case LM85_REG_FAN(1):
 358	case LM85_REG_FAN(2):
 359	case LM85_REG_FAN(3):
 360	case LM85_REG_FAN_MIN(0):
 361	case LM85_REG_FAN_MIN(1):
 362	case LM85_REG_FAN_MIN(2):
 363	case LM85_REG_FAN_MIN(3):
 364	/* NOTE: ALARM is read only, so not included here */
 365		i2c_smbus_write_byte_data(client, reg, value & 0xff);
 366		i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
 367		break;
 368	default:	/* Write BYTE data */
 369		i2c_smbus_write_byte_data(client, reg, value);
 370		break;
 371	}
 372}
 373
 374static struct lm85_data *lm85_update_device(struct device *dev)
 375{
 376	struct lm85_data *data = dev_get_drvdata(dev);
 377	struct i2c_client *client = data->client;
 378	int i;
 379
 380	mutex_lock(&data->update_lock);
 381
 382	if (!data->valid ||
 383	     time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
 384		/* Things that change quickly */
 385		dev_dbg(&client->dev, "Reading sensor values\n");
 386
 387		/*
 388		 * Have to read extended bits first to "freeze" the
 389		 * more significant bits that are read later.
 390		 * There are 2 additional resolution bits per channel and we
 391		 * have room for 4, so we shift them to the left.
 392		 */
 393		if (data->type == adm1027 || data->type == adt7463 ||
 394		    data->type == adt7468) {
 395			int ext1 = lm85_read_value(client,
 396						   ADM1027_REG_EXTEND_ADC1);
 397			int ext2 =  lm85_read_value(client,
 398						    ADM1027_REG_EXTEND_ADC2);
 399			int val = (ext1 << 8) + ext2;
 400
 401			for (i = 0; i <= 4; i++)
 402				data->in_ext[i] =
 403					((val >> (i * 2)) & 0x03) << 2;
 404
 405			for (i = 0; i <= 2; i++)
 406				data->temp_ext[i] =
 407					(val >> ((i + 4) * 2)) & 0x0c;
 408		}
 409
 410		data->vid = lm85_read_value(client, LM85_REG_VID);
 411
 412		for (i = 0; i <= 3; ++i) {
 413			data->in[i] =
 414			    lm85_read_value(client, LM85_REG_IN(i));
 415			data->fan[i] =
 416			    lm85_read_value(client, LM85_REG_FAN(i));
 417		}
 418
 419		if (!data->has_vid5)
 420			data->in[4] = lm85_read_value(client, LM85_REG_IN(4));
 421
 422		if (data->type == adt7468)
 423			data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5);
 424
 425		for (i = 0; i <= 2; ++i) {
 426			data->temp[i] =
 427			    lm85_read_value(client, LM85_REG_TEMP(i));
 428			data->pwm[i] =
 429			    lm85_read_value(client, LM85_REG_PWM(i));
 430
 431			if (IS_ADT7468_OFF64(data))
 432				data->temp[i] -= 64;
 433		}
 434
 435		data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
 436
 437		if (data->type == emc6d100) {
 438			/* Three more voltage sensors */
 439			for (i = 5; i <= 7; ++i) {
 440				data->in[i] = lm85_read_value(client,
 441							EMC6D100_REG_IN(i));
 442			}
 443			/* More alarm bits */
 444			data->alarms |= lm85_read_value(client,
 445						EMC6D100_REG_ALARM3) << 16;
 446		} else if (data->type == emc6d102 || data->type == emc6d103 ||
 447			   data->type == emc6d103s) {
 448			/*
 449			 * Have to read LSB bits after the MSB ones because
 450			 * the reading of the MSB bits has frozen the
 451			 * LSBs (backward from the ADM1027).
 452			 */
 453			int ext1 = lm85_read_value(client,
 454						   EMC6D102_REG_EXTEND_ADC1);
 455			int ext2 = lm85_read_value(client,
 456						   EMC6D102_REG_EXTEND_ADC2);
 457			int ext3 = lm85_read_value(client,
 458						   EMC6D102_REG_EXTEND_ADC3);
 459			int ext4 = lm85_read_value(client,
 460						   EMC6D102_REG_EXTEND_ADC4);
 461			data->in_ext[0] = ext3 & 0x0f;
 462			data->in_ext[1] = ext4 & 0x0f;
 463			data->in_ext[2] = ext4 >> 4;
 464			data->in_ext[3] = ext3 >> 4;
 465			data->in_ext[4] = ext2 >> 4;
 466
 467			data->temp_ext[0] = ext1 & 0x0f;
 468			data->temp_ext[1] = ext2 & 0x0f;
 469			data->temp_ext[2] = ext1 >> 4;
 470		}
 471
 472		data->last_reading = jiffies;
 473	}  /* last_reading */
 474
 475	if (!data->valid ||
 476	     time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
 477		/* Things that don't change often */
 478		dev_dbg(&client->dev, "Reading config values\n");
 479
 480		for (i = 0; i <= 3; ++i) {
 481			data->in_min[i] =
 482			    lm85_read_value(client, LM85_REG_IN_MIN(i));
 483			data->in_max[i] =
 484			    lm85_read_value(client, LM85_REG_IN_MAX(i));
 485			data->fan_min[i] =
 486			    lm85_read_value(client, LM85_REG_FAN_MIN(i));
 487		}
 488
 489		if (!data->has_vid5)  {
 490			data->in_min[4] = lm85_read_value(client,
 491					  LM85_REG_IN_MIN(4));
 492			data->in_max[4] = lm85_read_value(client,
 493					  LM85_REG_IN_MAX(4));
 494		}
 495
 496		if (data->type == emc6d100) {
 497			for (i = 5; i <= 7; ++i) {
 498				data->in_min[i] = lm85_read_value(client,
 499						EMC6D100_REG_IN_MIN(i));
 500				data->in_max[i] = lm85_read_value(client,
 501						EMC6D100_REG_IN_MAX(i));
 502			}
 503		}
 504
 505		for (i = 0; i <= 2; ++i) {
 506			int val;
 507
 508			data->temp_min[i] =
 509			    lm85_read_value(client, LM85_REG_TEMP_MIN(i));
 510			data->temp_max[i] =
 511			    lm85_read_value(client, LM85_REG_TEMP_MAX(i));
 512
 513			data->autofan[i].config =
 514			    lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
 515			val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
 516			data->pwm_freq[i] = val & 0x07;
 517			data->zone[i].range = val >> 4;
 518			data->autofan[i].min_pwm =
 519			    lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
 520			data->zone[i].limit =
 521			    lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
 522			data->zone[i].critical =
 523			    lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
 524
 525			if (IS_ADT7468_OFF64(data)) {
 526				data->temp_min[i] -= 64;
 527				data->temp_max[i] -= 64;
 528				data->zone[i].limit -= 64;
 529				data->zone[i].critical -= 64;
 530			}
 531		}
 532
 533		if (data->type != emc6d103s) {
 534			i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
 535			data->autofan[0].min_off = (i & 0x20) != 0;
 536			data->autofan[1].min_off = (i & 0x40) != 0;
 537			data->autofan[2].min_off = (i & 0x80) != 0;
 538
 539			i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
 540			data->zone[0].hyst = i >> 4;
 541			data->zone[1].hyst = i & 0x0f;
 542
 543			i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
 544			data->zone[2].hyst = i >> 4;
 545		}
 546
 547		data->last_config = jiffies;
 548	}  /* last_config */
 549
 550	data->valid = 1;
 551
 552	mutex_unlock(&data->update_lock);
 553
 554	return data;
 555}
 556
 557/* 4 Fans */
 558static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
 559		char *buf)
 560{
 561	int nr = to_sensor_dev_attr(attr)->index;
 562	struct lm85_data *data = lm85_update_device(dev);
 563	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
 564}
 565
 566static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
 567		char *buf)
 568{
 569	int nr = to_sensor_dev_attr(attr)->index;
 570	struct lm85_data *data = lm85_update_device(dev);
 571	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
 572}
 573
 574static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
 575		const char *buf, size_t count)
 576{
 577	int nr = to_sensor_dev_attr(attr)->index;
 578	struct lm85_data *data = dev_get_drvdata(dev);
 579	struct i2c_client *client = data->client;
 580	unsigned long val;
 581	int err;
 582
 583	err = kstrtoul(buf, 10, &val);
 584	if (err)
 585		return err;
 586
 587	mutex_lock(&data->update_lock);
 588	data->fan_min[nr] = FAN_TO_REG(val);
 589	lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
 590	mutex_unlock(&data->update_lock);
 591	return count;
 592}
 593
 594#define show_fan_offset(offset)						\
 595static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO,			\
 596		show_fan, NULL, offset - 1);				\
 597static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR,		\
 598		show_fan_min, set_fan_min, offset - 1)
 599
 600show_fan_offset(1);
 601show_fan_offset(2);
 602show_fan_offset(3);
 603show_fan_offset(4);
 604
 605/* vid, vrm, alarms */
 606
 607static ssize_t show_vid_reg(struct device *dev, struct device_attribute *attr,
 608		char *buf)
 609{
 610	struct lm85_data *data = lm85_update_device(dev);
 611	int vid;
 612
 613	if (data->has_vid5) {
 614		/* 6-pin VID (VRM 10) */
 615		vid = vid_from_reg(data->vid & 0x3f, data->vrm);
 616	} else {
 617		/* 5-pin VID (VRM 9) */
 618		vid = vid_from_reg(data->vid & 0x1f, data->vrm);
 619	}
 620
 621	return sprintf(buf, "%d\n", vid);
 622}
 623
 624static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL);
 625
 626static ssize_t show_vrm_reg(struct device *dev, struct device_attribute *attr,
 627		char *buf)
 628{
 629	struct lm85_data *data = dev_get_drvdata(dev);
 630	return sprintf(buf, "%ld\n", (long) data->vrm);
 631}
 632
 633static ssize_t store_vrm_reg(struct device *dev, struct device_attribute *attr,
 634		const char *buf, size_t count)
 635{
 636	struct lm85_data *data = dev_get_drvdata(dev);
 637	unsigned long val;
 638	int err;
 639
 640	err = kstrtoul(buf, 10, &val);
 641	if (err)
 642		return err;
 643
 644	if (val > 255)
 645		return -EINVAL;
 646
 647	data->vrm = val;
 648	return count;
 649}
 650
 651static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg);
 652
 653static ssize_t show_alarms_reg(struct device *dev, struct device_attribute
 654		*attr, char *buf)
 655{
 656	struct lm85_data *data = lm85_update_device(dev);
 657	return sprintf(buf, "%u\n", data->alarms);
 658}
 659
 660static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL);
 661
 662static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
 663		char *buf)
 664{
 665	int nr = to_sensor_dev_attr(attr)->index;
 666	struct lm85_data *data = lm85_update_device(dev);
 667	return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
 668}
 669
 670static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
 671static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
 672static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
 673static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
 674static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
 675static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 18);
 676static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 16);
 677static SENSOR_DEVICE_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 17);
 678static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
 679static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_alarm, NULL, 14);
 680static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
 681static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 6);
 682static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 15);
 683static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10);
 684static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11);
 685static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 12);
 686static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 13);
 687
 688/* pwm */
 689
 690static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
 691		char *buf)
 692{
 693	int nr = to_sensor_dev_attr(attr)->index;
 694	struct lm85_data *data = lm85_update_device(dev);
 695	return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
 696}
 697
 698static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
 699		const char *buf, size_t count)
 700{
 701	int nr = to_sensor_dev_attr(attr)->index;
 702	struct lm85_data *data = dev_get_drvdata(dev);
 703	struct i2c_client *client = data->client;
 704	unsigned long val;
 705	int err;
 706
 707	err = kstrtoul(buf, 10, &val);
 708	if (err)
 709		return err;
 710
 711	mutex_lock(&data->update_lock);
 712	data->pwm[nr] = PWM_TO_REG(val);
 713	lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
 714	mutex_unlock(&data->update_lock);
 715	return count;
 716}
 717
 718static ssize_t show_pwm_enable(struct device *dev, struct device_attribute
 719		*attr, char *buf)
 720{
 721	int nr = to_sensor_dev_attr(attr)->index;
 722	struct lm85_data *data = lm85_update_device(dev);
 723	int pwm_zone, enable;
 724
 725	pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
 726	switch (pwm_zone) {
 727	case -1:	/* PWM is always at 100% */
 728		enable = 0;
 729		break;
 730	case 0:		/* PWM is always at 0% */
 731	case -2:	/* PWM responds to manual control */
 732		enable = 1;
 733		break;
 734	default:	/* PWM in automatic mode */
 735		enable = 2;
 736	}
 737	return sprintf(buf, "%d\n", enable);
 738}
 739
 740static ssize_t set_pwm_enable(struct device *dev, struct device_attribute
 741		*attr, const char *buf, size_t count)
 742{
 743	int nr = to_sensor_dev_attr(attr)->index;
 744	struct lm85_data *data = dev_get_drvdata(dev);
 745	struct i2c_client *client = data->client;
 
 746	u8 config;
 747	unsigned long val;
 748	int err;
 749
 750	err = kstrtoul(buf, 10, &val);
 751	if (err)
 752		return err;
 753
 754	switch (val) {
 755	case 0:
 756		config = 3;
 757		break;
 758	case 1:
 759		config = 7;
 760		break;
 761	case 2:
 762		/*
 763		 * Here we have to choose arbitrarily one of the 5 possible
 764		 * configurations; I go for the safest
 765		 */
 766		config = 6;
 767		break;
 768	default:
 769		return -EINVAL;
 770	}
 771
 772	mutex_lock(&data->update_lock);
 773	data->autofan[nr].config = lm85_read_value(client,
 774		LM85_REG_AFAN_CONFIG(nr));
 775	data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
 776		| (config << 5);
 777	lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
 778		data->autofan[nr].config);
 779	mutex_unlock(&data->update_lock);
 780	return count;
 781}
 782
 783static ssize_t show_pwm_freq(struct device *dev,
 784		struct device_attribute *attr, char *buf)
 785{
 786	int nr = to_sensor_dev_attr(attr)->index;
 787	struct lm85_data *data = lm85_update_device(dev);
 788	int freq;
 789
 790	if (IS_ADT7468_HFPWM(data))
 791		freq = 22500;
 792	else
 793		freq = FREQ_FROM_REG(data->freq_map, data->pwm_freq[nr]);
 794
 795	return sprintf(buf, "%d\n", freq);
 796}
 797
 798static ssize_t set_pwm_freq(struct device *dev,
 799		struct device_attribute *attr, const char *buf, size_t count)
 800{
 801	int nr = to_sensor_dev_attr(attr)->index;
 802	struct lm85_data *data = dev_get_drvdata(dev);
 803	struct i2c_client *client = data->client;
 804	unsigned long val;
 805	int err;
 806
 807	err = kstrtoul(buf, 10, &val);
 808	if (err)
 809		return err;
 810
 811	mutex_lock(&data->update_lock);
 812	/*
 813	 * The ADT7468 has a special high-frequency PWM output mode,
 814	 * where all PWM outputs are driven by a 22.5 kHz clock.
 815	 * This might confuse the user, but there's not much we can do.
 816	 */
 817	if (data->type == adt7468 && val >= 11300) {	/* High freq. mode */
 818		data->cfg5 &= ~ADT7468_HFPWM;
 819		lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
 820	} else {					/* Low freq. mode */
 821		data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map,
 822						 FREQ_MAP_LEN, val);
 823		lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
 824				 (data->zone[nr].range << 4)
 825				 | data->pwm_freq[nr]);
 826		if (data->type == adt7468) {
 827			data->cfg5 |= ADT7468_HFPWM;
 828			lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
 829		}
 830	}
 831	mutex_unlock(&data->update_lock);
 832	return count;
 833}
 834
 835#define show_pwm_reg(offset)						\
 836static SENSOR_DEVICE_ATTR(pwm##offset, S_IRUGO | S_IWUSR,		\
 837		show_pwm, set_pwm, offset - 1);				\
 838static SENSOR_DEVICE_ATTR(pwm##offset##_enable, S_IRUGO | S_IWUSR,	\
 839		show_pwm_enable, set_pwm_enable, offset - 1);		\
 840static SENSOR_DEVICE_ATTR(pwm##offset##_freq, S_IRUGO | S_IWUSR,	\
 841		show_pwm_freq, set_pwm_freq, offset - 1)
 842
 843show_pwm_reg(1);
 844show_pwm_reg(2);
 845show_pwm_reg(3);
 846
 847/* Voltages */
 848
 849static ssize_t show_in(struct device *dev, struct device_attribute *attr,
 850		char *buf)
 851{
 852	int nr = to_sensor_dev_attr(attr)->index;
 853	struct lm85_data *data = lm85_update_device(dev);
 854	return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
 855						    data->in_ext[nr]));
 856}
 857
 858static ssize_t show_in_min(struct device *dev, struct device_attribute *attr,
 859		char *buf)
 860{
 861	int nr = to_sensor_dev_attr(attr)->index;
 862	struct lm85_data *data = lm85_update_device(dev);
 863	return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
 864}
 865
 866static ssize_t set_in_min(struct device *dev, struct device_attribute *attr,
 867		const char *buf, size_t count)
 868{
 869	int nr = to_sensor_dev_attr(attr)->index;
 870	struct lm85_data *data = dev_get_drvdata(dev);
 871	struct i2c_client *client = data->client;
 872	long val;
 873	int err;
 874
 875	err = kstrtol(buf, 10, &val);
 876	if (err)
 877		return err;
 878
 879	mutex_lock(&data->update_lock);
 880	data->in_min[nr] = INS_TO_REG(nr, val);
 881	lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
 882	mutex_unlock(&data->update_lock);
 883	return count;
 884}
 885
 886static ssize_t show_in_max(struct device *dev, struct device_attribute *attr,
 887		char *buf)
 888{
 889	int nr = to_sensor_dev_attr(attr)->index;
 890	struct lm85_data *data = lm85_update_device(dev);
 891	return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
 892}
 893
 894static ssize_t set_in_max(struct device *dev, struct device_attribute *attr,
 895		const char *buf, size_t count)
 896{
 897	int nr = to_sensor_dev_attr(attr)->index;
 898	struct lm85_data *data = dev_get_drvdata(dev);
 899	struct i2c_client *client = data->client;
 900	long val;
 901	int err;
 902
 903	err = kstrtol(buf, 10, &val);
 904	if (err)
 905		return err;
 906
 907	mutex_lock(&data->update_lock);
 908	data->in_max[nr] = INS_TO_REG(nr, val);
 909	lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
 910	mutex_unlock(&data->update_lock);
 911	return count;
 912}
 913
 914#define show_in_reg(offset)						\
 915static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO,			\
 916		show_in, NULL, offset);					\
 917static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR,		\
 918		show_in_min, set_in_min, offset);			\
 919static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR,		\
 920		show_in_max, set_in_max, offset)
 921
 922show_in_reg(0);
 923show_in_reg(1);
 924show_in_reg(2);
 925show_in_reg(3);
 926show_in_reg(4);
 927show_in_reg(5);
 928show_in_reg(6);
 929show_in_reg(7);
 930
 931/* Temps */
 932
 933static ssize_t show_temp(struct device *dev, struct device_attribute *attr,
 934		char *buf)
 935{
 936	int nr = to_sensor_dev_attr(attr)->index;
 937	struct lm85_data *data = lm85_update_device(dev);
 938	return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
 939						     data->temp_ext[nr]));
 940}
 941
 942static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr,
 943		char *buf)
 944{
 945	int nr = to_sensor_dev_attr(attr)->index;
 946	struct lm85_data *data = lm85_update_device(dev);
 947	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
 948}
 949
 950static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
 951		const char *buf, size_t count)
 952{
 953	int nr = to_sensor_dev_attr(attr)->index;
 954	struct lm85_data *data = dev_get_drvdata(dev);
 955	struct i2c_client *client = data->client;
 956	long val;
 957	int err;
 958
 959	err = kstrtol(buf, 10, &val);
 960	if (err)
 961		return err;
 962
 963	if (IS_ADT7468_OFF64(data))
 964		val += 64;
 965
 966	mutex_lock(&data->update_lock);
 967	data->temp_min[nr] = TEMP_TO_REG(val);
 968	lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
 969	mutex_unlock(&data->update_lock);
 970	return count;
 971}
 972
 973static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr,
 974		char *buf)
 975{
 976	int nr = to_sensor_dev_attr(attr)->index;
 977	struct lm85_data *data = lm85_update_device(dev);
 978	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
 979}
 980
 981static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
 982		const char *buf, size_t count)
 983{
 984	int nr = to_sensor_dev_attr(attr)->index;
 985	struct lm85_data *data = dev_get_drvdata(dev);
 986	struct i2c_client *client = data->client;
 987	long val;
 988	int err;
 989
 990	err = kstrtol(buf, 10, &val);
 991	if (err)
 992		return err;
 993
 994	if (IS_ADT7468_OFF64(data))
 995		val += 64;
 996
 997	mutex_lock(&data->update_lock);
 998	data->temp_max[nr] = TEMP_TO_REG(val);
 999	lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
1000	mutex_unlock(&data->update_lock);
1001	return count;
1002}
1003
1004#define show_temp_reg(offset)						\
1005static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO,		\
1006		show_temp, NULL, offset - 1);				\
1007static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR,	\
1008		show_temp_min, set_temp_min, offset - 1);		\
1009static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR,	\
1010		show_temp_max, set_temp_max, offset - 1);
1011
1012show_temp_reg(1);
1013show_temp_reg(2);
1014show_temp_reg(3);
1015
1016
1017/* Automatic PWM control */
1018
1019static ssize_t show_pwm_auto_channels(struct device *dev,
1020		struct device_attribute *attr, char *buf)
1021{
1022	int nr = to_sensor_dev_attr(attr)->index;
1023	struct lm85_data *data = lm85_update_device(dev);
1024	return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
1025}
1026
1027static ssize_t set_pwm_auto_channels(struct device *dev,
1028		struct device_attribute *attr, const char *buf, size_t count)
1029{
1030	int nr = to_sensor_dev_attr(attr)->index;
1031	struct lm85_data *data = dev_get_drvdata(dev);
1032	struct i2c_client *client = data->client;
1033	long val;
1034	int err;
1035
1036	err = kstrtol(buf, 10, &val);
1037	if (err)
1038		return err;
1039
1040	mutex_lock(&data->update_lock);
1041	data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
1042		| ZONE_TO_REG(val);
1043	lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
1044		data->autofan[nr].config);
1045	mutex_unlock(&data->update_lock);
1046	return count;
1047}
1048
1049static ssize_t show_pwm_auto_pwm_min(struct device *dev,
1050		struct device_attribute *attr, char *buf)
1051{
1052	int nr = to_sensor_dev_attr(attr)->index;
1053	struct lm85_data *data = lm85_update_device(dev);
1054	return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
1055}
1056
1057static ssize_t set_pwm_auto_pwm_min(struct device *dev,
1058		struct device_attribute *attr, const char *buf, size_t count)
1059{
1060	int nr = to_sensor_dev_attr(attr)->index;
1061	struct lm85_data *data = dev_get_drvdata(dev);
1062	struct i2c_client *client = data->client;
1063	unsigned long val;
1064	int err;
1065
1066	err = kstrtoul(buf, 10, &val);
1067	if (err)
1068		return err;
1069
1070	mutex_lock(&data->update_lock);
1071	data->autofan[nr].min_pwm = PWM_TO_REG(val);
1072	lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
1073		data->autofan[nr].min_pwm);
1074	mutex_unlock(&data->update_lock);
1075	return count;
1076}
1077
1078static ssize_t show_pwm_auto_pwm_minctl(struct device *dev,
1079		struct device_attribute *attr, char *buf)
1080{
1081	int nr = to_sensor_dev_attr(attr)->index;
1082	struct lm85_data *data = lm85_update_device(dev);
1083	return sprintf(buf, "%d\n", data->autofan[nr].min_off);
1084}
1085
1086static ssize_t set_pwm_auto_pwm_minctl(struct device *dev,
1087		struct device_attribute *attr, const char *buf, size_t count)
1088{
1089	int nr = to_sensor_dev_attr(attr)->index;
1090	struct lm85_data *data = dev_get_drvdata(dev);
1091	struct i2c_client *client = data->client;
 
1092	u8 tmp;
1093	long val;
1094	int err;
1095
1096	err = kstrtol(buf, 10, &val);
1097	if (err)
1098		return err;
1099
1100	mutex_lock(&data->update_lock);
1101	data->autofan[nr].min_off = val;
1102	tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
1103	tmp &= ~(0x20 << nr);
1104	if (data->autofan[nr].min_off)
1105		tmp |= 0x20 << nr;
1106	lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
1107	mutex_unlock(&data->update_lock);
1108	return count;
1109}
1110
1111#define pwm_auto(offset)						\
1112static SENSOR_DEVICE_ATTR(pwm##offset##_auto_channels,			\
1113		S_IRUGO | S_IWUSR, show_pwm_auto_channels,		\
1114		set_pwm_auto_channels, offset - 1);			\
1115static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_min,			\
1116		S_IRUGO | S_IWUSR, show_pwm_auto_pwm_min,		\
1117		set_pwm_auto_pwm_min, offset - 1);			\
1118static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_minctl,		\
1119		S_IRUGO | S_IWUSR, show_pwm_auto_pwm_minctl,		\
1120		set_pwm_auto_pwm_minctl, offset - 1)
1121
1122pwm_auto(1);
1123pwm_auto(2);
1124pwm_auto(3);
1125
1126/* Temperature settings for automatic PWM control */
1127
1128static ssize_t show_temp_auto_temp_off(struct device *dev,
1129		struct device_attribute *attr, char *buf)
1130{
1131	int nr = to_sensor_dev_attr(attr)->index;
1132	struct lm85_data *data = lm85_update_device(dev);
1133	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
1134		HYST_FROM_REG(data->zone[nr].hyst));
1135}
1136
1137static ssize_t set_temp_auto_temp_off(struct device *dev,
1138		struct device_attribute *attr, const char *buf, size_t count)
1139{
1140	int nr = to_sensor_dev_attr(attr)->index;
1141	struct lm85_data *data = dev_get_drvdata(dev);
1142	struct i2c_client *client = data->client;
1143	int min;
1144	long val;
1145	int err;
1146
1147	err = kstrtol(buf, 10, &val);
1148	if (err)
1149		return err;
1150
1151	mutex_lock(&data->update_lock);
1152	min = TEMP_FROM_REG(data->zone[nr].limit);
1153	data->zone[nr].hyst = HYST_TO_REG(min - val);
1154	if (nr == 0 || nr == 1) {
1155		lm85_write_value(client, LM85_REG_AFAN_HYST1,
1156			(data->zone[0].hyst << 4)
1157			| data->zone[1].hyst);
1158	} else {
1159		lm85_write_value(client, LM85_REG_AFAN_HYST2,
1160			(data->zone[2].hyst << 4));
1161	}
1162	mutex_unlock(&data->update_lock);
1163	return count;
1164}
1165
1166static ssize_t show_temp_auto_temp_min(struct device *dev,
1167		struct device_attribute *attr, char *buf)
1168{
1169	int nr = to_sensor_dev_attr(attr)->index;
1170	struct lm85_data *data = lm85_update_device(dev);
1171	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
1172}
1173
1174static ssize_t set_temp_auto_temp_min(struct device *dev,
1175		struct device_attribute *attr, const char *buf, size_t count)
1176{
1177	int nr = to_sensor_dev_attr(attr)->index;
1178	struct lm85_data *data = dev_get_drvdata(dev);
1179	struct i2c_client *client = data->client;
1180	long val;
1181	int err;
1182
1183	err = kstrtol(buf, 10, &val);
1184	if (err)
1185		return err;
1186
1187	mutex_lock(&data->update_lock);
1188	data->zone[nr].limit = TEMP_TO_REG(val);
1189	lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
1190		data->zone[nr].limit);
1191
1192/* Update temp_auto_max and temp_auto_range */
1193	data->zone[nr].range = RANGE_TO_REG(
1194		TEMP_FROM_REG(data->zone[nr].max_desired) -
1195		TEMP_FROM_REG(data->zone[nr].limit));
1196	lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1197		((data->zone[nr].range & 0x0f) << 4)
1198		| (data->pwm_freq[nr] & 0x07));
1199
1200	mutex_unlock(&data->update_lock);
1201	return count;
1202}
1203
1204static ssize_t show_temp_auto_temp_max(struct device *dev,
1205		struct device_attribute *attr, char *buf)
1206{
1207	int nr = to_sensor_dev_attr(attr)->index;
1208	struct lm85_data *data = lm85_update_device(dev);
1209	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
1210		RANGE_FROM_REG(data->zone[nr].range));
1211}
1212
1213static ssize_t set_temp_auto_temp_max(struct device *dev,
1214		struct device_attribute *attr, const char *buf, size_t count)
1215{
1216	int nr = to_sensor_dev_attr(attr)->index;
1217	struct lm85_data *data = dev_get_drvdata(dev);
1218	struct i2c_client *client = data->client;
1219	int min;
1220	long val;
1221	int err;
1222
1223	err = kstrtol(buf, 10, &val);
1224	if (err)
1225		return err;
1226
1227	mutex_lock(&data->update_lock);
1228	min = TEMP_FROM_REG(data->zone[nr].limit);
1229	data->zone[nr].max_desired = TEMP_TO_REG(val);
1230	data->zone[nr].range = RANGE_TO_REG(
1231		val - min);
1232	lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1233		((data->zone[nr].range & 0x0f) << 4)
1234		| (data->pwm_freq[nr] & 0x07));
1235	mutex_unlock(&data->update_lock);
1236	return count;
1237}
1238
1239static ssize_t show_temp_auto_temp_crit(struct device *dev,
1240		struct device_attribute *attr, char *buf)
1241{
1242	int nr = to_sensor_dev_attr(attr)->index;
1243	struct lm85_data *data = lm85_update_device(dev);
1244	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
1245}
1246
1247static ssize_t set_temp_auto_temp_crit(struct device *dev,
1248		struct device_attribute *attr, const char *buf, size_t count)
1249{
1250	int nr = to_sensor_dev_attr(attr)->index;
1251	struct lm85_data *data = dev_get_drvdata(dev);
1252	struct i2c_client *client = data->client;
1253	long val;
1254	int err;
1255
1256	err = kstrtol(buf, 10, &val);
1257	if (err)
1258		return err;
1259
1260	mutex_lock(&data->update_lock);
1261	data->zone[nr].critical = TEMP_TO_REG(val);
1262	lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
1263		data->zone[nr].critical);
1264	mutex_unlock(&data->update_lock);
1265	return count;
1266}
1267
1268#define temp_auto(offset)						\
1269static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_off,			\
1270		S_IRUGO | S_IWUSR, show_temp_auto_temp_off,		\
1271		set_temp_auto_temp_off, offset - 1);			\
1272static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_min,			\
1273		S_IRUGO | S_IWUSR, show_temp_auto_temp_min,		\
1274		set_temp_auto_temp_min, offset - 1);			\
1275static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_max,			\
1276		S_IRUGO | S_IWUSR, show_temp_auto_temp_max,		\
1277		set_temp_auto_temp_max, offset - 1);			\
1278static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_crit,		\
1279		S_IRUGO | S_IWUSR, show_temp_auto_temp_crit,		\
1280		set_temp_auto_temp_crit, offset - 1);
1281
1282temp_auto(1);
1283temp_auto(2);
1284temp_auto(3);
1285
1286static struct attribute *lm85_attributes[] = {
1287	&sensor_dev_attr_fan1_input.dev_attr.attr,
1288	&sensor_dev_attr_fan2_input.dev_attr.attr,
1289	&sensor_dev_attr_fan3_input.dev_attr.attr,
1290	&sensor_dev_attr_fan4_input.dev_attr.attr,
1291	&sensor_dev_attr_fan1_min.dev_attr.attr,
1292	&sensor_dev_attr_fan2_min.dev_attr.attr,
1293	&sensor_dev_attr_fan3_min.dev_attr.attr,
1294	&sensor_dev_attr_fan4_min.dev_attr.attr,
1295	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
1296	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
1297	&sensor_dev_attr_fan3_alarm.dev_attr.attr,
1298	&sensor_dev_attr_fan4_alarm.dev_attr.attr,
1299
1300	&sensor_dev_attr_pwm1.dev_attr.attr,
1301	&sensor_dev_attr_pwm2.dev_attr.attr,
1302	&sensor_dev_attr_pwm3.dev_attr.attr,
1303	&sensor_dev_attr_pwm1_enable.dev_attr.attr,
1304	&sensor_dev_attr_pwm2_enable.dev_attr.attr,
1305	&sensor_dev_attr_pwm3_enable.dev_attr.attr,
1306	&sensor_dev_attr_pwm1_freq.dev_attr.attr,
1307	&sensor_dev_attr_pwm2_freq.dev_attr.attr,
1308	&sensor_dev_attr_pwm3_freq.dev_attr.attr,
1309
1310	&sensor_dev_attr_in0_input.dev_attr.attr,
1311	&sensor_dev_attr_in1_input.dev_attr.attr,
1312	&sensor_dev_attr_in2_input.dev_attr.attr,
1313	&sensor_dev_attr_in3_input.dev_attr.attr,
1314	&sensor_dev_attr_in0_min.dev_attr.attr,
1315	&sensor_dev_attr_in1_min.dev_attr.attr,
1316	&sensor_dev_attr_in2_min.dev_attr.attr,
1317	&sensor_dev_attr_in3_min.dev_attr.attr,
1318	&sensor_dev_attr_in0_max.dev_attr.attr,
1319	&sensor_dev_attr_in1_max.dev_attr.attr,
1320	&sensor_dev_attr_in2_max.dev_attr.attr,
1321	&sensor_dev_attr_in3_max.dev_attr.attr,
1322	&sensor_dev_attr_in0_alarm.dev_attr.attr,
1323	&sensor_dev_attr_in1_alarm.dev_attr.attr,
1324	&sensor_dev_attr_in2_alarm.dev_attr.attr,
1325	&sensor_dev_attr_in3_alarm.dev_attr.attr,
1326
1327	&sensor_dev_attr_temp1_input.dev_attr.attr,
1328	&sensor_dev_attr_temp2_input.dev_attr.attr,
1329	&sensor_dev_attr_temp3_input.dev_attr.attr,
1330	&sensor_dev_attr_temp1_min.dev_attr.attr,
1331	&sensor_dev_attr_temp2_min.dev_attr.attr,
1332	&sensor_dev_attr_temp3_min.dev_attr.attr,
1333	&sensor_dev_attr_temp1_max.dev_attr.attr,
1334	&sensor_dev_attr_temp2_max.dev_attr.attr,
1335	&sensor_dev_attr_temp3_max.dev_attr.attr,
1336	&sensor_dev_attr_temp1_alarm.dev_attr.attr,
1337	&sensor_dev_attr_temp2_alarm.dev_attr.attr,
1338	&sensor_dev_attr_temp3_alarm.dev_attr.attr,
1339	&sensor_dev_attr_temp1_fault.dev_attr.attr,
1340	&sensor_dev_attr_temp3_fault.dev_attr.attr,
1341
1342	&sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
1343	&sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
1344	&sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
1345	&sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
1346	&sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
1347	&sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
1348
1349	&sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
1350	&sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
1351	&sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
1352	&sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
1353	&sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
1354	&sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
1355	&sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
1356	&sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
1357	&sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
1358
1359	&dev_attr_vrm.attr,
1360	&dev_attr_cpu0_vid.attr,
1361	&dev_attr_alarms.attr,
1362	NULL
1363};
1364
1365static const struct attribute_group lm85_group = {
1366	.attrs = lm85_attributes,
1367};
1368
1369static struct attribute *lm85_attributes_minctl[] = {
1370	&sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
1371	&sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
1372	&sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
1373	NULL
1374};
1375
1376static const struct attribute_group lm85_group_minctl = {
1377	.attrs = lm85_attributes_minctl,
1378};
1379
1380static struct attribute *lm85_attributes_temp_off[] = {
1381	&sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
1382	&sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
1383	&sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
1384	NULL
1385};
1386
1387static const struct attribute_group lm85_group_temp_off = {
1388	.attrs = lm85_attributes_temp_off,
1389};
1390
1391static struct attribute *lm85_attributes_in4[] = {
1392	&sensor_dev_attr_in4_input.dev_attr.attr,
1393	&sensor_dev_attr_in4_min.dev_attr.attr,
1394	&sensor_dev_attr_in4_max.dev_attr.attr,
1395	&sensor_dev_attr_in4_alarm.dev_attr.attr,
1396	NULL
1397};
1398
1399static const struct attribute_group lm85_group_in4 = {
1400	.attrs = lm85_attributes_in4,
1401};
1402
1403static struct attribute *lm85_attributes_in567[] = {
1404	&sensor_dev_attr_in5_input.dev_attr.attr,
1405	&sensor_dev_attr_in6_input.dev_attr.attr,
1406	&sensor_dev_attr_in7_input.dev_attr.attr,
1407	&sensor_dev_attr_in5_min.dev_attr.attr,
1408	&sensor_dev_attr_in6_min.dev_attr.attr,
1409	&sensor_dev_attr_in7_min.dev_attr.attr,
1410	&sensor_dev_attr_in5_max.dev_attr.attr,
1411	&sensor_dev_attr_in6_max.dev_attr.attr,
1412	&sensor_dev_attr_in7_max.dev_attr.attr,
1413	&sensor_dev_attr_in5_alarm.dev_attr.attr,
1414	&sensor_dev_attr_in6_alarm.dev_attr.attr,
1415	&sensor_dev_attr_in7_alarm.dev_attr.attr,
1416	NULL
1417};
1418
1419static const struct attribute_group lm85_group_in567 = {
1420	.attrs = lm85_attributes_in567,
1421};
1422
1423static void lm85_init_client(struct i2c_client *client)
1424{
1425	int value;
1426
1427	/* Start monitoring if needed */
1428	value = lm85_read_value(client, LM85_REG_CONFIG);
1429	if (!(value & 0x01)) {
1430		dev_info(&client->dev, "Starting monitoring\n");
1431		lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
1432	}
1433
1434	/* Warn about unusual configuration bits */
1435	if (value & 0x02)
1436		dev_warn(&client->dev, "Device configuration is locked\n");
1437	if (!(value & 0x04))
1438		dev_warn(&client->dev, "Device is not ready\n");
1439}
1440
1441static int lm85_is_fake(struct i2c_client *client)
1442{
1443	/*
1444	 * Differenciate between real LM96000 and Winbond WPCD377I. The latter
1445	 * emulate the former except that it has no hardware monitoring function
1446	 * so the readings are always 0.
1447	 */
1448	int i;
1449	u8 in_temp, fan;
1450
1451	for (i = 0; i < 8; i++) {
1452		in_temp = i2c_smbus_read_byte_data(client, 0x20 + i);
1453		fan = i2c_smbus_read_byte_data(client, 0x28 + i);
1454		if (in_temp != 0x00 || fan != 0xff)
1455			return 0;
1456	}
1457
1458	return 1;
1459}
1460
1461/* Return 0 if detection is successful, -ENODEV otherwise */
1462static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info)
1463{
1464	struct i2c_adapter *adapter = client->adapter;
1465	int address = client->addr;
1466	const char *type_name = NULL;
1467	int company, verstep;
1468
1469	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
1470		/* We need to be able to do byte I/O */
1471		return -ENODEV;
1472	}
1473
1474	/* Determine the chip type */
1475	company = lm85_read_value(client, LM85_REG_COMPANY);
1476	verstep = lm85_read_value(client, LM85_REG_VERSTEP);
1477
1478	dev_dbg(&adapter->dev,
1479		"Detecting device at 0x%02x with COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
1480		address, company, verstep);
1481
 
 
 
 
 
 
 
 
 
 
1482	if (company == LM85_COMPANY_NATIONAL) {
1483		switch (verstep) {
1484		case LM85_VERSTEP_LM85C:
1485			type_name = "lm85c";
1486			break;
1487		case LM85_VERSTEP_LM85B:
1488			type_name = "lm85b";
1489			break;
1490		case LM85_VERSTEP_LM96000_1:
1491		case LM85_VERSTEP_LM96000_2:
1492			/* Check for Winbond WPCD377I */
1493			if (lm85_is_fake(client)) {
1494				dev_dbg(&adapter->dev,
1495					"Found Winbond WPCD377I, ignoring\n");
1496				return -ENODEV;
1497			}
1498			type_name = "lm85";
1499			break;
1500		}
1501	} else if (company == LM85_COMPANY_ANALOG_DEV) {
1502		switch (verstep) {
1503		case LM85_VERSTEP_ADM1027:
1504			type_name = "adm1027";
1505			break;
1506		case LM85_VERSTEP_ADT7463:
1507		case LM85_VERSTEP_ADT7463C:
1508			type_name = "adt7463";
1509			break;
1510		case LM85_VERSTEP_ADT7468_1:
1511		case LM85_VERSTEP_ADT7468_2:
1512			type_name = "adt7468";
1513			break;
1514		}
1515	} else if (company == LM85_COMPANY_SMSC) {
1516		switch (verstep) {
1517		case LM85_VERSTEP_EMC6D100_A0:
1518		case LM85_VERSTEP_EMC6D100_A1:
1519			/* Note: we can't tell a '100 from a '101 */
1520			type_name = "emc6d100";
1521			break;
1522		case LM85_VERSTEP_EMC6D102:
1523			type_name = "emc6d102";
1524			break;
1525		case LM85_VERSTEP_EMC6D103_A0:
1526		case LM85_VERSTEP_EMC6D103_A1:
1527			type_name = "emc6d103";
1528			break;
1529		case LM85_VERSTEP_EMC6D103S:
1530			type_name = "emc6d103s";
1531			break;
1532		}
 
 
 
 
1533	}
1534
1535	if (!type_name)
1536		return -ENODEV;
1537
1538	strlcpy(info->type, type_name, I2C_NAME_SIZE);
1539
1540	return 0;
1541}
1542
1543static int lm85_probe(struct i2c_client *client, const struct i2c_device_id *id)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1544{
1545	struct device *dev = &client->dev;
1546	struct device *hwmon_dev;
1547	struct lm85_data *data;
1548	int idx = 0;
1549
1550	data = devm_kzalloc(dev, sizeof(struct lm85_data), GFP_KERNEL);
1551	if (!data)
1552		return -ENOMEM;
1553
1554	data->client = client;
1555	data->type = id->driver_data;
1556	mutex_init(&data->update_lock);
1557
1558	/* Fill in the chip specific driver values */
1559	switch (data->type) {
1560	case adm1027:
1561	case adt7463:
1562	case adt7468:
1563	case emc6d100:
1564	case emc6d102:
1565	case emc6d103:
1566	case emc6d103s:
1567		data->freq_map = adm1027_freq_map;
1568		break;
1569	default:
1570		data->freq_map = lm85_freq_map;
1571	}
1572
1573	/* Set the VRM version */
1574	data->vrm = vid_which_vrm();
1575
1576	/* Initialize the LM85 chip */
1577	lm85_init_client(client);
1578
1579	/* sysfs hooks */
1580	data->groups[idx++] = &lm85_group;
 
 
1581
1582	/* minctl and temp_off exist on all chips except emc6d103s */
1583	if (data->type != emc6d103s) {
1584		data->groups[idx++] = &lm85_group_minctl;
1585		data->groups[idx++] = &lm85_group_temp_off;
 
 
 
 
 
1586	}
1587
1588	/*
1589	 * The ADT7463/68 have an optional VRM 10 mode where pin 21 is used
1590	 * as a sixth digital VID input rather than an analog input.
1591	 */
1592	if (data->type == adt7463 || data->type == adt7468) {
1593		u8 vid = lm85_read_value(client, LM85_REG_VID);
1594		if (vid & 0x80)
1595			data->has_vid5 = true;
1596	}
1597
1598	if (!data->has_vid5)
1599		data->groups[idx++] = &lm85_group_in4;
 
 
1600
1601	/* The EMC6D100 has 3 additional voltage inputs */
1602	if (data->type == emc6d100)
1603		data->groups[idx++] = &lm85_group_in567;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1604
1605	hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
1606							   data, data->groups);
1607	return PTR_ERR_OR_ZERO(hwmon_dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1608}
1609
1610static const struct i2c_device_id lm85_id[] = {
1611	{ "adm1027", adm1027 },
1612	{ "adt7463", adt7463 },
1613	{ "adt7468", adt7468 },
1614	{ "lm85", lm85 },
1615	{ "lm85b", lm85 },
1616	{ "lm85c", lm85 },
1617	{ "emc6d100", emc6d100 },
1618	{ "emc6d101", emc6d100 },
1619	{ "emc6d102", emc6d102 },
1620	{ "emc6d103", emc6d103 },
1621	{ "emc6d103s", emc6d103s },
1622	{ }
1623};
1624MODULE_DEVICE_TABLE(i2c, lm85_id);
1625
1626static struct i2c_driver lm85_driver = {
1627	.class		= I2C_CLASS_HWMON,
1628	.driver = {
1629		.name   = "lm85",
1630	},
1631	.probe		= lm85_probe,
1632	.id_table	= lm85_id,
1633	.detect		= lm85_detect,
1634	.address_list	= normal_i2c,
1635};
1636
1637module_i2c_driver(lm85_driver);
 
 
 
1638
1639MODULE_LICENSE("GPL");
1640MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
1641	"Margit Schubert-While <margitsw@t-online.de>, "
1642	"Justin Thiessen <jthiessen@penguincomputing.com>");
1643MODULE_DESCRIPTION("LM85-B, LM85-C driver");