Loading...
1/*
2 lm85.c - Part of lm_sensors, Linux kernel modules for hardware
3 monitoring
4 Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
5 Copyright (c) 2002, 2003 Philip Pokorny <ppokorny@penguincomputing.com>
6 Copyright (c) 2003 Margit Schubert-While <margitsw@t-online.de>
7 Copyright (c) 2004 Justin Thiessen <jthiessen@penguincomputing.com>
8 Copyright (C) 2007--2009 Jean Delvare <khali@linux-fr.org>
9
10 Chip details at <http://www.national.com/ds/LM/LM85.pdf>
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25*/
26
27#include <linux/module.h>
28#include <linux/init.h>
29#include <linux/slab.h>
30#include <linux/jiffies.h>
31#include <linux/i2c.h>
32#include <linux/hwmon.h>
33#include <linux/hwmon-vid.h>
34#include <linux/hwmon-sysfs.h>
35#include <linux/err.h>
36#include <linux/mutex.h>
37
38/* Addresses to scan */
39static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
40
41enum chips {
42 any_chip, lm85b, lm85c,
43 adm1027, adt7463, adt7468,
44 emc6d100, emc6d102, emc6d103, emc6d103s
45};
46
47/* The LM85 registers */
48
49#define LM85_REG_IN(nr) (0x20 + (nr))
50#define LM85_REG_IN_MIN(nr) (0x44 + (nr) * 2)
51#define LM85_REG_IN_MAX(nr) (0x45 + (nr) * 2)
52
53#define LM85_REG_TEMP(nr) (0x25 + (nr))
54#define LM85_REG_TEMP_MIN(nr) (0x4e + (nr) * 2)
55#define LM85_REG_TEMP_MAX(nr) (0x4f + (nr) * 2)
56
57/* Fan speeds are LSB, MSB (2 bytes) */
58#define LM85_REG_FAN(nr) (0x28 + (nr) * 2)
59#define LM85_REG_FAN_MIN(nr) (0x54 + (nr) * 2)
60
61#define LM85_REG_PWM(nr) (0x30 + (nr))
62
63#define LM85_REG_COMPANY 0x3e
64#define LM85_REG_VERSTEP 0x3f
65
66#define ADT7468_REG_CFG5 0x7c
67#define ADT7468_OFF64 (1 << 0)
68#define ADT7468_HFPWM (1 << 1)
69#define IS_ADT7468_OFF64(data) \
70 ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64))
71#define IS_ADT7468_HFPWM(data) \
72 ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_HFPWM))
73
74/* These are the recognized values for the above regs */
75#define LM85_COMPANY_NATIONAL 0x01
76#define LM85_COMPANY_ANALOG_DEV 0x41
77#define LM85_COMPANY_SMSC 0x5c
78#define LM85_VERSTEP_VMASK 0xf0
79#define LM85_VERSTEP_GENERIC 0x60
80#define LM85_VERSTEP_GENERIC2 0x70
81#define LM85_VERSTEP_LM85C 0x60
82#define LM85_VERSTEP_LM85B 0x62
83#define LM85_VERSTEP_LM96000_1 0x68
84#define LM85_VERSTEP_LM96000_2 0x69
85#define LM85_VERSTEP_ADM1027 0x60
86#define LM85_VERSTEP_ADT7463 0x62
87#define LM85_VERSTEP_ADT7463C 0x6A
88#define LM85_VERSTEP_ADT7468_1 0x71
89#define LM85_VERSTEP_ADT7468_2 0x72
90#define LM85_VERSTEP_EMC6D100_A0 0x60
91#define LM85_VERSTEP_EMC6D100_A1 0x61
92#define LM85_VERSTEP_EMC6D102 0x65
93#define LM85_VERSTEP_EMC6D103_A0 0x68
94#define LM85_VERSTEP_EMC6D103_A1 0x69
95#define LM85_VERSTEP_EMC6D103S 0x6A /* Also known as EMC6D103:A2 */
96
97#define LM85_REG_CONFIG 0x40
98
99#define LM85_REG_ALARM1 0x41
100#define LM85_REG_ALARM2 0x42
101
102#define LM85_REG_VID 0x43
103
104/* Automated FAN control */
105#define LM85_REG_AFAN_CONFIG(nr) (0x5c + (nr))
106#define LM85_REG_AFAN_RANGE(nr) (0x5f + (nr))
107#define LM85_REG_AFAN_SPIKE1 0x62
108#define LM85_REG_AFAN_MINPWM(nr) (0x64 + (nr))
109#define LM85_REG_AFAN_LIMIT(nr) (0x67 + (nr))
110#define LM85_REG_AFAN_CRITICAL(nr) (0x6a + (nr))
111#define LM85_REG_AFAN_HYST1 0x6d
112#define LM85_REG_AFAN_HYST2 0x6e
113
114#define ADM1027_REG_EXTEND_ADC1 0x76
115#define ADM1027_REG_EXTEND_ADC2 0x77
116
117#define EMC6D100_REG_ALARM3 0x7d
118/* IN5, IN6 and IN7 */
119#define EMC6D100_REG_IN(nr) (0x70 + ((nr) - 5))
120#define EMC6D100_REG_IN_MIN(nr) (0x73 + ((nr) - 5) * 2)
121#define EMC6D100_REG_IN_MAX(nr) (0x74 + ((nr) - 5) * 2)
122#define EMC6D102_REG_EXTEND_ADC1 0x85
123#define EMC6D102_REG_EXTEND_ADC2 0x86
124#define EMC6D102_REG_EXTEND_ADC3 0x87
125#define EMC6D102_REG_EXTEND_ADC4 0x88
126
127
128/* Conversions. Rounding and limit checking is only done on the TO_REG
129 variants. Note that you should be a bit careful with which arguments
130 these macros are called: arguments may be evaluated more than once.
131 */
132
133/* IN are scaled according to built-in resistors */
134static const int lm85_scaling[] = { /* .001 Volts */
135 2500, 2250, 3300, 5000, 12000,
136 3300, 1500, 1800 /*EMC6D100*/
137};
138#define SCALE(val, from, to) (((val) * (to) + ((from) / 2)) / (from))
139
140#define INS_TO_REG(n, val) \
141 SENSORS_LIMIT(SCALE(val, lm85_scaling[n], 192), 0, 255)
142
143#define INSEXT_FROM_REG(n, val, ext) \
144 SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
145
146#define INS_FROM_REG(n, val) SCALE((val), 192, lm85_scaling[n])
147
148/* FAN speed is measured using 90kHz clock */
149static inline u16 FAN_TO_REG(unsigned long val)
150{
151 if (!val)
152 return 0xffff;
153 return SENSORS_LIMIT(5400000 / val, 1, 0xfffe);
154}
155#define FAN_FROM_REG(val) ((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
156 5400000 / (val))
157
158/* Temperature is reported in .001 degC increments */
159#define TEMP_TO_REG(val) \
160 SENSORS_LIMIT(SCALE(val, 1000, 1), -127, 127)
161#define TEMPEXT_FROM_REG(val, ext) \
162 SCALE(((val) << 4) + (ext), 16, 1000)
163#define TEMP_FROM_REG(val) ((val) * 1000)
164
165#define PWM_TO_REG(val) SENSORS_LIMIT(val, 0, 255)
166#define PWM_FROM_REG(val) (val)
167
168
169/* ZONEs have the following parameters:
170 * Limit (low) temp, 1. degC
171 * Hysteresis (below limit), 1. degC (0-15)
172 * Range of speed control, .1 degC (2-80)
173 * Critical (high) temp, 1. degC
174 *
175 * FAN PWMs have the following parameters:
176 * Reference Zone, 1, 2, 3, etc.
177 * Spinup time, .05 sec
178 * PWM value at limit/low temp, 1 count
179 * PWM Frequency, 1. Hz
180 * PWM is Min or OFF below limit, flag
181 * Invert PWM output, flag
182 *
183 * Some chips filter the temp, others the fan.
184 * Filter constant (or disabled) .1 seconds
185 */
186
187/* These are the zone temperature range encodings in .001 degree C */
188static const int lm85_range_map[] = {
189 2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
190 13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
191};
192
193static int RANGE_TO_REG(int range)
194{
195 int i;
196
197 /* Find the closest match */
198 for (i = 0; i < 15; ++i) {
199 if (range <= (lm85_range_map[i] + lm85_range_map[i + 1]) / 2)
200 break;
201 }
202
203 return i;
204}
205#define RANGE_FROM_REG(val) lm85_range_map[(val) & 0x0f]
206
207/* These are the PWM frequency encodings */
208static const int lm85_freq_map[8] = { /* 1 Hz */
209 10, 15, 23, 30, 38, 47, 61, 94
210};
211static const int adm1027_freq_map[8] = { /* 1 Hz */
212 11, 15, 22, 29, 35, 44, 59, 88
213};
214
215static int FREQ_TO_REG(const int *map, int freq)
216{
217 int i;
218
219 /* Find the closest match */
220 for (i = 0; i < 7; ++i)
221 if (freq <= (map[i] + map[i + 1]) / 2)
222 break;
223 return i;
224}
225
226static int FREQ_FROM_REG(const int *map, u8 reg)
227{
228 return map[reg & 0x07];
229}
230
231/* Since we can't use strings, I'm abusing these numbers
232 * to stand in for the following meanings:
233 * 1 -- PWM responds to Zone 1
234 * 2 -- PWM responds to Zone 2
235 * 3 -- PWM responds to Zone 3
236 * 23 -- PWM responds to the higher temp of Zone 2 or 3
237 * 123 -- PWM responds to highest of Zone 1, 2, or 3
238 * 0 -- PWM is always at 0% (ie, off)
239 * -1 -- PWM is always at 100%
240 * -2 -- PWM responds to manual control
241 */
242
243static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
244#define ZONE_FROM_REG(val) lm85_zone_map[(val) >> 5]
245
246static int ZONE_TO_REG(int zone)
247{
248 int i;
249
250 for (i = 0; i <= 7; ++i)
251 if (zone == lm85_zone_map[i])
252 break;
253 if (i > 7) /* Not found. */
254 i = 3; /* Always 100% */
255 return i << 5;
256}
257
258#define HYST_TO_REG(val) SENSORS_LIMIT(((val) + 500) / 1000, 0, 15)
259#define HYST_FROM_REG(val) ((val) * 1000)
260
261/* Chip sampling rates
262 *
263 * Some sensors are not updated more frequently than once per second
264 * so it doesn't make sense to read them more often than that.
265 * We cache the results and return the saved data if the driver
266 * is called again before a second has elapsed.
267 *
268 * Also, there is significant configuration data for this chip
269 * given the automatic PWM fan control that is possible. There
270 * are about 47 bytes of config data to only 22 bytes of actual
271 * readings. So, we keep the config data up to date in the cache
272 * when it is written and only sample it once every 1 *minute*
273 */
274#define LM85_DATA_INTERVAL (HZ + HZ / 2)
275#define LM85_CONFIG_INTERVAL (1 * 60 * HZ)
276
277/* LM85 can automatically adjust fan speeds based on temperature
278 * This structure encapsulates an entire Zone config. There are
279 * three zones (one for each temperature input) on the lm85
280 */
281struct lm85_zone {
282 s8 limit; /* Low temp limit */
283 u8 hyst; /* Low limit hysteresis. (0-15) */
284 u8 range; /* Temp range, encoded */
285 s8 critical; /* "All fans ON" temp limit */
286 u8 max_desired; /* Actual "max" temperature specified. Preserved
287 * to prevent "drift" as other autofan control
288 * values change.
289 */
290};
291
292struct lm85_autofan {
293 u8 config; /* Register value */
294 u8 min_pwm; /* Minimum PWM value, encoded */
295 u8 min_off; /* Min PWM or OFF below "limit", flag */
296};
297
298/* For each registered chip, we need to keep some data in memory.
299 The structure is dynamically allocated. */
300struct lm85_data {
301 struct device *hwmon_dev;
302 const int *freq_map;
303 enum chips type;
304
305 bool has_vid5; /* true if VID5 is configured for ADT7463 or ADT7468 */
306
307 struct mutex update_lock;
308 int valid; /* !=0 if following fields are valid */
309 unsigned long last_reading; /* In jiffies */
310 unsigned long last_config; /* In jiffies */
311
312 u8 in[8]; /* Register value */
313 u8 in_max[8]; /* Register value */
314 u8 in_min[8]; /* Register value */
315 s8 temp[3]; /* Register value */
316 s8 temp_min[3]; /* Register value */
317 s8 temp_max[3]; /* Register value */
318 u16 fan[4]; /* Register value */
319 u16 fan_min[4]; /* Register value */
320 u8 pwm[3]; /* Register value */
321 u8 pwm_freq[3]; /* Register encoding */
322 u8 temp_ext[3]; /* Decoded values */
323 u8 in_ext[8]; /* Decoded values */
324 u8 vid; /* Register value */
325 u8 vrm; /* VRM version */
326 u32 alarms; /* Register encoding, combined */
327 u8 cfg5; /* Config Register 5 on ADT7468 */
328 struct lm85_autofan autofan[3];
329 struct lm85_zone zone[3];
330};
331
332static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info);
333static int lm85_probe(struct i2c_client *client,
334 const struct i2c_device_id *id);
335static int lm85_remove(struct i2c_client *client);
336
337static int lm85_read_value(struct i2c_client *client, u8 reg);
338static void lm85_write_value(struct i2c_client *client, u8 reg, int value);
339static struct lm85_data *lm85_update_device(struct device *dev);
340
341
342static const struct i2c_device_id lm85_id[] = {
343 { "adm1027", adm1027 },
344 { "adt7463", adt7463 },
345 { "adt7468", adt7468 },
346 { "lm85", any_chip },
347 { "lm85b", lm85b },
348 { "lm85c", lm85c },
349 { "emc6d100", emc6d100 },
350 { "emc6d101", emc6d100 },
351 { "emc6d102", emc6d102 },
352 { "emc6d103", emc6d103 },
353 { "emc6d103s", emc6d103s },
354 { }
355};
356MODULE_DEVICE_TABLE(i2c, lm85_id);
357
358static struct i2c_driver lm85_driver = {
359 .class = I2C_CLASS_HWMON,
360 .driver = {
361 .name = "lm85",
362 },
363 .probe = lm85_probe,
364 .remove = lm85_remove,
365 .id_table = lm85_id,
366 .detect = lm85_detect,
367 .address_list = normal_i2c,
368};
369
370
371/* 4 Fans */
372static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
373 char *buf)
374{
375 int nr = to_sensor_dev_attr(attr)->index;
376 struct lm85_data *data = lm85_update_device(dev);
377 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
378}
379
380static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
381 char *buf)
382{
383 int nr = to_sensor_dev_attr(attr)->index;
384 struct lm85_data *data = lm85_update_device(dev);
385 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
386}
387
388static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
389 const char *buf, size_t count)
390{
391 int nr = to_sensor_dev_attr(attr)->index;
392 struct i2c_client *client = to_i2c_client(dev);
393 struct lm85_data *data = i2c_get_clientdata(client);
394 unsigned long val = simple_strtoul(buf, NULL, 10);
395
396 mutex_lock(&data->update_lock);
397 data->fan_min[nr] = FAN_TO_REG(val);
398 lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
399 mutex_unlock(&data->update_lock);
400 return count;
401}
402
403#define show_fan_offset(offset) \
404static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
405 show_fan, NULL, offset - 1); \
406static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
407 show_fan_min, set_fan_min, offset - 1)
408
409show_fan_offset(1);
410show_fan_offset(2);
411show_fan_offset(3);
412show_fan_offset(4);
413
414/* vid, vrm, alarms */
415
416static ssize_t show_vid_reg(struct device *dev, struct device_attribute *attr,
417 char *buf)
418{
419 struct lm85_data *data = lm85_update_device(dev);
420 int vid;
421
422 if (data->has_vid5) {
423 /* 6-pin VID (VRM 10) */
424 vid = vid_from_reg(data->vid & 0x3f, data->vrm);
425 } else {
426 /* 5-pin VID (VRM 9) */
427 vid = vid_from_reg(data->vid & 0x1f, data->vrm);
428 }
429
430 return sprintf(buf, "%d\n", vid);
431}
432
433static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL);
434
435static ssize_t show_vrm_reg(struct device *dev, struct device_attribute *attr,
436 char *buf)
437{
438 struct lm85_data *data = dev_get_drvdata(dev);
439 return sprintf(buf, "%ld\n", (long) data->vrm);
440}
441
442static ssize_t store_vrm_reg(struct device *dev, struct device_attribute *attr,
443 const char *buf, size_t count)
444{
445 struct lm85_data *data = dev_get_drvdata(dev);
446 data->vrm = simple_strtoul(buf, NULL, 10);
447 return count;
448}
449
450static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg);
451
452static ssize_t show_alarms_reg(struct device *dev, struct device_attribute
453 *attr, char *buf)
454{
455 struct lm85_data *data = lm85_update_device(dev);
456 return sprintf(buf, "%u\n", data->alarms);
457}
458
459static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL);
460
461static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
462 char *buf)
463{
464 int nr = to_sensor_dev_attr(attr)->index;
465 struct lm85_data *data = lm85_update_device(dev);
466 return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
467}
468
469static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
470static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
471static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
472static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
473static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
474static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 18);
475static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 16);
476static SENSOR_DEVICE_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 17);
477static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
478static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_alarm, NULL, 14);
479static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
480static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 6);
481static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 15);
482static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10);
483static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11);
484static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 12);
485static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 13);
486
487/* pwm */
488
489static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
490 char *buf)
491{
492 int nr = to_sensor_dev_attr(attr)->index;
493 struct lm85_data *data = lm85_update_device(dev);
494 return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
495}
496
497static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
498 const char *buf, size_t count)
499{
500 int nr = to_sensor_dev_attr(attr)->index;
501 struct i2c_client *client = to_i2c_client(dev);
502 struct lm85_data *data = i2c_get_clientdata(client);
503 long val = simple_strtol(buf, NULL, 10);
504
505 mutex_lock(&data->update_lock);
506 data->pwm[nr] = PWM_TO_REG(val);
507 lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
508 mutex_unlock(&data->update_lock);
509 return count;
510}
511
512static ssize_t show_pwm_enable(struct device *dev, struct device_attribute
513 *attr, char *buf)
514{
515 int nr = to_sensor_dev_attr(attr)->index;
516 struct lm85_data *data = lm85_update_device(dev);
517 int pwm_zone, enable;
518
519 pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
520 switch (pwm_zone) {
521 case -1: /* PWM is always at 100% */
522 enable = 0;
523 break;
524 case 0: /* PWM is always at 0% */
525 case -2: /* PWM responds to manual control */
526 enable = 1;
527 break;
528 default: /* PWM in automatic mode */
529 enable = 2;
530 }
531 return sprintf(buf, "%d\n", enable);
532}
533
534static ssize_t set_pwm_enable(struct device *dev, struct device_attribute
535 *attr, const char *buf, size_t count)
536{
537 int nr = to_sensor_dev_attr(attr)->index;
538 struct i2c_client *client = to_i2c_client(dev);
539 struct lm85_data *data = i2c_get_clientdata(client);
540 long val = simple_strtol(buf, NULL, 10);
541 u8 config;
542
543 switch (val) {
544 case 0:
545 config = 3;
546 break;
547 case 1:
548 config = 7;
549 break;
550 case 2:
551 /* Here we have to choose arbitrarily one of the 5 possible
552 configurations; I go for the safest */
553 config = 6;
554 break;
555 default:
556 return -EINVAL;
557 }
558
559 mutex_lock(&data->update_lock);
560 data->autofan[nr].config = lm85_read_value(client,
561 LM85_REG_AFAN_CONFIG(nr));
562 data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
563 | (config << 5);
564 lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
565 data->autofan[nr].config);
566 mutex_unlock(&data->update_lock);
567 return count;
568}
569
570static ssize_t show_pwm_freq(struct device *dev,
571 struct device_attribute *attr, char *buf)
572{
573 int nr = to_sensor_dev_attr(attr)->index;
574 struct lm85_data *data = lm85_update_device(dev);
575 int freq;
576
577 if (IS_ADT7468_HFPWM(data))
578 freq = 22500;
579 else
580 freq = FREQ_FROM_REG(data->freq_map, data->pwm_freq[nr]);
581
582 return sprintf(buf, "%d\n", freq);
583}
584
585static ssize_t set_pwm_freq(struct device *dev,
586 struct device_attribute *attr, const char *buf, size_t count)
587{
588 int nr = to_sensor_dev_attr(attr)->index;
589 struct i2c_client *client = to_i2c_client(dev);
590 struct lm85_data *data = i2c_get_clientdata(client);
591 long val = simple_strtol(buf, NULL, 10);
592
593 mutex_lock(&data->update_lock);
594 /* The ADT7468 has a special high-frequency PWM output mode,
595 * where all PWM outputs are driven by a 22.5 kHz clock.
596 * This might confuse the user, but there's not much we can do. */
597 if (data->type == adt7468 && val >= 11300) { /* High freq. mode */
598 data->cfg5 &= ~ADT7468_HFPWM;
599 lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
600 } else { /* Low freq. mode */
601 data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map, val);
602 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
603 (data->zone[nr].range << 4)
604 | data->pwm_freq[nr]);
605 if (data->type == adt7468) {
606 data->cfg5 |= ADT7468_HFPWM;
607 lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
608 }
609 }
610 mutex_unlock(&data->update_lock);
611 return count;
612}
613
614#define show_pwm_reg(offset) \
615static SENSOR_DEVICE_ATTR(pwm##offset, S_IRUGO | S_IWUSR, \
616 show_pwm, set_pwm, offset - 1); \
617static SENSOR_DEVICE_ATTR(pwm##offset##_enable, S_IRUGO | S_IWUSR, \
618 show_pwm_enable, set_pwm_enable, offset - 1); \
619static SENSOR_DEVICE_ATTR(pwm##offset##_freq, S_IRUGO | S_IWUSR, \
620 show_pwm_freq, set_pwm_freq, offset - 1)
621
622show_pwm_reg(1);
623show_pwm_reg(2);
624show_pwm_reg(3);
625
626/* Voltages */
627
628static ssize_t show_in(struct device *dev, struct device_attribute *attr,
629 char *buf)
630{
631 int nr = to_sensor_dev_attr(attr)->index;
632 struct lm85_data *data = lm85_update_device(dev);
633 return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
634 data->in_ext[nr]));
635}
636
637static ssize_t show_in_min(struct device *dev, struct device_attribute *attr,
638 char *buf)
639{
640 int nr = to_sensor_dev_attr(attr)->index;
641 struct lm85_data *data = lm85_update_device(dev);
642 return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
643}
644
645static ssize_t set_in_min(struct device *dev, struct device_attribute *attr,
646 const char *buf, size_t count)
647{
648 int nr = to_sensor_dev_attr(attr)->index;
649 struct i2c_client *client = to_i2c_client(dev);
650 struct lm85_data *data = i2c_get_clientdata(client);
651 long val = simple_strtol(buf, NULL, 10);
652
653 mutex_lock(&data->update_lock);
654 data->in_min[nr] = INS_TO_REG(nr, val);
655 lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
656 mutex_unlock(&data->update_lock);
657 return count;
658}
659
660static ssize_t show_in_max(struct device *dev, struct device_attribute *attr,
661 char *buf)
662{
663 int nr = to_sensor_dev_attr(attr)->index;
664 struct lm85_data *data = lm85_update_device(dev);
665 return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
666}
667
668static ssize_t set_in_max(struct device *dev, struct device_attribute *attr,
669 const char *buf, size_t count)
670{
671 int nr = to_sensor_dev_attr(attr)->index;
672 struct i2c_client *client = to_i2c_client(dev);
673 struct lm85_data *data = i2c_get_clientdata(client);
674 long val = simple_strtol(buf, NULL, 10);
675
676 mutex_lock(&data->update_lock);
677 data->in_max[nr] = INS_TO_REG(nr, val);
678 lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
679 mutex_unlock(&data->update_lock);
680 return count;
681}
682
683#define show_in_reg(offset) \
684static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
685 show_in, NULL, offset); \
686static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
687 show_in_min, set_in_min, offset); \
688static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
689 show_in_max, set_in_max, offset)
690
691show_in_reg(0);
692show_in_reg(1);
693show_in_reg(2);
694show_in_reg(3);
695show_in_reg(4);
696show_in_reg(5);
697show_in_reg(6);
698show_in_reg(7);
699
700/* Temps */
701
702static ssize_t show_temp(struct device *dev, struct device_attribute *attr,
703 char *buf)
704{
705 int nr = to_sensor_dev_attr(attr)->index;
706 struct lm85_data *data = lm85_update_device(dev);
707 return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
708 data->temp_ext[nr]));
709}
710
711static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr,
712 char *buf)
713{
714 int nr = to_sensor_dev_attr(attr)->index;
715 struct lm85_data *data = lm85_update_device(dev);
716 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
717}
718
719static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
720 const char *buf, size_t count)
721{
722 int nr = to_sensor_dev_attr(attr)->index;
723 struct i2c_client *client = to_i2c_client(dev);
724 struct lm85_data *data = i2c_get_clientdata(client);
725 long val = simple_strtol(buf, NULL, 10);
726
727 if (IS_ADT7468_OFF64(data))
728 val += 64;
729
730 mutex_lock(&data->update_lock);
731 data->temp_min[nr] = TEMP_TO_REG(val);
732 lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
733 mutex_unlock(&data->update_lock);
734 return count;
735}
736
737static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr,
738 char *buf)
739{
740 int nr = to_sensor_dev_attr(attr)->index;
741 struct lm85_data *data = lm85_update_device(dev);
742 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
743}
744
745static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
746 const char *buf, size_t count)
747{
748 int nr = to_sensor_dev_attr(attr)->index;
749 struct i2c_client *client = to_i2c_client(dev);
750 struct lm85_data *data = i2c_get_clientdata(client);
751 long val = simple_strtol(buf, NULL, 10);
752
753 if (IS_ADT7468_OFF64(data))
754 val += 64;
755
756 mutex_lock(&data->update_lock);
757 data->temp_max[nr] = TEMP_TO_REG(val);
758 lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
759 mutex_unlock(&data->update_lock);
760 return count;
761}
762
763#define show_temp_reg(offset) \
764static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \
765 show_temp, NULL, offset - 1); \
766static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR, \
767 show_temp_min, set_temp_min, offset - 1); \
768static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \
769 show_temp_max, set_temp_max, offset - 1);
770
771show_temp_reg(1);
772show_temp_reg(2);
773show_temp_reg(3);
774
775
776/* Automatic PWM control */
777
778static ssize_t show_pwm_auto_channels(struct device *dev,
779 struct device_attribute *attr, char *buf)
780{
781 int nr = to_sensor_dev_attr(attr)->index;
782 struct lm85_data *data = lm85_update_device(dev);
783 return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
784}
785
786static ssize_t set_pwm_auto_channels(struct device *dev,
787 struct device_attribute *attr, const char *buf, size_t count)
788{
789 int nr = to_sensor_dev_attr(attr)->index;
790 struct i2c_client *client = to_i2c_client(dev);
791 struct lm85_data *data = i2c_get_clientdata(client);
792 long val = simple_strtol(buf, NULL, 10);
793
794 mutex_lock(&data->update_lock);
795 data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
796 | ZONE_TO_REG(val);
797 lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
798 data->autofan[nr].config);
799 mutex_unlock(&data->update_lock);
800 return count;
801}
802
803static ssize_t show_pwm_auto_pwm_min(struct device *dev,
804 struct device_attribute *attr, char *buf)
805{
806 int nr = to_sensor_dev_attr(attr)->index;
807 struct lm85_data *data = lm85_update_device(dev);
808 return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
809}
810
811static ssize_t set_pwm_auto_pwm_min(struct device *dev,
812 struct device_attribute *attr, const char *buf, size_t count)
813{
814 int nr = to_sensor_dev_attr(attr)->index;
815 struct i2c_client *client = to_i2c_client(dev);
816 struct lm85_data *data = i2c_get_clientdata(client);
817 long val = simple_strtol(buf, NULL, 10);
818
819 mutex_lock(&data->update_lock);
820 data->autofan[nr].min_pwm = PWM_TO_REG(val);
821 lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
822 data->autofan[nr].min_pwm);
823 mutex_unlock(&data->update_lock);
824 return count;
825}
826
827static ssize_t show_pwm_auto_pwm_minctl(struct device *dev,
828 struct device_attribute *attr, char *buf)
829{
830 int nr = to_sensor_dev_attr(attr)->index;
831 struct lm85_data *data = lm85_update_device(dev);
832 return sprintf(buf, "%d\n", data->autofan[nr].min_off);
833}
834
835static ssize_t set_pwm_auto_pwm_minctl(struct device *dev,
836 struct device_attribute *attr, const char *buf, size_t count)
837{
838 int nr = to_sensor_dev_attr(attr)->index;
839 struct i2c_client *client = to_i2c_client(dev);
840 struct lm85_data *data = i2c_get_clientdata(client);
841 long val = simple_strtol(buf, NULL, 10);
842 u8 tmp;
843
844 mutex_lock(&data->update_lock);
845 data->autofan[nr].min_off = val;
846 tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
847 tmp &= ~(0x20 << nr);
848 if (data->autofan[nr].min_off)
849 tmp |= 0x20 << nr;
850 lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
851 mutex_unlock(&data->update_lock);
852 return count;
853}
854
855#define pwm_auto(offset) \
856static SENSOR_DEVICE_ATTR(pwm##offset##_auto_channels, \
857 S_IRUGO | S_IWUSR, show_pwm_auto_channels, \
858 set_pwm_auto_channels, offset - 1); \
859static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_min, \
860 S_IRUGO | S_IWUSR, show_pwm_auto_pwm_min, \
861 set_pwm_auto_pwm_min, offset - 1); \
862static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_minctl, \
863 S_IRUGO | S_IWUSR, show_pwm_auto_pwm_minctl, \
864 set_pwm_auto_pwm_minctl, offset - 1)
865
866pwm_auto(1);
867pwm_auto(2);
868pwm_auto(3);
869
870/* Temperature settings for automatic PWM control */
871
872static ssize_t show_temp_auto_temp_off(struct device *dev,
873 struct device_attribute *attr, char *buf)
874{
875 int nr = to_sensor_dev_attr(attr)->index;
876 struct lm85_data *data = lm85_update_device(dev);
877 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
878 HYST_FROM_REG(data->zone[nr].hyst));
879}
880
881static ssize_t set_temp_auto_temp_off(struct device *dev,
882 struct device_attribute *attr, const char *buf, size_t count)
883{
884 int nr = to_sensor_dev_attr(attr)->index;
885 struct i2c_client *client = to_i2c_client(dev);
886 struct lm85_data *data = i2c_get_clientdata(client);
887 int min;
888 long val = simple_strtol(buf, NULL, 10);
889
890 mutex_lock(&data->update_lock);
891 min = TEMP_FROM_REG(data->zone[nr].limit);
892 data->zone[nr].hyst = HYST_TO_REG(min - val);
893 if (nr == 0 || nr == 1) {
894 lm85_write_value(client, LM85_REG_AFAN_HYST1,
895 (data->zone[0].hyst << 4)
896 | data->zone[1].hyst);
897 } else {
898 lm85_write_value(client, LM85_REG_AFAN_HYST2,
899 (data->zone[2].hyst << 4));
900 }
901 mutex_unlock(&data->update_lock);
902 return count;
903}
904
905static ssize_t show_temp_auto_temp_min(struct device *dev,
906 struct device_attribute *attr, char *buf)
907{
908 int nr = to_sensor_dev_attr(attr)->index;
909 struct lm85_data *data = lm85_update_device(dev);
910 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
911}
912
913static ssize_t set_temp_auto_temp_min(struct device *dev,
914 struct device_attribute *attr, const char *buf, size_t count)
915{
916 int nr = to_sensor_dev_attr(attr)->index;
917 struct i2c_client *client = to_i2c_client(dev);
918 struct lm85_data *data = i2c_get_clientdata(client);
919 long val = simple_strtol(buf, NULL, 10);
920
921 mutex_lock(&data->update_lock);
922 data->zone[nr].limit = TEMP_TO_REG(val);
923 lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
924 data->zone[nr].limit);
925
926/* Update temp_auto_max and temp_auto_range */
927 data->zone[nr].range = RANGE_TO_REG(
928 TEMP_FROM_REG(data->zone[nr].max_desired) -
929 TEMP_FROM_REG(data->zone[nr].limit));
930 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
931 ((data->zone[nr].range & 0x0f) << 4)
932 | (data->pwm_freq[nr] & 0x07));
933
934 mutex_unlock(&data->update_lock);
935 return count;
936}
937
938static ssize_t show_temp_auto_temp_max(struct device *dev,
939 struct device_attribute *attr, char *buf)
940{
941 int nr = to_sensor_dev_attr(attr)->index;
942 struct lm85_data *data = lm85_update_device(dev);
943 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
944 RANGE_FROM_REG(data->zone[nr].range));
945}
946
947static ssize_t set_temp_auto_temp_max(struct device *dev,
948 struct device_attribute *attr, const char *buf, size_t count)
949{
950 int nr = to_sensor_dev_attr(attr)->index;
951 struct i2c_client *client = to_i2c_client(dev);
952 struct lm85_data *data = i2c_get_clientdata(client);
953 int min;
954 long val = simple_strtol(buf, NULL, 10);
955
956 mutex_lock(&data->update_lock);
957 min = TEMP_FROM_REG(data->zone[nr].limit);
958 data->zone[nr].max_desired = TEMP_TO_REG(val);
959 data->zone[nr].range = RANGE_TO_REG(
960 val - min);
961 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
962 ((data->zone[nr].range & 0x0f) << 4)
963 | (data->pwm_freq[nr] & 0x07));
964 mutex_unlock(&data->update_lock);
965 return count;
966}
967
968static ssize_t show_temp_auto_temp_crit(struct device *dev,
969 struct device_attribute *attr, char *buf)
970{
971 int nr = to_sensor_dev_attr(attr)->index;
972 struct lm85_data *data = lm85_update_device(dev);
973 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
974}
975
976static ssize_t set_temp_auto_temp_crit(struct device *dev,
977 struct device_attribute *attr, const char *buf, size_t count)
978{
979 int nr = to_sensor_dev_attr(attr)->index;
980 struct i2c_client *client = to_i2c_client(dev);
981 struct lm85_data *data = i2c_get_clientdata(client);
982 long val = simple_strtol(buf, NULL, 10);
983
984 mutex_lock(&data->update_lock);
985 data->zone[nr].critical = TEMP_TO_REG(val);
986 lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
987 data->zone[nr].critical);
988 mutex_unlock(&data->update_lock);
989 return count;
990}
991
992#define temp_auto(offset) \
993static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_off, \
994 S_IRUGO | S_IWUSR, show_temp_auto_temp_off, \
995 set_temp_auto_temp_off, offset - 1); \
996static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_min, \
997 S_IRUGO | S_IWUSR, show_temp_auto_temp_min, \
998 set_temp_auto_temp_min, offset - 1); \
999static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_max, \
1000 S_IRUGO | S_IWUSR, show_temp_auto_temp_max, \
1001 set_temp_auto_temp_max, offset - 1); \
1002static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_crit, \
1003 S_IRUGO | S_IWUSR, show_temp_auto_temp_crit, \
1004 set_temp_auto_temp_crit, offset - 1);
1005
1006temp_auto(1);
1007temp_auto(2);
1008temp_auto(3);
1009
1010static struct attribute *lm85_attributes[] = {
1011 &sensor_dev_attr_fan1_input.dev_attr.attr,
1012 &sensor_dev_attr_fan2_input.dev_attr.attr,
1013 &sensor_dev_attr_fan3_input.dev_attr.attr,
1014 &sensor_dev_attr_fan4_input.dev_attr.attr,
1015 &sensor_dev_attr_fan1_min.dev_attr.attr,
1016 &sensor_dev_attr_fan2_min.dev_attr.attr,
1017 &sensor_dev_attr_fan3_min.dev_attr.attr,
1018 &sensor_dev_attr_fan4_min.dev_attr.attr,
1019 &sensor_dev_attr_fan1_alarm.dev_attr.attr,
1020 &sensor_dev_attr_fan2_alarm.dev_attr.attr,
1021 &sensor_dev_attr_fan3_alarm.dev_attr.attr,
1022 &sensor_dev_attr_fan4_alarm.dev_attr.attr,
1023
1024 &sensor_dev_attr_pwm1.dev_attr.attr,
1025 &sensor_dev_attr_pwm2.dev_attr.attr,
1026 &sensor_dev_attr_pwm3.dev_attr.attr,
1027 &sensor_dev_attr_pwm1_enable.dev_attr.attr,
1028 &sensor_dev_attr_pwm2_enable.dev_attr.attr,
1029 &sensor_dev_attr_pwm3_enable.dev_attr.attr,
1030 &sensor_dev_attr_pwm1_freq.dev_attr.attr,
1031 &sensor_dev_attr_pwm2_freq.dev_attr.attr,
1032 &sensor_dev_attr_pwm3_freq.dev_attr.attr,
1033
1034 &sensor_dev_attr_in0_input.dev_attr.attr,
1035 &sensor_dev_attr_in1_input.dev_attr.attr,
1036 &sensor_dev_attr_in2_input.dev_attr.attr,
1037 &sensor_dev_attr_in3_input.dev_attr.attr,
1038 &sensor_dev_attr_in0_min.dev_attr.attr,
1039 &sensor_dev_attr_in1_min.dev_attr.attr,
1040 &sensor_dev_attr_in2_min.dev_attr.attr,
1041 &sensor_dev_attr_in3_min.dev_attr.attr,
1042 &sensor_dev_attr_in0_max.dev_attr.attr,
1043 &sensor_dev_attr_in1_max.dev_attr.attr,
1044 &sensor_dev_attr_in2_max.dev_attr.attr,
1045 &sensor_dev_attr_in3_max.dev_attr.attr,
1046 &sensor_dev_attr_in0_alarm.dev_attr.attr,
1047 &sensor_dev_attr_in1_alarm.dev_attr.attr,
1048 &sensor_dev_attr_in2_alarm.dev_attr.attr,
1049 &sensor_dev_attr_in3_alarm.dev_attr.attr,
1050
1051 &sensor_dev_attr_temp1_input.dev_attr.attr,
1052 &sensor_dev_attr_temp2_input.dev_attr.attr,
1053 &sensor_dev_attr_temp3_input.dev_attr.attr,
1054 &sensor_dev_attr_temp1_min.dev_attr.attr,
1055 &sensor_dev_attr_temp2_min.dev_attr.attr,
1056 &sensor_dev_attr_temp3_min.dev_attr.attr,
1057 &sensor_dev_attr_temp1_max.dev_attr.attr,
1058 &sensor_dev_attr_temp2_max.dev_attr.attr,
1059 &sensor_dev_attr_temp3_max.dev_attr.attr,
1060 &sensor_dev_attr_temp1_alarm.dev_attr.attr,
1061 &sensor_dev_attr_temp2_alarm.dev_attr.attr,
1062 &sensor_dev_attr_temp3_alarm.dev_attr.attr,
1063 &sensor_dev_attr_temp1_fault.dev_attr.attr,
1064 &sensor_dev_attr_temp3_fault.dev_attr.attr,
1065
1066 &sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
1067 &sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
1068 &sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
1069 &sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
1070 &sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
1071 &sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
1072
1073 &sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
1074 &sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
1075 &sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
1076 &sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
1077 &sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
1078 &sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
1079 &sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
1080 &sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
1081 &sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
1082
1083 &dev_attr_vrm.attr,
1084 &dev_attr_cpu0_vid.attr,
1085 &dev_attr_alarms.attr,
1086 NULL
1087};
1088
1089static const struct attribute_group lm85_group = {
1090 .attrs = lm85_attributes,
1091};
1092
1093static struct attribute *lm85_attributes_minctl[] = {
1094 &sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
1095 &sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
1096 &sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
1097 NULL
1098};
1099
1100static const struct attribute_group lm85_group_minctl = {
1101 .attrs = lm85_attributes_minctl,
1102};
1103
1104static struct attribute *lm85_attributes_temp_off[] = {
1105 &sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
1106 &sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
1107 &sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
1108 NULL
1109};
1110
1111static const struct attribute_group lm85_group_temp_off = {
1112 .attrs = lm85_attributes_temp_off,
1113};
1114
1115static struct attribute *lm85_attributes_in4[] = {
1116 &sensor_dev_attr_in4_input.dev_attr.attr,
1117 &sensor_dev_attr_in4_min.dev_attr.attr,
1118 &sensor_dev_attr_in4_max.dev_attr.attr,
1119 &sensor_dev_attr_in4_alarm.dev_attr.attr,
1120 NULL
1121};
1122
1123static const struct attribute_group lm85_group_in4 = {
1124 .attrs = lm85_attributes_in4,
1125};
1126
1127static struct attribute *lm85_attributes_in567[] = {
1128 &sensor_dev_attr_in5_input.dev_attr.attr,
1129 &sensor_dev_attr_in6_input.dev_attr.attr,
1130 &sensor_dev_attr_in7_input.dev_attr.attr,
1131 &sensor_dev_attr_in5_min.dev_attr.attr,
1132 &sensor_dev_attr_in6_min.dev_attr.attr,
1133 &sensor_dev_attr_in7_min.dev_attr.attr,
1134 &sensor_dev_attr_in5_max.dev_attr.attr,
1135 &sensor_dev_attr_in6_max.dev_attr.attr,
1136 &sensor_dev_attr_in7_max.dev_attr.attr,
1137 &sensor_dev_attr_in5_alarm.dev_attr.attr,
1138 &sensor_dev_attr_in6_alarm.dev_attr.attr,
1139 &sensor_dev_attr_in7_alarm.dev_attr.attr,
1140 NULL
1141};
1142
1143static const struct attribute_group lm85_group_in567 = {
1144 .attrs = lm85_attributes_in567,
1145};
1146
1147static void lm85_init_client(struct i2c_client *client)
1148{
1149 int value;
1150
1151 /* Start monitoring if needed */
1152 value = lm85_read_value(client, LM85_REG_CONFIG);
1153 if (!(value & 0x01)) {
1154 dev_info(&client->dev, "Starting monitoring\n");
1155 lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
1156 }
1157
1158 /* Warn about unusual configuration bits */
1159 if (value & 0x02)
1160 dev_warn(&client->dev, "Device configuration is locked\n");
1161 if (!(value & 0x04))
1162 dev_warn(&client->dev, "Device is not ready\n");
1163}
1164
1165static int lm85_is_fake(struct i2c_client *client)
1166{
1167 /*
1168 * Differenciate between real LM96000 and Winbond WPCD377I. The latter
1169 * emulate the former except that it has no hardware monitoring function
1170 * so the readings are always 0.
1171 */
1172 int i;
1173 u8 in_temp, fan;
1174
1175 for (i = 0; i < 8; i++) {
1176 in_temp = i2c_smbus_read_byte_data(client, 0x20 + i);
1177 fan = i2c_smbus_read_byte_data(client, 0x28 + i);
1178 if (in_temp != 0x00 || fan != 0xff)
1179 return 0;
1180 }
1181
1182 return 1;
1183}
1184
1185/* Return 0 if detection is successful, -ENODEV otherwise */
1186static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info)
1187{
1188 struct i2c_adapter *adapter = client->adapter;
1189 int address = client->addr;
1190 const char *type_name;
1191 int company, verstep;
1192
1193 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
1194 /* We need to be able to do byte I/O */
1195 return -ENODEV;
1196 }
1197
1198 /* Determine the chip type */
1199 company = lm85_read_value(client, LM85_REG_COMPANY);
1200 verstep = lm85_read_value(client, LM85_REG_VERSTEP);
1201
1202 dev_dbg(&adapter->dev, "Detecting device at 0x%02x with "
1203 "COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
1204 address, company, verstep);
1205
1206 /* All supported chips have the version in common */
1207 if ((verstep & LM85_VERSTEP_VMASK) != LM85_VERSTEP_GENERIC &&
1208 (verstep & LM85_VERSTEP_VMASK) != LM85_VERSTEP_GENERIC2) {
1209 dev_dbg(&adapter->dev,
1210 "Autodetection failed: unsupported version\n");
1211 return -ENODEV;
1212 }
1213 type_name = "lm85";
1214
1215 /* Now, refine the detection */
1216 if (company == LM85_COMPANY_NATIONAL) {
1217 switch (verstep) {
1218 case LM85_VERSTEP_LM85C:
1219 type_name = "lm85c";
1220 break;
1221 case LM85_VERSTEP_LM85B:
1222 type_name = "lm85b";
1223 break;
1224 case LM85_VERSTEP_LM96000_1:
1225 case LM85_VERSTEP_LM96000_2:
1226 /* Check for Winbond WPCD377I */
1227 if (lm85_is_fake(client)) {
1228 dev_dbg(&adapter->dev,
1229 "Found Winbond WPCD377I, ignoring\n");
1230 return -ENODEV;
1231 }
1232 break;
1233 }
1234 } else if (company == LM85_COMPANY_ANALOG_DEV) {
1235 switch (verstep) {
1236 case LM85_VERSTEP_ADM1027:
1237 type_name = "adm1027";
1238 break;
1239 case LM85_VERSTEP_ADT7463:
1240 case LM85_VERSTEP_ADT7463C:
1241 type_name = "adt7463";
1242 break;
1243 case LM85_VERSTEP_ADT7468_1:
1244 case LM85_VERSTEP_ADT7468_2:
1245 type_name = "adt7468";
1246 break;
1247 }
1248 } else if (company == LM85_COMPANY_SMSC) {
1249 switch (verstep) {
1250 case LM85_VERSTEP_EMC6D100_A0:
1251 case LM85_VERSTEP_EMC6D100_A1:
1252 /* Note: we can't tell a '100 from a '101 */
1253 type_name = "emc6d100";
1254 break;
1255 case LM85_VERSTEP_EMC6D102:
1256 type_name = "emc6d102";
1257 break;
1258 case LM85_VERSTEP_EMC6D103_A0:
1259 case LM85_VERSTEP_EMC6D103_A1:
1260 type_name = "emc6d103";
1261 break;
1262 case LM85_VERSTEP_EMC6D103S:
1263 type_name = "emc6d103s";
1264 break;
1265 }
1266 } else {
1267 dev_dbg(&adapter->dev,
1268 "Autodetection failed: unknown vendor\n");
1269 return -ENODEV;
1270 }
1271
1272 strlcpy(info->type, type_name, I2C_NAME_SIZE);
1273
1274 return 0;
1275}
1276
1277static void lm85_remove_files(struct i2c_client *client, struct lm85_data *data)
1278{
1279 sysfs_remove_group(&client->dev.kobj, &lm85_group);
1280 if (data->type != emc6d103s) {
1281 sysfs_remove_group(&client->dev.kobj, &lm85_group_minctl);
1282 sysfs_remove_group(&client->dev.kobj, &lm85_group_temp_off);
1283 }
1284 if (!data->has_vid5)
1285 sysfs_remove_group(&client->dev.kobj, &lm85_group_in4);
1286 if (data->type == emc6d100)
1287 sysfs_remove_group(&client->dev.kobj, &lm85_group_in567);
1288}
1289
1290static int lm85_probe(struct i2c_client *client,
1291 const struct i2c_device_id *id)
1292{
1293 struct lm85_data *data;
1294 int err;
1295
1296 data = kzalloc(sizeof(struct lm85_data), GFP_KERNEL);
1297 if (!data)
1298 return -ENOMEM;
1299
1300 i2c_set_clientdata(client, data);
1301 data->type = id->driver_data;
1302 mutex_init(&data->update_lock);
1303
1304 /* Fill in the chip specific driver values */
1305 switch (data->type) {
1306 case adm1027:
1307 case adt7463:
1308 case adt7468:
1309 case emc6d100:
1310 case emc6d102:
1311 case emc6d103:
1312 case emc6d103s:
1313 data->freq_map = adm1027_freq_map;
1314 break;
1315 default:
1316 data->freq_map = lm85_freq_map;
1317 }
1318
1319 /* Set the VRM version */
1320 data->vrm = vid_which_vrm();
1321
1322 /* Initialize the LM85 chip */
1323 lm85_init_client(client);
1324
1325 /* Register sysfs hooks */
1326 err = sysfs_create_group(&client->dev.kobj, &lm85_group);
1327 if (err)
1328 goto err_kfree;
1329
1330 /* minctl and temp_off exist on all chips except emc6d103s */
1331 if (data->type != emc6d103s) {
1332 err = sysfs_create_group(&client->dev.kobj, &lm85_group_minctl);
1333 if (err)
1334 goto err_remove_files;
1335 err = sysfs_create_group(&client->dev.kobj,
1336 &lm85_group_temp_off);
1337 if (err)
1338 goto err_remove_files;
1339 }
1340
1341 /* The ADT7463/68 have an optional VRM 10 mode where pin 21 is used
1342 as a sixth digital VID input rather than an analog input. */
1343 if (data->type == adt7463 || data->type == adt7468) {
1344 u8 vid = lm85_read_value(client, LM85_REG_VID);
1345 if (vid & 0x80)
1346 data->has_vid5 = true;
1347 }
1348
1349 if (!data->has_vid5)
1350 if ((err = sysfs_create_group(&client->dev.kobj,
1351 &lm85_group_in4)))
1352 goto err_remove_files;
1353
1354 /* The EMC6D100 has 3 additional voltage inputs */
1355 if (data->type == emc6d100)
1356 if ((err = sysfs_create_group(&client->dev.kobj,
1357 &lm85_group_in567)))
1358 goto err_remove_files;
1359
1360 data->hwmon_dev = hwmon_device_register(&client->dev);
1361 if (IS_ERR(data->hwmon_dev)) {
1362 err = PTR_ERR(data->hwmon_dev);
1363 goto err_remove_files;
1364 }
1365
1366 return 0;
1367
1368 /* Error out and cleanup code */
1369 err_remove_files:
1370 lm85_remove_files(client, data);
1371 err_kfree:
1372 kfree(data);
1373 return err;
1374}
1375
1376static int lm85_remove(struct i2c_client *client)
1377{
1378 struct lm85_data *data = i2c_get_clientdata(client);
1379 hwmon_device_unregister(data->hwmon_dev);
1380 lm85_remove_files(client, data);
1381 kfree(data);
1382 return 0;
1383}
1384
1385
1386static int lm85_read_value(struct i2c_client *client, u8 reg)
1387{
1388 int res;
1389
1390 /* What size location is it? */
1391 switch (reg) {
1392 case LM85_REG_FAN(0): /* Read WORD data */
1393 case LM85_REG_FAN(1):
1394 case LM85_REG_FAN(2):
1395 case LM85_REG_FAN(3):
1396 case LM85_REG_FAN_MIN(0):
1397 case LM85_REG_FAN_MIN(1):
1398 case LM85_REG_FAN_MIN(2):
1399 case LM85_REG_FAN_MIN(3):
1400 case LM85_REG_ALARM1: /* Read both bytes at once */
1401 res = i2c_smbus_read_byte_data(client, reg) & 0xff;
1402 res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
1403 break;
1404 default: /* Read BYTE data */
1405 res = i2c_smbus_read_byte_data(client, reg);
1406 break;
1407 }
1408
1409 return res;
1410}
1411
1412static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
1413{
1414 switch (reg) {
1415 case LM85_REG_FAN(0): /* Write WORD data */
1416 case LM85_REG_FAN(1):
1417 case LM85_REG_FAN(2):
1418 case LM85_REG_FAN(3):
1419 case LM85_REG_FAN_MIN(0):
1420 case LM85_REG_FAN_MIN(1):
1421 case LM85_REG_FAN_MIN(2):
1422 case LM85_REG_FAN_MIN(3):
1423 /* NOTE: ALARM is read only, so not included here */
1424 i2c_smbus_write_byte_data(client, reg, value & 0xff);
1425 i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
1426 break;
1427 default: /* Write BYTE data */
1428 i2c_smbus_write_byte_data(client, reg, value);
1429 break;
1430 }
1431}
1432
1433static struct lm85_data *lm85_update_device(struct device *dev)
1434{
1435 struct i2c_client *client = to_i2c_client(dev);
1436 struct lm85_data *data = i2c_get_clientdata(client);
1437 int i;
1438
1439 mutex_lock(&data->update_lock);
1440
1441 if (!data->valid ||
1442 time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
1443 /* Things that change quickly */
1444 dev_dbg(&client->dev, "Reading sensor values\n");
1445
1446 /* Have to read extended bits first to "freeze" the
1447 * more significant bits that are read later.
1448 * There are 2 additional resolution bits per channel and we
1449 * have room for 4, so we shift them to the left.
1450 */
1451 if (data->type == adm1027 || data->type == adt7463 ||
1452 data->type == adt7468) {
1453 int ext1 = lm85_read_value(client,
1454 ADM1027_REG_EXTEND_ADC1);
1455 int ext2 = lm85_read_value(client,
1456 ADM1027_REG_EXTEND_ADC2);
1457 int val = (ext1 << 8) + ext2;
1458
1459 for (i = 0; i <= 4; i++)
1460 data->in_ext[i] =
1461 ((val >> (i * 2)) & 0x03) << 2;
1462
1463 for (i = 0; i <= 2; i++)
1464 data->temp_ext[i] =
1465 (val >> ((i + 4) * 2)) & 0x0c;
1466 }
1467
1468 data->vid = lm85_read_value(client, LM85_REG_VID);
1469
1470 for (i = 0; i <= 3; ++i) {
1471 data->in[i] =
1472 lm85_read_value(client, LM85_REG_IN(i));
1473 data->fan[i] =
1474 lm85_read_value(client, LM85_REG_FAN(i));
1475 }
1476
1477 if (!data->has_vid5)
1478 data->in[4] = lm85_read_value(client, LM85_REG_IN(4));
1479
1480 if (data->type == adt7468)
1481 data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5);
1482
1483 for (i = 0; i <= 2; ++i) {
1484 data->temp[i] =
1485 lm85_read_value(client, LM85_REG_TEMP(i));
1486 data->pwm[i] =
1487 lm85_read_value(client, LM85_REG_PWM(i));
1488
1489 if (IS_ADT7468_OFF64(data))
1490 data->temp[i] -= 64;
1491 }
1492
1493 data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
1494
1495 if (data->type == emc6d100) {
1496 /* Three more voltage sensors */
1497 for (i = 5; i <= 7; ++i) {
1498 data->in[i] = lm85_read_value(client,
1499 EMC6D100_REG_IN(i));
1500 }
1501 /* More alarm bits */
1502 data->alarms |= lm85_read_value(client,
1503 EMC6D100_REG_ALARM3) << 16;
1504 } else if (data->type == emc6d102 || data->type == emc6d103 ||
1505 data->type == emc6d103s) {
1506 /* Have to read LSB bits after the MSB ones because
1507 the reading of the MSB bits has frozen the
1508 LSBs (backward from the ADM1027).
1509 */
1510 int ext1 = lm85_read_value(client,
1511 EMC6D102_REG_EXTEND_ADC1);
1512 int ext2 = lm85_read_value(client,
1513 EMC6D102_REG_EXTEND_ADC2);
1514 int ext3 = lm85_read_value(client,
1515 EMC6D102_REG_EXTEND_ADC3);
1516 int ext4 = lm85_read_value(client,
1517 EMC6D102_REG_EXTEND_ADC4);
1518 data->in_ext[0] = ext3 & 0x0f;
1519 data->in_ext[1] = ext4 & 0x0f;
1520 data->in_ext[2] = ext4 >> 4;
1521 data->in_ext[3] = ext3 >> 4;
1522 data->in_ext[4] = ext2 >> 4;
1523
1524 data->temp_ext[0] = ext1 & 0x0f;
1525 data->temp_ext[1] = ext2 & 0x0f;
1526 data->temp_ext[2] = ext1 >> 4;
1527 }
1528
1529 data->last_reading = jiffies;
1530 } /* last_reading */
1531
1532 if (!data->valid ||
1533 time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
1534 /* Things that don't change often */
1535 dev_dbg(&client->dev, "Reading config values\n");
1536
1537 for (i = 0; i <= 3; ++i) {
1538 data->in_min[i] =
1539 lm85_read_value(client, LM85_REG_IN_MIN(i));
1540 data->in_max[i] =
1541 lm85_read_value(client, LM85_REG_IN_MAX(i));
1542 data->fan_min[i] =
1543 lm85_read_value(client, LM85_REG_FAN_MIN(i));
1544 }
1545
1546 if (!data->has_vid5) {
1547 data->in_min[4] = lm85_read_value(client,
1548 LM85_REG_IN_MIN(4));
1549 data->in_max[4] = lm85_read_value(client,
1550 LM85_REG_IN_MAX(4));
1551 }
1552
1553 if (data->type == emc6d100) {
1554 for (i = 5; i <= 7; ++i) {
1555 data->in_min[i] = lm85_read_value(client,
1556 EMC6D100_REG_IN_MIN(i));
1557 data->in_max[i] = lm85_read_value(client,
1558 EMC6D100_REG_IN_MAX(i));
1559 }
1560 }
1561
1562 for (i = 0; i <= 2; ++i) {
1563 int val;
1564
1565 data->temp_min[i] =
1566 lm85_read_value(client, LM85_REG_TEMP_MIN(i));
1567 data->temp_max[i] =
1568 lm85_read_value(client, LM85_REG_TEMP_MAX(i));
1569
1570 data->autofan[i].config =
1571 lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
1572 val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
1573 data->pwm_freq[i] = val & 0x07;
1574 data->zone[i].range = val >> 4;
1575 data->autofan[i].min_pwm =
1576 lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
1577 data->zone[i].limit =
1578 lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
1579 data->zone[i].critical =
1580 lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
1581
1582 if (IS_ADT7468_OFF64(data)) {
1583 data->temp_min[i] -= 64;
1584 data->temp_max[i] -= 64;
1585 data->zone[i].limit -= 64;
1586 data->zone[i].critical -= 64;
1587 }
1588 }
1589
1590 if (data->type != emc6d103s) {
1591 i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
1592 data->autofan[0].min_off = (i & 0x20) != 0;
1593 data->autofan[1].min_off = (i & 0x40) != 0;
1594 data->autofan[2].min_off = (i & 0x80) != 0;
1595
1596 i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
1597 data->zone[0].hyst = i >> 4;
1598 data->zone[1].hyst = i & 0x0f;
1599
1600 i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
1601 data->zone[2].hyst = i >> 4;
1602 }
1603
1604 data->last_config = jiffies;
1605 } /* last_config */
1606
1607 data->valid = 1;
1608
1609 mutex_unlock(&data->update_lock);
1610
1611 return data;
1612}
1613
1614
1615static int __init sm_lm85_init(void)
1616{
1617 return i2c_add_driver(&lm85_driver);
1618}
1619
1620static void __exit sm_lm85_exit(void)
1621{
1622 i2c_del_driver(&lm85_driver);
1623}
1624
1625MODULE_LICENSE("GPL");
1626MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
1627 "Margit Schubert-While <margitsw@t-online.de>, "
1628 "Justin Thiessen <jthiessen@penguincomputing.com>");
1629MODULE_DESCRIPTION("LM85-B, LM85-C driver");
1630
1631module_init(sm_lm85_init);
1632module_exit(sm_lm85_exit);
1/*
2 * lm85.c - Part of lm_sensors, Linux kernel modules for hardware
3 * monitoring
4 * Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
5 * Copyright (c) 2002, 2003 Philip Pokorny <ppokorny@penguincomputing.com>
6 * Copyright (c) 2003 Margit Schubert-While <margitsw@t-online.de>
7 * Copyright (c) 2004 Justin Thiessen <jthiessen@penguincomputing.com>
8 * Copyright (C) 2007--2014 Jean Delvare <jdelvare@suse.de>
9 *
10 * Chip details at <http://www.national.com/ds/LM/LM85.pdf>
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 */
26
27#include <linux/module.h>
28#include <linux/init.h>
29#include <linux/slab.h>
30#include <linux/jiffies.h>
31#include <linux/i2c.h>
32#include <linux/hwmon.h>
33#include <linux/hwmon-vid.h>
34#include <linux/hwmon-sysfs.h>
35#include <linux/err.h>
36#include <linux/mutex.h>
37#include <linux/util_macros.h>
38
39/* Addresses to scan */
40static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
41
42enum chips {
43 lm85,
44 adm1027, adt7463, adt7468,
45 emc6d100, emc6d102, emc6d103, emc6d103s
46};
47
48/* The LM85 registers */
49
50#define LM85_REG_IN(nr) (0x20 + (nr))
51#define LM85_REG_IN_MIN(nr) (0x44 + (nr) * 2)
52#define LM85_REG_IN_MAX(nr) (0x45 + (nr) * 2)
53
54#define LM85_REG_TEMP(nr) (0x25 + (nr))
55#define LM85_REG_TEMP_MIN(nr) (0x4e + (nr) * 2)
56#define LM85_REG_TEMP_MAX(nr) (0x4f + (nr) * 2)
57
58/* Fan speeds are LSB, MSB (2 bytes) */
59#define LM85_REG_FAN(nr) (0x28 + (nr) * 2)
60#define LM85_REG_FAN_MIN(nr) (0x54 + (nr) * 2)
61
62#define LM85_REG_PWM(nr) (0x30 + (nr))
63
64#define LM85_REG_COMPANY 0x3e
65#define LM85_REG_VERSTEP 0x3f
66
67#define ADT7468_REG_CFG5 0x7c
68#define ADT7468_OFF64 (1 << 0)
69#define ADT7468_HFPWM (1 << 1)
70#define IS_ADT7468_OFF64(data) \
71 ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64))
72#define IS_ADT7468_HFPWM(data) \
73 ((data)->type == adt7468 && !((data)->cfg5 & ADT7468_HFPWM))
74
75/* These are the recognized values for the above regs */
76#define LM85_COMPANY_NATIONAL 0x01
77#define LM85_COMPANY_ANALOG_DEV 0x41
78#define LM85_COMPANY_SMSC 0x5c
79#define LM85_VERSTEP_LM85C 0x60
80#define LM85_VERSTEP_LM85B 0x62
81#define LM85_VERSTEP_LM96000_1 0x68
82#define LM85_VERSTEP_LM96000_2 0x69
83#define LM85_VERSTEP_ADM1027 0x60
84#define LM85_VERSTEP_ADT7463 0x62
85#define LM85_VERSTEP_ADT7463C 0x6A
86#define LM85_VERSTEP_ADT7468_1 0x71
87#define LM85_VERSTEP_ADT7468_2 0x72
88#define LM85_VERSTEP_EMC6D100_A0 0x60
89#define LM85_VERSTEP_EMC6D100_A1 0x61
90#define LM85_VERSTEP_EMC6D102 0x65
91#define LM85_VERSTEP_EMC6D103_A0 0x68
92#define LM85_VERSTEP_EMC6D103_A1 0x69
93#define LM85_VERSTEP_EMC6D103S 0x6A /* Also known as EMC6D103:A2 */
94
95#define LM85_REG_CONFIG 0x40
96
97#define LM85_REG_ALARM1 0x41
98#define LM85_REG_ALARM2 0x42
99
100#define LM85_REG_VID 0x43
101
102/* Automated FAN control */
103#define LM85_REG_AFAN_CONFIG(nr) (0x5c + (nr))
104#define LM85_REG_AFAN_RANGE(nr) (0x5f + (nr))
105#define LM85_REG_AFAN_SPIKE1 0x62
106#define LM85_REG_AFAN_MINPWM(nr) (0x64 + (nr))
107#define LM85_REG_AFAN_LIMIT(nr) (0x67 + (nr))
108#define LM85_REG_AFAN_CRITICAL(nr) (0x6a + (nr))
109#define LM85_REG_AFAN_HYST1 0x6d
110#define LM85_REG_AFAN_HYST2 0x6e
111
112#define ADM1027_REG_EXTEND_ADC1 0x76
113#define ADM1027_REG_EXTEND_ADC2 0x77
114
115#define EMC6D100_REG_ALARM3 0x7d
116/* IN5, IN6 and IN7 */
117#define EMC6D100_REG_IN(nr) (0x70 + ((nr) - 5))
118#define EMC6D100_REG_IN_MIN(nr) (0x73 + ((nr) - 5) * 2)
119#define EMC6D100_REG_IN_MAX(nr) (0x74 + ((nr) - 5) * 2)
120#define EMC6D102_REG_EXTEND_ADC1 0x85
121#define EMC6D102_REG_EXTEND_ADC2 0x86
122#define EMC6D102_REG_EXTEND_ADC3 0x87
123#define EMC6D102_REG_EXTEND_ADC4 0x88
124
125/*
126 * Conversions. Rounding and limit checking is only done on the TO_REG
127 * variants. Note that you should be a bit careful with which arguments
128 * these macros are called: arguments may be evaluated more than once.
129 */
130
131/* IN are scaled according to built-in resistors */
132static const int lm85_scaling[] = { /* .001 Volts */
133 2500, 2250, 3300, 5000, 12000,
134 3300, 1500, 1800 /*EMC6D100*/
135};
136#define SCALE(val, from, to) (((val) * (to) + ((from) / 2)) / (from))
137
138#define INS_TO_REG(n, val) \
139 SCALE(clamp_val(val, 0, 255 * lm85_scaling[n] / 192), \
140 lm85_scaling[n], 192)
141
142#define INSEXT_FROM_REG(n, val, ext) \
143 SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
144
145#define INS_FROM_REG(n, val) SCALE((val), 192, lm85_scaling[n])
146
147/* FAN speed is measured using 90kHz clock */
148static inline u16 FAN_TO_REG(unsigned long val)
149{
150 if (!val)
151 return 0xffff;
152 return clamp_val(5400000 / val, 1, 0xfffe);
153}
154#define FAN_FROM_REG(val) ((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
155 5400000 / (val))
156
157/* Temperature is reported in .001 degC increments */
158#define TEMP_TO_REG(val) \
159 DIV_ROUND_CLOSEST(clamp_val((val), -127000, 127000), 1000)
160#define TEMPEXT_FROM_REG(val, ext) \
161 SCALE(((val) << 4) + (ext), 16, 1000)
162#define TEMP_FROM_REG(val) ((val) * 1000)
163
164#define PWM_TO_REG(val) clamp_val(val, 0, 255)
165#define PWM_FROM_REG(val) (val)
166
167
168/*
169 * ZONEs have the following parameters:
170 * Limit (low) temp, 1. degC
171 * Hysteresis (below limit), 1. degC (0-15)
172 * Range of speed control, .1 degC (2-80)
173 * Critical (high) temp, 1. degC
174 *
175 * FAN PWMs have the following parameters:
176 * Reference Zone, 1, 2, 3, etc.
177 * Spinup time, .05 sec
178 * PWM value at limit/low temp, 1 count
179 * PWM Frequency, 1. Hz
180 * PWM is Min or OFF below limit, flag
181 * Invert PWM output, flag
182 *
183 * Some chips filter the temp, others the fan.
184 * Filter constant (or disabled) .1 seconds
185 */
186
187/* These are the zone temperature range encodings in .001 degree C */
188static const int lm85_range_map[] = {
189 2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
190 13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
191};
192
193static int RANGE_TO_REG(long range)
194{
195 return find_closest(range, lm85_range_map, ARRAY_SIZE(lm85_range_map));
196}
197#define RANGE_FROM_REG(val) lm85_range_map[(val) & 0x0f]
198
199/* These are the PWM frequency encodings */
200static const int lm85_freq_map[8] = { /* 1 Hz */
201 10, 15, 23, 30, 38, 47, 61, 94
202};
203static const int adm1027_freq_map[8] = { /* 1 Hz */
204 11, 15, 22, 29, 35, 44, 59, 88
205};
206#define FREQ_MAP_LEN 8
207
208static int FREQ_TO_REG(const int *map,
209 unsigned int map_size, unsigned long freq)
210{
211 return find_closest(freq, map, map_size);
212}
213
214static int FREQ_FROM_REG(const int *map, u8 reg)
215{
216 return map[reg & 0x07];
217}
218
219/*
220 * Since we can't use strings, I'm abusing these numbers
221 * to stand in for the following meanings:
222 * 1 -- PWM responds to Zone 1
223 * 2 -- PWM responds to Zone 2
224 * 3 -- PWM responds to Zone 3
225 * 23 -- PWM responds to the higher temp of Zone 2 or 3
226 * 123 -- PWM responds to highest of Zone 1, 2, or 3
227 * 0 -- PWM is always at 0% (ie, off)
228 * -1 -- PWM is always at 100%
229 * -2 -- PWM responds to manual control
230 */
231
232static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
233#define ZONE_FROM_REG(val) lm85_zone_map[(val) >> 5]
234
235static int ZONE_TO_REG(int zone)
236{
237 int i;
238
239 for (i = 0; i <= 7; ++i)
240 if (zone == lm85_zone_map[i])
241 break;
242 if (i > 7) /* Not found. */
243 i = 3; /* Always 100% */
244 return i << 5;
245}
246
247#define HYST_TO_REG(val) clamp_val(((val) + 500) / 1000, 0, 15)
248#define HYST_FROM_REG(val) ((val) * 1000)
249
250/*
251 * Chip sampling rates
252 *
253 * Some sensors are not updated more frequently than once per second
254 * so it doesn't make sense to read them more often than that.
255 * We cache the results and return the saved data if the driver
256 * is called again before a second has elapsed.
257 *
258 * Also, there is significant configuration data for this chip
259 * given the automatic PWM fan control that is possible. There
260 * are about 47 bytes of config data to only 22 bytes of actual
261 * readings. So, we keep the config data up to date in the cache
262 * when it is written and only sample it once every 1 *minute*
263 */
264#define LM85_DATA_INTERVAL (HZ + HZ / 2)
265#define LM85_CONFIG_INTERVAL (1 * 60 * HZ)
266
267/*
268 * LM85 can automatically adjust fan speeds based on temperature
269 * This structure encapsulates an entire Zone config. There are
270 * three zones (one for each temperature input) on the lm85
271 */
272struct lm85_zone {
273 s8 limit; /* Low temp limit */
274 u8 hyst; /* Low limit hysteresis. (0-15) */
275 u8 range; /* Temp range, encoded */
276 s8 critical; /* "All fans ON" temp limit */
277 u8 max_desired; /*
278 * Actual "max" temperature specified. Preserved
279 * to prevent "drift" as other autofan control
280 * values change.
281 */
282};
283
284struct lm85_autofan {
285 u8 config; /* Register value */
286 u8 min_pwm; /* Minimum PWM value, encoded */
287 u8 min_off; /* Min PWM or OFF below "limit", flag */
288};
289
290/*
291 * For each registered chip, we need to keep some data in memory.
292 * The structure is dynamically allocated.
293 */
294struct lm85_data {
295 struct i2c_client *client;
296 const struct attribute_group *groups[6];
297 const int *freq_map;
298 enum chips type;
299
300 bool has_vid5; /* true if VID5 is configured for ADT7463 or ADT7468 */
301
302 struct mutex update_lock;
303 int valid; /* !=0 if following fields are valid */
304 unsigned long last_reading; /* In jiffies */
305 unsigned long last_config; /* In jiffies */
306
307 u8 in[8]; /* Register value */
308 u8 in_max[8]; /* Register value */
309 u8 in_min[8]; /* Register value */
310 s8 temp[3]; /* Register value */
311 s8 temp_min[3]; /* Register value */
312 s8 temp_max[3]; /* Register value */
313 u16 fan[4]; /* Register value */
314 u16 fan_min[4]; /* Register value */
315 u8 pwm[3]; /* Register value */
316 u8 pwm_freq[3]; /* Register encoding */
317 u8 temp_ext[3]; /* Decoded values */
318 u8 in_ext[8]; /* Decoded values */
319 u8 vid; /* Register value */
320 u8 vrm; /* VRM version */
321 u32 alarms; /* Register encoding, combined */
322 u8 cfg5; /* Config Register 5 on ADT7468 */
323 struct lm85_autofan autofan[3];
324 struct lm85_zone zone[3];
325};
326
327static int lm85_read_value(struct i2c_client *client, u8 reg)
328{
329 int res;
330
331 /* What size location is it? */
332 switch (reg) {
333 case LM85_REG_FAN(0): /* Read WORD data */
334 case LM85_REG_FAN(1):
335 case LM85_REG_FAN(2):
336 case LM85_REG_FAN(3):
337 case LM85_REG_FAN_MIN(0):
338 case LM85_REG_FAN_MIN(1):
339 case LM85_REG_FAN_MIN(2):
340 case LM85_REG_FAN_MIN(3):
341 case LM85_REG_ALARM1: /* Read both bytes at once */
342 res = i2c_smbus_read_byte_data(client, reg) & 0xff;
343 res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
344 break;
345 default: /* Read BYTE data */
346 res = i2c_smbus_read_byte_data(client, reg);
347 break;
348 }
349
350 return res;
351}
352
353static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
354{
355 switch (reg) {
356 case LM85_REG_FAN(0): /* Write WORD data */
357 case LM85_REG_FAN(1):
358 case LM85_REG_FAN(2):
359 case LM85_REG_FAN(3):
360 case LM85_REG_FAN_MIN(0):
361 case LM85_REG_FAN_MIN(1):
362 case LM85_REG_FAN_MIN(2):
363 case LM85_REG_FAN_MIN(3):
364 /* NOTE: ALARM is read only, so not included here */
365 i2c_smbus_write_byte_data(client, reg, value & 0xff);
366 i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
367 break;
368 default: /* Write BYTE data */
369 i2c_smbus_write_byte_data(client, reg, value);
370 break;
371 }
372}
373
374static struct lm85_data *lm85_update_device(struct device *dev)
375{
376 struct lm85_data *data = dev_get_drvdata(dev);
377 struct i2c_client *client = data->client;
378 int i;
379
380 mutex_lock(&data->update_lock);
381
382 if (!data->valid ||
383 time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
384 /* Things that change quickly */
385 dev_dbg(&client->dev, "Reading sensor values\n");
386
387 /*
388 * Have to read extended bits first to "freeze" the
389 * more significant bits that are read later.
390 * There are 2 additional resolution bits per channel and we
391 * have room for 4, so we shift them to the left.
392 */
393 if (data->type == adm1027 || data->type == adt7463 ||
394 data->type == adt7468) {
395 int ext1 = lm85_read_value(client,
396 ADM1027_REG_EXTEND_ADC1);
397 int ext2 = lm85_read_value(client,
398 ADM1027_REG_EXTEND_ADC2);
399 int val = (ext1 << 8) + ext2;
400
401 for (i = 0; i <= 4; i++)
402 data->in_ext[i] =
403 ((val >> (i * 2)) & 0x03) << 2;
404
405 for (i = 0; i <= 2; i++)
406 data->temp_ext[i] =
407 (val >> ((i + 4) * 2)) & 0x0c;
408 }
409
410 data->vid = lm85_read_value(client, LM85_REG_VID);
411
412 for (i = 0; i <= 3; ++i) {
413 data->in[i] =
414 lm85_read_value(client, LM85_REG_IN(i));
415 data->fan[i] =
416 lm85_read_value(client, LM85_REG_FAN(i));
417 }
418
419 if (!data->has_vid5)
420 data->in[4] = lm85_read_value(client, LM85_REG_IN(4));
421
422 if (data->type == adt7468)
423 data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5);
424
425 for (i = 0; i <= 2; ++i) {
426 data->temp[i] =
427 lm85_read_value(client, LM85_REG_TEMP(i));
428 data->pwm[i] =
429 lm85_read_value(client, LM85_REG_PWM(i));
430
431 if (IS_ADT7468_OFF64(data))
432 data->temp[i] -= 64;
433 }
434
435 data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
436
437 if (data->type == emc6d100) {
438 /* Three more voltage sensors */
439 for (i = 5; i <= 7; ++i) {
440 data->in[i] = lm85_read_value(client,
441 EMC6D100_REG_IN(i));
442 }
443 /* More alarm bits */
444 data->alarms |= lm85_read_value(client,
445 EMC6D100_REG_ALARM3) << 16;
446 } else if (data->type == emc6d102 || data->type == emc6d103 ||
447 data->type == emc6d103s) {
448 /*
449 * Have to read LSB bits after the MSB ones because
450 * the reading of the MSB bits has frozen the
451 * LSBs (backward from the ADM1027).
452 */
453 int ext1 = lm85_read_value(client,
454 EMC6D102_REG_EXTEND_ADC1);
455 int ext2 = lm85_read_value(client,
456 EMC6D102_REG_EXTEND_ADC2);
457 int ext3 = lm85_read_value(client,
458 EMC6D102_REG_EXTEND_ADC3);
459 int ext4 = lm85_read_value(client,
460 EMC6D102_REG_EXTEND_ADC4);
461 data->in_ext[0] = ext3 & 0x0f;
462 data->in_ext[1] = ext4 & 0x0f;
463 data->in_ext[2] = ext4 >> 4;
464 data->in_ext[3] = ext3 >> 4;
465 data->in_ext[4] = ext2 >> 4;
466
467 data->temp_ext[0] = ext1 & 0x0f;
468 data->temp_ext[1] = ext2 & 0x0f;
469 data->temp_ext[2] = ext1 >> 4;
470 }
471
472 data->last_reading = jiffies;
473 } /* last_reading */
474
475 if (!data->valid ||
476 time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
477 /* Things that don't change often */
478 dev_dbg(&client->dev, "Reading config values\n");
479
480 for (i = 0; i <= 3; ++i) {
481 data->in_min[i] =
482 lm85_read_value(client, LM85_REG_IN_MIN(i));
483 data->in_max[i] =
484 lm85_read_value(client, LM85_REG_IN_MAX(i));
485 data->fan_min[i] =
486 lm85_read_value(client, LM85_REG_FAN_MIN(i));
487 }
488
489 if (!data->has_vid5) {
490 data->in_min[4] = lm85_read_value(client,
491 LM85_REG_IN_MIN(4));
492 data->in_max[4] = lm85_read_value(client,
493 LM85_REG_IN_MAX(4));
494 }
495
496 if (data->type == emc6d100) {
497 for (i = 5; i <= 7; ++i) {
498 data->in_min[i] = lm85_read_value(client,
499 EMC6D100_REG_IN_MIN(i));
500 data->in_max[i] = lm85_read_value(client,
501 EMC6D100_REG_IN_MAX(i));
502 }
503 }
504
505 for (i = 0; i <= 2; ++i) {
506 int val;
507
508 data->temp_min[i] =
509 lm85_read_value(client, LM85_REG_TEMP_MIN(i));
510 data->temp_max[i] =
511 lm85_read_value(client, LM85_REG_TEMP_MAX(i));
512
513 data->autofan[i].config =
514 lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
515 val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
516 data->pwm_freq[i] = val & 0x07;
517 data->zone[i].range = val >> 4;
518 data->autofan[i].min_pwm =
519 lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
520 data->zone[i].limit =
521 lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
522 data->zone[i].critical =
523 lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
524
525 if (IS_ADT7468_OFF64(data)) {
526 data->temp_min[i] -= 64;
527 data->temp_max[i] -= 64;
528 data->zone[i].limit -= 64;
529 data->zone[i].critical -= 64;
530 }
531 }
532
533 if (data->type != emc6d103s) {
534 i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
535 data->autofan[0].min_off = (i & 0x20) != 0;
536 data->autofan[1].min_off = (i & 0x40) != 0;
537 data->autofan[2].min_off = (i & 0x80) != 0;
538
539 i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
540 data->zone[0].hyst = i >> 4;
541 data->zone[1].hyst = i & 0x0f;
542
543 i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
544 data->zone[2].hyst = i >> 4;
545 }
546
547 data->last_config = jiffies;
548 } /* last_config */
549
550 data->valid = 1;
551
552 mutex_unlock(&data->update_lock);
553
554 return data;
555}
556
557/* 4 Fans */
558static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
559 char *buf)
560{
561 int nr = to_sensor_dev_attr(attr)->index;
562 struct lm85_data *data = lm85_update_device(dev);
563 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
564}
565
566static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
567 char *buf)
568{
569 int nr = to_sensor_dev_attr(attr)->index;
570 struct lm85_data *data = lm85_update_device(dev);
571 return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
572}
573
574static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
575 const char *buf, size_t count)
576{
577 int nr = to_sensor_dev_attr(attr)->index;
578 struct lm85_data *data = dev_get_drvdata(dev);
579 struct i2c_client *client = data->client;
580 unsigned long val;
581 int err;
582
583 err = kstrtoul(buf, 10, &val);
584 if (err)
585 return err;
586
587 mutex_lock(&data->update_lock);
588 data->fan_min[nr] = FAN_TO_REG(val);
589 lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
590 mutex_unlock(&data->update_lock);
591 return count;
592}
593
594#define show_fan_offset(offset) \
595static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
596 show_fan, NULL, offset - 1); \
597static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
598 show_fan_min, set_fan_min, offset - 1)
599
600show_fan_offset(1);
601show_fan_offset(2);
602show_fan_offset(3);
603show_fan_offset(4);
604
605/* vid, vrm, alarms */
606
607static ssize_t show_vid_reg(struct device *dev, struct device_attribute *attr,
608 char *buf)
609{
610 struct lm85_data *data = lm85_update_device(dev);
611 int vid;
612
613 if (data->has_vid5) {
614 /* 6-pin VID (VRM 10) */
615 vid = vid_from_reg(data->vid & 0x3f, data->vrm);
616 } else {
617 /* 5-pin VID (VRM 9) */
618 vid = vid_from_reg(data->vid & 0x1f, data->vrm);
619 }
620
621 return sprintf(buf, "%d\n", vid);
622}
623
624static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL);
625
626static ssize_t show_vrm_reg(struct device *dev, struct device_attribute *attr,
627 char *buf)
628{
629 struct lm85_data *data = dev_get_drvdata(dev);
630 return sprintf(buf, "%ld\n", (long) data->vrm);
631}
632
633static ssize_t store_vrm_reg(struct device *dev, struct device_attribute *attr,
634 const char *buf, size_t count)
635{
636 struct lm85_data *data = dev_get_drvdata(dev);
637 unsigned long val;
638 int err;
639
640 err = kstrtoul(buf, 10, &val);
641 if (err)
642 return err;
643
644 if (val > 255)
645 return -EINVAL;
646
647 data->vrm = val;
648 return count;
649}
650
651static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg);
652
653static ssize_t show_alarms_reg(struct device *dev, struct device_attribute
654 *attr, char *buf)
655{
656 struct lm85_data *data = lm85_update_device(dev);
657 return sprintf(buf, "%u\n", data->alarms);
658}
659
660static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL);
661
662static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
663 char *buf)
664{
665 int nr = to_sensor_dev_attr(attr)->index;
666 struct lm85_data *data = lm85_update_device(dev);
667 return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
668}
669
670static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
671static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
672static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
673static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
674static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
675static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 18);
676static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 16);
677static SENSOR_DEVICE_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 17);
678static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
679static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_alarm, NULL, 14);
680static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
681static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 6);
682static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 15);
683static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10);
684static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11);
685static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 12);
686static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 13);
687
688/* pwm */
689
690static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
691 char *buf)
692{
693 int nr = to_sensor_dev_attr(attr)->index;
694 struct lm85_data *data = lm85_update_device(dev);
695 return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
696}
697
698static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
699 const char *buf, size_t count)
700{
701 int nr = to_sensor_dev_attr(attr)->index;
702 struct lm85_data *data = dev_get_drvdata(dev);
703 struct i2c_client *client = data->client;
704 unsigned long val;
705 int err;
706
707 err = kstrtoul(buf, 10, &val);
708 if (err)
709 return err;
710
711 mutex_lock(&data->update_lock);
712 data->pwm[nr] = PWM_TO_REG(val);
713 lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
714 mutex_unlock(&data->update_lock);
715 return count;
716}
717
718static ssize_t show_pwm_enable(struct device *dev, struct device_attribute
719 *attr, char *buf)
720{
721 int nr = to_sensor_dev_attr(attr)->index;
722 struct lm85_data *data = lm85_update_device(dev);
723 int pwm_zone, enable;
724
725 pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
726 switch (pwm_zone) {
727 case -1: /* PWM is always at 100% */
728 enable = 0;
729 break;
730 case 0: /* PWM is always at 0% */
731 case -2: /* PWM responds to manual control */
732 enable = 1;
733 break;
734 default: /* PWM in automatic mode */
735 enable = 2;
736 }
737 return sprintf(buf, "%d\n", enable);
738}
739
740static ssize_t set_pwm_enable(struct device *dev, struct device_attribute
741 *attr, const char *buf, size_t count)
742{
743 int nr = to_sensor_dev_attr(attr)->index;
744 struct lm85_data *data = dev_get_drvdata(dev);
745 struct i2c_client *client = data->client;
746 u8 config;
747 unsigned long val;
748 int err;
749
750 err = kstrtoul(buf, 10, &val);
751 if (err)
752 return err;
753
754 switch (val) {
755 case 0:
756 config = 3;
757 break;
758 case 1:
759 config = 7;
760 break;
761 case 2:
762 /*
763 * Here we have to choose arbitrarily one of the 5 possible
764 * configurations; I go for the safest
765 */
766 config = 6;
767 break;
768 default:
769 return -EINVAL;
770 }
771
772 mutex_lock(&data->update_lock);
773 data->autofan[nr].config = lm85_read_value(client,
774 LM85_REG_AFAN_CONFIG(nr));
775 data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
776 | (config << 5);
777 lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
778 data->autofan[nr].config);
779 mutex_unlock(&data->update_lock);
780 return count;
781}
782
783static ssize_t show_pwm_freq(struct device *dev,
784 struct device_attribute *attr, char *buf)
785{
786 int nr = to_sensor_dev_attr(attr)->index;
787 struct lm85_data *data = lm85_update_device(dev);
788 int freq;
789
790 if (IS_ADT7468_HFPWM(data))
791 freq = 22500;
792 else
793 freq = FREQ_FROM_REG(data->freq_map, data->pwm_freq[nr]);
794
795 return sprintf(buf, "%d\n", freq);
796}
797
798static ssize_t set_pwm_freq(struct device *dev,
799 struct device_attribute *attr, const char *buf, size_t count)
800{
801 int nr = to_sensor_dev_attr(attr)->index;
802 struct lm85_data *data = dev_get_drvdata(dev);
803 struct i2c_client *client = data->client;
804 unsigned long val;
805 int err;
806
807 err = kstrtoul(buf, 10, &val);
808 if (err)
809 return err;
810
811 mutex_lock(&data->update_lock);
812 /*
813 * The ADT7468 has a special high-frequency PWM output mode,
814 * where all PWM outputs are driven by a 22.5 kHz clock.
815 * This might confuse the user, but there's not much we can do.
816 */
817 if (data->type == adt7468 && val >= 11300) { /* High freq. mode */
818 data->cfg5 &= ~ADT7468_HFPWM;
819 lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
820 } else { /* Low freq. mode */
821 data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map,
822 FREQ_MAP_LEN, val);
823 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
824 (data->zone[nr].range << 4)
825 | data->pwm_freq[nr]);
826 if (data->type == adt7468) {
827 data->cfg5 |= ADT7468_HFPWM;
828 lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
829 }
830 }
831 mutex_unlock(&data->update_lock);
832 return count;
833}
834
835#define show_pwm_reg(offset) \
836static SENSOR_DEVICE_ATTR(pwm##offset, S_IRUGO | S_IWUSR, \
837 show_pwm, set_pwm, offset - 1); \
838static SENSOR_DEVICE_ATTR(pwm##offset##_enable, S_IRUGO | S_IWUSR, \
839 show_pwm_enable, set_pwm_enable, offset - 1); \
840static SENSOR_DEVICE_ATTR(pwm##offset##_freq, S_IRUGO | S_IWUSR, \
841 show_pwm_freq, set_pwm_freq, offset - 1)
842
843show_pwm_reg(1);
844show_pwm_reg(2);
845show_pwm_reg(3);
846
847/* Voltages */
848
849static ssize_t show_in(struct device *dev, struct device_attribute *attr,
850 char *buf)
851{
852 int nr = to_sensor_dev_attr(attr)->index;
853 struct lm85_data *data = lm85_update_device(dev);
854 return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
855 data->in_ext[nr]));
856}
857
858static ssize_t show_in_min(struct device *dev, struct device_attribute *attr,
859 char *buf)
860{
861 int nr = to_sensor_dev_attr(attr)->index;
862 struct lm85_data *data = lm85_update_device(dev);
863 return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
864}
865
866static ssize_t set_in_min(struct device *dev, struct device_attribute *attr,
867 const char *buf, size_t count)
868{
869 int nr = to_sensor_dev_attr(attr)->index;
870 struct lm85_data *data = dev_get_drvdata(dev);
871 struct i2c_client *client = data->client;
872 long val;
873 int err;
874
875 err = kstrtol(buf, 10, &val);
876 if (err)
877 return err;
878
879 mutex_lock(&data->update_lock);
880 data->in_min[nr] = INS_TO_REG(nr, val);
881 lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
882 mutex_unlock(&data->update_lock);
883 return count;
884}
885
886static ssize_t show_in_max(struct device *dev, struct device_attribute *attr,
887 char *buf)
888{
889 int nr = to_sensor_dev_attr(attr)->index;
890 struct lm85_data *data = lm85_update_device(dev);
891 return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
892}
893
894static ssize_t set_in_max(struct device *dev, struct device_attribute *attr,
895 const char *buf, size_t count)
896{
897 int nr = to_sensor_dev_attr(attr)->index;
898 struct lm85_data *data = dev_get_drvdata(dev);
899 struct i2c_client *client = data->client;
900 long val;
901 int err;
902
903 err = kstrtol(buf, 10, &val);
904 if (err)
905 return err;
906
907 mutex_lock(&data->update_lock);
908 data->in_max[nr] = INS_TO_REG(nr, val);
909 lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
910 mutex_unlock(&data->update_lock);
911 return count;
912}
913
914#define show_in_reg(offset) \
915static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
916 show_in, NULL, offset); \
917static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
918 show_in_min, set_in_min, offset); \
919static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
920 show_in_max, set_in_max, offset)
921
922show_in_reg(0);
923show_in_reg(1);
924show_in_reg(2);
925show_in_reg(3);
926show_in_reg(4);
927show_in_reg(5);
928show_in_reg(6);
929show_in_reg(7);
930
931/* Temps */
932
933static ssize_t show_temp(struct device *dev, struct device_attribute *attr,
934 char *buf)
935{
936 int nr = to_sensor_dev_attr(attr)->index;
937 struct lm85_data *data = lm85_update_device(dev);
938 return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
939 data->temp_ext[nr]));
940}
941
942static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr,
943 char *buf)
944{
945 int nr = to_sensor_dev_attr(attr)->index;
946 struct lm85_data *data = lm85_update_device(dev);
947 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
948}
949
950static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
951 const char *buf, size_t count)
952{
953 int nr = to_sensor_dev_attr(attr)->index;
954 struct lm85_data *data = dev_get_drvdata(dev);
955 struct i2c_client *client = data->client;
956 long val;
957 int err;
958
959 err = kstrtol(buf, 10, &val);
960 if (err)
961 return err;
962
963 if (IS_ADT7468_OFF64(data))
964 val += 64;
965
966 mutex_lock(&data->update_lock);
967 data->temp_min[nr] = TEMP_TO_REG(val);
968 lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
969 mutex_unlock(&data->update_lock);
970 return count;
971}
972
973static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr,
974 char *buf)
975{
976 int nr = to_sensor_dev_attr(attr)->index;
977 struct lm85_data *data = lm85_update_device(dev);
978 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
979}
980
981static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
982 const char *buf, size_t count)
983{
984 int nr = to_sensor_dev_attr(attr)->index;
985 struct lm85_data *data = dev_get_drvdata(dev);
986 struct i2c_client *client = data->client;
987 long val;
988 int err;
989
990 err = kstrtol(buf, 10, &val);
991 if (err)
992 return err;
993
994 if (IS_ADT7468_OFF64(data))
995 val += 64;
996
997 mutex_lock(&data->update_lock);
998 data->temp_max[nr] = TEMP_TO_REG(val);
999 lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
1000 mutex_unlock(&data->update_lock);
1001 return count;
1002}
1003
1004#define show_temp_reg(offset) \
1005static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \
1006 show_temp, NULL, offset - 1); \
1007static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR, \
1008 show_temp_min, set_temp_min, offset - 1); \
1009static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \
1010 show_temp_max, set_temp_max, offset - 1);
1011
1012show_temp_reg(1);
1013show_temp_reg(2);
1014show_temp_reg(3);
1015
1016
1017/* Automatic PWM control */
1018
1019static ssize_t show_pwm_auto_channels(struct device *dev,
1020 struct device_attribute *attr, char *buf)
1021{
1022 int nr = to_sensor_dev_attr(attr)->index;
1023 struct lm85_data *data = lm85_update_device(dev);
1024 return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
1025}
1026
1027static ssize_t set_pwm_auto_channels(struct device *dev,
1028 struct device_attribute *attr, const char *buf, size_t count)
1029{
1030 int nr = to_sensor_dev_attr(attr)->index;
1031 struct lm85_data *data = dev_get_drvdata(dev);
1032 struct i2c_client *client = data->client;
1033 long val;
1034 int err;
1035
1036 err = kstrtol(buf, 10, &val);
1037 if (err)
1038 return err;
1039
1040 mutex_lock(&data->update_lock);
1041 data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
1042 | ZONE_TO_REG(val);
1043 lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
1044 data->autofan[nr].config);
1045 mutex_unlock(&data->update_lock);
1046 return count;
1047}
1048
1049static ssize_t show_pwm_auto_pwm_min(struct device *dev,
1050 struct device_attribute *attr, char *buf)
1051{
1052 int nr = to_sensor_dev_attr(attr)->index;
1053 struct lm85_data *data = lm85_update_device(dev);
1054 return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
1055}
1056
1057static ssize_t set_pwm_auto_pwm_min(struct device *dev,
1058 struct device_attribute *attr, const char *buf, size_t count)
1059{
1060 int nr = to_sensor_dev_attr(attr)->index;
1061 struct lm85_data *data = dev_get_drvdata(dev);
1062 struct i2c_client *client = data->client;
1063 unsigned long val;
1064 int err;
1065
1066 err = kstrtoul(buf, 10, &val);
1067 if (err)
1068 return err;
1069
1070 mutex_lock(&data->update_lock);
1071 data->autofan[nr].min_pwm = PWM_TO_REG(val);
1072 lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
1073 data->autofan[nr].min_pwm);
1074 mutex_unlock(&data->update_lock);
1075 return count;
1076}
1077
1078static ssize_t show_pwm_auto_pwm_minctl(struct device *dev,
1079 struct device_attribute *attr, char *buf)
1080{
1081 int nr = to_sensor_dev_attr(attr)->index;
1082 struct lm85_data *data = lm85_update_device(dev);
1083 return sprintf(buf, "%d\n", data->autofan[nr].min_off);
1084}
1085
1086static ssize_t set_pwm_auto_pwm_minctl(struct device *dev,
1087 struct device_attribute *attr, const char *buf, size_t count)
1088{
1089 int nr = to_sensor_dev_attr(attr)->index;
1090 struct lm85_data *data = dev_get_drvdata(dev);
1091 struct i2c_client *client = data->client;
1092 u8 tmp;
1093 long val;
1094 int err;
1095
1096 err = kstrtol(buf, 10, &val);
1097 if (err)
1098 return err;
1099
1100 mutex_lock(&data->update_lock);
1101 data->autofan[nr].min_off = val;
1102 tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
1103 tmp &= ~(0x20 << nr);
1104 if (data->autofan[nr].min_off)
1105 tmp |= 0x20 << nr;
1106 lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
1107 mutex_unlock(&data->update_lock);
1108 return count;
1109}
1110
1111#define pwm_auto(offset) \
1112static SENSOR_DEVICE_ATTR(pwm##offset##_auto_channels, \
1113 S_IRUGO | S_IWUSR, show_pwm_auto_channels, \
1114 set_pwm_auto_channels, offset - 1); \
1115static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_min, \
1116 S_IRUGO | S_IWUSR, show_pwm_auto_pwm_min, \
1117 set_pwm_auto_pwm_min, offset - 1); \
1118static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_minctl, \
1119 S_IRUGO | S_IWUSR, show_pwm_auto_pwm_minctl, \
1120 set_pwm_auto_pwm_minctl, offset - 1)
1121
1122pwm_auto(1);
1123pwm_auto(2);
1124pwm_auto(3);
1125
1126/* Temperature settings for automatic PWM control */
1127
1128static ssize_t show_temp_auto_temp_off(struct device *dev,
1129 struct device_attribute *attr, char *buf)
1130{
1131 int nr = to_sensor_dev_attr(attr)->index;
1132 struct lm85_data *data = lm85_update_device(dev);
1133 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
1134 HYST_FROM_REG(data->zone[nr].hyst));
1135}
1136
1137static ssize_t set_temp_auto_temp_off(struct device *dev,
1138 struct device_attribute *attr, const char *buf, size_t count)
1139{
1140 int nr = to_sensor_dev_attr(attr)->index;
1141 struct lm85_data *data = dev_get_drvdata(dev);
1142 struct i2c_client *client = data->client;
1143 int min;
1144 long val;
1145 int err;
1146
1147 err = kstrtol(buf, 10, &val);
1148 if (err)
1149 return err;
1150
1151 mutex_lock(&data->update_lock);
1152 min = TEMP_FROM_REG(data->zone[nr].limit);
1153 data->zone[nr].hyst = HYST_TO_REG(min - val);
1154 if (nr == 0 || nr == 1) {
1155 lm85_write_value(client, LM85_REG_AFAN_HYST1,
1156 (data->zone[0].hyst << 4)
1157 | data->zone[1].hyst);
1158 } else {
1159 lm85_write_value(client, LM85_REG_AFAN_HYST2,
1160 (data->zone[2].hyst << 4));
1161 }
1162 mutex_unlock(&data->update_lock);
1163 return count;
1164}
1165
1166static ssize_t show_temp_auto_temp_min(struct device *dev,
1167 struct device_attribute *attr, char *buf)
1168{
1169 int nr = to_sensor_dev_attr(attr)->index;
1170 struct lm85_data *data = lm85_update_device(dev);
1171 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
1172}
1173
1174static ssize_t set_temp_auto_temp_min(struct device *dev,
1175 struct device_attribute *attr, const char *buf, size_t count)
1176{
1177 int nr = to_sensor_dev_attr(attr)->index;
1178 struct lm85_data *data = dev_get_drvdata(dev);
1179 struct i2c_client *client = data->client;
1180 long val;
1181 int err;
1182
1183 err = kstrtol(buf, 10, &val);
1184 if (err)
1185 return err;
1186
1187 mutex_lock(&data->update_lock);
1188 data->zone[nr].limit = TEMP_TO_REG(val);
1189 lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
1190 data->zone[nr].limit);
1191
1192/* Update temp_auto_max and temp_auto_range */
1193 data->zone[nr].range = RANGE_TO_REG(
1194 TEMP_FROM_REG(data->zone[nr].max_desired) -
1195 TEMP_FROM_REG(data->zone[nr].limit));
1196 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1197 ((data->zone[nr].range & 0x0f) << 4)
1198 | (data->pwm_freq[nr] & 0x07));
1199
1200 mutex_unlock(&data->update_lock);
1201 return count;
1202}
1203
1204static ssize_t show_temp_auto_temp_max(struct device *dev,
1205 struct device_attribute *attr, char *buf)
1206{
1207 int nr = to_sensor_dev_attr(attr)->index;
1208 struct lm85_data *data = lm85_update_device(dev);
1209 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
1210 RANGE_FROM_REG(data->zone[nr].range));
1211}
1212
1213static ssize_t set_temp_auto_temp_max(struct device *dev,
1214 struct device_attribute *attr, const char *buf, size_t count)
1215{
1216 int nr = to_sensor_dev_attr(attr)->index;
1217 struct lm85_data *data = dev_get_drvdata(dev);
1218 struct i2c_client *client = data->client;
1219 int min;
1220 long val;
1221 int err;
1222
1223 err = kstrtol(buf, 10, &val);
1224 if (err)
1225 return err;
1226
1227 mutex_lock(&data->update_lock);
1228 min = TEMP_FROM_REG(data->zone[nr].limit);
1229 data->zone[nr].max_desired = TEMP_TO_REG(val);
1230 data->zone[nr].range = RANGE_TO_REG(
1231 val - min);
1232 lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1233 ((data->zone[nr].range & 0x0f) << 4)
1234 | (data->pwm_freq[nr] & 0x07));
1235 mutex_unlock(&data->update_lock);
1236 return count;
1237}
1238
1239static ssize_t show_temp_auto_temp_crit(struct device *dev,
1240 struct device_attribute *attr, char *buf)
1241{
1242 int nr = to_sensor_dev_attr(attr)->index;
1243 struct lm85_data *data = lm85_update_device(dev);
1244 return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
1245}
1246
1247static ssize_t set_temp_auto_temp_crit(struct device *dev,
1248 struct device_attribute *attr, const char *buf, size_t count)
1249{
1250 int nr = to_sensor_dev_attr(attr)->index;
1251 struct lm85_data *data = dev_get_drvdata(dev);
1252 struct i2c_client *client = data->client;
1253 long val;
1254 int err;
1255
1256 err = kstrtol(buf, 10, &val);
1257 if (err)
1258 return err;
1259
1260 mutex_lock(&data->update_lock);
1261 data->zone[nr].critical = TEMP_TO_REG(val);
1262 lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
1263 data->zone[nr].critical);
1264 mutex_unlock(&data->update_lock);
1265 return count;
1266}
1267
1268#define temp_auto(offset) \
1269static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_off, \
1270 S_IRUGO | S_IWUSR, show_temp_auto_temp_off, \
1271 set_temp_auto_temp_off, offset - 1); \
1272static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_min, \
1273 S_IRUGO | S_IWUSR, show_temp_auto_temp_min, \
1274 set_temp_auto_temp_min, offset - 1); \
1275static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_max, \
1276 S_IRUGO | S_IWUSR, show_temp_auto_temp_max, \
1277 set_temp_auto_temp_max, offset - 1); \
1278static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_crit, \
1279 S_IRUGO | S_IWUSR, show_temp_auto_temp_crit, \
1280 set_temp_auto_temp_crit, offset - 1);
1281
1282temp_auto(1);
1283temp_auto(2);
1284temp_auto(3);
1285
1286static struct attribute *lm85_attributes[] = {
1287 &sensor_dev_attr_fan1_input.dev_attr.attr,
1288 &sensor_dev_attr_fan2_input.dev_attr.attr,
1289 &sensor_dev_attr_fan3_input.dev_attr.attr,
1290 &sensor_dev_attr_fan4_input.dev_attr.attr,
1291 &sensor_dev_attr_fan1_min.dev_attr.attr,
1292 &sensor_dev_attr_fan2_min.dev_attr.attr,
1293 &sensor_dev_attr_fan3_min.dev_attr.attr,
1294 &sensor_dev_attr_fan4_min.dev_attr.attr,
1295 &sensor_dev_attr_fan1_alarm.dev_attr.attr,
1296 &sensor_dev_attr_fan2_alarm.dev_attr.attr,
1297 &sensor_dev_attr_fan3_alarm.dev_attr.attr,
1298 &sensor_dev_attr_fan4_alarm.dev_attr.attr,
1299
1300 &sensor_dev_attr_pwm1.dev_attr.attr,
1301 &sensor_dev_attr_pwm2.dev_attr.attr,
1302 &sensor_dev_attr_pwm3.dev_attr.attr,
1303 &sensor_dev_attr_pwm1_enable.dev_attr.attr,
1304 &sensor_dev_attr_pwm2_enable.dev_attr.attr,
1305 &sensor_dev_attr_pwm3_enable.dev_attr.attr,
1306 &sensor_dev_attr_pwm1_freq.dev_attr.attr,
1307 &sensor_dev_attr_pwm2_freq.dev_attr.attr,
1308 &sensor_dev_attr_pwm3_freq.dev_attr.attr,
1309
1310 &sensor_dev_attr_in0_input.dev_attr.attr,
1311 &sensor_dev_attr_in1_input.dev_attr.attr,
1312 &sensor_dev_attr_in2_input.dev_attr.attr,
1313 &sensor_dev_attr_in3_input.dev_attr.attr,
1314 &sensor_dev_attr_in0_min.dev_attr.attr,
1315 &sensor_dev_attr_in1_min.dev_attr.attr,
1316 &sensor_dev_attr_in2_min.dev_attr.attr,
1317 &sensor_dev_attr_in3_min.dev_attr.attr,
1318 &sensor_dev_attr_in0_max.dev_attr.attr,
1319 &sensor_dev_attr_in1_max.dev_attr.attr,
1320 &sensor_dev_attr_in2_max.dev_attr.attr,
1321 &sensor_dev_attr_in3_max.dev_attr.attr,
1322 &sensor_dev_attr_in0_alarm.dev_attr.attr,
1323 &sensor_dev_attr_in1_alarm.dev_attr.attr,
1324 &sensor_dev_attr_in2_alarm.dev_attr.attr,
1325 &sensor_dev_attr_in3_alarm.dev_attr.attr,
1326
1327 &sensor_dev_attr_temp1_input.dev_attr.attr,
1328 &sensor_dev_attr_temp2_input.dev_attr.attr,
1329 &sensor_dev_attr_temp3_input.dev_attr.attr,
1330 &sensor_dev_attr_temp1_min.dev_attr.attr,
1331 &sensor_dev_attr_temp2_min.dev_attr.attr,
1332 &sensor_dev_attr_temp3_min.dev_attr.attr,
1333 &sensor_dev_attr_temp1_max.dev_attr.attr,
1334 &sensor_dev_attr_temp2_max.dev_attr.attr,
1335 &sensor_dev_attr_temp3_max.dev_attr.attr,
1336 &sensor_dev_attr_temp1_alarm.dev_attr.attr,
1337 &sensor_dev_attr_temp2_alarm.dev_attr.attr,
1338 &sensor_dev_attr_temp3_alarm.dev_attr.attr,
1339 &sensor_dev_attr_temp1_fault.dev_attr.attr,
1340 &sensor_dev_attr_temp3_fault.dev_attr.attr,
1341
1342 &sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
1343 &sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
1344 &sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
1345 &sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
1346 &sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
1347 &sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
1348
1349 &sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
1350 &sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
1351 &sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
1352 &sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
1353 &sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
1354 &sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
1355 &sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
1356 &sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
1357 &sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
1358
1359 &dev_attr_vrm.attr,
1360 &dev_attr_cpu0_vid.attr,
1361 &dev_attr_alarms.attr,
1362 NULL
1363};
1364
1365static const struct attribute_group lm85_group = {
1366 .attrs = lm85_attributes,
1367};
1368
1369static struct attribute *lm85_attributes_minctl[] = {
1370 &sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
1371 &sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
1372 &sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
1373 NULL
1374};
1375
1376static const struct attribute_group lm85_group_minctl = {
1377 .attrs = lm85_attributes_minctl,
1378};
1379
1380static struct attribute *lm85_attributes_temp_off[] = {
1381 &sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
1382 &sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
1383 &sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
1384 NULL
1385};
1386
1387static const struct attribute_group lm85_group_temp_off = {
1388 .attrs = lm85_attributes_temp_off,
1389};
1390
1391static struct attribute *lm85_attributes_in4[] = {
1392 &sensor_dev_attr_in4_input.dev_attr.attr,
1393 &sensor_dev_attr_in4_min.dev_attr.attr,
1394 &sensor_dev_attr_in4_max.dev_attr.attr,
1395 &sensor_dev_attr_in4_alarm.dev_attr.attr,
1396 NULL
1397};
1398
1399static const struct attribute_group lm85_group_in4 = {
1400 .attrs = lm85_attributes_in4,
1401};
1402
1403static struct attribute *lm85_attributes_in567[] = {
1404 &sensor_dev_attr_in5_input.dev_attr.attr,
1405 &sensor_dev_attr_in6_input.dev_attr.attr,
1406 &sensor_dev_attr_in7_input.dev_attr.attr,
1407 &sensor_dev_attr_in5_min.dev_attr.attr,
1408 &sensor_dev_attr_in6_min.dev_attr.attr,
1409 &sensor_dev_attr_in7_min.dev_attr.attr,
1410 &sensor_dev_attr_in5_max.dev_attr.attr,
1411 &sensor_dev_attr_in6_max.dev_attr.attr,
1412 &sensor_dev_attr_in7_max.dev_attr.attr,
1413 &sensor_dev_attr_in5_alarm.dev_attr.attr,
1414 &sensor_dev_attr_in6_alarm.dev_attr.attr,
1415 &sensor_dev_attr_in7_alarm.dev_attr.attr,
1416 NULL
1417};
1418
1419static const struct attribute_group lm85_group_in567 = {
1420 .attrs = lm85_attributes_in567,
1421};
1422
1423static void lm85_init_client(struct i2c_client *client)
1424{
1425 int value;
1426
1427 /* Start monitoring if needed */
1428 value = lm85_read_value(client, LM85_REG_CONFIG);
1429 if (!(value & 0x01)) {
1430 dev_info(&client->dev, "Starting monitoring\n");
1431 lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
1432 }
1433
1434 /* Warn about unusual configuration bits */
1435 if (value & 0x02)
1436 dev_warn(&client->dev, "Device configuration is locked\n");
1437 if (!(value & 0x04))
1438 dev_warn(&client->dev, "Device is not ready\n");
1439}
1440
1441static int lm85_is_fake(struct i2c_client *client)
1442{
1443 /*
1444 * Differenciate between real LM96000 and Winbond WPCD377I. The latter
1445 * emulate the former except that it has no hardware monitoring function
1446 * so the readings are always 0.
1447 */
1448 int i;
1449 u8 in_temp, fan;
1450
1451 for (i = 0; i < 8; i++) {
1452 in_temp = i2c_smbus_read_byte_data(client, 0x20 + i);
1453 fan = i2c_smbus_read_byte_data(client, 0x28 + i);
1454 if (in_temp != 0x00 || fan != 0xff)
1455 return 0;
1456 }
1457
1458 return 1;
1459}
1460
1461/* Return 0 if detection is successful, -ENODEV otherwise */
1462static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info)
1463{
1464 struct i2c_adapter *adapter = client->adapter;
1465 int address = client->addr;
1466 const char *type_name = NULL;
1467 int company, verstep;
1468
1469 if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
1470 /* We need to be able to do byte I/O */
1471 return -ENODEV;
1472 }
1473
1474 /* Determine the chip type */
1475 company = lm85_read_value(client, LM85_REG_COMPANY);
1476 verstep = lm85_read_value(client, LM85_REG_VERSTEP);
1477
1478 dev_dbg(&adapter->dev,
1479 "Detecting device at 0x%02x with COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
1480 address, company, verstep);
1481
1482 if (company == LM85_COMPANY_NATIONAL) {
1483 switch (verstep) {
1484 case LM85_VERSTEP_LM85C:
1485 type_name = "lm85c";
1486 break;
1487 case LM85_VERSTEP_LM85B:
1488 type_name = "lm85b";
1489 break;
1490 case LM85_VERSTEP_LM96000_1:
1491 case LM85_VERSTEP_LM96000_2:
1492 /* Check for Winbond WPCD377I */
1493 if (lm85_is_fake(client)) {
1494 dev_dbg(&adapter->dev,
1495 "Found Winbond WPCD377I, ignoring\n");
1496 return -ENODEV;
1497 }
1498 type_name = "lm85";
1499 break;
1500 }
1501 } else if (company == LM85_COMPANY_ANALOG_DEV) {
1502 switch (verstep) {
1503 case LM85_VERSTEP_ADM1027:
1504 type_name = "adm1027";
1505 break;
1506 case LM85_VERSTEP_ADT7463:
1507 case LM85_VERSTEP_ADT7463C:
1508 type_name = "adt7463";
1509 break;
1510 case LM85_VERSTEP_ADT7468_1:
1511 case LM85_VERSTEP_ADT7468_2:
1512 type_name = "adt7468";
1513 break;
1514 }
1515 } else if (company == LM85_COMPANY_SMSC) {
1516 switch (verstep) {
1517 case LM85_VERSTEP_EMC6D100_A0:
1518 case LM85_VERSTEP_EMC6D100_A1:
1519 /* Note: we can't tell a '100 from a '101 */
1520 type_name = "emc6d100";
1521 break;
1522 case LM85_VERSTEP_EMC6D102:
1523 type_name = "emc6d102";
1524 break;
1525 case LM85_VERSTEP_EMC6D103_A0:
1526 case LM85_VERSTEP_EMC6D103_A1:
1527 type_name = "emc6d103";
1528 break;
1529 case LM85_VERSTEP_EMC6D103S:
1530 type_name = "emc6d103s";
1531 break;
1532 }
1533 }
1534
1535 if (!type_name)
1536 return -ENODEV;
1537
1538 strlcpy(info->type, type_name, I2C_NAME_SIZE);
1539
1540 return 0;
1541}
1542
1543static int lm85_probe(struct i2c_client *client, const struct i2c_device_id *id)
1544{
1545 struct device *dev = &client->dev;
1546 struct device *hwmon_dev;
1547 struct lm85_data *data;
1548 int idx = 0;
1549
1550 data = devm_kzalloc(dev, sizeof(struct lm85_data), GFP_KERNEL);
1551 if (!data)
1552 return -ENOMEM;
1553
1554 data->client = client;
1555 data->type = id->driver_data;
1556 mutex_init(&data->update_lock);
1557
1558 /* Fill in the chip specific driver values */
1559 switch (data->type) {
1560 case adm1027:
1561 case adt7463:
1562 case adt7468:
1563 case emc6d100:
1564 case emc6d102:
1565 case emc6d103:
1566 case emc6d103s:
1567 data->freq_map = adm1027_freq_map;
1568 break;
1569 default:
1570 data->freq_map = lm85_freq_map;
1571 }
1572
1573 /* Set the VRM version */
1574 data->vrm = vid_which_vrm();
1575
1576 /* Initialize the LM85 chip */
1577 lm85_init_client(client);
1578
1579 /* sysfs hooks */
1580 data->groups[idx++] = &lm85_group;
1581
1582 /* minctl and temp_off exist on all chips except emc6d103s */
1583 if (data->type != emc6d103s) {
1584 data->groups[idx++] = &lm85_group_minctl;
1585 data->groups[idx++] = &lm85_group_temp_off;
1586 }
1587
1588 /*
1589 * The ADT7463/68 have an optional VRM 10 mode where pin 21 is used
1590 * as a sixth digital VID input rather than an analog input.
1591 */
1592 if (data->type == adt7463 || data->type == adt7468) {
1593 u8 vid = lm85_read_value(client, LM85_REG_VID);
1594 if (vid & 0x80)
1595 data->has_vid5 = true;
1596 }
1597
1598 if (!data->has_vid5)
1599 data->groups[idx++] = &lm85_group_in4;
1600
1601 /* The EMC6D100 has 3 additional voltage inputs */
1602 if (data->type == emc6d100)
1603 data->groups[idx++] = &lm85_group_in567;
1604
1605 hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
1606 data, data->groups);
1607 return PTR_ERR_OR_ZERO(hwmon_dev);
1608}
1609
1610static const struct i2c_device_id lm85_id[] = {
1611 { "adm1027", adm1027 },
1612 { "adt7463", adt7463 },
1613 { "adt7468", adt7468 },
1614 { "lm85", lm85 },
1615 { "lm85b", lm85 },
1616 { "lm85c", lm85 },
1617 { "emc6d100", emc6d100 },
1618 { "emc6d101", emc6d100 },
1619 { "emc6d102", emc6d102 },
1620 { "emc6d103", emc6d103 },
1621 { "emc6d103s", emc6d103s },
1622 { }
1623};
1624MODULE_DEVICE_TABLE(i2c, lm85_id);
1625
1626static struct i2c_driver lm85_driver = {
1627 .class = I2C_CLASS_HWMON,
1628 .driver = {
1629 .name = "lm85",
1630 },
1631 .probe = lm85_probe,
1632 .id_table = lm85_id,
1633 .detect = lm85_detect,
1634 .address_list = normal_i2c,
1635};
1636
1637module_i2c_driver(lm85_driver);
1638
1639MODULE_LICENSE("GPL");
1640MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
1641 "Margit Schubert-While <margitsw@t-online.de>, "
1642 "Justin Thiessen <jthiessen@penguincomputing.com>");
1643MODULE_DESCRIPTION("LM85-B, LM85-C driver");